oops, fix tipo.
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
9ab9195f 2 Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
456f8b9d
DB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21#include "defs.h"
8baa6f92 22#include "gdb_string.h"
456f8b9d 23#include "inferior.h"
456f8b9d
DB
24#include "gdbcore.h"
25#include "arch-utils.h"
26#include "regcache.h"
8baa6f92 27#include "frame.h"
1cb761c7
KB
28#include "frame-unwind.h"
29#include "frame-base.h"
8baa6f92 30#include "trad-frame.h"
dcc6aaff 31#include "dis-asm.h"
526eef89
KB
32#include "gdb_assert.h"
33#include "sim-regno.h"
34#include "gdb/sim-frv.h"
35#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
634aa483 36#include "symtab.h"
7e295833
KB
37#include "elf-bfd.h"
38#include "elf/frv.h"
39#include "osabi.h"
7d9b040b 40#include "infcall.h"
7e295833 41#include "frv-tdep.h"
456f8b9d
DB
42
43extern void _initialize_frv_tdep (void);
44
45static gdbarch_init_ftype frv_gdbarch_init;
46
47static gdbarch_register_name_ftype frv_register_name;
456f8b9d 48static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
46a16dba 49static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
456f8b9d 50static gdbarch_skip_prologue_ftype frv_skip_prologue;
456f8b9d 51
456f8b9d 52
1cb761c7 53struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 54 {
1cb761c7
KB
55 /* The previous frame's inner-most stack address. Used as this
56 frame ID's stack_addr. */
57 CORE_ADDR prev_sp;
456f8b9d 58
1cb761c7
KB
59 /* The frame's base, optionally used by the high-level debug info. */
60 CORE_ADDR base;
8baa6f92
KB
61
62 /* Table indicating the location of each and every register. */
63 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
64 };
65
456f8b9d
DB
66/* A structure describing a particular variant of the FRV.
67 We allocate and initialize one of these structures when we create
68 the gdbarch object for a variant.
69
70 At the moment, all the FR variants we support differ only in which
71 registers are present; the portable code of GDB knows that
72 registers whose names are the empty string don't exist, so the
73 `register_names' array captures all the per-variant information we
74 need.
75
76 in the future, if we need to have per-variant maps for raw size,
77 virtual type, etc., we should replace register_names with an array
78 of structures, each of which gives all the necessary info for one
79 register. Don't stick parallel arrays in here --- that's so
80 Fortran. */
81struct gdbarch_tdep
82{
7e295833
KB
83 /* Which ABI is in use? */
84 enum frv_abi frv_abi;
85
456f8b9d
DB
86 /* How many general-purpose registers does this variant have? */
87 int num_gprs;
88
89 /* How many floating-point registers does this variant have? */
90 int num_fprs;
91
92 /* How many hardware watchpoints can it support? */
93 int num_hw_watchpoints;
94
95 /* How many hardware breakpoints can it support? */
96 int num_hw_breakpoints;
97
98 /* Register names. */
99 char **register_names;
100};
101
102#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
103
7e295833
KB
104/* Return the FR-V ABI associated with GDBARCH. */
105enum frv_abi
106frv_abi (struct gdbarch *gdbarch)
107{
108 return gdbarch_tdep (gdbarch)->frv_abi;
109}
110
111/* Fetch the interpreter and executable loadmap addresses (for shared
112 library support) for the FDPIC ABI. Return 0 if successful, -1 if
113 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
114int
115frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
116 CORE_ADDR *exec_addr)
117{
118 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
119 return -1;
120 else
121 {
122 if (interp_addr != NULL)
123 {
124 ULONGEST val;
125 regcache_cooked_read_unsigned (current_regcache,
126 fdpic_loadmap_interp_regnum, &val);
127 *interp_addr = val;
128 }
129 if (exec_addr != NULL)
130 {
131 ULONGEST val;
132 regcache_cooked_read_unsigned (current_regcache,
133 fdpic_loadmap_exec_regnum, &val);
134 *exec_addr = val;
135 }
136 return 0;
137 }
138}
456f8b9d
DB
139
140/* Allocate a new variant structure, and set up default values for all
141 the fields. */
142static struct gdbarch_tdep *
5ae5f592 143new_variant (void)
456f8b9d
DB
144{
145 struct gdbarch_tdep *var;
146 int r;
147 char buf[20];
148
149 var = xmalloc (sizeof (*var));
150 memset (var, 0, sizeof (*var));
151
7e295833 152 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
153 var->num_gprs = 64;
154 var->num_fprs = 64;
155 var->num_hw_watchpoints = 0;
156 var->num_hw_breakpoints = 0;
157
158 /* By default, don't supply any general-purpose or floating-point
159 register names. */
6a748db6
KB
160 var->register_names
161 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
162 * sizeof (char *));
163 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
164 var->register_names[r] = "";
165
526eef89 166 /* Do, however, supply default names for the known special-purpose
456f8b9d 167 registers. */
456f8b9d
DB
168
169 var->register_names[pc_regnum] = "pc";
170 var->register_names[lr_regnum] = "lr";
171 var->register_names[lcr_regnum] = "lcr";
172
173 var->register_names[psr_regnum] = "psr";
174 var->register_names[ccr_regnum] = "ccr";
175 var->register_names[cccr_regnum] = "cccr";
176 var->register_names[tbr_regnum] = "tbr";
177
178 /* Debug registers. */
179 var->register_names[brr_regnum] = "brr";
180 var->register_names[dbar0_regnum] = "dbar0";
181 var->register_names[dbar1_regnum] = "dbar1";
182 var->register_names[dbar2_regnum] = "dbar2";
183 var->register_names[dbar3_regnum] = "dbar3";
184
526eef89
KB
185 /* iacc0 (Only found on MB93405.) */
186 var->register_names[iacc0h_regnum] = "iacc0h";
187 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 188 var->register_names[iacc0_regnum] = "iacc0";
526eef89 189
8b67aa36
KB
190 /* fsr0 (Found on FR555 and FR501.) */
191 var->register_names[fsr0_regnum] = "fsr0";
192
193 /* acc0 - acc7. The architecture provides for the possibility of many
194 more (up to 64 total), but we don't want to make that big of a hole
195 in the G packet. If we need more in the future, we'll add them
196 elsewhere. */
197 for (r = acc0_regnum; r <= acc7_regnum; r++)
198 {
199 char *buf;
b435e160 200 buf = xstrprintf ("acc%d", r - acc0_regnum);
8b67aa36
KB
201 var->register_names[r] = buf;
202 }
203
204 /* accg0 - accg7: These are one byte registers. The remote protocol
205 provides the raw values packed four into a slot. accg0123 and
206 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
207 We don't provide names for accg0123 and accg4567 since the user will
