* utils.c (parse_escape): Initialize target_char to pacify GCC.
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
0fb0cc75 3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009
9b254dd1 4 Free Software Foundation, Inc.
456f8b9d
DB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d
DB
20
21#include "defs.h"
8baa6f92 22#include "gdb_string.h"
456f8b9d 23#include "inferior.h"
456f8b9d
DB
24#include "gdbcore.h"
25#include "arch-utils.h"
26#include "regcache.h"
8baa6f92 27#include "frame.h"
1cb761c7
KB
28#include "frame-unwind.h"
29#include "frame-base.h"
8baa6f92 30#include "trad-frame.h"
dcc6aaff 31#include "dis-asm.h"
526eef89
KB
32#include "gdb_assert.h"
33#include "sim-regno.h"
34#include "gdb/sim-frv.h"
35#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
634aa483 36#include "symtab.h"
7e295833
KB
37#include "elf-bfd.h"
38#include "elf/frv.h"
39#include "osabi.h"
7d9b040b 40#include "infcall.h"
917630e4 41#include "solib.h"
7e295833 42#include "frv-tdep.h"
456f8b9d
DB
43
44extern void _initialize_frv_tdep (void);
45
1cb761c7 46struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 47 {
1cb761c7
KB
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
50 CORE_ADDR prev_sp;
456f8b9d 51
1cb761c7
KB
52 /* The frame's base, optionally used by the high-level debug info. */
53 CORE_ADDR base;
8baa6f92
KB
54
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
57 };
58
456f8b9d
DB
59/* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
62
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
67 need.
68
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
73 Fortran. */
74struct gdbarch_tdep
75{
7e295833
KB
76 /* Which ABI is in use? */
77 enum frv_abi frv_abi;
78
456f8b9d
DB
79 /* How many general-purpose registers does this variant have? */
80 int num_gprs;
81
82 /* How many floating-point registers does this variant have? */
83 int num_fprs;
84
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
87
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
90
91 /* Register names. */
92 char **register_names;
93};
94
7e295833
KB
95/* Return the FR-V ABI associated with GDBARCH. */
96enum frv_abi
97frv_abi (struct gdbarch *gdbarch)
98{
99 return gdbarch_tdep (gdbarch)->frv_abi;
100}
101
102/* Fetch the interpreter and executable loadmap addresses (for shared
103 library support) for the FDPIC ABI. Return 0 if successful, -1 if
104 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
105int
106frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
107 CORE_ADDR *exec_addr)
108{
109 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
110 return -1;
111 else
112 {
594f7785
UW
113 struct regcache *regcache = get_current_regcache ();
114
7e295833
KB
115 if (interp_addr != NULL)
116 {
117 ULONGEST val;
594f7785 118 regcache_cooked_read_unsigned (regcache,
7e295833
KB
119 fdpic_loadmap_interp_regnum, &val);
120 *interp_addr = val;
121 }
122 if (exec_addr != NULL)
123 {
124 ULONGEST val;
594f7785 125 regcache_cooked_read_unsigned (regcache,
7e295833
KB
126 fdpic_loadmap_exec_regnum, &val);
127 *exec_addr = val;
128 }
129 return 0;
130 }
131}
456f8b9d
DB
132
133/* Allocate a new variant structure, and set up default values for all
134 the fields. */
135static struct gdbarch_tdep *
5ae5f592 136new_variant (void)
456f8b9d
DB
137{
138 struct gdbarch_tdep *var;
139 int r;
140 char buf[20];
141
142 var = xmalloc (sizeof (*var));
143 memset (var, 0, sizeof (*var));
144
7e295833 145 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
146 var->num_gprs = 64;
147 var->num_fprs = 64;
148 var->num_hw_watchpoints = 0;
149 var->num_hw_breakpoints = 0;
150
151 /* By default, don't supply any general-purpose or floating-point
152 register names. */
6a748db6
KB
153 var->register_names
154 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
155 * sizeof (char *));
156 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
157 var->register_names[r] = "";
158
526eef89 159 /* Do, however, supply default names for the known special-purpose
456f8b9d 160 registers. */
456f8b9d
DB
161
162 var->register_names[pc_regnum] = "pc";
163 var->register_names[lr_regnum] = "lr";
164 var->register_names[lcr_regnum] = "lcr";
165
166 var->register_names[psr_regnum] = "psr";
167 var->register_names[ccr_regnum] = "ccr";
168 var->register_names[cccr_regnum] = "cccr";
169 var->register_names[tbr_regnum] = "tbr";
170
171 /* Debug registers. */
172 var->register_names[brr_regnum] = "brr";
173 var->register_names[dbar0_regnum] = "dbar0";
174 var->register_names[dbar1_regnum] = "dbar1";
175 var->register_names[dbar2_regnum] = "dbar2";
176 var->register_names[dbar3_regnum] = "dbar3";
177
526eef89
KB
178 /* iacc0 (Only found on MB93405.) */
179 var->register_names[iacc0h_regnum] = "iacc0h";
180 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 181 var->register_names[iacc0_regnum] = "iacc0";
526eef89 182
8b67aa36
KB
183 /* fsr0 (Found on FR555 and FR501.) */
184 var->register_names[fsr0_regnum] = "fsr0";
185
186 /* acc0 - acc7. The architecture provides for the possibility of many
187 more (up to 64 total), but we don't want to make that big of a hole
188 in the G packet. If we need more in the future, we'll add them
189 elsewhere. */
190 for (r = acc0_regnum; r <= acc7_regnum; r++)
191 {
192 char *buf;
b435e160 193 buf = xstrprintf ("acc%d", r - acc0_regnum);
8b67aa36
KB
194 var->register_names[r] = buf;
195 }
196
197 /* accg0 - accg7: These are one byte registers. The remote protocol
198 provides the raw values packed four into a slot. accg0123 and
199 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
200 We don't provide names for accg0123 and accg4567 since the user will
201 likely not want to see these raw values. */
202
203 for (r = accg0_regnum; r <= accg7_regnum; r++)
204 {
205 char *buf;
b435e160 206 buf = xstrprintf ("accg%d", r - accg0_regnum);
8b67aa36
KB
207 var->register_names[r] = buf;
208 }
209
210 /* msr0 and msr1. */
211
212 var->register_names[msr0_regnum] = "msr0";
213 var->register_names[msr1_regnum] = "msr1";
214
215 /* gner and fner registers. */
216 var->register_names[gner0_regnum] = "gner0";
217 var->register_names[gner1_regnum] = "gner1";
218 var->register_names[fner0_regnum] = "fner0";
219 var->register_names[fner1_regnum] = "fner1";
220
456f8b9d
DB
221 return var;
222}
223
224
225/* Indicate that the variant VAR has NUM_GPRS general-purpose
226 registers, and fill in the names array appropriately. */
227static void
228set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
229{
230 int r;
231
232 var->num_gprs = num_gprs;
233
234 for (r = 0; r < num_gprs; ++r)
235 {
236 char buf[20];
237
238 sprintf (buf, "gr%d", r);
239 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
240 }
241}
242
243
244/* Indicate that the variant VAR has NUM_FPRS floating-point
245 registers, and fill in the names array appropriately. */
246static void
247set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
248{
249 int r;
250
251 var->num_fprs = num_fprs;
252
253 for (r = 0; r < num_fprs; ++r)
254 {
255 char buf[20];
256
257 sprintf (buf, "fr%d", r);
258 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
259 }
260}
261
7e295833
KB
262static void
263set_variant_abi_fdpic (struct gdbarch_tdep *var)
264{
265 var->frv_abi = FRV_ABI_FDPIC;
266 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
267 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
268}
