* gdb.texinfo (Breakpoint related warnings): New node.
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
1e698235 2 Copyright 2002, 2003 Free Software Foundation, Inc.
456f8b9d
DB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21#include "defs.h"
8baa6f92 22#include "gdb_string.h"
456f8b9d
DB
23#include "inferior.h"
24#include "symfile.h" /* for entry_point_address */
25#include "gdbcore.h"
26#include "arch-utils.h"
27#include "regcache.h"
8baa6f92 28#include "frame.h"
1cb761c7
KB
29#include "frame-unwind.h"
30#include "frame-base.h"
8baa6f92 31#include "trad-frame.h"
dcc6aaff 32#include "dis-asm.h"
456f8b9d
DB
33
34extern void _initialize_frv_tdep (void);
35
36static gdbarch_init_ftype frv_gdbarch_init;
37
38static gdbarch_register_name_ftype frv_register_name;
456f8b9d 39static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
46a16dba 40static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
456f8b9d 41static gdbarch_skip_prologue_ftype frv_skip_prologue;
456f8b9d
DB
42static gdbarch_deprecated_extract_return_value_ftype frv_extract_return_value;
43static gdbarch_deprecated_extract_struct_value_address_ftype frv_extract_struct_value_address;
456f8b9d 44static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
aed7f26a
MS
45static gdbarch_deprecated_push_arguments_ftype frv_push_arguments;
46static gdbarch_deprecated_saved_pc_after_call_ftype frv_saved_pc_after_call;
456f8b9d
DB
47
48/* Register numbers. You can change these as needed, but don't forget
49 to update the simulator accordingly. */
50enum {
51 /* The total number of registers we know exist. */
52 frv_num_regs = 147,
53
54 /* Register numbers 0 -- 63 are always reserved for general-purpose
55 registers. The chip at hand may have less. */
56 first_gpr_regnum = 0,
57 sp_regnum = 1,
58 fp_regnum = 2,
59 struct_return_regnum = 3,
60 last_gpr_regnum = 63,
61
62 /* Register numbers 64 -- 127 are always reserved for floating-point
63 registers. The chip at hand may have less. */
64 first_fpr_regnum = 64,
65 last_fpr_regnum = 127,
66
67 /* Register numbers 128 on up are always reserved for special-purpose
68 registers. */
69 first_spr_regnum = 128,
70 pc_regnum = 128,
71 psr_regnum = 129,
72 ccr_regnum = 130,
73 cccr_regnum = 131,
74 tbr_regnum = 135,
75 brr_regnum = 136,
76 dbar0_regnum = 137,
77 dbar1_regnum = 138,
78 dbar2_regnum = 139,
79 dbar3_regnum = 140,
80 lr_regnum = 145,
81 lcr_regnum = 146,
82 last_spr_regnum = 146
83};
84
85static LONGEST frv_call_dummy_words[] =
86{0};
87
88
1cb761c7 89struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 90 {
1cb761c7
KB
91 /* The previous frame's inner-most stack address. Used as this
92 frame ID's stack_addr. */
93 CORE_ADDR prev_sp;
456f8b9d 94
1cb761c7
KB
95 /* The frame's base, optionally used by the high-level debug info. */
96 CORE_ADDR base;
8baa6f92
KB
97
98 /* Table indicating the location of each and every register. */
99 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
100 };
101
102
103/* A structure describing a particular variant of the FRV.
104 We allocate and initialize one of these structures when we create
105 the gdbarch object for a variant.
106
107 At the moment, all the FR variants we support differ only in which
108 registers are present; the portable code of GDB knows that
109 registers whose names are the empty string don't exist, so the
110 `register_names' array captures all the per-variant information we
111 need.