208 likely not want to see these raw values. */
209
210 for (r = accg0_regnum; r <= accg7_regnum; r++)
211 {
212 char *buf;
b435e160 213 buf = xstrprintf ("accg%d", r - accg0_regnum);
8b67aa36
KB
214 var->register_names[r] = buf;
215 }
216
217 /* msr0 and msr1. */
218
219 var->register_names[msr0_regnum] = "msr0";
220 var->register_names[msr1_regnum] = "msr1";
221
222 /* gner and fner registers. */
223 var->register_names[gner0_regnum] = "gner0";
224 var->register_names[gner1_regnum] = "gner1";
225 var->register_names[fner0_regnum] = "fner0";
226 var->register_names[fner1_regnum] = "fner1";
227
456f8b9d
DB
228 return var;
229}
230
231
232/* Indicate that the variant VAR has NUM_GPRS general-purpose
233 registers, and fill in the names array appropriately. */
234static void
235set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
236{
237 int r;
238
239 var->num_gprs = num_gprs;
240
241 for (r = 0; r < num_gprs; ++r)
242 {
243 char buf[20];
244
245 sprintf (buf, "gr%d", r);
246 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
247 }
248}
249
250
251/* Indicate that the variant VAR has NUM_FPRS floating-point
252 registers, and fill in the names array appropriately. */
253static void
254set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
255{
256 int r;
257
258 var->num_fprs = num_fprs;
259
260 for (r = 0; r < num_fprs; ++r)
261 {
262 char buf[20];
263
264 sprintf (buf, "fr%d", r);
265 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
266 }
267}
268
7e295833
KB
269static void
270set_variant_abi_fdpic (struct gdbarch_tdep *var)
271{
272 var->frv_abi = FRV_ABI_FDPIC;
273 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
274 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
275}
456f8b9d 276
b2d6d697
KB
277static void
278set_variant_scratch_registers (struct gdbarch_tdep *var)
279{
280 var->register_names[scr0_regnum] = xstrdup ("scr0");
281 var->register_names[scr1_regnum] = xstrdup ("scr1");
282 var->register_names[scr2_regnum] = xstrdup ("scr2");
283 var->register_names[scr3_regnum] = xstrdup ("scr3");
284}
285
456f8b9d
DB
286static const char *
287frv_register_name (int reg)
288{
289 if (reg < 0)
290 return "?toosmall?";
6a748db6 291 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
292 return "?toolarge?";
293
294 return CURRENT_VARIANT->register_names[reg];
295}
296
526eef89 297
456f8b9d 298static struct type *
7f398216 299frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 300{
526eef89 301 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
456f8b9d 302 return builtin_type_float;
6a748db6
KB
303 else if (reg == iacc0_regnum)
304 return builtin_type_int64;
456f8b9d 305 else
526eef89 306 return builtin_type_int32;
456f8b9d
DB
307}
308
6a748db6
KB
309static void
310frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
311 int reg, void *buffer)
312{
313 if (reg == iacc0_regnum)
314 {
315 regcache_raw_read (regcache, iacc0h_regnum, buffer);
316 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
317 }
8b67aa36
KB
318 else if (accg0_regnum <= reg && reg <= accg7_regnum)
319 {
320 /* The accg raw registers have four values in each slot with the
321 lowest register number occupying the first byte. */
322
323 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
324 int byte_num = (reg - accg0_regnum) % 4;
325 bfd_byte buf[4];
326
327 regcache_raw_read (regcache, raw_regnum, buf);
328 memset (buffer, 0, 4);
329 /* FR-V is big endian, so put the requested byte in the first byte
330 of the buffer allocated to hold the pseudo-register. */
331 ((bfd_byte *) buffer)[0] = buf[byte_num];
332 }
6a748db6
KB
333}
334
335static void
336frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
337 int reg, const void *buffer)
338{
339 if (reg == iacc0_regnum)
340 {
341 regcache_raw_write (regcache, iacc0h_regnum, buffer);
342 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
343 }
8b67aa36
KB
344 else if (accg0_regnum <= reg && reg <= accg7_regnum)
345 {
346 /* The accg raw registers have four values in each slot with the
347 lowest register number occupying the first byte. */
348
349 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
350 int byte_num = (reg - accg0_regnum) % 4;
351 char buf[4];
352
353 regcache_raw_read (regcache, raw_regnum, buf);
354 buf[byte_num] = ((bfd_byte *) buffer)[0];
355 regcache_raw_write (regcache, raw_regnum, buf);
356 }
6a748db6
KB
357}
358
526eef89
KB
359static int
360frv_register_sim_regno (int reg)
361{
362 static const int spr_map[] =
363 {
364 H_SPR_PSR, /* psr_regnum */
365 H_SPR_CCR, /* ccr_regnum */
366 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
367 -1, /* fdpic_loadmap_exec_regnum */
368 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
369 -1, /* 134 */
370 H_SPR_TBR, /* tbr_regnum */
371 H_SPR_BRR, /* brr_regnum */
372 H_SPR_DBAR0, /* dbar0_regnum */
373 H_SPR_DBAR1, /* dbar1_regnum */
374 H_SPR_DBAR2, /* dbar2_regnum */
375 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
376 H_SPR_SCR0, /* scr0_regnum */
377 H_SPR_SCR1, /* scr1_regnum */
378 H_SPR_SCR2, /* scr2_regnum */
379 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
380 H_SPR_LR, /* lr_regnum */
381 H_SPR_LCR, /* lcr_regnum */
382 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
383 H_SPR_IACC0L, /* iacc0l_regnum */
384 H_SPR_FSR0, /* fsr0_regnum */
385 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
386 -1, /* acc0_regnum */
387 -1, /* acc1_regnum */
388 -1, /* acc2_regnum */
389 -1, /* acc3_regnum */
390 -1, /* acc4_regnum */
391 -1, /* acc5_regnum */
392 -1, /* acc6_regnum */
393 -1, /* acc7_regnum */
394 -1, /* acc0123_regnum */
395 -1, /* acc4567_regnum */
396 H_SPR_MSR0, /* msr0_regnum */
397 H_SPR_MSR1, /* msr1_regnum */
398 H_SPR_GNER0, /* gner0_regnum */
399 H_SPR_GNER1, /* gner1_regnum */
400 H_SPR_FNER0, /* fner0_regnum */
401 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
402 };
403
404 gdb_assert (reg >= 0 && reg < NUM_REGS);
405
406 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
407 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
408 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
409 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
410 else if (pc_regnum == reg)
411 return SIM_FRV_PC_REGNUM;
412 else if (reg >= first_spr_regnum
413 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
414 {
415 int spr_reg_offset = spr_map[reg - first_spr_regnum];
416
417 if (spr_reg_offset < 0)
418 return SIM_REGNO_DOES_NOT_EXIST;
419 else
420 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
421 }
422
