Commit | Line | Data |
---|---|---|
456f8b9d | 1 | /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger. |
0fd88904 | 2 | |
4c38e0a4 | 3 | Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010 |
9b254dd1 | 4 | Free Software Foundation, Inc. |
456f8b9d DB |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
456f8b9d DB |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
456f8b9d DB |
20 | |
21 | #include "defs.h" | |
8baa6f92 | 22 | #include "gdb_string.h" |
456f8b9d | 23 | #include "inferior.h" |
456f8b9d DB |
24 | #include "gdbcore.h" |
25 | #include "arch-utils.h" | |
26 | #include "regcache.h" | |
8baa6f92 | 27 | #include "frame.h" |
1cb761c7 KB |
28 | #include "frame-unwind.h" |
29 | #include "frame-base.h" | |
8baa6f92 | 30 | #include "trad-frame.h" |
dcc6aaff | 31 | #include "dis-asm.h" |
526eef89 KB |
32 | #include "gdb_assert.h" |
33 | #include "sim-regno.h" | |
34 | #include "gdb/sim-frv.h" | |
35 | #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */ | |
634aa483 | 36 | #include "symtab.h" |
7e295833 KB |
37 | #include "elf-bfd.h" |
38 | #include "elf/frv.h" | |
39 | #include "osabi.h" | |
7d9b040b | 40 | #include "infcall.h" |
917630e4 | 41 | #include "solib.h" |
7e295833 | 42 | #include "frv-tdep.h" |
456f8b9d DB |
43 | |
44 | extern void _initialize_frv_tdep (void); | |
45 | ||
1cb761c7 | 46 | struct frv_unwind_cache /* was struct frame_extra_info */ |
456f8b9d | 47 | { |
1cb761c7 KB |
48 | /* The previous frame's inner-most stack address. Used as this |
49 | frame ID's stack_addr. */ | |
50 | CORE_ADDR prev_sp; | |
456f8b9d | 51 | |
1cb761c7 KB |
52 | /* The frame's base, optionally used by the high-level debug info. */ |
53 | CORE_ADDR base; | |
8baa6f92 KB |
54 | |
55 | /* Table indicating the location of each and every register. */ | |
56 | struct trad_frame_saved_reg *saved_regs; | |
456f8b9d DB |
57 | }; |
58 | ||
456f8b9d DB |
59 | /* A structure describing a particular variant of the FRV. |
60 | We allocate and initialize one of these structures when we create | |
61 | the gdbarch object for a variant. | |
62 | ||
63 | At the moment, all the FR variants we support differ only in which | |
64 | registers are present; the portable code of GDB knows that | |
65 | registers whose names are the empty string don't exist, so the | |
66 | `register_names' array captures all the per-variant information we | |
67 | need. | |
68 | ||
69 | in the future, if we need to have per-variant maps for raw size, | |
70 | virtual type, etc., we should replace register_names with an array | |
71 | of structures, each of which gives all the necessary info for one | |
72 | register. Don't stick parallel arrays in here --- that's so | |
73 | Fortran. */ | |
74 | struct gdbarch_tdep | |
75 | { | |
7e295833 KB |
76 | /* Which ABI is in use? */ |
77 | enum frv_abi frv_abi; | |
78 | ||
456f8b9d DB |
79 | /* How many general-purpose registers does this variant have? */ |
80 | int num_gprs; | |
81 | ||
82 | /* How many floating-point registers does this variant have? */ | |
83 | int num_fprs; | |
84 | ||
85 | /* How many hardware watchpoints can it support? */ | |
86 | int num_hw_watchpoints; | |
87 | ||
88 | /* How many hardware breakpoints can it support? */ | |
89 | int num_hw_breakpoints; | |
90 | ||
91 | /* Register names. */ | |
92 | char **register_names; | |
93 | }; | |
94 | ||
7e295833 KB |
95 | /* Return the FR-V ABI associated with GDBARCH. */ |
96 | enum frv_abi | |
97 | frv_abi (struct gdbarch *gdbarch) | |
98 | { | |
99 | return gdbarch_tdep (gdbarch)->frv_abi; | |
100 | } | |
101 | ||
102 | /* Fetch the interpreter and executable loadmap addresses (for shared | |
103 | library support) for the FDPIC ABI. Return 0 if successful, -1 if | |
104 | not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */ | |
105 | int | |
106 | frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr, | |
107 | CORE_ADDR *exec_addr) | |
108 | { | |
109 | if (frv_abi (gdbarch) != FRV_ABI_FDPIC) | |
110 | return -1; | |
111 | else | |
112 | { | |
594f7785 UW |
113 | struct regcache *regcache = get_current_regcache (); |
114 | ||
7e295833 KB |
115 | if (interp_addr != NULL) |
116 | { | |
117 | ULONGEST val; | |
594f7785 | 118 | regcache_cooked_read_unsigned (regcache, |
7e295833 KB |
119 | fdpic_loadmap_interp_regnum, &val); |
120 | *interp_addr = val; | |
121 | } | |
122 | if (exec_addr != NULL) | |
123 | { | |
124 | ULONGEST val; | |
594f7785 | 125 | regcache_cooked_read_unsigned (regcache, |
7e295833 KB |
126 | fdpic_loadmap_exec_regnum, &val); |
127 | *exec_addr = val; | |
128 | } | |
129 | return 0; | |
130 | } | |
131 | } | |
456f8b9d DB |
132 | |
133 | /* Allocate a new variant structure, and set up default values for all | |
134 | the fields. */ | |
135 | static struct gdbarch_tdep * | |
5ae5f592 | 136 | new_variant (void) |
456f8b9d DB |
137 | { |
138 | struct gdbarch_tdep *var; | |
139 | int r; | |
140 | char buf[20]; | |
141 | ||
142 | var = xmalloc (sizeof (*var)); | |
143 | memset (var, 0, sizeof (*var)); | |
144 | ||
7e295833 | 145 | var->frv_abi = FRV_ABI_EABI; |
456f8b9d DB |
146 | var->num_gprs = 64; |
147 | var->num_fprs = 64; | |
148 | var->num_hw_watchpoints = 0; | |
149 | var->num_hw_breakpoints = 0; | |
150 | ||
151 | /* By default, don't supply any general-purpose or floating-point | |
152 | register names. */ | |
6a748db6 KB |
153 | var->register_names |
154 | = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs) | |
155 | * sizeof (char *)); | |
156 | for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++) | |
456f8b9d DB |
157 | var->register_names[r] = ""; |
158 | ||
526eef89 | 159 | /* Do, however, supply default names for the known special-purpose |
456f8b9d | 160 | registers. */ |
456f8b9d DB |
161 | |
162 | var->register_names[pc_regnum] = "pc"; | |
163 | var->register_names[lr_regnum] = "lr"; | |
164 | var->register_names[lcr_regnum] = "lcr"; | |
165 | ||
166 | var->register_names[psr_regnum] = "psr"; | |
167 | var->register_names[ccr_regnum] = "ccr"; | |
168 | var->register_names[cccr_regnum] = "cccr"; | |
169 | var->register_names[tbr_regnum] = "tbr"; | |
170 | ||
171 | /* Debug registers. */ | |
172 | var->register_names[brr_regnum] = "brr"; | |
173 | var->register_names[dbar0_regnum] = "dbar0"; | |
174 | var->register_names[dbar1_regnum] = "dbar1"; | |
175 | var->register_names[dbar2_regnum] = "dbar2"; | |
176 | var->register_names[dbar3_regnum] = "dbar3"; | |
177 | ||
526eef89 KB |
178 | /* iacc0 (Only found on MB93405.) */ |
179 | var->register_names[iacc0h_regnum] = "iacc0h"; | |
180 | var->register_names[iacc0l_regnum] = "iacc0l"; | |
6a748db6 | 181 | var->register_names[iacc0_regnum] = "iacc0"; |
526eef89 | 182 | |
8b67aa36 KB |
183 | /* fsr0 (Found on FR555 and FR501.) */ |
184 | var->register_names[fsr0_regnum] = "fsr0"; | |
185 | ||
186 | /* acc0 - acc7. The architecture provides for the possibility of many | |
187 | more (up to 64 total), but we don't want to make that big of a hole | |
188 | in the G packet. If we need more in the future, we'll add them | |
189 | elsewhere. */ | |
190 | for (r = acc0_regnum; r <= acc7_regnum; r++) | |
191 | { | |
192 | char *buf; | |
b435e160 | 193 | buf = xstrprintf ("acc%d", r - acc0_regnum); |
8b67aa36 KB |
194 | var->register_names[r] = buf; |
195 | } | |
196 | ||
197 | /* accg0 - accg7: These are one byte registers. The remote protocol | |
198 | provides the raw values packed four into a slot. accg0123 and | |
199 | accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively. | |
200 | We don't provide names for accg0123 and accg4567 since the user will | |
201 | likely not want to see these raw values. */ | |
202 | ||
203 | for (r = accg0_regnum; r <= accg7_regnum; r++) | |
204 | { | |
205 | char *buf; | |
b435e160 | 206 | buf = xstrprintf ("accg%d", r - accg0_regnum); |
8b67aa36 KB |
207 | var->register_names[r] = buf; |
208 | } | |
209 | ||
210 | /* msr0 and msr1. */ | |
211 | ||
212 | var->register_names[msr0_regnum] = "msr0"; | |
213 | var->register_names[msr1_regnum] = "msr1"; | |
214 | ||
215 | /* gner and fner registers. */ | |
216 | var->register_names[gner0_regnum] = "gner0"; | |