112
113 in the future, if we need to have per-variant maps for raw size,
114 virtual type, etc., we should replace register_names with an array
115 of structures, each of which gives all the necessary info for one
116 register. Don't stick parallel arrays in here --- that's so
117 Fortran. */
118struct gdbarch_tdep
119{
120 /* How many general-purpose registers does this variant have? */
121 int num_gprs;
122
123 /* How many floating-point registers does this variant have? */
124 int num_fprs;
125
126 /* How many hardware watchpoints can it support? */
127 int num_hw_watchpoints;
128
129 /* How many hardware breakpoints can it support? */
130 int num_hw_breakpoints;
131
132 /* Register names. */
133 char **register_names;
134};
135
136#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
137
138
139/* Allocate a new variant structure, and set up default values for all
140 the fields. */
141static struct gdbarch_tdep *
5ae5f592 142new_variant (void)
456f8b9d
DB
143{
144 struct gdbarch_tdep *var;
145 int r;
146 char buf[20];
147
148 var = xmalloc (sizeof (*var));
149 memset (var, 0, sizeof (*var));
150
151 var->num_gprs = 64;
152 var->num_fprs = 64;
153 var->num_hw_watchpoints = 0;
154 var->num_hw_breakpoints = 0;
155
156 /* By default, don't supply any general-purpose or floating-point
157 register names. */
158 var->register_names = (char **) xmalloc (frv_num_regs * sizeof (char *));
159 for (r = 0; r < frv_num_regs; r++)
160 var->register_names[r] = "";
161
162 /* Do, however, supply default names for the special-purpose
163 registers. */
164 for (r = first_spr_regnum; r <= last_spr_regnum; ++r)
165 {
166 sprintf (buf, "x%d", r);
167 var->register_names[r] = xstrdup (buf);
168 }
169
170 var->register_names[pc_regnum] = "pc";
171 var->register_names[lr_regnum] = "lr";
172 var->register_names[lcr_regnum] = "lcr";
173
174 var->register_names[psr_regnum] = "psr";
175 var->register_names[ccr_regnum] = "ccr";
176 var->register_names[cccr_regnum] = "cccr";
177 var->register_names[tbr_regnum] = "tbr";
178
179 /* Debug registers. */
180 var->register_names[brr_regnum] = "brr";
181 var->register_names[dbar0_regnum] = "dbar0";
182 var->register_names[dbar1_regnum] = "dbar1";
183 var->register_names[dbar2_regnum] = "dbar2";
184 var->register_names[dbar3_regnum] = "dbar3";
185
186 return var;
187}
188
189
190/* Indicate that the variant VAR has NUM_GPRS general-purpose
191 registers, and fill in the names array appropriately. */
192static void
193set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
194{
195 int r;
196
197 var->num_gprs = num_gprs;
198
199 for (r = 0; r < num_gprs; ++r)
200 {
201 char buf[20];
202
203 sprintf (buf, "gr%d", r);
204 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
205 }
206}
207
208
209/* Indicate that the variant VAR has NUM_FPRS floating-point
210 registers, and fill in the names array appropriately. */
211static void
212set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
213{
214 int r;
215
216 var->num_fprs = num_fprs;
217
218 for (r = 0; r < num_fprs; ++r)
219 {
220 char buf[20];
221
222 sprintf (buf, "fr%d", r);
223 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
224 }
225}
226
227
228static const char *
229frv_register_name (int reg)
230{
231 if (reg < 0)
232 return "?toosmall?";
233 if (reg >= frv_num_regs)
234 return "?toolarge?";
235
236 return CURRENT_VARIANT->register_names[reg];
237}
238
239
240static int
241frv_register_raw_size (int reg)
242{
243 return 4;
244}
245
246static int
247frv_register_virtual_size (int reg)
248{
249 return 4;
250}
251
252static struct type *
253frv_register_virtual_type (int reg)
254{
255 if (reg >= 64 && reg <= 127)
256 return builtin_type_float;
257 else
258 return builtin_type_int;
259}
260
261static int
262frv_register_byte (int reg)
263{
264 return (reg * 4);
265}
266
267static const unsigned char *
268frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
269{
270 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
271 *lenp = sizeof (breakpoint);
272 return breakpoint;
273}
274
46a16dba
KB
275/* Define the maximum number of instructions which may be packed into a
276 bundle (VLIW instruction). */
277static const int max_instrs_per_bundle = 8;
278
279/* Define the size (in bytes) of an FR-V instruction. */
280static const int frv_instr_size = 4;
281
282/* Adjust a breakpoint's address to account for the FR-V architecture's
283 constraint that a break instruction must not appear as any but the
284 first instruction in the bundle. */
285static CORE_ADDR
286frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
287{
288 int count = max_instrs_per_bundle;
289 CORE_ADDR addr = bpaddr - frv_instr_size;
290 CORE_ADDR func_start = get_pc_function_start (bpaddr);
291
292 /* Find the end of the previous packing sequence. This will be indicated
293 by either attempting to access some inaccessible memory or by finding
294 an instruction word whose packing bit is set to one. */
295 while (count-- > 0 && addr >= func_start)
296 {
297 char instr[frv_instr_size];
298 int status;
299
300 status = read_memory_nobpt (addr, instr, sizeof instr);
301
302 if (status != 0)
303 break;
304
305 /* This is a big endian architecture, so byte zero will have most
306 significant byte. The most significant bit of this byte is the
307 packing bit. */
308 if (instr[0] & 0x80)
309 break;
310
311 addr -= frv_instr_size;
312 }
313
314 if (count > 0)
315 bpaddr = addr + frv_instr_size;
316
317 return bpaddr;
318}
319
456f8b9d
DB
320
321/* Return true if REG is a caller-saves ("scratch") register,
322 false otherwise. */
323static int
324is_caller_saves_reg (int reg)
325{
326 return ((4 <= reg && reg <= 7)
327 || (14 <= reg && reg <= 15)
328 || (32 <= reg && reg <= 47));
329}
330
331
332/* Return true if REG is a callee-saves register, false otherwise. */
333static int
334is_callee_saves_reg (int reg)
335{
336 return ((16 <= reg && reg <= 31)
337 || (48 <= reg && reg <= 63));
338}
339
340
341/* Return true if REG is an argument register, false otherwise. */
342static int
343is_argument_reg (int reg)
344{
345 return (8 <= reg && reg <= 13);
346}
347
348
349/* Scan an FR-V prologue, starting at PC, until frame->PC.