456f8b9d 269
b2d6d697
KB
270static void
271set_variant_scratch_registers (struct gdbarch_tdep *var)
272{
273 var->register_names[scr0_regnum] = xstrdup ("scr0");
274 var->register_names[scr1_regnum] = xstrdup ("scr1");
275 var->register_names[scr2_regnum] = xstrdup ("scr2");
276 var->register_names[scr3_regnum] = xstrdup ("scr3");
277}
278
456f8b9d 279static const char *
d93859e2 280frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d
DB
281{
282 if (reg < 0)
283 return "?toosmall?";
6a748db6 284 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
285 return "?toolarge?";
286
7a22ecfc 287 return gdbarch_tdep (gdbarch)->register_names[reg];
456f8b9d
DB
288}
289
526eef89 290
456f8b9d 291static struct type *
7f398216 292frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 293{
526eef89 294 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
0dfff4cb 295 return builtin_type (gdbarch)->builtin_float;
6a748db6
KB
296 else if (reg == iacc0_regnum)
297 return builtin_type_int64;
456f8b9d 298 else
526eef89 299 return builtin_type_int32;
456f8b9d
DB
300}
301
6a748db6
KB
302static void
303frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 304 int reg, gdb_byte *buffer)
6a748db6
KB
305{
306 if (reg == iacc0_regnum)
307 {
308 regcache_raw_read (regcache, iacc0h_regnum, buffer);
309 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
310 }
8b67aa36
KB
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
312 {
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
315
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
318 bfd_byte buf[4];
319
320 regcache_raw_read (regcache, raw_regnum, buf);
321 memset (buffer, 0, 4);
322 /* FR-V is big endian, so put the requested byte in the first byte
323 of the buffer allocated to hold the pseudo-register. */
324 ((bfd_byte *) buffer)[0] = buf[byte_num];
325 }
6a748db6
KB
326}
327
328static void
329frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 330 int reg, const gdb_byte *buffer)
6a748db6
KB
331{
332 if (reg == iacc0_regnum)
333 {
334 regcache_raw_write (regcache, iacc0h_regnum, buffer);
335 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
336 }
8b67aa36
KB
337 else if (accg0_regnum <= reg && reg <= accg7_regnum)
338 {
339 /* The accg raw registers have four values in each slot with the
340 lowest register number occupying the first byte. */
341
342 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
343 int byte_num = (reg - accg0_regnum) % 4;
344 char buf[4];
345
346 regcache_raw_read (regcache, raw_regnum, buf);
347 buf[byte_num] = ((bfd_byte *) buffer)[0];
348 regcache_raw_write (regcache, raw_regnum, buf);
349 }
6a748db6
KB
350}
351
526eef89 352static int
e7faf938 353frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
526eef89
KB
354{
355 static const int spr_map[] =
356 {
357 H_SPR_PSR, /* psr_regnum */
358 H_SPR_CCR, /* ccr_regnum */
359 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
360 -1, /* fdpic_loadmap_exec_regnum */
361 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
362 -1, /* 134 */
363 H_SPR_TBR, /* tbr_regnum */
364 H_SPR_BRR, /* brr_regnum */
365 H_SPR_DBAR0, /* dbar0_regnum */
366 H_SPR_DBAR1, /* dbar1_regnum */
367 H_SPR_DBAR2, /* dbar2_regnum */
368 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
369 H_SPR_SCR0, /* scr0_regnum */
370 H_SPR_SCR1, /* scr1_regnum */
371 H_SPR_SCR2, /* scr2_regnum */
372 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
373 H_SPR_LR, /* lr_regnum */
374 H_SPR_LCR, /* lcr_regnum */
375 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
376 H_SPR_IACC0L, /* iacc0l_regnum */
377 H_SPR_FSR0, /* fsr0_regnum */
378 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
379 -1, /* acc0_regnum */
380 -1, /* acc1_regnum */
381 -1, /* acc2_regnum */
382 -1, /* acc3_regnum */
383 -1, /* acc4_regnum */
384 -1, /* acc5_regnum */
385 -1, /* acc6_regnum */
386 -1, /* acc7_regnum */
387 -1, /* acc0123_regnum */
388 -1, /* acc4567_regnum */
389 H_SPR_MSR0, /* msr0_regnum */
390 H_SPR_MSR1, /* msr1_regnum */
391 H_SPR_GNER0, /* gner0_regnum */
392 H_SPR_GNER1, /* gner1_regnum */
393 H_SPR_FNER0, /* fner0_regnum */
394 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
395 };
396
e7faf938 397 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
526eef89
KB
398
399 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
400 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
401 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
402 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
403 else if (pc_regnum == reg)
404 return SIM_FRV_PC_REGNUM;
405 else if (reg >= first_spr_regnum
406 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
407 {
408 int spr_reg_offset = spr_map[reg - first_spr_regnum];
409
410 if (spr_reg_offset < 0)
411 return SIM_REGNO_DOES_NOT_EXIST;
412 else
413 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
414 }
415
e2e0b3e5 416 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
526eef89
KB
417}
418
456f8b9d 419static const unsigned char *
67d57894 420frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
456f8b9d
DB
421{
422 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
423 *lenp = sizeof (breakpoint);
424 return breakpoint;
425}
426
46a16dba
KB
427/* Define the maximum number of instructions which may be packed into a
428 bundle (VLIW instruction). */
429static const int max_instrs_per_bundle = 8;
430
431/* Define the size (in bytes) of an FR-V instruction. */
432static const int frv_instr_size = 4;
433
434/* Adjust a breakpoint's address to account for the FR-V architecture's
435 constraint that a break instruction must not appear as any but the
436 first instruction in the bundle. */
437static CORE_ADDR
1208538e 438frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
439{
440 int count = max_instrs_per_bundle;
441 CORE_ADDR addr = bpaddr - frv_instr_size;
442 CORE_ADDR func_start = get_pc_function_start (bpaddr);
443
444 /* Find the end of the previous packing sequence. This will be indicated
445 by either attempting to access some inaccessible memory or by finding
446 an instruction word whose packing bit is set to one. */
447 while (count-- > 0 && addr >= func_start)
448 {
449 char instr[frv_instr_size];
450 int status;
451
8defab1a 452 status = target_read_memory (addr, instr, sizeof instr);
46a16dba
KB
453
454 if (status != 0)
455 break;
456
457 /* This is a big endian architecture, so byte zero will have most
458 significant byte. The most significant bit of this byte is the
459 packing bit. */
460 if (instr[0] & 0x80)
461 break;
462
463 addr -= frv_instr_size;
464 }
465
466 if (count > 0)
467 bpaddr = addr + frv_instr_size;
468
469 return bpaddr;
470}
471
456f8b9d
DB
472
473/* Return true if REG is a caller-saves ("scratch") register,
474 false otherwise. */
475static int
476is_caller_saves_reg (int reg)
477{
478 return ((4 <= reg && reg <= 7)
479 || (14 <= reg && reg <= 15)
480 || (32 <= reg && reg <= 47));
481}
482
483
484/* Return true if REG is a callee-saves register, false otherwise. */
485static int
486is_callee_saves_reg (int reg)
487{
488 return ((16 <= reg && reg <= 31)
489 || (48 <= reg && reg <= 63));
490}
491
492
493/* Return true if REG is an argument register, false otherwise. */
494static int
495is_argument_reg (int reg)
496{
497 return (8 <= reg && reg <= 13);
498}
499
456f8b9d
DB
500/* Scan an FR-V prologue, starting at PC, until frame->PC.