217 | var->register_names[gner1_regnum] = "gner1"; | |
218 | var->register_names[fner0_regnum] = "fner0"; | |
219 | var->register_names[fner1_regnum] = "fner1"; | |
220 | ||
456f8b9d DB |
221 | return var; |
222 | } | |
223 | ||
224 | ||
225 | /* Indicate that the variant VAR has NUM_GPRS general-purpose | |
226 | registers, and fill in the names array appropriately. */ | |
227 | static void | |
228 | set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs) | |
229 | { | |
230 | int r; | |
231 | ||
232 | var->num_gprs = num_gprs; | |
233 | ||
234 | for (r = 0; r < num_gprs; ++r) | |
235 | { | |
236 | char buf[20]; | |
237 | ||
238 | sprintf (buf, "gr%d", r); | |
239 | var->register_names[first_gpr_regnum + r] = xstrdup (buf); | |
240 | } | |
241 | } | |
242 | ||
243 | ||
244 | /* Indicate that the variant VAR has NUM_FPRS floating-point | |
245 | registers, and fill in the names array appropriately. */ | |
246 | static void | |
247 | set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs) | |
248 | { | |
249 | int r; | |
250 | ||
251 | var->num_fprs = num_fprs; | |
252 | ||
253 | for (r = 0; r < num_fprs; ++r) | |
254 | { | |
255 | char buf[20]; | |
256 | ||
257 | sprintf (buf, "fr%d", r); | |
258 | var->register_names[first_fpr_regnum + r] = xstrdup (buf); | |
259 | } | |
260 | } | |
261 | ||
7e295833 KB |
262 | static void |
263 | set_variant_abi_fdpic (struct gdbarch_tdep *var) | |
264 | { | |
265 | var->frv_abi = FRV_ABI_FDPIC; | |
266 | var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec"); | |
267 | var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp"); | |
268 | } | |
456f8b9d | 269 | |
b2d6d697 KB |
270 | static void |
271 | set_variant_scratch_registers (struct gdbarch_tdep *var) | |
272 | { | |
273 | var->register_names[scr0_regnum] = xstrdup ("scr0"); | |
274 | var->register_names[scr1_regnum] = xstrdup ("scr1"); | |
275 | var->register_names[scr2_regnum] = xstrdup ("scr2"); | |
276 | var->register_names[scr3_regnum] = xstrdup ("scr3"); | |
277 | } | |
278 | ||
456f8b9d | 279 | static const char * |
d93859e2 | 280 | frv_register_name (struct gdbarch *gdbarch, int reg) |
456f8b9d DB |
281 | { |
282 | if (reg < 0) | |
283 | return "?toosmall?"; | |
6a748db6 | 284 | if (reg >= frv_num_regs + frv_num_pseudo_regs) |
456f8b9d DB |
285 | return "?toolarge?"; |
286 | ||
7a22ecfc | 287 | return gdbarch_tdep (gdbarch)->register_names[reg]; |
456f8b9d DB |
288 | } |
289 | ||
526eef89 | 290 | |
456f8b9d | 291 | static struct type * |
7f398216 | 292 | frv_register_type (struct gdbarch *gdbarch, int reg) |
456f8b9d | 293 | { |
526eef89 | 294 | if (reg >= first_fpr_regnum && reg <= last_fpr_regnum) |
0dfff4cb | 295 | return builtin_type (gdbarch)->builtin_float; |
6a748db6 | 296 | else if (reg == iacc0_regnum) |
df4df182 | 297 | return builtin_type (gdbarch)->builtin_int64; |
456f8b9d | 298 | else |
df4df182 | 299 | return builtin_type (gdbarch)->builtin_int32; |
456f8b9d DB |
300 | } |
301 | ||
6a748db6 KB |
302 | static void |
303 | frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
e2b7c966 | 304 | int reg, gdb_byte *buffer) |
6a748db6 KB |
305 | { |
306 | if (reg == iacc0_regnum) | |
307 | { | |
308 | regcache_raw_read (regcache, iacc0h_regnum, buffer); | |
309 | regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4); | |
310 | } | |
8b67aa36 KB |
311 | else if (accg0_regnum <= reg && reg <= accg7_regnum) |
312 | { | |
313 | /* The accg raw registers have four values in each slot with the | |
314 | lowest register number occupying the first byte. */ | |
315 | ||
316 | int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4; | |
317 | int byte_num = (reg - accg0_regnum) % 4; | |
318 | bfd_byte buf[4]; | |
319 | ||
320 | regcache_raw_read (regcache, raw_regnum, buf); | |
321 | memset (buffer, 0, 4); | |
322 | /* FR-V is big endian, so put the requested byte in the first byte | |
323 | of the buffer allocated to hold the pseudo-register. */ | |
324 | ((bfd_byte *) buffer)[0] = buf[byte_num]; | |
325 | } | |
6a748db6 KB |
326 | } |
327 | ||
328 | static void | |
329 | frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
e2b7c966 | 330 | int reg, const gdb_byte *buffer) |
6a748db6 KB |
331 | { |
332 | if (reg == iacc0_regnum) | |
333 | { | |
334 | regcache_raw_write (regcache, iacc0h_regnum, buffer); | |
335 | regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4); | |
336 | } | |
8b67aa36 KB |
337 | else if (accg0_regnum <= reg && reg <= accg7_regnum) |
338 | { | |
339 | /* The accg raw registers have four values in each slot with the | |
340 | lowest register number occupying the first byte. */ | |
341 | ||
342 | int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4; | |
343 | int byte_num = (reg - accg0_regnum) % 4; | |
344 | char buf[4]; | |
345 | ||
346 | regcache_raw_read (regcache, raw_regnum, buf); | |
347 | buf[byte_num] = ((bfd_byte *) buffer)[0]; | |
348 | regcache_raw_write (regcache, raw_regnum, buf); | |
349 | } | |
6a748db6 KB |
350 | } |
351 | ||
526eef89 | 352 | static int |
e7faf938 | 353 | frv_register_sim_regno (struct gdbarch *gdbarch, int reg) |
526eef89 KB |
354 | { |
355 | static const int spr_map[] = | |
356 | { | |
357 | H_SPR_PSR, /* psr_regnum */ | |
358 | H_SPR_CCR, /* ccr_regnum */ | |
359 | H_SPR_CCCR, /* cccr_regnum */ | |
8b67aa36 KB |
360 | -1, /* fdpic_loadmap_exec_regnum */ |
361 | -1, /* fdpic_loadmap_interp_regnum */ | |
526eef89 KB |
362 | -1, /* 134 */ |
363 | H_SPR_TBR, /* tbr_regnum */ | |
364 | H_SPR_BRR, /* brr_regnum */ | |
365 | H_SPR_DBAR0, /* dbar0_regnum */ | |
366 | H_SPR_DBAR1, /* dbar1_regnum */ | |
367 | H_SPR_DBAR2, /* dbar2_regnum */ | |
368 | H_SPR_DBAR3, /* dbar3_regnum */ | |
8b67aa36 KB |
369 | H_SPR_SCR0, /* scr0_regnum */ |
370 | H_SPR_SCR1, /* scr1_regnum */ | |
371 | H_SPR_SCR2, /* scr2_regnum */ | |
372 | H_SPR_SCR3, /* scr3_regnum */ | |
526eef89 KB |
373 | H_SPR_LR, /* lr_regnum */ |
374 | H_SPR_LCR, /* lcr_regnum */ | |
375 | H_SPR_IACC0H, /* iacc0h_regnum */ | |
8b67aa36 KB |
376 | H_SPR_IACC0L, /* iacc0l_regnum */ |
377 | H_SPR_FSR0, /* fsr0_regnum */ | |
378 | /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */ | |
379 | -1, /* acc0_regnum */ | |
380 | -1, /* acc1_regnum */ | |
381 | -1, /* acc2_regnum */ | |
382 | -1, /* acc3_regnum */ | |
383 | -1, /* acc4_regnum */ | |
384 | -1, /* acc5_regnum */ | |
385 | -1, /* acc6_regnum */ | |
386 | -1, /* acc7_regnum */ | |
387 | -1, /* acc0123_regnum */ | |
388 | -1, /* acc4567_regnum */ | |
389 | H_SPR_MSR0, /* msr0_regnum */ | |
390 | H_SPR_MSR1, /* msr1_regnum */ | |
391 | H_SPR_GNER0, /* gner0_regnum */ | |
392 | H_SPR_GNER1, /* gner1_regnum */ | |
393 | H_SPR_FNER0, /* fner0_regnum */ | |
394 | H_SPR_FNER1, /* fner1_regnum */ | |
526eef89 KB |
395 | }; |
396 | ||
e7faf938 | 397 | gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); |
526eef89 KB |
398 | |
399 | if (first_gpr_regnum <= reg && reg <= last_gpr_regnum) | |
400 | return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM; | |
401 | else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum) | |
402 | return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM; | |
403 | else if (pc_regnum == reg) | |
404 | return SIM_FRV_PC_REGNUM; | |
405 | else if (reg >= first_spr_regnum | |
406 | && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0])) | |
407 | { | |
408 | int spr_reg_offset = spr_map[reg - first_spr_regnum]; | |
409 | ||
410 | if (spr_reg_offset < 0) | |
411 | return SIM_REGNO_DOES_NOT_EXIST; | |
412 | else | |
413 | return SIM_FRV_SPR0_REGNUM + spr_reg_offset; | |
414 | } | |
415 | ||
e2e0b3e5 | 416 | internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg); |
526eef89 KB |
417 | } |
418 | ||
456f8b9d | 419 | static const unsigned char * |
67d57894 | 420 | frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp) |
456f8b9d DB |
421 | { |
422 | static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01}; | |
423 | *lenp = sizeof (breakpoint); | |
424 | return breakpoint; | |
425 | } | |
426 | ||
46a16dba KB |
427 | /* Define the maximum number of instructions which may be packed into a |
428 | bundle (VLIW instruction). */ | |
429 | static const int max_instrs_per_bundle = 8; | |