350 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
351 We assume FRAME's saved_regs array has already been allocated and cleared.
352 Return the first PC value after the prologue.
353
354 Note that, for unoptimized code, we almost don't need this function
355 at all; all arguments and locals live on the stack, so we just need
356 the FP to find everything. The catch: structures passed by value
357 have their addresses living in registers; they're never spilled to
358 the stack. So if you ever want to be able to get to these
359 arguments in any frame but the top, you'll need to do this serious
360 prologue analysis. */
361static CORE_ADDR
1cb761c7
KB
362frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
363 struct frv_unwind_cache *info)
456f8b9d
DB
364{
365 /* When writing out instruction bitpatterns, we use the following
366 letters to label instruction fields:
367 P - The parallel bit. We don't use this.
368 J - The register number of GRj in the instruction description.
369 K - The register number of GRk in the instruction description.
370 I - The register number of GRi.
371 S - a signed imediate offset.
372 U - an unsigned immediate offset.
373
374 The dots below the numbers indicate where hex digit boundaries
375 fall, to make it easier to check the numbers. */
376
377 /* Non-zero iff we've seen the instruction that initializes the
378 frame pointer for this function's frame. */
379 int fp_set = 0;
380
381 /* If fp_set is non_zero, then this is the distance from
382 the stack pointer to frame pointer: fp = sp + fp_offset. */
383 int fp_offset = 0;
384
385 /* Total size of frame prior to any alloca operations. */
386 int framesize = 0;
387
1cb761c7
KB
388 /* Flag indicating if lr has been saved on the stack. */
389 int lr_saved_on_stack = 0;
390
456f8b9d
DB
391 /* The number of the general-purpose register we saved the return
392 address ("link register") in, or -1 if we haven't moved it yet. */
393 int lr_save_reg = -1;
394
1cb761c7
KB
395 /* Offset (from sp) at which lr has been saved on the stack. */
396
397 int lr_sp_offset = 0;
456f8b9d
DB
398
399 /* If gr_saved[i] is non-zero, then we've noticed that general
400 register i has been saved at gr_sp_offset[i] from the stack
401 pointer. */
402 char gr_saved[64];
403 int gr_sp_offset[64];
404
405 memset (gr_saved, 0, sizeof (gr_saved));
406
1cb761c7 407 while (! next_frame || pc < frame_pc_unwind (next_frame))
456f8b9d
DB
408 {
409 LONGEST op = read_memory_integer (pc, 4);
410
411 /* The tests in this chain of ifs should be in order of
412 decreasing selectivity, so that more particular patterns get
413 to fire before less particular patterns. */
414
415 /* Setting the FP from the SP:
416 ori sp, 0, fp
417 P 000010 0100010 000001 000000000000 = 0x04881000
418 0 111111 1111111 111111 111111111111 = 0x7fffffff
419 . . . . . . . .
420 We treat this as part of the prologue. */
421 if ((op & 0x7fffffff) == 0x04881000)
422 {
423 fp_set = 1;
424 fp_offset = 0;
425 }
426
427 /* Move the link register to the scratch register grJ, before saving:
428 movsg lr, grJ
429 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
430 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
431 . . . . . . . .
432 We treat this as part of the prologue. */
433 else if ((op & 0x7fffffc0) == 0x080d01c0)
434 {
435 int gr_j = op & 0x3f;
436
437 /* If we're moving it to a scratch register, that's fine. */
438 if (is_caller_saves_reg (gr_j))
439 lr_save_reg = gr_j;
440 /* Otherwise it's not a prologue instruction that we
441 recognize. */
442 else
443 break;
444 }
445
446 /* To save multiple callee-saves registers on the stack, at
447 offset zero:
448
449 std grK,@(sp,gr0)
450 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
451 0 000000 1111111 111111 111111 111111 = 0x01ffffff
452
453 stq grK,@(sp,gr0)
454 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
455 0 000000 1111111 111111 111111 111111 = 0x01ffffff
456 . . . . . . . .
457 We treat this as part of the prologue, and record the register's
458 saved address in the frame structure. */
459 else if ((op & 0x01ffffff) == 0x000c10c0
460 || (op & 0x01ffffff) == 0x000c1100)
461 {
462 int gr_k = ((op >> 25) & 0x3f);
463 int ope = ((op >> 6) & 0x3f);
464 int count;
465 int i;
466
467 /* Is it an std or an stq? */
468 if (ope == 0x03)
469 count = 2;
470 else
471 count = 4;
472
473 /* Is it really a callee-saves register? */
474 if (is_callee_saves_reg (gr_k))
475 {
476 for (i = 0; i < count; i++)
477 {
478 gr_saved[gr_k + i] = 1;
479 gr_sp_offset[gr_k + i] = 4 * i;
480 }
481 }
482 else
483 /* It's not a prologue instruction. */
484 break;
485 }
486
487 /* Adjusting the stack pointer. (The stack pointer is GR1.)