501 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502 We assume FRAME's saved_regs array has already been allocated and cleared.
503 Return the first PC value after the prologue.
504
505 Note that, for unoptimized code, we almost don't need this function
506 at all; all arguments and locals live on the stack, so we just need
507 the FP to find everything. The catch: structures passed by value
508 have their addresses living in registers; they're never spilled to
509 the stack. So if you ever want to be able to get to these
510 arguments in any frame but the top, you'll need to do this serious
511 prologue analysis. */
512static CORE_ADDR
94afd7a6 513frv_analyze_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1cb761c7 514 struct frv_unwind_cache *info)
456f8b9d
DB
515{
516 /* When writing out instruction bitpatterns, we use the following
517 letters to label instruction fields:
518 P - The parallel bit. We don't use this.
519 J - The register number of GRj in the instruction description.
520 K - The register number of GRk in the instruction description.
521 I - The register number of GRi.
522 S - a signed imediate offset.
523 U - an unsigned immediate offset.
524
525 The dots below the numbers indicate where hex digit boundaries
526 fall, to make it easier to check the numbers. */
527
528 /* Non-zero iff we've seen the instruction that initializes the
529 frame pointer for this function's frame. */
530 int fp_set = 0;
531
532 /* If fp_set is non_zero, then this is the distance from
533 the stack pointer to frame pointer: fp = sp + fp_offset. */
534 int fp_offset = 0;
535
536 /* Total size of frame prior to any alloca operations. */
537 int framesize = 0;
538
1cb761c7
KB
539 /* Flag indicating if lr has been saved on the stack. */
540 int lr_saved_on_stack = 0;
541
456f8b9d
DB
542 /* The number of the general-purpose register we saved the return
543 address ("link register") in, or -1 if we haven't moved it yet. */
544 int lr_save_reg = -1;
545
1cb761c7
KB
546 /* Offset (from sp) at which lr has been saved on the stack. */
547
548 int lr_sp_offset = 0;
456f8b9d
DB
549
550 /* If gr_saved[i] is non-zero, then we've noticed that general
551 register i has been saved at gr_sp_offset[i] from the stack
552 pointer. */
553 char gr_saved[64];
554 int gr_sp_offset[64];
555
d40fcd7b
KB
556 /* The address of the most recently scanned prologue instruction. */
557 CORE_ADDR last_prologue_pc;
558
559 /* The address of the next instruction. */
560 CORE_ADDR next_pc;
561
562 /* The upper bound to of the pc values to scan. */
563 CORE_ADDR lim_pc;
564
456f8b9d
DB
565 memset (gr_saved, 0, sizeof (gr_saved));
566
d40fcd7b
KB
567 last_prologue_pc = pc;
568
569 /* Try to compute an upper limit (on how far to scan) based on the
570 line number info. */
571 lim_pc = skip_prologue_using_sal (pc);
572 /* If there's no line number info, lim_pc will be 0. In that case,
573 set the limit to be 100 instructions away from pc. Hopefully, this
574 will be far enough away to account for the entire prologue. Don't
575 worry about overshooting the end of the function. The scan loop
576 below contains some checks to avoid scanning unreasonably far. */
577 if (lim_pc == 0)
578 lim_pc = pc + 400;
579
580 /* If we have a frame, we don't want to scan past the frame's pc. This
581 will catch those cases where the pc is in the prologue. */
94afd7a6 582 if (this_frame)
d40fcd7b 583 {
94afd7a6 584 CORE_ADDR frame_pc = get_frame_pc (this_frame);
d40fcd7b
KB
585 if (frame_pc < lim_pc)
586 lim_pc = frame_pc;
587 }
588
589 /* Scan the prologue. */
590 while (pc < lim_pc)
456f8b9d 591 {
1ccda5e9
KB
592 char buf[frv_instr_size];
593 LONGEST op;
594
595 if (target_read_memory (pc, buf, sizeof buf) != 0)
596 break;
597 op = extract_signed_integer (buf, sizeof buf);
598
d40fcd7b 599 next_pc = pc + 4;
456f8b9d
DB
600
601 /* The tests in this chain of ifs should be in order of
602 decreasing selectivity, so that more particular patterns get
603 to fire before less particular patterns. */
604
d40fcd7b
KB
605 /* Some sort of control transfer instruction: stop scanning prologue.
606 Integer Conditional Branch:
607 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
608 Floating-point / media Conditional Branch:
609 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
610 LCR Conditional Branch to LR
611 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
612 Integer conditional Branches to LR
613 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
614 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
615 Floating-point/Media Branches to LR
616 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
617 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
618 Jump and Link
619 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
620 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
621 Call
622 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
623 Return from Trap
624 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
625 Integer Conditional Trap
626 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
627 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
628 Floating-point /media Conditional Trap
629 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
630 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
631 Break
632 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
633 Media Trap
634 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
635 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
636 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
637 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
638 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
639 {
640 /* Stop scanning; not in prologue any longer. */
641 break;
642 }
643
644 /* Loading something from memory into fp probably means that
645 we're in the epilogue. Stop scanning the prologue.