423 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
424}
425
456f8b9d
DB
426static const unsigned char *
427frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
428{
429 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
430 *lenp = sizeof (breakpoint);
431 return breakpoint;
432}
433
46a16dba
KB
434/* Define the maximum number of instructions which may be packed into a
435 bundle (VLIW instruction). */
436static const int max_instrs_per_bundle = 8;
437
438/* Define the size (in bytes) of an FR-V instruction. */
439static const int frv_instr_size = 4;
440
441/* Adjust a breakpoint's address to account for the FR-V architecture's
442 constraint that a break instruction must not appear as any but the
443 first instruction in the bundle. */
444static CORE_ADDR
445frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
446{
447 int count = max_instrs_per_bundle;
448 CORE_ADDR addr = bpaddr - frv_instr_size;
449 CORE_ADDR func_start = get_pc_function_start (bpaddr);
450
451 /* Find the end of the previous packing sequence. This will be indicated
452 by either attempting to access some inaccessible memory or by finding
453 an instruction word whose packing bit is set to one. */
454 while (count-- > 0 && addr >= func_start)
455 {
456 char instr[frv_instr_size];
457 int status;
458
1f602b35 459 status = deprecated_read_memory_nobpt (addr, instr, sizeof instr);
46a16dba
KB
460
461 if (status != 0)
462 break;
463
464 /* This is a big endian architecture, so byte zero will have most
465 significant byte. The most significant bit of this byte is the
466 packing bit. */
467 if (instr[0] & 0x80)
468 break;
469
470 addr -= frv_instr_size;
471 }
472
473 if (count > 0)
474 bpaddr = addr + frv_instr_size;
475
476 return bpaddr;
477}
478
456f8b9d
DB
479
480/* Return true if REG is a caller-saves ("scratch") register,
481 false otherwise. */
482static int
483is_caller_saves_reg (int reg)
484{
485 return ((4 <= reg && reg <= 7)
486 || (14 <= reg && reg <= 15)
487 || (32 <= reg && reg <= 47));
488}
489
490
491/* Return true if REG is a callee-saves register, false otherwise. */
492static int
493is_callee_saves_reg (int reg)
494{
495 return ((16 <= reg && reg <= 31)
496 || (48 <= reg && reg <= 63));
497}
498
499
500/* Return true if REG is an argument register, false otherwise. */
501static int
502is_argument_reg (int reg)
503{
504 return (8 <= reg && reg <= 13);
505}
506
456f8b9d
DB
507/* Scan an FR-V prologue, starting at PC, until frame->PC.
508 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
509 We assume FRAME's saved_regs array has already been allocated and cleared.
510 Return the first PC value after the prologue.
511
512 Note that, for unoptimized code, we almost don't need this function
513 at all; all arguments and locals live on the stack, so we just need
514 the FP to find everything. The catch: structures passed by value
515 have their addresses living in registers; they're never spilled to
516 the stack. So if you ever want to be able to get to these
517 arguments in any frame but the top, you'll need to do this serious
518 prologue analysis. */
519static CORE_ADDR
1cb761c7
KB
520frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
521 struct frv_unwind_cache *info)
456f8b9d
DB
522{
523 /* When writing out instruction bitpatterns, we use the following
524 letters to label instruction fields:
525 P - The parallel bit. We don't use this.
526 J - The register number of GRj in the instruction description.
527 K - The register number of GRk in the instruction description.
528 I - The register number of GRi.
529 S - a signed imediate offset.
530 U - an unsigned immediate offset.
531
532 The dots below the numbers indicate where hex digit boundaries
533 fall, to make it easier to check the numbers. */
534
535 /* Non-zero iff we've seen the instruction that initializes the
536 frame pointer for this function's frame. */
537 int fp_set = 0;
538
539 /* If fp_set is non_zero, then this is the distance from
540 the stack pointer to frame pointer: fp = sp + fp_offset. */
541 int fp_offset = 0;
542
543 /* Total size of frame prior to any alloca operations. */
544 int framesize = 0;
545
1cb761c7
KB
546 /* Flag indicating if lr has been saved on the stack. */
547 int lr_saved_on_stack = 0;
548
456f8b9d
DB
549 /* The number of the general-purpose register we saved the return
550 address ("link register") in, or -1 if we haven't moved it yet. */
551 int lr_save_reg = -1;
552
1cb761c7
KB
553 /* Offset (from sp) at which lr has been saved on the stack. */
554
555 int lr_sp_offset = 0;
456f8b9d
DB
556
557 /* If gr_saved[i] is non-zero, then we've noticed that general
558 register i has been saved at gr_sp_offset[i] from the stack
559 pointer. */
560 char gr_saved[64];
561 int gr_sp_offset[64];
562
d40fcd7b
KB
563 /* The address of the most recently scanned prologue instruction. */
564 CORE_ADDR last_prologue_pc;
565
566 /* The address of the next instruction. */
567 CORE_ADDR next_pc;
568
569 /* The upper bound to of the pc values to scan. */
570 CORE_ADDR lim_pc;
571
456f8b9d
DB
572 memset (gr_saved, 0, sizeof (gr_saved));
573
d40fcd7b
KB
574 last_prologue_pc = pc;
575
576 /* Try to compute an upper limit (on how far to scan) based on the
577 line number info. */
578 lim_pc = skip_prologue_using_sal (pc);
579 /* If there's no line number info, lim_pc will be 0. In that case,
580 set the limit to be 100 instructions away from pc. Hopefully, this
581 will be far enough away to account for the entire prologue. Don't
582 worry about overshooting the end of the function. The scan loop
583 below contains some checks to avoid scanning unreasonably far. */
584 if (lim_pc == 0)
585 lim_pc = pc + 400;
586
587 /* If we have a frame, we don't want to scan past the frame's pc. This
588 will catch those cases where the pc is in the prologue. */
589 if (next_frame)
590 {
591 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
592 if (frame_pc < lim_pc)
593 lim_pc = frame_pc;
594 }
595
596 /* Scan the prologue. */
597 while (pc < lim_pc)
456f8b9d 598 {
1ccda5e9
KB
599 char buf[frv_instr_size];
600 LONGEST op;
601
602 if (target_read_memory (pc, buf, sizeof buf) != 0)
603 break;
604 op = extract_signed_integer (buf, sizeof buf);
605
d40fcd7b 606 next_pc = pc + 4;
456f8b9d
DB
607
608 /* The tests in this chain of ifs should be in order of
609 decreasing selectivity, so that more particular patterns get
610 to fire before less particular patterns. */
611
d40fcd7b
KB
612 /* Some sort of control transfer instruction: stop scanning prologue.