430 | ||
431 | /* Define the size (in bytes) of an FR-V instruction. */ | |
432 | static const int frv_instr_size = 4; | |
433 | ||
434 | /* Adjust a breakpoint's address to account for the FR-V architecture's | |
435 | constraint that a break instruction must not appear as any but the | |
436 | first instruction in the bundle. */ | |
437 | static CORE_ADDR | |
1208538e | 438 | frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) |
46a16dba KB |
439 | { |
440 | int count = max_instrs_per_bundle; | |
441 | CORE_ADDR addr = bpaddr - frv_instr_size; | |
442 | CORE_ADDR func_start = get_pc_function_start (bpaddr); | |
443 | ||
444 | /* Find the end of the previous packing sequence. This will be indicated | |
445 | by either attempting to access some inaccessible memory or by finding | |
446 | an instruction word whose packing bit is set to one. */ | |
447 | while (count-- > 0 && addr >= func_start) | |
448 | { | |
449 | char instr[frv_instr_size]; | |
450 | int status; | |
451 | ||
8defab1a | 452 | status = target_read_memory (addr, instr, sizeof instr); |
46a16dba KB |
453 | |
454 | if (status != 0) | |
455 | break; | |
456 | ||
457 | /* This is a big endian architecture, so byte zero will have most | |
458 | significant byte. The most significant bit of this byte is the | |
459 | packing bit. */ | |
460 | if (instr[0] & 0x80) | |
461 | break; | |
462 | ||
463 | addr -= frv_instr_size; | |
464 | } | |
465 | ||
466 | if (count > 0) | |
467 | bpaddr = addr + frv_instr_size; | |
468 | ||
469 | return bpaddr; | |
470 | } | |
471 | ||
456f8b9d DB |
472 | |
473 | /* Return true if REG is a caller-saves ("scratch") register, | |
474 | false otherwise. */ | |
475 | static int | |
476 | is_caller_saves_reg (int reg) | |
477 | { | |
478 | return ((4 <= reg && reg <= 7) | |
479 | || (14 <= reg && reg <= 15) | |
480 | || (32 <= reg && reg <= 47)); | |
481 | } | |
482 | ||
483 | ||
484 | /* Return true if REG is a callee-saves register, false otherwise. */ | |
485 | static int | |
486 | is_callee_saves_reg (int reg) | |
487 | { | |
488 | return ((16 <= reg && reg <= 31) | |
489 | || (48 <= reg && reg <= 63)); | |
490 | } | |
491 | ||
492 | ||
493 | /* Return true if REG is an argument register, false otherwise. */ | |
494 | static int | |
495 | is_argument_reg (int reg) | |
496 | { | |
497 | return (8 <= reg && reg <= 13); | |
498 | } | |
499 | ||
456f8b9d DB |
500 | /* Scan an FR-V prologue, starting at PC, until frame->PC. |
501 | If FRAME is non-zero, fill in its saved_regs with appropriate addresses. | |
502 | We assume FRAME's saved_regs array has already been allocated and cleared. | |
503 | Return the first PC value after the prologue. | |
504 | ||
505 | Note that, for unoptimized code, we almost don't need this function | |
506 | at all; all arguments and locals live on the stack, so we just need | |
507 | the FP to find everything. The catch: structures passed by value | |
508 | have their addresses living in registers; they're never spilled to | |
509 | the stack. So if you ever want to be able to get to these | |
510 | arguments in any frame but the top, you'll need to do this serious | |
511 | prologue analysis. */ | |
512 | static CORE_ADDR | |
d80b854b UW |
513 | frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, |
514 | struct frame_info *this_frame, | |
1cb761c7 | 515 | struct frv_unwind_cache *info) |
456f8b9d | 516 | { |
e17a4113 UW |
517 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
518 | ||
456f8b9d DB |
519 | /* When writing out instruction bitpatterns, we use the following |
520 | letters to label instruction fields: | |
521 | P - The parallel bit. We don't use this. | |
522 | J - The register number of GRj in the instruction description. | |
523 | K - The register number of GRk in the instruction description. | |
524 | I - The register number of GRi. | |
525 | S - a signed imediate offset. | |
526 | U - an unsigned immediate offset. | |
527 | ||
528 | The dots below the numbers indicate where hex digit boundaries | |
529 | fall, to make it easier to check the numbers. */ | |
530 | ||
531 | /* Non-zero iff we've seen the instruction that initializes the | |
532 | frame pointer for this function's frame. */ | |
533 | int fp_set = 0; | |
534 | ||
535 | /* If fp_set is non_zero, then this is the distance from | |
536 | the stack pointer to frame pointer: fp = sp + fp_offset. */ | |
537 | int fp_offset = 0; | |
538 | ||
539 | /* Total size of frame prior to any alloca operations. */ | |
540 | int framesize = 0; | |
541 | ||
1cb761c7 KB |
542 | /* Flag indicating if lr has been saved on the stack. */ |
543 | int lr_saved_on_stack = 0; | |
544 | ||
456f8b9d DB |
545 | /* The number of the general-purpose register we saved the return |
546 | address ("link register") in, or -1 if we haven't moved it yet. */ | |
547 | int lr_save_reg = -1; | |
548 | ||
1cb761c7 KB |
549 | /* Offset (from sp) at which lr has been saved on the stack. */ |
550 | ||
551 | int lr_sp_offset = 0; | |
456f8b9d DB |
552 | |
553 | /* If gr_saved[i] is non-zero, then we've noticed that general | |
554 | register i has been saved at gr_sp_offset[i] from the stack | |
555 | pointer. */ | |
556 | char gr_saved[64]; | |
557 | int gr_sp_offset[64]; | |
558 | ||
d40fcd7b KB |
559 | /* The address of the most recently scanned prologue instruction. */ |
560 | CORE_ADDR last_prologue_pc; | |
561 | ||
562 | /* The address of the next instruction. */ | |
563 | CORE_ADDR next_pc; | |
564 | ||
565 | /* The upper bound to of the pc values to scan. */ | |
566 | CORE_ADDR lim_pc; | |
567 | ||
456f8b9d DB |
568 | memset (gr_saved, 0, sizeof (gr_saved)); |
569 | ||
d40fcd7b KB |
570 | last_prologue_pc = pc; |
571 | ||
572 | /* Try to compute an upper limit (on how far to scan) based on the | |
573 | line number info. */ | |
d80b854b | 574 | lim_pc = skip_prologue_using_sal (gdbarch, pc); |
d40fcd7b KB |
575 | /* If there's no line number info, lim_pc will be 0. In that case, |
576 | set the limit to be 100 instructions away from pc. Hopefully, this | |
577 | will be far enough away to account for the entire prologue. Don't | |
578 | worry about overshooting the end of the function. The scan loop | |
579 | below contains some checks to avoid scanning unreasonably far. */ | |
580 | if (lim_pc == 0) | |
581 | lim_pc = pc + 400; | |
582 | ||
583 | /* If we have a frame, we don't want to scan past the frame's pc. This | |
584 | will catch those cases where the pc is in the prologue. */ | |
94afd7a6 | 585 | if (this_frame) |
d40fcd7b | 586 | { |
94afd7a6 | 587 | CORE_ADDR frame_pc = get_frame_pc (this_frame); |
d40fcd7b KB |
588 | if (frame_pc < lim_pc) |
589 | lim_pc = frame_pc; | |
590 | } | |
591 | ||
592 | /* Scan the prologue. */ | |
593 | while (pc < lim_pc) | |
456f8b9d | 594 | { |
1ccda5e9 KB |
595 | char buf[frv_instr_size]; |
596 | LONGEST op; | |
597 | ||
598 | if (target_read_memory (pc, buf, sizeof buf) != 0) | |
599 | break; | |
e17a4113 | 600 | op = extract_signed_integer (buf, sizeof buf, byte_order); |
1ccda5e9 | 601 | |
d40fcd7b | 602 | next_pc = pc + 4; |
456f8b9d DB |
603 | |
604 | /* The tests in this chain of ifs should be in order of | |
605 | decreasing selectivity, so that more particular patterns get | |
606 | to fire before less particular patterns. */ | |
607 | ||
d40fcd7b KB |
608 | /* Some sort of control transfer instruction: stop scanning prologue. |
609 | Integer Conditional Branch: | |
610 | X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX | |
611 | Floating-point / media Conditional Branch: | |
612 | X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX | |
613 | LCR Conditional Branch to LR | |
614 | X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX | |
615 | Integer conditional Branches to LR | |
616 | X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX | |
617 | X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX | |
618 | Floating-point/Media Branches to LR | |
619 | X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX | |
620 | X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX | |
621 | Jump and Link | |
622 | X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX | |
623 | X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX | |
624 | Call | |
625 | X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX | |
626 | Return from Trap | |
627 | X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX | |
628 | Integer Conditional Trap | |
629 | X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX | |
630 | X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX | |
631 | Floating-point /media Conditional Trap | |
632 | X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX | |
633 | X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX | |
634 | Break | |
635 | X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX | |
636 | Media Trap | |
637 | X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */ | |
638 | if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */ | |
639 | || (op & 0x01f80000) == 0x00300000 /* Jump and Link */ | |
640 | || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */ | |
641 | || (op & 0x01f80000) == 0x00700000) /* Trap immediate */ | |
642 | { | |
643 | /* Stop scanning; not in prologue any longer. */ | |
644 | break; | |
645 | } | |
646 | ||
647 | /* Loading something from memory into fp probably means that | |
648 | we're in the epilogue. Stop scanning the prologue. | |
649 | ld @(GRi, GRk), fp | |
650 | X 000010 0000010 XXXXXX 000100 XXXXXX | |
651 | ldi @(GRi, d12), fp | |
652 | X 000010 0110010 XXXXXX XXXXXXXXXXXX */ | |
653 | else if ((op & 0x7ffc0fc0) == 0x04080100 | |
654 | || (op & 0x7ffc0000) == 0x04c80000) | |
655 | { | |
656 | break; | |
657 | } | |
658 | ||
456f8b9d DB |
659 | /* Setting the FP from the SP: |
660 | ori sp, 0, fp | |
661 | P 000010 0100010 000001 000000000000 = 0x04881000 | |
662 | 0 111111 1111111 111111 111111111111 = 0x7fffffff | |
663 | . . . . . . . . | |
664 | We treat this as part of the prologue. */ | |
d40fcd7b | 665 | else if ((op & 0x7fffffff) == 0x04881000) |
456f8b9d DB |
666 | { |
667 | fp_set = 1; | |
668 | fp_offset = 0; | |
d40fcd7b | 669 | last_prologue_pc = next_pc; |
456f8b9d DB |
670 | } |
671 | ||
672 | /* Move the link register to the scratch register grJ, before saving: | |
673 | movsg lr, grJ | |
674 | P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0 | |
675 | 0 111111 1111111 111111 111111 000000 = 0x7fffffc0 | |
676 | . . . . . . . . | |
677 | We treat this as part of the prologue. */ | |
678 | else if ((op & 0x7fffffc0) == 0x080d01c0) | |
679 | { | |
680 | int gr_j = op & 0x3f; | |
681 | ||
682 | /* If we're moving it to a scratch register, that's fine. */ | |
683 | if (is_caller_saves_reg (gr_j)) | |
d40fcd7b KB |
684 | { |
685 | lr_save_reg = gr_j; | |
686 | last_prologue_pc = next_pc; | |
687 | } | |
456f8b9d DB |
688 | } |
689 | ||
690 | /* To save multiple callee-saves registers on the stack, at | |
691 | offset zero: | |
692 | ||
693 | std grK,@(sp,gr0) | |
694 | P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0 | |
695 | 0 000000 1111111 111111 111111 111111 = 0x01ffffff | |
696 | ||
697 | stq grK,@(sp,gr0) | |
698 | P KKKKKK 0000011 000001 000100 000000 = 0x000c1100 | |
699 | 0 000000 1111111 111111 111111 111111 = 0x01ffffff | |
700 | . . . . . . . . | |
701 | We treat this as part of the prologue, and record the register's | |
702 | saved address in the frame structure. */ | |
703 | else if ((op & 0x01ffffff) == 0x000c10c0 | |
704 | || (op & 0x01ffffff) == 0x000c1100) | |
705 | { | |
706 | int gr_k = ((op >> 25) & 0x3f); | |
707 | int ope = ((op >> 6) & 0x3f); | |
708 | int count; | |
709 | int i; | |
710 | ||
711 | /* Is it an std or an stq? */ | |
712 | if (ope == 0x03) | |
713 | count = 2; | |
714 | else | |
715 | count = 4; | |
716 | ||
717 | /* Is it really a callee-saves register? */ | |
718 | if (is_callee_saves_reg (gr_k)) | |
719 | { | |
720 | for (i = 0; i < count; i++) | |
721 | { | |
722 | gr_saved[gr_k + i] = 1; | |
723 | gr_sp_offset[gr_k + i] = 4 * i; | |
724 | } | |
d40fcd7b | 725 | last_prologue_pc = next_pc; |
456f8b9d | 726 | } |
456f8b9d DB |
727 | } |
728 | ||
729 | /* Adjusting the stack pointer. (The stack pointer is GR1.) | |
730 | addi sp, S, sp | |
731 | P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000 | |
732 | 0 111111 1111111 111111 000000000000 = 0x7ffff000 | |
733 | . . . . . . . . | |
734 | We treat this as part of the prologue. */ | |
735 | else if ((op & 0x7ffff000) == 0x02401000) | |
736 | { | |
d40fcd7b KB |
737 | if (framesize == 0) |
738 | { | |
739 | /* Sign-extend the twelve-bit field. | |
740 | (Isn't there a better way to do this?) */ | |
741 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
456f8b9d | 742 | |
d40fcd7b KB |
743 | framesize -= s; |
744 | last_prologue_pc = pc; | |
745 | } | |
746 | else | |
747 | { | |
748 | /* If the prologue is being adjusted again, we've | |
749 | likely gone too far; i.e. we're probably in the | |
750 | epilogue. */ | |
751 | break; | |
752 | } | |
456f8b9d DB |
753 | } |
754 | ||
755 | /* Setting the FP to a constant distance from the SP: | |
756 | addi sp, S, fp | |
757 | P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000 | |
758 | 0 111111 1111111 111111 000000000000 = 0x7ffff000 | |
759 | . . . . . . . . | |
760 | We treat this as part of the prologue. */ | |
761 | else if ((op & 0x7ffff000) == 0x04401000) | |
762 | { | |
763 | /* Sign-extend the twelve-bit field. | |
764 | (Isn't there a better way to do this?) */ | |
765 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
766 | fp_set = 1; | |
767 | fp_offset = s; | |
d40fcd7b | 768 | last_prologue_pc = pc; |
456f8b9d DB |
769 | } |
770 | ||
771 | /* To spill an argument register to a scratch register: | |
772 | ori GRi, 0, GRk | |
773 | P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000 | |
774 | 0 000000 1111111 000000 111111111111 = 0x01fc0fff | |
775 | . . . . . . . . | |
776 | For the time being, we treat this as a prologue instruction, | |
777 | assuming that GRi is an argument register. This one's kind | |
778 | of suspicious, because it seems like it could be part of a | |
779 | legitimate body instruction. But we only come here when the | |
780 | source info wasn't helpful, so we have to do the best we can. | |
781 | Hopefully once GCC and GDB agree on how to emit line number | |
782 | info for prologues, then this code will never come into play. */ | |
783 | else if ((op & 0x01fc0fff) == 0x00880000) | |
784 | { | |
785 | int gr_i = ((op >> 12) & 0x3f); | |
786 | ||
d40fcd7b KB |
787 | /* Make sure that the source is an arg register; if it is, we'll |
788 | treat it as a prologue instruction. */ | |
789 | if (is_argument_reg (gr_i)) | |
790 | last_prologue_pc = next_pc; | |
456f8b9d DB |
791 | } |
792 | ||
793 | /* To spill 16-bit values to the stack: | |
794 | sthi GRk, @(fp, s) | |
795 | P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000 | |
796 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
797 | . . . . . . . . | |
798 | And for 8-bit values, we use STB instructions. | |
799 | stbi GRk, @(fp, s) | |
800 | P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000 | |
801 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
802 | . . . . . . . . | |
803 | We check that GRk is really an argument register, and treat | |
804 | all such as part of the prologue. */ | |
805 | else if ( (op & 0x01fff000) == 0x01442000 | |
806 | || (op & 0x01fff000) == 0x01402000) | |
807 | { | |
808 | int gr_k = ((op >> 25) & 0x3f); | |
809 | ||
d40fcd7b KB |
810 | /* Make sure that GRk is really an argument register; treat |
811 | it as a prologue instruction if so. */ | |
812 | if (is_argument_reg (gr_k)) | |
813 | last_prologue_pc = next_pc; | |
456f8b9d DB |
814 | } |
815 | ||
816 | /* To save multiple callee-saves register on the stack, at a | |
817 | non-zero offset: | |
818 | ||
819 | stdi GRk, @(sp, s) | |
820 | P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000 | |
821 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
822 | . . . . . . . . | |
823 | stqi GRk, @(sp, s) | |
824 | P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000 | |
825 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
826 | . . . . . . . . | |