646 ld @(GRi, GRk), fp
647 X 000010 0000010 XXXXXX 000100 XXXXXX
648 ldi @(GRi, d12), fp
649 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
650 else if ((op & 0x7ffc0fc0) == 0x04080100
651 || (op & 0x7ffc0000) == 0x04c80000)
652 {
653 break;
654 }
655
456f8b9d
DB
656 /* Setting the FP from the SP:
657 ori sp, 0, fp
658 P 000010 0100010 000001 000000000000 = 0x04881000
659 0 111111 1111111 111111 111111111111 = 0x7fffffff
660 . . . . . . . .
661 We treat this as part of the prologue. */
d40fcd7b 662 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
663 {
664 fp_set = 1;
665 fp_offset = 0;
d40fcd7b 666 last_prologue_pc = next_pc;
456f8b9d
DB
667 }
668
669 /* Move the link register to the scratch register grJ, before saving:
670 movsg lr, grJ
671 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
672 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
673 . . . . . . . .
674 We treat this as part of the prologue. */
675 else if ((op & 0x7fffffc0) == 0x080d01c0)
676 {
677 int gr_j = op & 0x3f;
678
679 /* If we're moving it to a scratch register, that's fine. */
680 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
681 {
682 lr_save_reg = gr_j;
683 last_prologue_pc = next_pc;
684 }
456f8b9d
DB
685 }
686
687 /* To save multiple callee-saves registers on the stack, at
688 offset zero:
689
690 std grK,@(sp,gr0)
691 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
692 0 000000 1111111 111111 111111 111111 = 0x01ffffff
693
694 stq grK,@(sp,gr0)
695 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
696 0 000000 1111111 111111 111111 111111 = 0x01ffffff
697 . . . . . . . .
698 We treat this as part of the prologue, and record the register's
699 saved address in the frame structure. */
700 else if ((op & 0x01ffffff) == 0x000c10c0
701 || (op & 0x01ffffff) == 0x000c1100)
702 {
703 int gr_k = ((op >> 25) & 0x3f);
704 int ope = ((op >> 6) & 0x3f);
705 int count;
706 int i;
707
708 /* Is it an std or an stq? */
709 if (ope == 0x03)
710 count = 2;
711 else
712 count = 4;
713
714 /* Is it really a callee-saves register? */
715 if (is_callee_saves_reg (gr_k))
716 {
717 for (i = 0; i < count; i++)
718 {
719 gr_saved[gr_k + i] = 1;
720 gr_sp_offset[gr_k + i] = 4 * i;
721 }
d40fcd7b 722 last_prologue_pc = next_pc;
456f8b9d 723 }
456f8b9d
DB
724 }
725
726 /* Adjusting the stack pointer. (The stack pointer is GR1.)
727 addi sp, S, sp
728 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
729 0 111111 1111111 111111 000000000000 = 0x7ffff000
730 . . . . . . . .
731 We treat this as part of the prologue. */
732 else if ((op & 0x7ffff000) == 0x02401000)
733 {
d40fcd7b
KB
734 if (framesize == 0)
735 {
736 /* Sign-extend the twelve-bit field.
737 (Isn't there a better way to do this?) */
738 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 739
d40fcd7b
KB
740 framesize -= s;
741 last_prologue_pc = pc;
742 }
743 else
744 {
745 /* If the prologue is being adjusted again, we've
746 likely gone too far; i.e. we're probably in the
747 epilogue. */
748 break;
749 }
456f8b9d
DB
750 }
751
752 /* Setting the FP to a constant distance from the SP:
753 addi sp, S, fp
754 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
755 0 111111 1111111 111111 000000000000 = 0x7ffff000
756 . . . . . . . .
757 We treat this as part of the prologue. */
758 else if ((op & 0x7ffff000) == 0x04401000)
759 {
760 /* Sign-extend the twelve-bit field.
761 (Isn't there a better way to do this?) */
762 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
763 fp_set = 1;
764 fp_offset = s;
d40fcd7b 765 last_prologue_pc = pc;
456f8b9d
DB
766 }
767
768 /* To spill an argument register to a scratch register:
769 ori GRi, 0, GRk
770 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
771 0 000000 1111111 000000 111111111111 = 0x01fc0fff
772 . . . . . . . .
773 For the time being, we treat this as a prologue instruction,
774 assuming that GRi is an argument register. This one's kind
775 of suspicious, because it seems like it could be part of a
776 legitimate body instruction. But we only come here when the
777 source info wasn't helpful, so we have to do the best we can.
778 Hopefully once GCC and GDB agree on how to emit line number
779 info for prologues, then this code will never come into play. */
780 else if ((op & 0x01fc0fff) == 0x00880000)
781 {
782 int gr_i = ((op >> 12) & 0x3f);
783
d40fcd7b
KB
784 /* Make sure that the source is an arg register; if it is, we'll
785 treat it as a prologue instruction. */
786 if (is_argument_reg (gr_i))
787 last_prologue_pc = next_pc;
456f8b9d
DB
788 }
789
790 /* To spill 16-bit values to the stack:
791 sthi GRk, @(fp, s)
792 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
793 0 000000 1111111 111111 000000000000 = 0x01fff000
794 . . . . . . . .
795 And for 8-bit values, we use STB instructions.
796 stbi GRk, @(fp, s)
797 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
798 0 000000 1111111 111111 000000000000 = 0x01fff000
799 . . . . . . . .
800 We check that GRk is really an argument register, and treat
801 all such as part of the prologue. */
802 else if ( (op & 0x01fff000) == 0x01442000
803 || (op & 0x01fff000) == 0x01402000)
804 {
805 int gr_k = ((op >> 25) & 0x3f);
806
d40fcd7b
KB
807 /* Make sure that GRk is really an argument register; treat
808 it as a prologue instruction if so. */
809 if (is_argument_reg (gr_k))
810 last_prologue_pc = next_pc;
456f8b9d
DB
811 }
812
813 /* To save multiple callee-saves register on the stack, at a
814 non-zero offset:
815
816 stdi GRk, @(sp, s)
817 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
818 0 000000 1111111 111111 000000000000 = 0x01fff000
819 . . . . . . . .
820 stqi GRk, @(sp, s)
821 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
822 0 000000 1111111 111111 000000000000 = 0x01fff000
823 . . . . . . . .
824 We treat this as part of the prologue, and record the register's
825 saved address in the frame structure. */
826 else if ((op & 0x01fff000) == 0x014c1000
827 || (op & 0x01fff000) == 0x01501000)
828 {
829 int gr_k = ((op >> 25) & 0x3f);
830 int count;
831 int i;
832
833 /* Is it a stdi or a stqi? */
834 if ((op & 0x01fff000) == 0x014c1000)
835 count = 2;
836 else
837 count = 4;
838
839 /* Is it really a callee-saves register? */
840 if (is_callee_saves_reg (gr_k))
841 {
842 /* Sign-extend the twelve-bit field.