488 addi sp, S, sp
489 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
490 0 111111 1111111 111111 000000000000 = 0x7ffff000
491 . . . . . . . .
492 We treat this as part of the prologue. */
493 else if ((op & 0x7ffff000) == 0x02401000)
494 {
495 /* Sign-extend the twelve-bit field.
496 (Isn't there a better way to do this?) */
497 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
498
499 framesize -= s;
500 }
501
502 /* Setting the FP to a constant distance from the SP:
503 addi sp, S, fp
504 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
505 0 111111 1111111 111111 000000000000 = 0x7ffff000
506 . . . . . . . .
507 We treat this as part of the prologue. */
508 else if ((op & 0x7ffff000) == 0x04401000)
509 {
510 /* Sign-extend the twelve-bit field.
511 (Isn't there a better way to do this?) */
512 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
513 fp_set = 1;
514 fp_offset = s;
515 }
516
517 /* To spill an argument register to a scratch register:
518 ori GRi, 0, GRk
519 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
520 0 000000 1111111 000000 111111111111 = 0x01fc0fff
521 . . . . . . . .
522 For the time being, we treat this as a prologue instruction,
523 assuming that GRi is an argument register. This one's kind
524 of suspicious, because it seems like it could be part of a
525 legitimate body instruction. But we only come here when the
526 source info wasn't helpful, so we have to do the best we can.
527 Hopefully once GCC and GDB agree on how to emit line number
528 info for prologues, then this code will never come into play. */
529 else if ((op & 0x01fc0fff) == 0x00880000)
530 {
531 int gr_i = ((op >> 12) & 0x3f);
532
533 /* If the source isn't an arg register, then this isn't a
534 prologue instruction. */
535 if (! is_argument_reg (gr_i))
536 break;
537 }
538
539 /* To spill 16-bit values to the stack:
540 sthi GRk, @(fp, s)
541 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
542 0 000000 1111111 111111 000000000000 = 0x01fff000
543 . . . . . . . .
544 And for 8-bit values, we use STB instructions.
545 stbi GRk, @(fp, s)
546 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
547 0 000000 1111111 111111 000000000000 = 0x01fff000
548 . . . . . . . .
549 We check that GRk is really an argument register, and treat
550 all such as part of the prologue. */
551 else if ( (op & 0x01fff000) == 0x01442000
552 || (op & 0x01fff000) == 0x01402000)
553 {
554 int gr_k = ((op >> 25) & 0x3f);
555
556 if (! is_argument_reg (gr_k))
557 break; /* Source isn't an arg register. */
558 }
559
560 /* To save multiple callee-saves register on the stack, at a
561 non-zero offset:
562
563 stdi GRk, @(sp, s)
564 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
565 0 000000 1111111 111111 000000000000 = 0x01fff000
566 . . . . . . . .
567 stqi GRk, @(sp, s)
568 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
569 0 000000 1111111 111111 000000000000 = 0x01fff000
570 . . . . . . . .
571 We treat this as part of the prologue, and record the register's
572 saved address in the frame structure. */
573 else if ((op & 0x01fff000) == 0x014c1000
574 || (op & 0x01fff000) == 0x01501000)
575 {
576 int gr_k = ((op >> 25) & 0x3f);
577 int count;
578 int i;
579
580 /* Is it a stdi or a stqi? */
581 if ((op & 0x01fff000) == 0x014c1000)
582 count = 2;
583 else
584 count = 4;
585
586 /* Is it really a callee-saves register? */
587 if (is_callee_saves_reg (gr_k))
588 {
589 /* Sign-extend the twelve-bit field.
590 (Isn't there a better way to do this?) */
591 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
592
593 for (i = 0; i < count; i++)
594 {
595 gr_saved[gr_k + i] = 1;
596 gr_sp_offset[gr_k + i] = s + (4 * i);
597 }
598 }
599 else
600 /* It's not a prologue instruction. */
601 break;
602 }
603
604 /* Storing any kind of integer register at any constant offset
605 from any other register.
606
607 st GRk, @(GRi, gr0)
608 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
609 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
610 . . . . . . . .
611 sti GRk, @(GRi, d12)
612 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
613 0 000000 1111111 000000 000000000000 = 0x01fc0000
614 . . . . . . . .