827 | We treat this as part of the prologue, and record the register's | |
828 | saved address in the frame structure. */ | |
829 | else if ((op & 0x01fff000) == 0x014c1000 | |
830 | || (op & 0x01fff000) == 0x01501000) | |
831 | { | |
832 | int gr_k = ((op >> 25) & 0x3f); | |
833 | int count; | |
834 | int i; | |
835 | ||
836 | /* Is it a stdi or a stqi? */ | |
837 | if ((op & 0x01fff000) == 0x014c1000) | |
838 | count = 2; | |
839 | else | |
840 | count = 4; | |
841 | ||
842 | /* Is it really a callee-saves register? */ | |
843 | if (is_callee_saves_reg (gr_k)) | |
844 | { | |
845 | /* Sign-extend the twelve-bit field. | |
846 | (Isn't there a better way to do this?) */ | |
847 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
848 | ||
849 | for (i = 0; i < count; i++) | |
850 | { | |
851 | gr_saved[gr_k + i] = 1; | |
852 | gr_sp_offset[gr_k + i] = s + (4 * i); | |
853 | } | |
d40fcd7b | 854 | last_prologue_pc = next_pc; |
456f8b9d | 855 | } |
456f8b9d DB |
856 | } |
857 | ||
858 | /* Storing any kind of integer register at any constant offset | |
859 | from any other register. | |
860 | ||
861 | st GRk, @(GRi, gr0) | |
862 | P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080 | |
863 | 0 000000 1111111 000000 111111 111111 = 0x01fc0fff | |
864 | . . . . . . . . | |
865 | sti GRk, @(GRi, d12) | |
866 | P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000 | |
867 | 0 000000 1111111 000000 000000000000 = 0x01fc0000 | |
868 | . . . . . . . . | |
869 | These could be almost anything, but a lot of prologue | |
870 | instructions fall into this pattern, so let's decode the | |
871 | instruction once, and then work at a higher level. */ | |
872 | else if (((op & 0x01fc0fff) == 0x000c0080) | |
873 | || ((op & 0x01fc0000) == 0x01480000)) | |
874 | { | |
875 | int gr_k = ((op >> 25) & 0x3f); | |
876 | int gr_i = ((op >> 12) & 0x3f); | |
877 | int offset; | |
878 | ||
879 | /* Are we storing with gr0 as an offset, or using an | |
880 | immediate value? */ | |
881 | if ((op & 0x01fc0fff) == 0x000c0080) | |
882 | offset = 0; | |
883 | else | |
884 | offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
885 | ||
886 | /* If the address isn't relative to the SP or FP, it's not a | |
887 | prologue instruction. */ | |
888 | if (gr_i != sp_regnum && gr_i != fp_regnum) | |
d40fcd7b KB |
889 | { |
890 | /* Do nothing; not a prologue instruction. */ | |
891 | } | |
456f8b9d DB |
892 | |
893 | /* Saving the old FP in the new frame (relative to the SP). */ | |
d40fcd7b | 894 | else if (gr_k == fp_regnum && gr_i == sp_regnum) |
1cb761c7 KB |
895 | { |
896 | gr_saved[fp_regnum] = 1; | |
897 | gr_sp_offset[fp_regnum] = offset; | |
d40fcd7b | 898 | last_prologue_pc = next_pc; |
1cb761c7 | 899 | } |
456f8b9d DB |
900 | |
901 | /* Saving callee-saves register(s) on the stack, relative to | |
902 | the SP. */ | |
903 | else if (gr_i == sp_regnum | |
904 | && is_callee_saves_reg (gr_k)) | |
905 | { | |
906 | gr_saved[gr_k] = 1; | |
1cb761c7 KB |
907 | if (gr_i == sp_regnum) |
908 | gr_sp_offset[gr_k] = offset; | |
909 | else | |
910 | gr_sp_offset[gr_k] = offset + fp_offset; | |
d40fcd7b | 911 | last_prologue_pc = next_pc; |
456f8b9d DB |
912 | } |
913 | ||
914 | /* Saving the scratch register holding the return address. */ | |
915 | else if (lr_save_reg != -1 | |
916 | && gr_k == lr_save_reg) | |
1cb761c7 KB |
917 | { |
918 | lr_saved_on_stack = 1; | |
919 | if (gr_i == sp_regnum) | |
920 | lr_sp_offset = offset; | |
921 | else | |
922 | lr_sp_offset = offset + fp_offset; | |
d40fcd7b | 923 | last_prologue_pc = next_pc; |
1cb761c7 | 924 | } |
456f8b9d DB |
925 | |
926 | /* Spilling int-sized arguments to the stack. */ | |
927 | else if (is_argument_reg (gr_k)) | |
d40fcd7b | 928 | last_prologue_pc = next_pc; |
456f8b9d | 929 | } |
d40fcd7b | 930 | pc = next_pc; |
456f8b9d DB |
931 | } |
932 | ||
94afd7a6 | 933 | if (this_frame && info) |
456f8b9d | 934 | { |
1cb761c7 KB |
935 | int i; |
936 | ULONGEST this_base; | |
456f8b9d DB |
937 | |
938 | /* If we know the relationship between the stack and frame | |
939 | pointers, record the addresses of the registers we noticed. | |
940 | Note that we have to do this as a separate step at the end, | |
941 | because instructions may save relative to the SP, but we need | |
942 | their addresses relative to the FP. */ | |
943 | if (fp_set) | |
94afd7a6 | 944 | this_base = get_frame_register_unsigned (this_frame, fp_regnum); |
1cb761c7 | 945 | else |
94afd7a6 | 946 | this_base = get_frame_register_unsigned (this_frame, sp_regnum); |
456f8b9d | 947 | |
1cb761c7 KB |
948 | for (i = 0; i < 64; i++) |
949 | if (gr_saved[i]) | |
950 | info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i]; | |
456f8b9d | 951 | |
1cb761c7 KB |
952 | info->prev_sp = this_base - fp_offset + framesize; |
953 | info->base = this_base; | |
954 | ||
955 | /* If LR was saved on the stack, record its location. */ | |
956 | if (lr_saved_on_stack) | |
957 | info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset; | |
958 | ||
959 | /* The call instruction moves the caller's PC in the callee's LR. | |
960 | Since this is an unwind, do the reverse. Copy the location of LR | |
961 | into PC (the address / regnum) so that a request for PC will be | |
962 | converted into a request for the LR. */ | |
963 | info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum]; | |
964 | ||
965 | /* Save the previous frame's computed SP value. */ | |
966 | trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp); | |
456f8b9d DB |
967 | } |
968 | ||
d40fcd7b | 969 | return last_prologue_pc; |
456f8b9d DB |
970 | } |
971 | ||
972 | ||
973 | static CORE_ADDR | |
6093d2eb | 974 | frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
456f8b9d DB |
975 | { |
976 | CORE_ADDR func_addr, func_end, new_pc; | |
977 | ||
978 | new_pc = pc; | |
979 | ||
980 | /* If the line table has entry for a line *within* the function | |
981 | (i.e., not in the prologue, and not past the end), then that's | |
982 | our location. */ | |
983 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
984 | { | |
985 | struct symtab_and_line sal; | |
986 | ||
987 | sal = find_pc_line (func_addr, 0); | |
988 | ||
989 | if (sal.line != 0 && sal.end < func_end) | |
990 | { | |
991 | new_pc = sal.end; | |
992 | } | |
993 | } | |
994 | ||
995 | /* The FR-V prologue is at least five instructions long (twenty bytes). | |
996 | If we didn't find a real source location past that, then | |
997 | do a full analysis of the prologue. */ | |
998 | if (new_pc < pc + 20) | |
d80b854b | 999 | new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0); |
456f8b9d DB |
1000 | |
1001 | return new_pc; | |
1002 | } | |
1003 | ||
1cb761c7 | 1004 | |
9bc7b6c6 KB |
1005 | /* Examine the instruction pointed to by PC. If it corresponds to |
1006 | a call to __main, return the address of the next instruction. | |
1007 | Otherwise, return PC. */ | |
1008 | ||
1009 | static CORE_ADDR | |
1010 | frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
1011 | { | |
e17a4113 | 1012 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
9bc7b6c6 KB |
1013 | gdb_byte buf[4]; |
1014 | unsigned long op; | |
1015 | CORE_ADDR orig_pc = pc; | |
1016 | ||
1017 | if (target_read_memory (pc, buf, 4)) | |
1018 | return pc; | |
e17a4113 | 1019 | op = extract_unsigned_integer (buf, 4, byte_order); |
9bc7b6c6 KB |
1020 | |
1021 | /* In PIC code, GR15 may be loaded from some offset off of FP prior | |
1022 | to the call instruction. | |
1023 | ||
1024 | Skip over this instruction if present. It won't be present in | |
1025 | non-PIC code, and even in PIC code, it might not be present. | |
1026 | (This is due to the fact that GR15, the FDPIC register, already | |
1027 | contains the correct value.) | |
1028 | ||
1029 | The general form of the LDI is given first, followed by the | |
1030 | specific instruction with the GRi and GRk filled in as FP and | |
1031 | GR15. | |
1032 | ||
1033 | ldi @(GRi, d12), GRk | |
1034 | P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000 | |
1035 | 0 000000 1111111 000000 000000000000 = 0x01fc0000 | |
1036 | . . . . . . . . | |
1037 | ldi @(FP, d12), GR15 | |