843 (Isn't there a better way to do this?) */
844 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
845
846 for (i = 0; i < count; i++)
847 {
848 gr_saved[gr_k + i] = 1;
849 gr_sp_offset[gr_k + i] = s + (4 * i);
850 }
d40fcd7b 851 last_prologue_pc = next_pc;
456f8b9d 852 }
456f8b9d
DB
853 }
854
855 /* Storing any kind of integer register at any constant offset
856 from any other register.
857
858 st GRk, @(GRi, gr0)
859 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
860 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
861 . . . . . . . .
862 sti GRk, @(GRi, d12)
863 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
864 0 000000 1111111 000000 000000000000 = 0x01fc0000
865 . . . . . . . .
866 These could be almost anything, but a lot of prologue
867 instructions fall into this pattern, so let's decode the
868 instruction once, and then work at a higher level. */
869 else if (((op & 0x01fc0fff) == 0x000c0080)
870 || ((op & 0x01fc0000) == 0x01480000))
871 {
872 int gr_k = ((op >> 25) & 0x3f);
873 int gr_i = ((op >> 12) & 0x3f);
874 int offset;
875
876 /* Are we storing with gr0 as an offset, or using an
877 immediate value? */
878 if ((op & 0x01fc0fff) == 0x000c0080)
879 offset = 0;
880 else
881 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
882
883 /* If the address isn't relative to the SP or FP, it's not a
884 prologue instruction. */
885 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
886 {
887 /* Do nothing; not a prologue instruction. */
888 }
456f8b9d
DB
889
890 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 891 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
892 {
893 gr_saved[fp_regnum] = 1;
894 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 895 last_prologue_pc = next_pc;
1cb761c7 896 }
456f8b9d
DB
897
898 /* Saving callee-saves register(s) on the stack, relative to
899 the SP. */
900 else if (gr_i == sp_regnum
901 && is_callee_saves_reg (gr_k))
902 {
903 gr_saved[gr_k] = 1;
1cb761c7
KB
904 if (gr_i == sp_regnum)
905 gr_sp_offset[gr_k] = offset;
906 else
907 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 908 last_prologue_pc = next_pc;
456f8b9d
DB
909 }
910
911 /* Saving the scratch register holding the return address. */
912 else if (lr_save_reg != -1
913 && gr_k == lr_save_reg)
1cb761c7
KB
914 {
915 lr_saved_on_stack = 1;
916 if (gr_i == sp_regnum)
917 lr_sp_offset = offset;
918 else
919 lr_sp_offset = offset + fp_offset;
d40fcd7b 920 last_prologue_pc = next_pc;
1cb761c7 921 }
456f8b9d
DB
922
923 /* Spilling int-sized arguments to the stack. */
924 else if (is_argument_reg (gr_k))
d40fcd7b 925 last_prologue_pc = next_pc;
456f8b9d 926 }
d40fcd7b 927 pc = next_pc;
456f8b9d
DB
928 }
929
94afd7a6 930 if (this_frame && info)
456f8b9d 931 {
1cb761c7
KB
932 int i;
933 ULONGEST this_base;
456f8b9d
DB
934
935 /* If we know the relationship between the stack and frame
936 pointers, record the addresses of the registers we noticed.
937 Note that we have to do this as a separate step at the end,
938 because instructions may save relative to the SP, but we need
939 their addresses relative to the FP. */
940 if (fp_set)
94afd7a6 941 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
1cb761c7 942 else
94afd7a6 943 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
456f8b9d 944
1cb761c7
KB
945 for (i = 0; i < 64; i++)
946 if (gr_saved[i])
947 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 948
1cb761c7
KB
949 info->prev_sp = this_base - fp_offset + framesize;
950 info->base = this_base;
951
952 /* If LR was saved on the stack, record its location. */
953 if (lr_saved_on_stack)
954 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
955
956 /* The call instruction moves the caller's PC in the callee's LR.
957 Since this is an unwind, do the reverse. Copy the location of LR
958 into PC (the address / regnum) so that a request for PC will be
959 converted into a request for the LR. */
960 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
961
962 /* Save the previous frame's computed SP value. */
963 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
964 }
965
d40fcd7b 966 return last_prologue_pc;
456f8b9d
DB
967}
968
969
970static CORE_ADDR
6093d2eb 971frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456f8b9d
DB
972{
973 CORE_ADDR func_addr, func_end, new_pc;
974
975 new_pc = pc;
976
977 /* If the line table has entry for a line *within* the function
978 (i.e., not in the prologue, and not past the end), then that's
979 our location. */
980 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
981 {
982 struct symtab_and_line sal;
983
984 sal = find_pc_line (func_addr, 0);
985
986 if (sal.line != 0 && sal.end < func_end)
987 {
988 new_pc = sal.end;
989 }
990 }
991
992 /* The FR-V prologue is at least five instructions long (twenty bytes).
993 If we didn't find a real source location past that, then
994 do a full analysis of the prologue. */
995 if (new_pc < pc + 20)
1cb761c7 996 new_pc = frv_analyze_prologue (pc, 0, 0);
456f8b9d
DB
997
998 return new_pc;
999}
1000
1cb761c7 1001
9bc7b6c6
KB
1002/* Examine the instruction pointed to by PC. If it corresponds to
1003 a call to __main, return the address of the next instruction.
1004 Otherwise, return PC. */
1005
1006static CORE_ADDR
1007frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1008{
1009 gdb_byte buf[4];
1010 unsigned long op;
1011 CORE_ADDR orig_pc = pc;
1012
1013 if (target_read_memory (pc, buf, 4))
1014 return pc;
1015 op = extract_unsigned_integer (buf, 4);
1016
1017 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1018 to the call instruction.
1019
1020 Skip over this instruction if present. It won't be present in
1021 non-PIC code, and even in PIC code, it might not be present.
1022 (This is due to the fact that GR15, the FDPIC register, already
1023 contains the correct value.)
1024
1025 The general form of the LDI is given first, followed by the
1026 specific instruction with the GRi and GRk filled in as FP and
1027 GR15.
1028
1029 ldi @(GRi, d12), GRk
1030 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1031 0 000000 1111111 000000 000000000000 = 0x01fc0000
1032 . . . . . . . .
1033 ldi @(FP, d12), GR15
1034 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1035 0 001111 1111111 000010 000000000000 = 0x7ffff000
1036 . . . . . . . . */
1037
1038 if ((op & 0x7ffff000) == 0x1ec82000)
1039 {
1040 pc += 4;
1041 if (target_read_memory (pc, buf, 4))
1042 return orig_pc;
1043 op = extract_unsigned_integer (buf, 4);
1044 }
1045
1046 /* The format of an FRV CALL instruction is as follows:
1047
1048 call label24
1049 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1050 0 000000 1111111 000000000000000000 = 0x01fc0000
1051 . . . . . . . .