613 Integer Conditional Branch:
614 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
615 Floating-point / media Conditional Branch:
616 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
617 LCR Conditional Branch to LR
618 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
619 Integer conditional Branches to LR
620 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
621 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
622 Floating-point/Media Branches to LR
623 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
624 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
625 Jump and Link
626 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
627 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
628 Call
629 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
630 Return from Trap
631 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
632 Integer Conditional Trap
633 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
634 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
635 Floating-point /media Conditional Trap
636 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
637 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
638 Break
639 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
640 Media Trap
641 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
642 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
643 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
644 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
645 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
646 {
647 /* Stop scanning; not in prologue any longer. */
648 break;
649 }
650
651 /* Loading something from memory into fp probably means that
652 we're in the epilogue. Stop scanning the prologue.
653 ld @(GRi, GRk), fp
654 X 000010 0000010 XXXXXX 000100 XXXXXX
655 ldi @(GRi, d12), fp
656 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
657 else if ((op & 0x7ffc0fc0) == 0x04080100
658 || (op & 0x7ffc0000) == 0x04c80000)
659 {
660 break;
661 }
662
456f8b9d
DB
663 /* Setting the FP from the SP:
664 ori sp, 0, fp
665 P 000010 0100010 000001 000000000000 = 0x04881000
666 0 111111 1111111 111111 111111111111 = 0x7fffffff
667 . . . . . . . .
668 We treat this as part of the prologue. */
d40fcd7b 669 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
670 {
671 fp_set = 1;
672 fp_offset = 0;
d40fcd7b 673 last_prologue_pc = next_pc;
456f8b9d
DB
674 }
675
676 /* Move the link register to the scratch register grJ, before saving:
677 movsg lr, grJ
678 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
679 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
680 . . . . . . . .
681 We treat this as part of the prologue. */
682 else if ((op & 0x7fffffc0) == 0x080d01c0)
683 {
684 int gr_j = op & 0x3f;
685
686 /* If we're moving it to a scratch register, that's fine. */
687 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
688 {
689 lr_save_reg = gr_j;
690 last_prologue_pc = next_pc;
691 }
456f8b9d
DB
692 }
693
694 /* To save multiple callee-saves registers on the stack, at
695 offset zero:
696
697 std grK,@(sp,gr0)
698 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
699 0 000000 1111111 111111 111111 111111 = 0x01ffffff
700
701 stq grK,@(sp,gr0)
702 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
703 0 000000 1111111 111111 111111 111111 = 0x01ffffff
704 . . . . . . . .
705 We treat this as part of the prologue, and record the register's
706 saved address in the frame structure. */
707 else if ((op & 0x01ffffff) == 0x000c10c0
708 || (op & 0x01ffffff) == 0x000c1100)
709 {
710 int gr_k = ((op >> 25) & 0x3f);
711 int ope = ((op >> 6) & 0x3f);
712 int count;
713 int i;
714
715 /* Is it an std or an stq? */
716 if (ope == 0x03)
717 count = 2;
718 else
719 count = 4;
720
721 /* Is it really a callee-saves register? */
722 if (is_callee_saves_reg (gr_k))
723 {
724 for (i = 0; i < count; i++)
725 {
726 gr_saved[gr_k + i] = 1;
727 gr_sp_offset[gr_k + i] = 4 * i;
728 }
d40fcd7b 729 last_prologue_pc = next_pc;
456f8b9d 730 }
456f8b9d
DB
731 }
732
733 /* Adjusting the stack pointer. (The stack pointer is GR1.)
734 addi sp, S, sp
735 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
736 0 111111 1111111 111111 000000000000 = 0x7ffff000
737 . . . . . . . .
738 We treat this as part of the prologue. */
739 else if ((op & 0x7ffff000) == 0x02401000)
740 {
d40fcd7b
KB
741 if (framesize == 0)
742 {
743 /* Sign-extend the twelve-bit field.
744 (Isn't there a better way to do this?) */
745 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 746
d40fcd7b
KB
747 framesize -= s;
748 last_prologue_pc = pc;
749 }
750 else
751 {
752 /* If the prologue is being adjusted again, we've
753 likely gone too far; i.e. we're probably in the
754 epilogue. */
755 break;
756 }
456f8b9d
DB
757 }
758
759 /* Setting the FP to a constant distance from the SP:
760 addi sp, S, fp
761 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
762 0 111111 1111111 111111 000000000000 = 0x7ffff000
763 . . . . . . . .
764 We treat this as part of the prologue. */
765 else if ((op & 0x7ffff000) == 0x04401000)
766 {
767 /* Sign-extend the twelve-bit field.
768 (Isn't there a better way to do this?) */
769 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
770 fp_set = 1;
771 fp_offset = s;
d40fcd7b 772 last_prologue_pc = pc;
456f8b9d
DB
773 }
774
775 /* To spill an argument register to a scratch register:
776 ori GRi, 0, GRk
777 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
778 0 000000 1111111 000000 111111111111 = 0x01fc0fff
779 . . . . . . . .
780 For the time being, we treat this as a prologue instruction,
781 assuming that GRi is an argument register. This one's kind
782 of suspicious, because it seems like it could be part of a
783 legitimate body instruction. But we only come here when the
784 source info wasn't helpful, so we have to do the best we can.