1038 | P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000 | |
1039 | 0 001111 1111111 000010 000000000000 = 0x7ffff000 | |
1040 | . . . . . . . . */ | |
1041 | ||
1042 | if ((op & 0x7ffff000) == 0x1ec82000) | |
1043 | { | |
1044 | pc += 4; | |
1045 | if (target_read_memory (pc, buf, 4)) | |
1046 | return orig_pc; | |
e17a4113 | 1047 | op = extract_unsigned_integer (buf, 4, byte_order); |
9bc7b6c6 KB |
1048 | } |
1049 | ||
1050 | /* The format of an FRV CALL instruction is as follows: | |
1051 | ||
1052 | call label24 | |
1053 | P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000 | |
1054 | 0 000000 1111111 000000000000000000 = 0x01fc0000 | |
1055 | . . . . . . . . | |
1056 | ||
1057 | where label24 is constructed by concatenating the H bits with the | |
1058 | L bits. The call target is PC + (4 * sign_ext(label24)). */ | |
1059 | ||
1060 | if ((op & 0x01fc0000) == 0x003c0000) | |
1061 | { | |
1062 | LONGEST displ; | |
1063 | CORE_ADDR call_dest; | |
1064 | struct minimal_symbol *s; | |
1065 | ||
1066 | displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff); | |
1067 | if ((displ & 0x00800000) != 0) | |
1068 | displ |= ~((LONGEST) 0x00ffffff); | |
1069 | ||
1070 | call_dest = pc + 4 * displ; | |
1071 | s = lookup_minimal_symbol_by_pc (call_dest); | |
1072 | ||
1073 | if (s != NULL | |
1074 | && SYMBOL_LINKAGE_NAME (s) != NULL | |
1075 | && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0) | |
1076 | { | |
1077 | pc += 4; | |
1078 | return pc; | |
1079 | } | |
1080 | } | |
1081 | return orig_pc; | |
1082 | } | |
1083 | ||
1084 | ||
1cb761c7 | 1085 | static struct frv_unwind_cache * |
94afd7a6 | 1086 | frv_frame_unwind_cache (struct frame_info *this_frame, |
1cb761c7 | 1087 | void **this_prologue_cache) |
456f8b9d | 1088 | { |
94afd7a6 | 1089 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
1cb761c7 | 1090 | CORE_ADDR pc; |
1cb761c7 KB |
1091 | ULONGEST this_base; |
1092 | struct frv_unwind_cache *info; | |
8baa6f92 | 1093 | |
1cb761c7 KB |
1094 | if ((*this_prologue_cache)) |
1095 | return (*this_prologue_cache); | |
456f8b9d | 1096 | |
1cb761c7 KB |
1097 | info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache); |
1098 | (*this_prologue_cache) = info; | |
94afd7a6 | 1099 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
456f8b9d | 1100 | |
1cb761c7 | 1101 | /* Prologue analysis does the rest... */ |
d80b854b UW |
1102 | frv_analyze_prologue (gdbarch, |
1103 | get_frame_func (this_frame), this_frame, info); | |
456f8b9d | 1104 | |
1cb761c7 | 1105 | return info; |
456f8b9d DB |
1106 | } |
1107 | ||
456f8b9d | 1108 | static void |
cd31fb03 | 1109 | frv_extract_return_value (struct type *type, struct regcache *regcache, |
e2b7c966 | 1110 | gdb_byte *valbuf) |
456f8b9d | 1111 | { |
e17a4113 UW |
1112 | struct gdbarch *gdbarch = get_regcache_arch (regcache); |
1113 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
cd31fb03 KB |
1114 | int len = TYPE_LENGTH (type); |
1115 | ||
1116 | if (len <= 4) | |
1117 | { | |
1118 | ULONGEST gpr8_val; | |
1119 | regcache_cooked_read_unsigned (regcache, 8, &gpr8_val); | |
e17a4113 | 1120 | store_unsigned_integer (valbuf, len, byte_order, gpr8_val); |
cd31fb03 KB |
1121 | } |
1122 | else if (len == 8) | |
1123 | { | |
1124 | ULONGEST regval; | |
1125 | regcache_cooked_read_unsigned (regcache, 8, ®val); | |
e17a4113 | 1126 | store_unsigned_integer (valbuf, 4, byte_order, regval); |
cd31fb03 | 1127 | regcache_cooked_read_unsigned (regcache, 9, ®val); |
e17a4113 | 1128 | store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval); |
cd31fb03 KB |
1129 | } |
1130 | else | |
e2e0b3e5 | 1131 | internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len); |
456f8b9d DB |
1132 | } |
1133 | ||
1cb761c7 KB |
1134 | static CORE_ADDR |
1135 | frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
456f8b9d | 1136 | { |
1cb761c7 | 1137 | /* Require dword alignment. */ |
5b03f266 | 1138 | return align_down (sp, 8); |
456f8b9d DB |
1139 | } |
1140 | ||
c4d10515 KB |
1141 | static CORE_ADDR |
1142 | find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point) | |
1143 | { | |
e17a4113 | 1144 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
c4d10515 KB |
1145 | CORE_ADDR descr; |
1146 | char valbuf[4]; | |
35e08e03 KB |
1147 | CORE_ADDR start_addr; |
1148 | ||
1149 | /* If we can't find the function in the symbol table, then we assume | |
1150 | that the function address is already in descriptor form. */ | |
1151 | if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL) | |
1152 | || entry_point != start_addr) | |
1153 | return entry_point; | |
c4d10515 KB |
1154 | |
1155 | descr = frv_fdpic_find_canonical_descriptor (entry_point); | |
1156 | ||
1157 | if (descr != 0) | |
1158 | return descr; | |
1159 | ||
1160 | /* Construct a non-canonical descriptor from space allocated on | |
1161 | the stack. */ | |
1162 | ||
1163 | descr = value_as_long (value_allocate_space_in_inferior (8)); | |
e17a4113 | 1164 | store_unsigned_integer (valbuf, 4, byte_order, entry_point); |
c4d10515 | 1165 | write_memory (descr, valbuf, 4); |
e17a4113 | 1166 | store_unsigned_integer (valbuf, 4, byte_order, |
c4d10515 KB |
1167 | frv_fdpic_find_global_pointer (entry_point)); |
1168 | write_memory (descr + 4, valbuf, 4); | |
1169 | return descr; | |
1170 | } | |
1171 | ||
1172 | static CORE_ADDR | |
1173 | frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, | |
1174 | struct target_ops *targ) | |
1175 | { | |
e17a4113 | 1176 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
c4d10515 KB |
1177 | CORE_ADDR entry_point; |
1178 | CORE_ADDR got_address; | |
1179 | ||
e17a4113 UW |
1180 | entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order); |
1181 | got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order); | |
c4d10515 KB |
1182 | |
1183 | if (got_address == frv_fdpic_find_global_pointer (entry_point)) | |
1184 | return entry_point; | |
1185 | else | |
1186 | return addr; | |
1187 | } | |
1188 | ||
456f8b9d | 1189 | static CORE_ADDR |
7d9b040b | 1190 | frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
1cb761c7 KB |
1191 | struct regcache *regcache, CORE_ADDR bp_addr, |
1192 | int nargs, struct value **args, CORE_ADDR sp, | |
1193 | int struct_return, CORE_ADDR struct_addr) | |
456f8b9d | 1194 | { |
e17a4113 | 1195 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
456f8b9d DB |
1196 | int argreg; |
1197 | int argnum; | |
1198 | char *val; | |
1199 | char valbuf[4]; | |
1200 | struct value *arg; | |
1201 | struct type *arg_type; | |
1202 | int len; | |
1203 | enum type_code typecode; | |
1204 | CORE_ADDR regval; | |
1205 | int stack_space; | |
1206 | int stack_offset; | |
c4d10515 | 1207 | enum frv_abi abi = frv_abi (gdbarch); |
7d9b040b | 1208 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
456f8b9d DB |
1209 | |
1210 | #if 0 | |
1211 | printf("Push %d args at sp = %x, struct_return=%d (%x)\n", | |
1212 | nargs, (int) sp, struct_return, struct_addr); | |
1213 | #endif | |
1214 | ||
1215 | stack_space = 0; | |
1216 | for (argnum = 0; argnum < nargs; ++argnum) | |
4991999e | 1217 | stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4); |
456f8b9d DB |
1218 | |
1219 | stack_space -= (6 * 4); | |
1220 | if (stack_space > 0) | |
1221 | sp -= stack_space; | |
1222 | ||
1223 | /* Make sure stack is dword aligned. */ | |
5b03f266 | 1224 | sp = align_down (sp, 8); |
456f8b9d DB |
1225 | |
1226 | stack_offset = 0; | |
1227 | ||
1228 | argreg = 8; | |
1229 | ||
1230 | if (struct_return) | |
1cb761c7 KB |
1231 | regcache_cooked_write_unsigned (regcache, struct_return_regnum, |
1232 | struct_addr); | |
456f8b9d DB |
1233 | |
1234 | for (argnum = 0; argnum < nargs; ++argnum) | |
1235 | { | |
1236 | arg = args[argnum]; | |
4991999e | 1237 | arg_type = check_typedef (value_type (arg)); |
456f8b9d DB |
1238 | len = TYPE_LENGTH (arg_type); |
1239 | typecode = TYPE_CODE (arg_type); | |
1240 | ||
1241 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
1242 | { | |
e17a4113 UW |
1243 | store_unsigned_integer (valbuf, 4, byte_order, |
1244 | value_address (arg)); | |
456f8b9d DB |
1245 | typecode = TYPE_CODE_PTR; |