1052
1053 where label24 is constructed by concatenating the H bits with the
1054 L bits. The call target is PC + (4 * sign_ext(label24)). */
1055
1056 if ((op & 0x01fc0000) == 0x003c0000)
1057 {
1058 LONGEST displ;
1059 CORE_ADDR call_dest;
1060 struct minimal_symbol *s;
1061
1062 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1063 if ((displ & 0x00800000) != 0)
1064 displ |= ~((LONGEST) 0x00ffffff);
1065
1066 call_dest = pc + 4 * displ;
1067 s = lookup_minimal_symbol_by_pc (call_dest);
1068
1069 if (s != NULL
1070 && SYMBOL_LINKAGE_NAME (s) != NULL
1071 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1072 {
1073 pc += 4;
1074 return pc;
1075 }
1076 }
1077 return orig_pc;
1078}
1079
1080
1cb761c7 1081static struct frv_unwind_cache *
94afd7a6 1082frv_frame_unwind_cache (struct frame_info *this_frame,
1cb761c7 1083 void **this_prologue_cache)
456f8b9d 1084{
94afd7a6 1085 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1cb761c7 1086 CORE_ADDR pc;
1cb761c7
KB
1087 ULONGEST this_base;
1088 struct frv_unwind_cache *info;
8baa6f92 1089
1cb761c7
KB
1090 if ((*this_prologue_cache))
1091 return (*this_prologue_cache);
456f8b9d 1092
1cb761c7
KB
1093 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1094 (*this_prologue_cache) = info;
94afd7a6 1095 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
456f8b9d 1096
1cb761c7 1097 /* Prologue analysis does the rest... */
94afd7a6 1098 frv_analyze_prologue (get_frame_func (this_frame), this_frame, info);
456f8b9d 1099
1cb761c7 1100 return info;
456f8b9d
DB
1101}
1102
456f8b9d 1103static void
cd31fb03 1104frv_extract_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1105 gdb_byte *valbuf)
456f8b9d 1106{
cd31fb03
KB
1107 int len = TYPE_LENGTH (type);
1108
1109 if (len <= 4)
1110 {
1111 ULONGEST gpr8_val;
1112 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1113 store_unsigned_integer (valbuf, len, gpr8_val);
1114 }
1115 else if (len == 8)
1116 {
1117 ULONGEST regval;
1118 regcache_cooked_read_unsigned (regcache, 8, &regval);
1119 store_unsigned_integer (valbuf, 4, regval);
1120 regcache_cooked_read_unsigned (regcache, 9, &regval);
1121 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1122 }
1123 else
e2e0b3e5 1124 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
456f8b9d
DB
1125}
1126
1cb761c7
KB
1127static CORE_ADDR
1128frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1129{
1cb761c7 1130 /* Require dword alignment. */
5b03f266 1131 return align_down (sp, 8);
456f8b9d
DB
1132}
1133
c4d10515
KB
1134static CORE_ADDR
1135find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1136{
1137 CORE_ADDR descr;
1138 char valbuf[4];
35e08e03
KB
1139 CORE_ADDR start_addr;
1140
1141 /* If we can't find the function in the symbol table, then we assume
1142 that the function address is already in descriptor form. */
1143 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1144 || entry_point != start_addr)
1145 return entry_point;
c4d10515
KB
1146
1147 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1148
1149 if (descr != 0)
1150 return descr;
1151
1152 /* Construct a non-canonical descriptor from space allocated on
1153 the stack. */
1154
1155 descr = value_as_long (value_allocate_space_in_inferior (8));
1156 store_unsigned_integer (valbuf, 4, entry_point);
1157 write_memory (descr, valbuf, 4);
1158 store_unsigned_integer (valbuf, 4,
1159 frv_fdpic_find_global_pointer (entry_point));
1160 write_memory (descr + 4, valbuf, 4);
1161 return descr;
1162}
1163
1164static CORE_ADDR
1165frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1166 struct target_ops *targ)
1167{
1168 CORE_ADDR entry_point;
1169 CORE_ADDR got_address;
1170
1171 entry_point = get_target_memory_unsigned (targ, addr, 4);
1172 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1173
1174 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1175 return entry_point;
1176 else
1177 return addr;
1178}
1179
456f8b9d 1180static CORE_ADDR
7d9b040b 1181frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1cb761c7
KB
1182 struct regcache *regcache, CORE_ADDR bp_addr,
1183 int nargs, struct value **args, CORE_ADDR sp,
1184 int struct_return, CORE_ADDR struct_addr)
456f8b9d
DB
1185{
1186 int argreg;
1187 int argnum;
1188 char *val;
1189 char valbuf[4];
1190 struct value *arg;
1191 struct type *arg_type;
1192 int len;
1193 enum type_code typecode;
1194 CORE_ADDR regval;
1195 int stack_space;
1196 int stack_offset;
c4d10515 1197 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1198 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1199
1200#if 0
1201 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1202 nargs, (int) sp, struct_return, struct_addr);
1203#endif
1204
1205 stack_space = 0;
1206 for (argnum = 0; argnum < nargs; ++argnum)
4991999e 1207 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
456f8b9d
DB
1208
1209 stack_space -= (6 * 4);
1210 if (stack_space > 0)
1211 sp -= stack_space;
1212
1213 /* Make sure stack is dword aligned. */
5b03f266 1214 sp = align_down (sp, 8);
456f8b9d
DB
1215
1216 stack_offset = 0;
1217
1218 argreg = 8;
1219
1220 if (struct_return)
1cb761c7
KB
1221 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1222 struct_addr);
456f8b9d
DB
1223
1224 for (argnum = 0; argnum < nargs; ++argnum)
1225 {
1226 arg = args[argnum];
4991999e 1227 arg_type = check_typedef (value_type (arg));
456f8b9d
DB
1228 len = TYPE_LENGTH (arg_type);
1229 typecode = TYPE_CODE (arg_type);
1230
1231 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1232 {
fbd9dcd3 1233 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
456f8b9d
DB
1234 typecode = TYPE_CODE_PTR;
1235 len = 4;
1236 val = valbuf;
1237 }
c4d10515
KB
1238 else if (abi == FRV_ABI_FDPIC
1239 && len == 4
1240 && typecode == TYPE_CODE_PTR
1241 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1242 {
1243 /* The FDPIC ABI requires function descriptors to be passed instead
1244 of entry points. */
1245 store_unsigned_integer
1246 (valbuf, 4,
1247 find_func_descr (gdbarch,
0fd88904 1248 extract_unsigned_integer (value_contents (arg),
c4d10515
KB
1249 4)));
1250 typecode = TYPE_CODE_PTR;
1251 len = 4;
1252 val = valbuf;
1253 }
456f8b9d
DB
1254 else
1255 {
0fd88904 1256 val = (char *) value_contents (arg);
456f8b9d
DB
1257 }
1258
1259 while (len > 0)
1260 {
1261 int partial_len = (len < 4 ? len : 4);
1262