615 These could be almost anything, but a lot of prologue
616 instructions fall into this pattern, so let's decode the
617 instruction once, and then work at a higher level. */
618 else if (((op & 0x01fc0fff) == 0x000c0080)
619 || ((op & 0x01fc0000) == 0x01480000))
620 {
621 int gr_k = ((op >> 25) & 0x3f);
622 int gr_i = ((op >> 12) & 0x3f);
623 int offset;
624
625 /* Are we storing with gr0 as an offset, or using an
626 immediate value? */
627 if ((op & 0x01fc0fff) == 0x000c0080)
628 offset = 0;
629 else
630 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
631
632 /* If the address isn't relative to the SP or FP, it's not a
633 prologue instruction. */
634 if (gr_i != sp_regnum && gr_i != fp_regnum)
635 break;
636
637 /* Saving the old FP in the new frame (relative to the SP). */
638 if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
639 {
640 gr_saved[fp_regnum] = 1;
641 gr_sp_offset[fp_regnum] = offset;
642 }
456f8b9d
DB
643
644 /* Saving callee-saves register(s) on the stack, relative to
645 the SP. */
646 else if (gr_i == sp_regnum
647 && is_callee_saves_reg (gr_k))
648 {
649 gr_saved[gr_k] = 1;
1cb761c7
KB
650 if (gr_i == sp_regnum)
651 gr_sp_offset[gr_k] = offset;
652 else
653 gr_sp_offset[gr_k] = offset + fp_offset;
456f8b9d
DB
654 }
655
656 /* Saving the scratch register holding the return address. */
657 else if (lr_save_reg != -1
658 && gr_k == lr_save_reg)
1cb761c7
KB
659 {
660 lr_saved_on_stack = 1;
661 if (gr_i == sp_regnum)
662 lr_sp_offset = offset;
663 else
664 lr_sp_offset = offset + fp_offset;
665 }
456f8b9d
DB
666
667 /* Spilling int-sized arguments to the stack. */
668 else if (is_argument_reg (gr_k))
669 ;
670
671 /* It's not a store instruction we recognize, so this must
672 be the end of the prologue. */
673 else
674 break;
675 }
676
677 /* It's not any instruction we recognize, so this must be the end
678 of the prologue. */
679 else
680 break;
681
682 pc += 4;
683 }
684
1cb761c7 685 if (next_frame && info)
456f8b9d 686 {
1cb761c7
KB
687 int i;
688 ULONGEST this_base;
456f8b9d
DB
689
690 /* If we know the relationship between the stack and frame
691 pointers, record the addresses of the registers we noticed.
692 Note that we have to do this as a separate step at the end,
693 because instructions may save relative to the SP, but we need
694 their addresses relative to the FP. */
695 if (fp_set)
1cb761c7
KB
696 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
697 else
698 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
456f8b9d 699
1cb761c7
KB
700 for (i = 0; i < 64; i++)
701 if (gr_saved[i])
702 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 703
1cb761c7
KB
704 info->prev_sp = this_base - fp_offset + framesize;
705 info->base = this_base;
706
707 /* If LR was saved on the stack, record its location. */
708 if (lr_saved_on_stack)
709 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
710
711 /* The call instruction moves the caller's PC in the callee's LR.
712 Since this is an unwind, do the reverse. Copy the location of LR
713 into PC (the address / regnum) so that a request for PC will be
714 converted into a request for the LR. */
715 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
716
717 /* Save the previous frame's computed SP value. */
718 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
719 }
720
721 return pc;
722}
723
724
725static CORE_ADDR
726frv_skip_prologue (CORE_ADDR pc)
727{
728 CORE_ADDR func_addr, func_end, new_pc;
729
730 new_pc = pc;
731
732 /* If the line table has entry for a line *within* the function
733 (i.e., not in the prologue, and not past the end), then that's
734 our location. */
735 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
736 {
737 struct symtab_and_line sal;
738
739 sal = find_pc_line (func_addr, 0);
740
741 if (sal.line != 0 && sal.end < func_end)
742 {
743 new_pc = sal.end;
744 }
745 }
746
747 /* The FR-V prologue is at least five instructions long (twenty bytes).