1246 | len = 4; | |
1247 | val = valbuf; | |
1248 | } | |
c4d10515 KB |
1249 | else if (abi == FRV_ABI_FDPIC |
1250 | && len == 4 | |
1251 | && typecode == TYPE_CODE_PTR | |
1252 | && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC) | |
1253 | { | |
1254 | /* The FDPIC ABI requires function descriptors to be passed instead | |
1255 | of entry points. */ | |
e17a4113 UW |
1256 | CORE_ADDR addr = extract_unsigned_integer |
1257 | (value_contents (arg), 4, byte_order); | |
1258 | addr = find_func_descr (gdbarch, addr); | |
1259 | store_unsigned_integer (valbuf, 4, byte_order, addr); | |
c4d10515 KB |
1260 | typecode = TYPE_CODE_PTR; |
1261 | len = 4; | |
1262 | val = valbuf; | |
1263 | } | |
456f8b9d DB |
1264 | else |
1265 | { | |
0fd88904 | 1266 | val = (char *) value_contents (arg); |
456f8b9d DB |
1267 | } |
1268 | ||
1269 | while (len > 0) | |
1270 | { | |
1271 | int partial_len = (len < 4 ? len : 4); | |
1272 | ||
1273 | if (argreg < 14) | |
1274 | { | |
e17a4113 | 1275 | regval = extract_unsigned_integer (val, partial_len, byte_order); |
456f8b9d DB |
1276 | #if 0 |
1277 | printf(" Argnum %d data %x -> reg %d\n", | |
1278 | argnum, (int) regval, argreg); | |
1279 | #endif | |
1cb761c7 | 1280 | regcache_cooked_write_unsigned (regcache, argreg, regval); |
456f8b9d DB |
1281 | ++argreg; |
1282 | } | |
1283 | else | |
1284 | { | |
1285 | #if 0 | |
1286 | printf(" Argnum %d data %x -> offset %d (%x)\n", | |
1287 | argnum, *((int *)val), stack_offset, (int) (sp + stack_offset)); | |
1288 | #endif | |
1289 | write_memory (sp + stack_offset, val, partial_len); | |
5b03f266 | 1290 | stack_offset += align_up (partial_len, 4); |
456f8b9d DB |
1291 | } |
1292 | len -= partial_len; | |
1293 | val += partial_len; | |
1294 | } | |
1295 | } | |
456f8b9d | 1296 | |
1cb761c7 KB |
1297 | /* Set the return address. For the frv, the return breakpoint is |
1298 | always at BP_ADDR. */ | |
1299 | regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr); | |
1300 | ||
c4d10515 KB |
1301 | if (abi == FRV_ABI_FDPIC) |
1302 | { | |
1303 | /* Set the GOT register for the FDPIC ABI. */ | |
1304 | regcache_cooked_write_unsigned | |
1305 | (regcache, first_gpr_regnum + 15, | |
1306 | frv_fdpic_find_global_pointer (func_addr)); | |
1307 | } | |
1308 | ||
1cb761c7 KB |
1309 | /* Finally, update the SP register. */ |
1310 | regcache_cooked_write_unsigned (regcache, sp_regnum, sp); | |
1311 | ||
456f8b9d DB |
1312 | return sp; |
1313 | } | |
1314 | ||
1315 | static void | |
cd31fb03 | 1316 | frv_store_return_value (struct type *type, struct regcache *regcache, |
e2b7c966 | 1317 | const gdb_byte *valbuf) |
456f8b9d | 1318 | { |
cd31fb03 KB |
1319 | int len = TYPE_LENGTH (type); |
1320 | ||
1321 | if (len <= 4) | |
1322 | { | |
1323 | bfd_byte val[4]; | |
1324 | memset (val, 0, sizeof (val)); | |
1325 | memcpy (val + (4 - len), valbuf, len); | |
1326 | regcache_cooked_write (regcache, 8, val); | |
1327 | } | |
1328 | else if (len == 8) | |
1329 | { | |
1330 | regcache_cooked_write (regcache, 8, valbuf); | |
1331 | regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4); | |
1332 | } | |
456f8b9d DB |
1333 | else |
1334 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 1335 | _("Don't know how to return a %d-byte value."), len); |
456f8b9d DB |
1336 | } |
1337 | ||
63807e1d | 1338 | static enum return_value_convention |
c055b101 CV |
1339 | frv_return_value (struct gdbarch *gdbarch, struct type *func_type, |
1340 | struct type *valtype, struct regcache *regcache, | |
1341 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
4c8b6ae0 UW |
1342 | { |
1343 | int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
1344 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
1345 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY; | |
1346 | ||
1347 | if (writebuf != NULL) | |
1348 | { | |
1349 | gdb_assert (!struct_return); | |
1350 | frv_store_return_value (valtype, regcache, writebuf); | |
1351 | } | |
1352 | ||
1353 | if (readbuf != NULL) | |
1354 | { | |
1355 | gdb_assert (!struct_return); | |
1356 | frv_extract_return_value (valtype, regcache, readbuf); | |
1357 | } | |
1358 | ||
1359 | if (struct_return) | |
1360 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1361 | else | |
1362 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1363 | } | |
1364 | ||
456f8b9d | 1365 | |
456f8b9d DB |
1366 | /* Hardware watchpoint / breakpoint support for the FR500 |
1367 | and FR400. */ | |
1368 | ||
1369 | int | |
7a22ecfc | 1370 | frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot) |
456f8b9d | 1371 | { |
7a22ecfc | 1372 | struct gdbarch_tdep *var = gdbarch_tdep (gdbarch); |
456f8b9d DB |
1373 | |
1374 | /* Watchpoints not supported on simulator. */ | |
1375 | if (strcmp (target_shortname, "sim") == 0) | |
1376 | return 0; | |
1377 | ||
1378 | if (type == bp_hardware_breakpoint) | |
1379 | { | |
1380 | if (var->num_hw_breakpoints == 0) | |
1381 | return 0; | |
1382 | else if (cnt <= var->num_hw_breakpoints) | |
1383 | return 1; | |
1384 | } | |
1385 | else | |
1386 | { | |
1387 | if (var->num_hw_watchpoints == 0) | |
1388 | return 0; | |
1389 | else if (ot) | |
1390 | return -1; | |
1391 | else if (cnt <= var->num_hw_watchpoints) | |
1392 | return 1; | |
1393 | } | |
1394 | return -1; | |
1395 | } | |
1396 | ||
1397 | ||
4aa7a7f5 JJ |
1398 | int |
1399 | frv_stopped_data_address (CORE_ADDR *addr_p) | |
456f8b9d | 1400 | { |
1b5a9a8f | 1401 | struct frame_info *frame = get_current_frame (); |
456f8b9d DB |
1402 | CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3; |
1403 | ||
1b5a9a8f UW |
1404 | brr = get_frame_register_unsigned (frame, brr_regnum); |
1405 | dbar0 = get_frame_register_unsigned (frame, dbar0_regnum); | |
1406 | dbar1 = get_frame_register_unsigned (frame, dbar1_regnum); | |
1407 | dbar2 = get_frame_register_unsigned (frame, dbar2_regnum); | |
1408 | dbar3 = get_frame_register_unsigned (frame, dbar3_regnum); | |
456f8b9d DB |
1409 | |
1410 | if (brr & (1<<11)) | |
4aa7a7f5 | 1411 | *addr_p = dbar0; |
456f8b9d | 1412 | else if (brr & (1<<10)) |
4aa7a7f5 | 1413 | *addr_p = dbar1; |
456f8b9d | 1414 | else if (brr & (1<<9)) |
4aa7a7f5 | 1415 | *addr_p = dbar2; |
456f8b9d | 1416 | else if (brr & (1<<8)) |
4aa7a7f5 | 1417 | *addr_p = dbar3; |
456f8b9d DB |
1418 | else |
1419 | return 0; | |
4aa7a7f5 JJ |
1420 | |
1421 | return 1; | |
1422 | } | |
1423 | ||
1424 | int | |
1425 | frv_have_stopped_data_address (void) | |
1426 | { | |
1427 | CORE_ADDR addr = 0; | |
1428 | return frv_stopped_data_address (&addr); | |
456f8b9d DB |
1429 | } |
1430 | ||
1cb761c7 KB |
1431 | static CORE_ADDR |
1432 | frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1433 | { | |
1434 | return frame_unwind_register_unsigned (next_frame, pc_regnum); | |
1435 | } | |
1436 | ||
1437 | /* Given a GDB frame, determine the address of the calling function's | |
1438 | frame. This will be used to create a new GDB frame struct. */ | |
1439 | ||
1440 | static void | |
94afd7a6 | 1441 | frv_frame_this_id (struct frame_info *this_frame, |
1cb761c7 KB |
1442 | void **this_prologue_cache, struct frame_id *this_id) |
1443 | { | |
1444 | struct frv_unwind_cache *info | |
94afd7a6 | 1445 | = frv_frame_unwind_cache (this_frame, this_prologue_cache); |
1cb761c7 KB |
1446 | CORE_ADDR base; |
1447 | CORE_ADDR func; | |
1448 | struct minimal_symbol *msym_stack; | |
1449 | struct frame_id id; | |
1450 | ||
1451 | /* The FUNC is easy. */ | |
94afd7a6 | 1452 | func = get_frame_func (this_frame); |
1cb761c7 | 1453 | |
1cb761c7 KB |
1454 | /* Check if the stack is empty. */ |
1455 | msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); | |
1456 | if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack)) | |
1457 | return; | |
1458 | ||
1459 | /* Hopefully the prologue analysis either correctly determined the | |
1460 | frame's base (which is the SP from the previous frame), or set | |
1461 | that base to "NULL". */ | |
1462 | base = info->prev_sp; | |
1463 | if (base == 0) | |
1464 | return; | |
1465 | ||
1466 | id = frame_id_build (base, func); | |
1cb761c7 KB |
1467 | (*this_id) = id; |
1468 | } | |
1469 | ||
94afd7a6 UW |