785 Hopefully once GCC and GDB agree on how to emit line number
786 info for prologues, then this code will never come into play. */
787 else if ((op & 0x01fc0fff) == 0x00880000)
788 {
789 int gr_i = ((op >> 12) & 0x3f);
790
d40fcd7b
KB
791 /* Make sure that the source is an arg register; if it is, we'll
792 treat it as a prologue instruction. */
793 if (is_argument_reg (gr_i))
794 last_prologue_pc = next_pc;
456f8b9d
DB
795 }
796
797 /* To spill 16-bit values to the stack:
798 sthi GRk, @(fp, s)
799 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
800 0 000000 1111111 111111 000000000000 = 0x01fff000
801 . . . . . . . .
802 And for 8-bit values, we use STB instructions.
803 stbi GRk, @(fp, s)
804 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
805 0 000000 1111111 111111 000000000000 = 0x01fff000
806 . . . . . . . .
807 We check that GRk is really an argument register, and treat
808 all such as part of the prologue. */
809 else if ( (op & 0x01fff000) == 0x01442000
810 || (op & 0x01fff000) == 0x01402000)
811 {
812 int gr_k = ((op >> 25) & 0x3f);
813
d40fcd7b
KB
814 /* Make sure that GRk is really an argument register; treat
815 it as a prologue instruction if so. */
816 if (is_argument_reg (gr_k))
817 last_prologue_pc = next_pc;
456f8b9d
DB
818 }
819
820 /* To save multiple callee-saves register on the stack, at a
821 non-zero offset:
822
823 stdi GRk, @(sp, s)
824 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
825 0 000000 1111111 111111 000000000000 = 0x01fff000
826 . . . . . . . .
827 stqi GRk, @(sp, s)
828 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
829 0 000000 1111111 111111 000000000000 = 0x01fff000
830 . . . . . . . .
831 We treat this as part of the prologue, and record the register's
832 saved address in the frame structure. */
833 else if ((op & 0x01fff000) == 0x014c1000
834 || (op & 0x01fff000) == 0x01501000)
835 {
836 int gr_k = ((op >> 25) & 0x3f);
837 int count;
838 int i;
839
840 /* Is it a stdi or a stqi? */
841 if ((op & 0x01fff000) == 0x014c1000)
842 count = 2;
843 else
844 count = 4;
845
846 /* Is it really a callee-saves register? */
847 if (is_callee_saves_reg (gr_k))
848 {
849 /* Sign-extend the twelve-bit field.
850 (Isn't there a better way to do this?) */
851 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
852
853 for (i = 0; i < count; i++)
854 {
855 gr_saved[gr_k + i] = 1;
856 gr_sp_offset[gr_k + i] = s + (4 * i);
857 }
d40fcd7b 858 last_prologue_pc = next_pc;
456f8b9d 859 }
456f8b9d
DB
860 }
861
862 /* Storing any kind of integer register at any constant offset
863 from any other register.
864
865 st GRk, @(GRi, gr0)
866 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
867 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
868 . . . . . . . .
869 sti GRk, @(GRi, d12)
870 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
871 0 000000 1111111 000000 000000000000 = 0x01fc0000
872 . . . . . . . .
873 These could be almost anything, but a lot of prologue
874 instructions fall into this pattern, so let's decode the
875 instruction once, and then work at a higher level. */
876 else if (((op & 0x01fc0fff) == 0x000c0080)
877 || ((op & 0x01fc0000) == 0x01480000))
878 {
879 int gr_k = ((op >> 25) & 0x3f);
880 int gr_i = ((op >> 12) & 0x3f);
881 int offset;
882
883 /* Are we storing with gr0 as an offset, or using an
884 immediate value? */
885 if ((op & 0x01fc0fff) == 0x000c0080)
886 offset = 0;
887 else
888 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
889
890 /* If the address isn't relative to the SP or FP, it's not a
891 prologue instruction. */
892 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
893 {
894 /* Do nothing; not a prologue instruction. */
895 }
456f8b9d
DB
896
897 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 898 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
899 {
900 gr_saved[fp_regnum] = 1;
901 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 902 last_prologue_pc = next_pc;
1cb761c7 903 }
456f8b9d
DB
904
905 /* Saving callee-saves register(s) on the stack, relative to
906 the SP. */
907 else if (gr_i == sp_regnum
908 && is_callee_saves_reg (gr_k))
909 {
910 gr_saved[gr_k] = 1;
1cb761c7
KB
911 if (gr_i == sp_regnum)
912 gr_sp_offset[gr_k] = offset;
913 else
914 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 915 last_prologue_pc = next_pc;
456f8b9d
DB
916 }
917
918 /* Saving the scratch register holding the return address. */
919 else if (lr_save_reg != -1
920 && gr_k == lr_save_reg)
1cb761c7
KB
921 {
922 lr_saved_on_stack = 1;
923 if (gr_i == sp_regnum)
924 lr_sp_offset = offset;
925 else
926 lr_sp_offset = offset + fp_offset;
d40fcd7b 927 last_prologue_pc = next_pc;
1cb761c7 928 }
456f8b9d
DB
929
930 /* Spilling int-sized arguments to the stack. */
931 else if (is_argument_reg (gr_k))
d40fcd7b 932 last_prologue_pc = next_pc;
456f8b9d 933 }
d40fcd7b 934 pc = next_pc;
456f8b9d
DB
935 }
936
1cb761c7 937 if (next_frame && info)
456f8b9d 938 {
1cb761c7
KB
939 int i;
940 ULONGEST this_base;
456f8b9d
DB
941
942 /* If we know the relationship between the stack and frame
943 pointers, record the addresses of the registers we noticed.
944 Note that we have to do this as a separate step at the end,
945 because instructions may save relative to the SP, but we need
946 their addresses relative to the FP. */
947 if (fp_set)
1cb761c7
KB
948 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
949 else
950 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
456f8b9d 951
1cb761c7
KB
952 for (i = 0; i < 64; i++)
953 if (gr_saved[i])
954 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 955
1cb761c7
KB
956 info->prev_sp = this_base - fp_offset + framesize;
957 info->base = this_base;
958
959 /* If LR was saved on the stack, record its location. */
960 if (lr_saved_on_stack)
961 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
962
963 /* The call instruction moves the caller's PC in the callee's LR.