748 If we didn't find a real source location past that, then
749 do a full analysis of the prologue. */
750 if (new_pc < pc + 20)
1cb761c7 751 new_pc = frv_analyze_prologue (pc, 0, 0);
456f8b9d
DB
752
753 return new_pc;
754}
755
1cb761c7
KB
756
757static struct frv_unwind_cache *
758frv_frame_unwind_cache (struct frame_info *next_frame,
759 void **this_prologue_cache)
456f8b9d 760{
1cb761c7
KB
761 struct gdbarch *gdbarch = get_frame_arch (next_frame);
762 CORE_ADDR pc;
763 ULONGEST prev_sp;
764 ULONGEST this_base;
765 struct frv_unwind_cache *info;
8baa6f92 766
1cb761c7
KB
767 if ((*this_prologue_cache))
768 return (*this_prologue_cache);
456f8b9d 769
1cb761c7
KB
770 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
771 (*this_prologue_cache) = info;
772 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
456f8b9d 773
1cb761c7
KB
774 /* Prologue analysis does the rest... */
775 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
456f8b9d 776
1cb761c7 777 return info;
456f8b9d
DB
778}
779
456f8b9d
DB
780static void
781frv_extract_return_value (struct type *type, char *regbuf, char *valbuf)
782{
783 memcpy (valbuf, (regbuf
784 + frv_register_byte (8)
785 + (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0)),
786 TYPE_LENGTH (type));
787}
788
789static CORE_ADDR
790frv_extract_struct_value_address (char *regbuf)
791{
8baa6f92
KB
792 return extract_unsigned_integer (regbuf +
793 frv_register_byte (struct_return_regnum),
7c0b4a20 794 4);
456f8b9d
DB
795}
796
797static void
798frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
799{
800 write_register (struct_return_regnum, addr);
801}
802
803static int
804frv_frameless_function_invocation (struct frame_info *frame)
805{
806 return frameless_look_for_prologue (frame);
807}
808
1cb761c7
KB
809static CORE_ADDR
810frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 811{
1cb761c7 812 /* Require dword alignment. */
5b03f266 813 return align_down (sp, 8);
456f8b9d
DB
814}
815
456f8b9d 816static CORE_ADDR
1cb761c7
KB
817frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
818 struct regcache *regcache, CORE_ADDR bp_addr,
819 int nargs, struct value **args, CORE_ADDR sp,
820 int struct_return, CORE_ADDR struct_addr)
456f8b9d
DB
821{
822 int argreg;
823 int argnum;
824 char *val;
825 char valbuf[4];
826 struct value *arg;
827 struct type *arg_type;
828 int len;
829 enum type_code typecode;
830 CORE_ADDR regval;
831 int stack_space;
832 int stack_offset;
833
834#if 0
835 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
836 nargs, (int) sp, struct_return, struct_addr);
837#endif
838
839 stack_space = 0;
840 for (argnum = 0; argnum < nargs; ++argnum)
5b03f266 841 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
456f8b9d
DB
842
843 stack_space -= (6 * 4);
844 if (stack_space > 0)
845 sp -= stack_space;
846
847 /* Make sure stack is dword aligned. */
5b03f266 848 sp = align_down (sp, 8);
456f8b9d
DB
849
850 stack_offset = 0;
851
852 argreg = 8;
853
854 if (struct_return)
1cb761c7
KB
855 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
856 struct_addr);
456f8b9d
DB
857
858 for (argnum = 0; argnum < nargs; ++argnum)
859 {
860 arg = args[argnum];
861 arg_type = check_typedef (VALUE_TYPE (arg));
862 len = TYPE_LENGTH (arg_type);
863 typecode = TYPE_CODE (arg_type);
864
865 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
866 {
fbd9dcd3 867 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
456f8b9d
DB
868 typecode = TYPE_CODE_PTR;
869 len = 4;
870 val = valbuf;
871 }
872 else
873 {
874 val = (char *) VALUE_CONTENTS (arg);
875 }
876
877 while (len > 0)
878 {
879 int partial_len = (len < 4 ? len : 4);
880
881 if (argreg < 14)
882 {
7c0b4a20 883 regval = extract_unsigned_integer (val, partial_len);
456f8b9d
DB
884#if 0
885 printf(" Argnum %d data %x -> reg %d\n",
886 argnum, (int) regval, argreg);
887#endif
1cb761c7 888 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
889 ++argreg;
890 }
891 else
892 {
893#if 0
894 printf(" Argnum %d data %x -> offset %d (%x)\n",
895 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
896#endif
897 write_memory (sp + stack_offset, val, partial_len);
5b03f266 898 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
899 }
900 len -= partial_len;
901 val += partial_len;
902 }
903 }
456f8b9d 904
1cb761c7
KB
905 /* Set the return address. For the frv, the return breakpoint is
906 always at BP_ADDR. */
907 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
908
909 /* Finally, update the SP register. */
910 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
911
456f8b9d
DB
912 return sp;
913}
914
915static void
916frv_store_return_value (struct type *type, char *valbuf)
917{
918 int length = TYPE_LENGTH (type);
919 int reg8_offset = frv_register_byte (8);
920
921 if (length <= 4)
73937e03
AC
922 deprecated_write_register_bytes (reg8_offset + (4 - length), valbuf,
923 length);
456f8b9d 924 else if (length == 8)
73937e03 925 deprecated_write_register_bytes (reg8_offset, valbuf, length);