1263 if (argreg < 14)
1264 {
7c0b4a20 1265 regval = extract_unsigned_integer (val, partial_len);
456f8b9d
DB
1266#if 0
1267 printf(" Argnum %d data %x -> reg %d\n",
1268 argnum, (int) regval, argreg);
1269#endif
1cb761c7 1270 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1271 ++argreg;
1272 }
1273 else
1274 {
1275#if 0
1276 printf(" Argnum %d data %x -> offset %d (%x)\n",
1277 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1278#endif
1279 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1280 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1281 }
1282 len -= partial_len;
1283 val += partial_len;
1284 }
1285 }
456f8b9d 1286
1cb761c7
KB
1287 /* Set the return address. For the frv, the return breakpoint is
1288 always at BP_ADDR. */
1289 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1290
c4d10515
KB
1291 if (abi == FRV_ABI_FDPIC)
1292 {
1293 /* Set the GOT register for the FDPIC ABI. */
1294 regcache_cooked_write_unsigned
1295 (regcache, first_gpr_regnum + 15,
1296 frv_fdpic_find_global_pointer (func_addr));
1297 }
1298
1cb761c7
KB
1299 /* Finally, update the SP register. */
1300 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1301
456f8b9d
DB
1302 return sp;
1303}
1304
1305static void
cd31fb03 1306frv_store_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1307 const gdb_byte *valbuf)
456f8b9d 1308{
cd31fb03
KB
1309 int len = TYPE_LENGTH (type);
1310
1311 if (len <= 4)
1312 {
1313 bfd_byte val[4];
1314 memset (val, 0, sizeof (val));
1315 memcpy (val + (4 - len), valbuf, len);
1316 regcache_cooked_write (regcache, 8, val);
1317 }
1318 else if (len == 8)
1319 {
1320 regcache_cooked_write (regcache, 8, valbuf);
1321 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1322 }
456f8b9d
DB
1323 else
1324 internal_error (__FILE__, __LINE__,
e2e0b3e5 1325 _("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1326}
1327
63807e1d 1328static enum return_value_convention
c055b101
CV
1329frv_return_value (struct gdbarch *gdbarch, struct type *func_type,
1330 struct type *valtype, struct regcache *regcache,
1331 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0
UW
1332{
1333 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1334 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1335 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1336
1337 if (writebuf != NULL)
1338 {
1339 gdb_assert (!struct_return);
1340 frv_store_return_value (valtype, regcache, writebuf);
1341 }
1342
1343 if (readbuf != NULL)
1344 {
1345 gdb_assert (!struct_return);
1346 frv_extract_return_value (valtype, regcache, readbuf);
1347 }
1348
1349 if (struct_return)
1350 return RETURN_VALUE_STRUCT_CONVENTION;
1351 else
1352 return RETURN_VALUE_REGISTER_CONVENTION;
1353}
1354
456f8b9d 1355
456f8b9d
DB
1356/* Hardware watchpoint / breakpoint support for the FR500
1357 and FR400. */
1358
1359int
7a22ecfc 1360frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
456f8b9d 1361{
7a22ecfc 1362 struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
456f8b9d
DB
1363
1364 /* Watchpoints not supported on simulator. */
1365 if (strcmp (target_shortname, "sim") == 0)
1366 return 0;
1367
1368 if (type == bp_hardware_breakpoint)
1369 {
1370 if (var->num_hw_breakpoints == 0)
1371 return 0;
1372 else if (cnt <= var->num_hw_breakpoints)
1373 return 1;
1374 }
1375 else
1376 {
1377 if (var->num_hw_watchpoints == 0)
1378 return 0;
1379 else if (ot)
1380 return -1;
1381 else if (cnt <= var->num_hw_watchpoints)
1382 return 1;
1383 }
1384 return -1;
1385}
1386
1387
4aa7a7f5
JJ
1388int
1389frv_stopped_data_address (CORE_ADDR *addr_p)
456f8b9d 1390{
1b5a9a8f 1391 struct frame_info *frame = get_current_frame ();
456f8b9d
DB
1392 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1393
1b5a9a8f
UW
1394 brr = get_frame_register_unsigned (frame, brr_regnum);
1395 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1396 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1397 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1398 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
456f8b9d
DB
1399
1400 if (brr & (1<<11))
4aa7a7f5 1401 *addr_p = dbar0;
456f8b9d 1402 else if (brr & (1<<10))
4aa7a7f5 1403 *addr_p = dbar1;
456f8b9d 1404 else if (brr & (1<<9))
4aa7a7f5 1405 *addr_p = dbar2;
456f8b9d 1406 else if (brr & (1<<8))
4aa7a7f5 1407 *addr_p = dbar3;
456f8b9d
DB
1408 else
1409 return 0;
4aa7a7f5
JJ
1410
1411 return 1;
1412}
1413
1414int
1415frv_have_stopped_data_address (void)
1416{
1417 CORE_ADDR addr = 0;
1418 return frv_stopped_data_address (&addr);
456f8b9d
DB
1419}
1420
1cb761c7
KB
1421static CORE_ADDR
1422frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1423{
1424 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1425}
1426
1427/* Given a GDB frame, determine the address of the calling function's
1428 frame. This will be used to create a new GDB frame struct. */
1429
1430static void
94afd7a6 1431frv_frame_this_id (struct frame_info *this_frame,
1cb761c7
KB
1432 void **this_prologue_cache, struct frame_id *this_id)
1433{
1434 struct frv_unwind_cache *info
94afd7a6 1435 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1cb761c7
KB
1436 CORE_ADDR base;
1437 CORE_ADDR func;
1438 struct minimal_symbol *msym_stack;
1439 struct frame_id id;
1440
1441 /* The FUNC is easy. */
94afd7a6 1442 func = get_frame_func (this_frame);
1cb761c7 1443
1cb761c7
KB
1444 /* Check if the stack is empty. */
1445 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1446 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1447 return;
1448
1449 /* Hopefully the prologue analysis either correctly determined the
1450 frame's base (which is the SP from the previous frame), or set
1451 that base to "NULL". */
1452 base = info->prev_sp;
1453 if (base == 0)
1454 return;
1455
1456 id = frame_id_build (base, func);
1cb761c7
KB
1457 (*this_id) = id;
1458}
1459
94afd7a6
UW
1460static struct value *
1461frv_frame_prev_register (struct frame_info *this_frame,
1462 void **this_prologue_cache, int regnum)
1cb761c7
KB
1463{
1464 struct frv_unwind_cache *info
94afd7a6
UW
1465 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1466 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1cb761c7
KB
1467}
1468
1469static const struct frame_unwind frv_frame_unwind = {
1470 NORMAL_FRAME,
1471 frv_frame_this_id,
94afd7a6
UW
1472 frv_frame_prev_register,
1473 NULL,