964 Since this is an unwind, do the reverse. Copy the location of LR
965 into PC (the address / regnum) so that a request for PC will be
966 converted into a request for the LR. */
967 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
968
969 /* Save the previous frame's computed SP value. */
970 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
971 }
972
d40fcd7b 973 return last_prologue_pc;
456f8b9d
DB
974}
975
976
977static CORE_ADDR
978frv_skip_prologue (CORE_ADDR pc)
979{
980 CORE_ADDR func_addr, func_end, new_pc;
981
982 new_pc = pc;
983
984 /* If the line table has entry for a line *within* the function
985 (i.e., not in the prologue, and not past the end), then that's
986 our location. */
987 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
988 {
989 struct symtab_and_line sal;
990
991 sal = find_pc_line (func_addr, 0);
992
993 if (sal.line != 0 && sal.end < func_end)
994 {
995 new_pc = sal.end;
996 }
997 }
998
999 /* The FR-V prologue is at least five instructions long (twenty bytes).
1000 If we didn't find a real source location past that, then
1001 do a full analysis of the prologue. */
1002 if (new_pc < pc + 20)
1cb761c7 1003 new_pc = frv_analyze_prologue (pc, 0, 0);
456f8b9d
DB
1004
1005 return new_pc;
1006}
1007
1cb761c7
KB
1008
1009static struct frv_unwind_cache *
1010frv_frame_unwind_cache (struct frame_info *next_frame,
1011 void **this_prologue_cache)
456f8b9d 1012{
1cb761c7
KB
1013 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1014 CORE_ADDR pc;
1cb761c7
KB
1015 ULONGEST this_base;
1016 struct frv_unwind_cache *info;
8baa6f92 1017
1cb761c7
KB
1018 if ((*this_prologue_cache))
1019 return (*this_prologue_cache);
456f8b9d 1020
1cb761c7
KB
1021 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1022 (*this_prologue_cache) = info;
1023 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
456f8b9d 1024
1cb761c7
KB
1025 /* Prologue analysis does the rest... */
1026 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
456f8b9d 1027
1cb761c7 1028 return info;
456f8b9d
DB
1029}
1030
456f8b9d 1031static void
cd31fb03
KB
1032frv_extract_return_value (struct type *type, struct regcache *regcache,
1033 void *valbuf)
456f8b9d 1034{
cd31fb03
KB
1035 int len = TYPE_LENGTH (type);
1036
1037 if (len <= 4)
1038 {
1039 ULONGEST gpr8_val;
1040 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1041 store_unsigned_integer (valbuf, len, gpr8_val);
1042 }
1043 else if (len == 8)
1044 {
1045 ULONGEST regval;
1046 regcache_cooked_read_unsigned (regcache, 8, &regval);
1047 store_unsigned_integer (valbuf, 4, regval);
1048 regcache_cooked_read_unsigned (regcache, 9, &regval);
1049 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1050 }
1051 else
1052 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
456f8b9d
DB
1053}
1054
1055static CORE_ADDR
cd31fb03 1056frv_extract_struct_value_address (struct regcache *regcache)
456f8b9d 1057{
cd31fb03
KB
1058 ULONGEST addr;
1059 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
1060 return addr;
456f8b9d
DB
1061}
1062
1063static void
1064frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1065{
1066 write_register (struct_return_regnum, addr);
1067}
1068
1069static int
1070frv_frameless_function_invocation (struct frame_info *frame)
1071{
19772a2c 1072 return legacy_frameless_look_for_prologue (frame);
456f8b9d
DB
1073}
1074
1cb761c7
KB
1075static CORE_ADDR
1076frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1077{
1cb761c7 1078 /* Require dword alignment. */
5b03f266 1079 return align_down (sp, 8);
456f8b9d
DB
1080}
1081
c4d10515
KB
1082static CORE_ADDR
1083find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1084{
1085 CORE_ADDR descr;
1086 char valbuf[4];
1087
1088 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1089
1090 if (descr != 0)
1091 return descr;
1092
1093 /* Construct a non-canonical descriptor from space allocated on
1094 the stack. */
1095
1096 descr = value_as_long (value_allocate_space_in_inferior (8));
1097 store_unsigned_integer (valbuf, 4, entry_point);
1098 write_memory (descr, valbuf, 4);
1099 store_unsigned_integer (valbuf, 4,
1100 frv_fdpic_find_global_pointer (entry_point));
1101 write_memory (descr + 4, valbuf, 4);
1102 return descr;
1103}
1104
1105static CORE_ADDR
1106frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1107 struct target_ops *targ)
1108{
1109 CORE_ADDR entry_point;
1110 CORE_ADDR got_address;
1111
1112 entry_point = get_target_memory_unsigned (targ, addr, 4);
1113 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1114
1115 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1116 return entry_point;
1117 else
1118 return addr;
1119}
1120
456f8b9d 1121static CORE_ADDR
7d9b040b 1122frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1cb761c7
KB
1123 struct regcache *regcache, CORE_ADDR bp_addr,
1124 int nargs, struct value **args, CORE_ADDR sp,
1125 int struct_return, CORE_ADDR struct_addr)
456f8b9d
DB
1126{
1127 int argreg;
1128 int argnum;
1129 char *val;
1130 char valbuf[4];
1131 struct value *arg;
1132 struct type *arg_type;
1133 int len;
1134 enum type_code typecode;
1135 CORE_ADDR regval;
1136 int stack_space;
1137 int stack_offset;
c4d10515 1138 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1139 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1140
1141#if 0
1142 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1143 nargs, (int) sp, struct_return, struct_addr);
1144#endif
1145
1146 stack_space = 0;
1147 for (argnum = 0; argnum < nargs; ++argnum)
5b03f266 1148 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
456f8b9d
DB
1149
1150 stack_space -= (6 * 4);
1151 if (stack_space > 0)
1152 sp -= stack_space;
1153
1154 /* Make sure stack is dword aligned. */
5b03f266 1155 sp = align_down (sp, 8);
456f8b9d
DB
1156
1157 stack_offset = 0;
1158
1159 argreg = 8;
1160
1161 if (struct_return)
1cb761c7
KB
1162 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1163 struct_addr);
456f8b9d
DB
1164
1165 for (argnum = 0; argnum < nargs; ++argnum)
1166 {
1167 arg = args[argnum];
1168 arg_type = check_typedef (VALUE_TYPE (arg));
1169 len = TYPE_LENGTH (arg_type);
1170 typecode = TYPE_CODE (arg_type);
1171
1172 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1173 {