456f8b9d
DB
926 else
927 internal_error (__FILE__, __LINE__,
928 "Don't know how to return a %d-byte value.", length);
929}
930
456f8b9d 931
456f8b9d
DB
932/* Hardware watchpoint / breakpoint support for the FR500
933 and FR400. */
934
935int
936frv_check_watch_resources (int type, int cnt, int ot)
937{
938 struct gdbarch_tdep *var = CURRENT_VARIANT;
939
940 /* Watchpoints not supported on simulator. */
941 if (strcmp (target_shortname, "sim") == 0)
942 return 0;
943
944 if (type == bp_hardware_breakpoint)
945 {
946 if (var->num_hw_breakpoints == 0)
947 return 0;
948 else if (cnt <= var->num_hw_breakpoints)
949 return 1;
950 }
951 else
952 {
953 if (var->num_hw_watchpoints == 0)
954 return 0;
955 else if (ot)
956 return -1;
957 else if (cnt <= var->num_hw_watchpoints)
958 return 1;
959 }
960 return -1;
961}
962
963
964CORE_ADDR
5ae5f592 965frv_stopped_data_address (void)
456f8b9d
DB
966{
967 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
968
969 brr = read_register (brr_regnum);
970 dbar0 = read_register (dbar0_regnum);
971 dbar1 = read_register (dbar1_regnum);
972 dbar2 = read_register (dbar2_regnum);
973 dbar3 = read_register (dbar3_regnum);
974
975 if (brr & (1<<11))
976 return dbar0;
977 else if (brr & (1<<10))
978 return dbar1;
979 else if (brr & (1<<9))
980 return dbar2;
981 else if (brr & (1<<8))
982 return dbar3;
983 else
984 return 0;
985}
986
1cb761c7
KB
987static CORE_ADDR
988frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
989{
990 return frame_unwind_register_unsigned (next_frame, pc_regnum);
991}
992
993/* Given a GDB frame, determine the address of the calling function's
994 frame. This will be used to create a new GDB frame struct. */
995
996static void
997frv_frame_this_id (struct frame_info *next_frame,
998 void **this_prologue_cache, struct frame_id *this_id)
999{
1000 struct frv_unwind_cache *info
1001 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1002 CORE_ADDR base;
1003 CORE_ADDR func;
1004 struct minimal_symbol *msym_stack;
1005 struct frame_id id;
1006
1007 /* The FUNC is easy. */
1008 func = frame_func_unwind (next_frame);
1009
1010 /* This is meant to halt the backtrace at "_start". Make sure we
1011 don't halt it at a generic dummy frame. */
627b3ba2 1012 if (deprecated_inside_entry_file (func))
1cb761c7
KB
1013 return;
1014
1015 /* Check if the stack is empty. */
1016 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1017 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1018 return;
1019
1020 /* Hopefully the prologue analysis either correctly determined the
1021 frame's base (which is the SP from the previous frame), or set
1022 that base to "NULL". */
1023 base = info->prev_sp;
1024 if (base == 0)
1025 return;
1026
1027 id = frame_id_build (base, func);
1028
1029 /* Check that we're not going round in circles with the same frame
1030 ID (but avoid applying the test to sentinel frames which do go
1031 round in circles). Can't use frame_id_eq() as that doesn't yet
1032 compare the frame's PC value. */
1033 if (frame_relative_level (next_frame) >= 0
1034 && get_frame_type (next_frame) != DUMMY_FRAME
1035 && frame_id_eq (get_frame_id (next_frame), id))
1036 return;
1037
1038 (*this_id) = id;
1039}
1040
1041static void
1042frv_frame_prev_register (struct frame_info *next_frame,
1043 void **this_prologue_cache,
1044 int regnum, int *optimizedp,
1045 enum lval_type *lvalp, CORE_ADDR *addrp,
1046 int *realnump, void *bufferp)
1047{
1048 struct frv_unwind_cache *info
1049 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1050 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1051 optimizedp, lvalp, addrp, realnump, bufferp);
1052}
1053
1054static const struct frame_unwind frv_frame_unwind = {
1055 NORMAL_FRAME,
1056 frv_frame_this_id,
1057 frv_frame_prev_register
1058};
1059
1060static const struct frame_unwind *
1061frv_frame_sniffer (struct frame_info *next_frame)
1062{
1063 return &frv_frame_unwind;
1064}
1065
1066static CORE_ADDR
1067frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1068{
1069 struct frv_unwind_cache *info
1070 = frv_frame_unwind_cache (next_frame, this_cache);
1071 return info->base;
1072}
1073
1074static const struct frame_base frv_frame_base = {
1075 &frv_frame_unwind,
1076 frv_frame_base_address,
1077 frv_frame_base_address,
1078 frv_frame_base_address
1079};
1080
1081static CORE_ADDR
1082frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1083{
1084 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1085}
1086
1087
1088/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1089 dummy frame. The frame ID's base needs to match the TOS value
1090 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1091 breakpoint. */
1092
1093static struct frame_id
1094frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1095{
1096 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1097 frame_pc_unwind (next_frame));
1098}
1099
1100
456f8b9d
DB