1474 default_frame_sniffer
1cb761c7
KB
1475};
1476
1cb761c7 1477static CORE_ADDR
94afd7a6 1478frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1cb761c7
KB
1479{
1480 struct frv_unwind_cache *info
94afd7a6 1481 = frv_frame_unwind_cache (this_frame, this_cache);
1cb761c7
KB
1482 return info->base;
1483}
1484
1485static const struct frame_base frv_frame_base = {
1486 &frv_frame_unwind,
1487 frv_frame_base_address,
1488 frv_frame_base_address,
1489 frv_frame_base_address
1490};
1491
1492static CORE_ADDR
1493frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1494{
1495 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1496}
1497
1498
94afd7a6
UW
1499/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1500 frame. The frame ID's base needs to match the TOS value saved by
1501 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1cb761c7
KB
1502
1503static struct frame_id
94afd7a6 1504frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1cb761c7 1505{
94afd7a6
UW
1506 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1507 return frame_id_build (sp, get_frame_pc (this_frame));
1cb761c7
KB
1508}
1509
456f8b9d
DB
1510static struct gdbarch *
1511frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1512{
1513 struct gdbarch *gdbarch;
1514 struct gdbarch_tdep *var;
7e295833 1515 int elf_flags = 0;
456f8b9d
DB
1516
1517 /* Check to see if we've already built an appropriate architecture
1518 object for this executable. */
1519 arches = gdbarch_list_lookup_by_info (arches, &info);
1520 if (arches)
1521 return arches->gdbarch;
1522
1523 /* Select the right tdep structure for this variant. */
1524 var = new_variant ();
1525 switch (info.bfd_arch_info->mach)
1526 {
1527 case bfd_mach_frv:
1528 case bfd_mach_frvsimple:
1529 case bfd_mach_fr500:
1530 case bfd_mach_frvtomcat:
251a3ae3 1531 case bfd_mach_fr550:
456f8b9d
DB
1532 set_variant_num_gprs (var, 64);
1533 set_variant_num_fprs (var, 64);
1534 break;
1535
1536 case bfd_mach_fr400:
b2d6d697 1537 case bfd_mach_fr450:
456f8b9d
DB
1538 set_variant_num_gprs (var, 32);
1539 set_variant_num_fprs (var, 32);
1540 break;
1541
1542 default:
1543 /* Never heard of this variant. */
1544 return 0;
1545 }
7e295833
KB
1546
1547 /* Extract the ELF flags, if available. */
1548 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1549 elf_flags = elf_elfheader (info.abfd)->e_flags;
1550
1551 if (elf_flags & EF_FRV_FDPIC)
1552 set_variant_abi_fdpic (var);
1553
b2d6d697
KB
1554 if (elf_flags & EF_FRV_CPU_FR450)
1555 set_variant_scratch_registers (var);
1556
456f8b9d
DB
1557 gdbarch = gdbarch_alloc (&info, var);
1558
1559 set_gdbarch_short_bit (gdbarch, 16);
1560 set_gdbarch_int_bit (gdbarch, 32);
1561 set_gdbarch_long_bit (gdbarch, 32);
1562 set_gdbarch_long_long_bit (gdbarch, 64);
1563 set_gdbarch_float_bit (gdbarch, 32);
1564 set_gdbarch_double_bit (gdbarch, 64);
1565 set_gdbarch_long_double_bit (gdbarch, 64);
1566 set_gdbarch_ptr_bit (gdbarch, 32);
1567
1568 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1569 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1570
456f8b9d 1571 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1572 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1573 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1574
1575 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1576 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1577 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1578
6a748db6
KB
1579 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1580 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1581
456f8b9d 1582 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
9bc7b6c6 1583 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
456f8b9d 1584 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1208538e
MK
1585 set_gdbarch_adjust_breakpoint_address
1586 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1587
4c8b6ae0 1588 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1589
1cb761c7
KB
1590 /* Frame stuff. */
1591 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1592 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1593 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1594 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1595 /* We set the sniffer lower down after the OSABI hooks have been
1596 established. */
456f8b9d 1597
1cb761c7
KB
1598 /* Settings for calling functions in the inferior. */
1599 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
94afd7a6 1600 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
456f8b9d
DB
1601
1602 /* Settings that should be unnecessary. */
1603 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1604
456f8b9d
DB
1605 /* Hardware watchpoint / breakpoint support. */
1606 switch (info.bfd_arch_info->mach)
1607 {
1608 case bfd_mach_frv:
1609 case bfd_mach_frvsimple:
1610 case bfd_mach_fr500:
1611 case bfd_mach_frvtomcat:
1612 /* fr500-style hardware debugging support. */
1613 var->num_hw_watchpoints = 4;
1614 var->num_hw_breakpoints = 4;
1615 break;
1616
1617 case bfd_mach_fr400:
b2d6d697 1618 case bfd_mach_fr450:
456f8b9d
DB
1619 /* fr400-style hardware debugging support. */
1620 var->num_hw_watchpoints = 2;
1621 var->num_hw_breakpoints = 4;
1622 break;
1623
1624 default:
1625 /* Otherwise, assume we don't have hardware debugging support. */
1626 var->num_hw_watchpoints = 0;
1627 var->num_hw_breakpoints = 0;
1628 break;
1629 }
1630
36482093 1631 set_gdbarch_print_insn (gdbarch, print_insn_frv);
c4d10515
KB
1632 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1633 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1634 frv_convert_from_func_ptr_addr);
36482093 1635
917630e4
UW
1636 set_solib_ops (gdbarch, &frv_so_ops);
1637
5ecb7103
KB
1638 /* Hook in ABI-specific overrides, if they have been registered. */
1639 gdbarch_init_osabi (info, gdbarch);
1640
5ecb7103 1641 /* Set the fallback (prologue based) frame sniffer. */
94afd7a6 1642 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
5ecb7103 1643
186993b4
KB
1644 /* Enable TLS support. */
1645 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1646 frv_fetch_objfile_link_map);
1647
456f8b9d
DB
1648 return gdbarch;
1649}
1650
1651void
1652_initialize_frv_tdep (void)
1653{
1654 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1655}
This page took 0.615813 seconds and 4 git commands to generate.