fbd9dcd3 1174 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
456f8b9d
DB
1175 typecode = TYPE_CODE_PTR;
1176 len = 4;
1177 val = valbuf;
1178 }
c4d10515
KB
1179 else if (abi == FRV_ABI_FDPIC
1180 && len == 4
1181 && typecode == TYPE_CODE_PTR
1182 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1183 {
1184 /* The FDPIC ABI requires function descriptors to be passed instead
1185 of entry points. */
1186 store_unsigned_integer
1187 (valbuf, 4,
1188 find_func_descr (gdbarch,
1189 extract_unsigned_integer (VALUE_CONTENTS (arg),
1190 4)));
1191 typecode = TYPE_CODE_PTR;
1192 len = 4;
1193 val = valbuf;
1194 }
456f8b9d
DB
1195 else
1196 {
1197 val = (char *) VALUE_CONTENTS (arg);
1198 }
1199
1200 while (len > 0)
1201 {
1202 int partial_len = (len < 4 ? len : 4);
1203
1204 if (argreg < 14)
1205 {
7c0b4a20 1206 regval = extract_unsigned_integer (val, partial_len);
456f8b9d
DB
1207#if 0
1208 printf(" Argnum %d data %x -> reg %d\n",
1209 argnum, (int) regval, argreg);
1210#endif
1cb761c7 1211 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1212 ++argreg;
1213 }
1214 else
1215 {
1216#if 0
1217 printf(" Argnum %d data %x -> offset %d (%x)\n",
1218 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1219#endif
1220 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1221 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1222 }
1223 len -= partial_len;
1224 val += partial_len;
1225 }
1226 }
456f8b9d 1227
1cb761c7
KB
1228 /* Set the return address. For the frv, the return breakpoint is
1229 always at BP_ADDR. */
1230 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1231
c4d10515
KB
1232 if (abi == FRV_ABI_FDPIC)
1233 {
1234 /* Set the GOT register for the FDPIC ABI. */
1235 regcache_cooked_write_unsigned
1236 (regcache, first_gpr_regnum + 15,
1237 frv_fdpic_find_global_pointer (func_addr));
1238 }
1239
1cb761c7
KB
1240 /* Finally, update the SP register. */
1241 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1242
456f8b9d
DB
1243 return sp;
1244}
1245
1246static void
cd31fb03
KB
1247frv_store_return_value (struct type *type, struct regcache *regcache,
1248 const void *valbuf)
456f8b9d 1249{
cd31fb03
KB
1250 int len = TYPE_LENGTH (type);
1251
1252 if (len <= 4)
1253 {
1254 bfd_byte val[4];
1255 memset (val, 0, sizeof (val));
1256 memcpy (val + (4 - len), valbuf, len);
1257 regcache_cooked_write (regcache, 8, val);
1258 }
1259 else if (len == 8)
1260 {
1261 regcache_cooked_write (regcache, 8, valbuf);
1262 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1263 }
456f8b9d
DB
1264 else
1265 internal_error (__FILE__, __LINE__,
cd31fb03 1266 "Don't know how to return a %d-byte value.", len);
456f8b9d
DB
1267}
1268
456f8b9d 1269
456f8b9d
DB
1270/* Hardware watchpoint / breakpoint support for the FR500
1271 and FR400. */
1272
1273int
1274frv_check_watch_resources (int type, int cnt, int ot)
1275{
1276 struct gdbarch_tdep *var = CURRENT_VARIANT;
1277
1278 /* Watchpoints not supported on simulator. */
1279 if (strcmp (target_shortname, "sim") == 0)
1280 return 0;
1281
1282 if (type == bp_hardware_breakpoint)
1283 {
1284 if (var->num_hw_breakpoints == 0)
1285 return 0;
1286 else if (cnt <= var->num_hw_breakpoints)
1287 return 1;
1288 }
1289 else
1290 {
1291 if (var->num_hw_watchpoints == 0)
1292 return 0;
1293 else if (ot)
1294 return -1;
1295 else if (cnt <= var->num_hw_watchpoints)
1296 return 1;
1297 }
1298 return -1;
1299}
1300
1301
1302CORE_ADDR
5ae5f592 1303frv_stopped_data_address (void)
456f8b9d
DB
1304{
1305 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1306
1307 brr = read_register (brr_regnum);
1308 dbar0 = read_register (dbar0_regnum);
1309 dbar1 = read_register (dbar1_regnum);
1310 dbar2 = read_register (dbar2_regnum);
1311 dbar3 = read_register (dbar3_regnum);
1312
1313 if (brr & (1<<11))
1314 return dbar0;
1315 else if (brr & (1<<10))
1316 return dbar1;
1317 else if (brr & (1<<9))
1318 return dbar2;
1319 else if (brr & (1<<8))
1320 return dbar3;
1321 else
1322 return 0;
1323}
1324
1cb761c7
KB
1325static CORE_ADDR
1326frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1327{
1328 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1329}
1330
1331/* Given a GDB frame, determine the address of the calling function's
1332 frame. This will be used to create a new GDB frame struct. */
1333
1334static void
1335frv_frame_this_id (struct frame_info *next_frame,
1336 void **this_prologue_cache, struct frame_id *this_id)
1337{
1338 struct frv_unwind_cache *info
1339 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1340 CORE_ADDR base;
1341 CORE_ADDR func;
1342 struct minimal_symbol *msym_stack;
1343 struct frame_id id;
1344
1345 /* The FUNC is easy. */
1346 func = frame_func_unwind (next_frame);
1347
1cb761c7
KB
1348 /* Check if the stack is empty. */
1349 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1350 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1351 return;
1352
1353 /* Hopefully the prologue analysis either correctly determined the
1354 frame's base (which is the SP from the previous frame), or set
1355 that base to "NULL". */
1356 base = info->prev_sp;
1357 if (base == 0)
1358 return;
1359
1360 id = frame_id_build (base, func);
1cb761c7
KB
1361 (*this_id) = id;
1362}
1363
1364static void
1365frv_frame_prev_register (struct frame_info *next_frame,
1366 void **this_prologue_cache,
1367 int regnum, int *optimizedp,
1368 enum lval_type *lvalp, CORE_ADDR *addrp,
1369 int *realnump, void *bufferp)
1370{
1371 struct frv_unwind_cache *info
1372 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1373 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1374 optimizedp, lvalp, addrp, realnump, bufferp);
1375}
1376
1377static const struct frame_unwind frv_frame_unwind = {
1378 NORMAL_FRAME,
1379 frv_frame_this_id,
1380 frv_frame_prev_register
1381};
1382
1383static const struct frame_unwind *
1384frv_frame_sniffer (struct frame_info *next_frame)
1385{
1386 return &frv_frame_unwind;
1387}
1388
1389static CORE_ADDR
1390frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1391{
1392 struct frv_unwind_cache *info
1393 = frv_frame_unwind_cache (next_frame, this_cache);
1394 return info->base;
1395}
1396