1470 | static struct value * |
1471 | frv_frame_prev_register (struct frame_info *this_frame, | |
1472 | void **this_prologue_cache, int regnum) | |
1cb761c7 KB |
1473 | { |
1474 | struct frv_unwind_cache *info | |
94afd7a6 UW |
1475 | = frv_frame_unwind_cache (this_frame, this_prologue_cache); |
1476 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
1cb761c7 KB |
1477 | } |
1478 | ||
1479 | static const struct frame_unwind frv_frame_unwind = { | |
1480 | NORMAL_FRAME, | |
1481 | frv_frame_this_id, | |
94afd7a6 UW |
1482 | frv_frame_prev_register, |
1483 | NULL, | |
1484 | default_frame_sniffer | |
1cb761c7 KB |
1485 | }; |
1486 | ||
1cb761c7 | 1487 | static CORE_ADDR |
94afd7a6 | 1488 | frv_frame_base_address (struct frame_info *this_frame, void **this_cache) |
1cb761c7 KB |
1489 | { |
1490 | struct frv_unwind_cache *info | |
94afd7a6 | 1491 | = frv_frame_unwind_cache (this_frame, this_cache); |
1cb761c7 KB |
1492 | return info->base; |
1493 | } | |
1494 | ||
1495 | static const struct frame_base frv_frame_base = { | |
1496 | &frv_frame_unwind, | |
1497 | frv_frame_base_address, | |
1498 | frv_frame_base_address, | |
1499 | frv_frame_base_address | |
1500 | }; | |
1501 | ||
1502 | static CORE_ADDR | |
1503 | frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1504 | { | |
1505 | return frame_unwind_register_unsigned (next_frame, sp_regnum); | |
1506 | } | |
1507 | ||
1508 | ||
94afd7a6 UW |
1509 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy |
1510 | frame. The frame ID's base needs to match the TOS value saved by | |
1511 | save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ | |
1cb761c7 KB |
1512 | |
1513 | static struct frame_id | |
94afd7a6 | 1514 | frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
1cb761c7 | 1515 | { |
94afd7a6 UW |
1516 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum); |
1517 | return frame_id_build (sp, get_frame_pc (this_frame)); | |
1cb761c7 KB |
1518 | } |
1519 | ||
456f8b9d DB |
1520 | static struct gdbarch * |
1521 | frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1522 | { | |
1523 | struct gdbarch *gdbarch; | |
1524 | struct gdbarch_tdep *var; | |
7e295833 | 1525 | int elf_flags = 0; |
456f8b9d DB |
1526 | |
1527 | /* Check to see if we've already built an appropriate architecture | |
1528 | object for this executable. */ | |
1529 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1530 | if (arches) | |
1531 | return arches->gdbarch; | |
1532 | ||
1533 | /* Select the right tdep structure for this variant. */ | |
1534 | var = new_variant (); | |
1535 | switch (info.bfd_arch_info->mach) | |
1536 | { | |
1537 | case bfd_mach_frv: | |
1538 | case bfd_mach_frvsimple: | |
1539 | case bfd_mach_fr500: | |
1540 | case bfd_mach_frvtomcat: | |
251a3ae3 | 1541 | case bfd_mach_fr550: |
456f8b9d DB |
1542 | set_variant_num_gprs (var, 64); |
1543 | set_variant_num_fprs (var, 64); | |
1544 | break; | |
1545 | ||
1546 | case bfd_mach_fr400: | |
b2d6d697 | 1547 | case bfd_mach_fr450: |
456f8b9d DB |
1548 | set_variant_num_gprs (var, 32); |
1549 | set_variant_num_fprs (var, 32); | |
1550 | break; | |
1551 | ||
1552 | default: | |
1553 | /* Never heard of this variant. */ | |
1554 | return 0; | |
1555 | } | |
7e295833 KB |
1556 | |
1557 | /* Extract the ELF flags, if available. */ | |
1558 | if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
1559 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
1560 | ||
1561 | if (elf_flags & EF_FRV_FDPIC) | |
1562 | set_variant_abi_fdpic (var); | |
1563 | ||
b2d6d697 KB |
1564 | if (elf_flags & EF_FRV_CPU_FR450) |
1565 | set_variant_scratch_registers (var); | |
1566 | ||
456f8b9d DB |
1567 | gdbarch = gdbarch_alloc (&info, var); |
1568 | ||
1569 | set_gdbarch_short_bit (gdbarch, 16); | |
1570 | set_gdbarch_int_bit (gdbarch, 32); | |
1571 | set_gdbarch_long_bit (gdbarch, 32); | |
1572 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1573 | set_gdbarch_float_bit (gdbarch, 32); | |
1574 | set_gdbarch_double_bit (gdbarch, 64); | |
1575 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1576 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1577 | ||
1578 | set_gdbarch_num_regs (gdbarch, frv_num_regs); | |
6a748db6 KB |
1579 | set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs); |
1580 | ||
456f8b9d | 1581 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); |
0ba6dca9 | 1582 | set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum); |
456f8b9d DB |
1583 | set_gdbarch_pc_regnum (gdbarch, pc_regnum); |
1584 | ||
1585 | set_gdbarch_register_name (gdbarch, frv_register_name); | |
7f398216 | 1586 | set_gdbarch_register_type (gdbarch, frv_register_type); |
526eef89 | 1587 | set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno); |
456f8b9d | 1588 | |
6a748db6 KB |
1589 | set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read); |
1590 | set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write); | |
1591 | ||
456f8b9d | 1592 | set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue); |
9bc7b6c6 | 1593 | set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue); |
456f8b9d | 1594 | set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc); |
1208538e MK |
1595 | set_gdbarch_adjust_breakpoint_address |
1596 | (gdbarch, frv_adjust_breakpoint_address); | |
456f8b9d | 1597 | |
4c8b6ae0 | 1598 | set_gdbarch_return_value (gdbarch, frv_return_value); |
456f8b9d | 1599 | |
1cb761c7 KB |
1600 | /* Frame stuff. */ |
1601 | set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc); | |
1602 | set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp); | |
1603 | set_gdbarch_frame_align (gdbarch, frv_frame_align); | |
1cb761c7 | 1604 | frame_base_set_default (gdbarch, &frv_frame_base); |
5ecb7103 KB |
1605 | /* We set the sniffer lower down after the OSABI hooks have been |
1606 | established. */ | |
456f8b9d | 1607 | |
1cb761c7 KB |
1608 | /* Settings for calling functions in the inferior. */ |
1609 | set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call); | |
94afd7a6 | 1610 | set_gdbarch_dummy_id (gdbarch, frv_dummy_id); |
456f8b9d DB |
1611 | |
1612 | /* Settings that should be unnecessary. */ | |
1613 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1614 | ||
456f8b9d DB |
1615 | /* Hardware watchpoint / breakpoint support. */ |
1616 | switch (info.bfd_arch_info->mach) | |
1617 | { | |
1618 | case bfd_mach_frv: | |
1619 | case bfd_mach_frvsimple: | |
1620 | case bfd_mach_fr500: | |
1621 | case bfd_mach_frvtomcat: | |
1622 | /* fr500-style hardware debugging support. */ | |
1623 | var->num_hw_watchpoints = 4; | |
1624 | var->num_hw_breakpoints = 4; | |
1625 | break; | |
1626 | ||
1627 | case bfd_mach_fr400: | |
b2d6d697 | 1628 | case bfd_mach_fr450: |
456f8b9d DB |
1629 | /* fr400-style hardware debugging support. */ |
1630 | var->num_hw_watchpoints = 2; | |
1631 | var->num_hw_breakpoints = 4; | |
1632 | break; | |
1633 | ||
1634 | default: | |
1635 | /* Otherwise, assume we don't have hardware debugging support. */ | |
1636 | var->num_hw_watchpoints = 0; | |
1637 | var->num_hw_breakpoints = 0; | |
1638 | break; | |
1639 | } | |
1640 | ||
36482093 | 1641 | set_gdbarch_print_insn (gdbarch, print_insn_frv); |
c4d10515 KB |
1642 | if (frv_abi (gdbarch) == FRV_ABI_FDPIC) |
1643 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, | |
1644 | frv_convert_from_func_ptr_addr); | |
36482093 | 1645 | |
917630e4 UW |
1646 | set_solib_ops (gdbarch, &frv_so_ops); |
1647 | ||
5ecb7103 KB |
1648 | /* Hook in ABI-specific overrides, if they have been registered. */ |
1649 | gdbarch_init_osabi (info, gdbarch); | |
1650 | ||
5ecb7103 | 1651 | /* Set the fallback (prologue based) frame sniffer. */ |
94afd7a6 | 1652 | frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind); |
5ecb7103 | 1653 | |
186993b4 KB |
1654 | /* Enable TLS support. */ |
1655 | set_gdbarch_fetch_tls_load_module_address (gdbarch, | |
1656 | frv_fetch_objfile_link_map); | |
1657 | ||
456f8b9d DB |
1658 | return gdbarch; |
1659 | } | |
1660 | ||
1661 | void | |
1662 | _initialize_frv_tdep (void) | |
1663 | { | |
1664 | register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init); | |
456f8b9d | 1665 | } |