1101static struct gdbarch *
1102frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1103{
1104 struct gdbarch *gdbarch;
1105 struct gdbarch_tdep *var;
1106
1107 /* Check to see if we've already built an appropriate architecture
1108 object for this executable. */
1109 arches = gdbarch_list_lookup_by_info (arches, &info);
1110 if (arches)
1111 return arches->gdbarch;
1112
1113 /* Select the right tdep structure for this variant. */
1114 var = new_variant ();
1115 switch (info.bfd_arch_info->mach)
1116 {
1117 case bfd_mach_frv:
1118 case bfd_mach_frvsimple:
1119 case bfd_mach_fr500:
1120 case bfd_mach_frvtomcat:
1121 set_variant_num_gprs (var, 64);
1122 set_variant_num_fprs (var, 64);
1123 break;
1124
1125 case bfd_mach_fr400:
1126 set_variant_num_gprs (var, 32);
1127 set_variant_num_fprs (var, 32);
1128 break;
1129
1130 default:
1131 /* Never heard of this variant. */
1132 return 0;
1133 }
1134
1135 gdbarch = gdbarch_alloc (&info, var);
1136
1137 set_gdbarch_short_bit (gdbarch, 16);
1138 set_gdbarch_int_bit (gdbarch, 32);
1139 set_gdbarch_long_bit (gdbarch, 32);
1140 set_gdbarch_long_long_bit (gdbarch, 64);
1141 set_gdbarch_float_bit (gdbarch, 32);
1142 set_gdbarch_double_bit (gdbarch, 64);
1143 set_gdbarch_long_double_bit (gdbarch, 64);
1144 set_gdbarch_ptr_bit (gdbarch, 32);
1145
1146 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1147 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1148 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1149 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1150
1151 set_gdbarch_register_name (gdbarch, frv_register_name);
b1e29e33 1152 set_gdbarch_deprecated_register_size (gdbarch, 4);
b8b527c5 1153 set_gdbarch_deprecated_register_bytes (gdbarch, frv_num_regs * 4);
9c04cab7
AC
1154 set_gdbarch_deprecated_register_byte (gdbarch, frv_register_byte);
1155 set_gdbarch_deprecated_register_raw_size (gdbarch, frv_register_raw_size);
a0ed5532 1156 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
9c04cab7 1157 set_gdbarch_deprecated_register_virtual_size (gdbarch, frv_register_virtual_size);
a0ed5532 1158 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
9c04cab7 1159 set_gdbarch_deprecated_register_virtual_type (gdbarch, frv_register_virtual_type);
456f8b9d
DB
1160
1161 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1162 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
46a16dba 1163 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
456f8b9d 1164
456f8b9d
DB
1165 set_gdbarch_frame_args_skip (gdbarch, 0);
1166 set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1167
1fd35568 1168 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
456f8b9d
DB
1169 set_gdbarch_deprecated_extract_return_value (gdbarch, frv_extract_return_value);
1170
4183d812 1171 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
ebba8386 1172 set_gdbarch_deprecated_store_return_value (gdbarch, frv_store_return_value);
456f8b9d
DB
1173 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1174
1cb761c7
KB
1175 /* Frame stuff. */
1176 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1177 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1178 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1179 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1180 frame_base_set_default (gdbarch, &frv_frame_base);
456f8b9d 1181
1cb761c7
KB
1182 /* Settings for calling functions in the inferior. */
1183 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1184 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
456f8b9d
DB
1185
1186 /* Settings that should be unnecessary. */
1187 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1188
456f8b9d 1189 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
456f8b9d 1190
456f8b9d
DB
1191 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1192 set_gdbarch_function_start_offset (gdbarch, 0);
456f8b9d
DB
1193
1194 set_gdbarch_remote_translate_xfer_address
aed7f26a 1195 (gdbarch, generic_remote_translate_xfer_address);
456f8b9d
DB
1196
1197 /* Hardware watchpoint / breakpoint support. */
1198 switch (info.bfd_arch_info->mach)
1199 {
1200 case bfd_mach_frv:
1201 case bfd_mach_frvsimple:
1202 case bfd_mach_fr500:
1203 case bfd_mach_frvtomcat:
1204 /* fr500-style hardware debugging support. */
1205 var->num_hw_watchpoints = 4;
1206 var->num_hw_breakpoints = 4;
1207 break;
1208
1209 case bfd_mach_fr400:
1210 /* fr400-style hardware debugging support. */
1211 var->num_hw_watchpoints = 2;
1212 var->num_hw_breakpoints = 4;
1213 break;
1214
1215 default:
1216 /* Otherwise, assume we don't have hardware debugging support. */
1217 var->num_hw_watchpoints = 0;
1218 var->num_hw_breakpoints = 0;
1219 break;
1220 }
1221
36482093
AC
1222 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1223
456f8b9d
DB
1224 return gdbarch;
1225}
1226
1227void
1228_initialize_frv_tdep (void)
1229{
1230 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1231}
This page took 0.20222 seconds and 4 git commands to generate.