1397static const struct frame_base frv_frame_base = {
1398 &frv_frame_unwind,
1399 frv_frame_base_address,
1400 frv_frame_base_address,
1401 frv_frame_base_address
1402};
1403
1404static CORE_ADDR
1405frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1406{
1407 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1408}
1409
1410
1411/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1412 dummy frame. The frame ID's base needs to match the TOS value
1413 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1414 breakpoint. */
1415
1416static struct frame_id
1417frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1418{
1419 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1420 frame_pc_unwind (next_frame));
1421}
1422
456f8b9d
DB
1423static struct gdbarch *
1424frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1425{
1426 struct gdbarch *gdbarch;
1427 struct gdbarch_tdep *var;
7e295833 1428 int elf_flags = 0;
456f8b9d
DB
1429
1430 /* Check to see if we've already built an appropriate architecture
1431 object for this executable. */
1432 arches = gdbarch_list_lookup_by_info (arches, &info);
1433 if (arches)
1434 return arches->gdbarch;
1435
1436 /* Select the right tdep structure for this variant. */
1437 var = new_variant ();
1438 switch (info.bfd_arch_info->mach)
1439 {
1440 case bfd_mach_frv:
1441 case bfd_mach_frvsimple:
1442 case bfd_mach_fr500:
1443 case bfd_mach_frvtomcat:
251a3ae3 1444 case bfd_mach_fr550:
456f8b9d
DB
1445 set_variant_num_gprs (var, 64);
1446 set_variant_num_fprs (var, 64);
1447 break;
1448
1449 case bfd_mach_fr400:
b2d6d697 1450 case bfd_mach_fr450:
456f8b9d
DB
1451 set_variant_num_gprs (var, 32);
1452 set_variant_num_fprs (var, 32);
1453 break;
1454
1455 default:
1456 /* Never heard of this variant. */
1457 return 0;
1458 }
7e295833
KB
1459
1460 /* Extract the ELF flags, if available. */
1461 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1462 elf_flags = elf_elfheader (info.abfd)->e_flags;
1463
1464 if (elf_flags & EF_FRV_FDPIC)
1465 set_variant_abi_fdpic (var);
1466
b2d6d697
KB
1467 if (elf_flags & EF_FRV_CPU_FR450)
1468 set_variant_scratch_registers (var);
1469
456f8b9d
DB
1470 gdbarch = gdbarch_alloc (&info, var);
1471
1472 set_gdbarch_short_bit (gdbarch, 16);
1473 set_gdbarch_int_bit (gdbarch, 32);
1474 set_gdbarch_long_bit (gdbarch, 32);
1475 set_gdbarch_long_long_bit (gdbarch, 64);
1476 set_gdbarch_float_bit (gdbarch, 32);
1477 set_gdbarch_double_bit (gdbarch, 64);
1478 set_gdbarch_long_double_bit (gdbarch, 64);
1479 set_gdbarch_ptr_bit (gdbarch, 32);
1480
1481 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1482 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1483
456f8b9d 1484 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1485 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1486 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1487
1488 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1489 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1490 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1491
6a748db6
KB
1492 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1493 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1494
456f8b9d
DB
1495 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1496 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
46a16dba 1497 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
456f8b9d 1498
19772a2c 1499 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
456f8b9d 1500
b5622e8d 1501 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
cd31fb03 1502 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
456f8b9d 1503
4183d812 1504 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
cd31fb03 1505 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
74055713 1506 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
456f8b9d 1507
1cb761c7
KB
1508 /* Frame stuff. */
1509 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1510 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1511 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1512 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1513 /* We set the sniffer lower down after the OSABI hooks have been
1514 established. */
456f8b9d 1515
1cb761c7
KB
1516 /* Settings for calling functions in the inferior. */
1517 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1518 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
456f8b9d
DB
1519
1520 /* Settings that should be unnecessary. */
1521 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1522
456f8b9d 1523 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
456f8b9d 1524
456f8b9d 1525 set_gdbarch_remote_translate_xfer_address
aed7f26a 1526 (gdbarch, generic_remote_translate_xfer_address);
456f8b9d
DB
1527
1528 /* Hardware watchpoint / breakpoint support. */
1529 switch (info.bfd_arch_info->mach)
1530 {
1531 case bfd_mach_frv:
1532 case bfd_mach_frvsimple:
1533 case bfd_mach_fr500:
1534 case bfd_mach_frvtomcat:
1535 /* fr500-style hardware debugging support. */
1536 var->num_hw_watchpoints = 4;
1537 var->num_hw_breakpoints = 4;
1538 break;
1539
1540 case bfd_mach_fr400:
b2d6d697 1541 case bfd_mach_fr450:
456f8b9d
DB
1542 /* fr400-style hardware debugging support. */
1543 var->num_hw_watchpoints = 2;
1544 var->num_hw_breakpoints = 4;
1545 break;
1546
1547 default:
1548 /* Otherwise, assume we don't have hardware debugging support. */
1549 var->num_hw_watchpoints = 0;
1550 var->num_hw_breakpoints = 0;
1551 break;
1552 }
1553
36482093 1554 set_gdbarch_print_insn (gdbarch, print_insn_frv);
c4d10515
KB
1555 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1556 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1557 frv_convert_from_func_ptr_addr);
36482093 1558
5ecb7103
KB
1559 /* Hook in ABI-specific overrides, if they have been registered. */
1560 gdbarch_init_osabi (info, gdbarch);
1561
5ecb7103
KB
1562 /* Set the fallback (prologue based) frame sniffer. */
1563 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1564
456f8b9d
DB
1565 return gdbarch;
1566}
1567
1568void
1569_initialize_frv_tdep (void)
1570{
1571 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1572}
This page took 0.322291 seconds and 4 git commands to generate.