2003-09-19 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
1e698235 2 Copyright 2002, 2003 Free Software Foundation, Inc.
456f8b9d
DB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21#include "defs.h"
8baa6f92 22#include "gdb_string.h"
456f8b9d
DB
23#include "inferior.h"
24#include "symfile.h" /* for entry_point_address */
25#include "gdbcore.h"
26#include "arch-utils.h"
27#include "regcache.h"
8baa6f92 28#include "frame.h"
1cb761c7
KB
29#include "frame-unwind.h"
30#include "frame-base.h"
8baa6f92 31#include "trad-frame.h"
dcc6aaff 32#include "dis-asm.h"
456f8b9d
DB
33
34extern void _initialize_frv_tdep (void);
35
36static gdbarch_init_ftype frv_gdbarch_init;
37
38static gdbarch_register_name_ftype frv_register_name;
456f8b9d 39static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
456f8b9d 40static gdbarch_skip_prologue_ftype frv_skip_prologue;
456f8b9d
DB
41static gdbarch_deprecated_extract_return_value_ftype frv_extract_return_value;
42static gdbarch_deprecated_extract_struct_value_address_ftype frv_extract_struct_value_address;
456f8b9d 43static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation;
aed7f26a
MS
44static gdbarch_deprecated_push_arguments_ftype frv_push_arguments;
45static gdbarch_deprecated_saved_pc_after_call_ftype frv_saved_pc_after_call;
456f8b9d
DB
46
47/* Register numbers. You can change these as needed, but don't forget
48 to update the simulator accordingly. */
49enum {
50 /* The total number of registers we know exist. */
51 frv_num_regs = 147,
52
53 /* Register numbers 0 -- 63 are always reserved for general-purpose
54 registers. The chip at hand may have less. */
55 first_gpr_regnum = 0,
56 sp_regnum = 1,
57 fp_regnum = 2,
58 struct_return_regnum = 3,
59 last_gpr_regnum = 63,
60
61 /* Register numbers 64 -- 127 are always reserved for floating-point
62 registers. The chip at hand may have less. */
63 first_fpr_regnum = 64,
64 last_fpr_regnum = 127,
65
66 /* Register numbers 128 on up are always reserved for special-purpose
67 registers. */
68 first_spr_regnum = 128,
69 pc_regnum = 128,
70 psr_regnum = 129,
71 ccr_regnum = 130,
72 cccr_regnum = 131,
73 tbr_regnum = 135,
74 brr_regnum = 136,
75 dbar0_regnum = 137,
76 dbar1_regnum = 138,
77 dbar2_regnum = 139,
78 dbar3_regnum = 140,
79 lr_regnum = 145,
80 lcr_regnum = 146,
81 last_spr_regnum = 146
82};
83
84static LONGEST frv_call_dummy_words[] =
85{0};
86
87
1cb761c7 88struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 89 {
1cb761c7
KB
90 /* The previous frame's inner-most stack address. Used as this
91 frame ID's stack_addr. */
92 CORE_ADDR prev_sp;
456f8b9d 93
1cb761c7
KB
94 /* The frame's base, optionally used by the high-level debug info. */
95 CORE_ADDR base;
8baa6f92
KB
96
97 /* Table indicating the location of each and every register. */
98 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
99 };
100
101
102/* A structure describing a particular variant of the FRV.
103 We allocate and initialize one of these structures when we create
104 the gdbarch object for a variant.
105
106 At the moment, all the FR variants we support differ only in which
107 registers are present; the portable code of GDB knows that
108 registers whose names are the empty string don't exist, so the
109 `register_names' array captures all the per-variant information we
110 need.
111
112 in the future, if we need to have per-variant maps for raw size,
113 virtual type, etc., we should replace register_names with an array
114 of structures, each of which gives all the necessary info for one
115 register. Don't stick parallel arrays in here --- that's so
116 Fortran. */
117struct gdbarch_tdep
118{
119 /* How many general-purpose registers does this variant have? */
120 int num_gprs;
121
122 /* How many floating-point registers does this variant have? */
123 int num_fprs;
124
125 /* How many hardware watchpoints can it support? */
126 int num_hw_watchpoints;
127
128 /* How many hardware breakpoints can it support? */
129 int num_hw_breakpoints;
130
131 /* Register names. */
132 char **register_names;
133};
134
135#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
136
137
138/* Allocate a new variant structure, and set up default values for all
139 the fields. */
140static struct gdbarch_tdep *
5ae5f592 141new_variant (void)
456f8b9d
DB
142{
143 struct gdbarch_tdep *var;
144 int r;
145 char buf[20];
146
147 var = xmalloc (sizeof (*var));
148 memset (var, 0, sizeof (*var));
149
150 var->num_gprs = 64;
151 var->num_fprs = 64;
152 var->num_hw_watchpoints = 0;
153 var->num_hw_breakpoints = 0;
154
155 /* By default, don't supply any general-purpose or floating-point
156 register names. */
157 var->register_names = (char **) xmalloc (frv_num_regs * sizeof (char *));
158 for (r = 0; r < frv_num_regs; r++)
159 var->register_names[r] = "";
160
161 /* Do, however, supply default names for the special-purpose
162 registers. */
163 for (r = first_spr_regnum; r <= last_spr_regnum; ++r)
164 {
165 sprintf (buf, "x%d", r);
166 var->register_names[r] = xstrdup (buf);
167 }
168
169 var->register_names[pc_regnum] = "pc";
170 var->register_names[lr_regnum] = "lr";
171 var->register_names[lcr_regnum] = "lcr";
172
173 var->register_names[psr_regnum] = "psr";
174 var->register_names[ccr_regnum] = "ccr";
175 var->register_names[cccr_regnum] = "cccr";
176 var->register_names[tbr_regnum] = "tbr";
177
178 /* Debug registers. */
179 var->register_names[brr_regnum] = "brr";
180 var->register_names[dbar0_regnum] = "dbar0";
181 var->register_names[dbar1_regnum] = "dbar1";
182 var->register_names[dbar2_regnum] = "dbar2";
183 var->register_names[dbar3_regnum] = "dbar3";
184
185 return var;
186}
187
188
189/* Indicate that the variant VAR has NUM_GPRS general-purpose
190 registers, and fill in the names array appropriately. */
191static void
192set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
193{
194 int r;
195
196 var->num_gprs = num_gprs;
197
198 for (r = 0; r < num_gprs; ++r)
199 {
200 char buf[20];
201
202 sprintf (buf, "gr%d", r);
203 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
204 }
205}
206
207
208/* Indicate that the variant VAR has NUM_FPRS floating-point
209 registers, and fill in the names array appropriately. */
210static void
211set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
212{
213 int r;
214
215 var->num_fprs = num_fprs;
216
217 for (r = 0; r < num_fprs; ++r)
218 {
219 char buf[20];
220
221 sprintf (buf, "fr%d", r);
222 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
223 }
224}
225
226
227static const char *
228frv_register_name (int reg)
229{
230 if (reg < 0)
231 return "?toosmall?";
232 if (reg >= frv_num_regs)
233 return "?toolarge?";
234
235 return CURRENT_VARIANT->register_names[reg];
236}
237
238
239static int
240frv_register_raw_size (int reg)
241{
242 return 4;
243}
244
245static int
246frv_register_virtual_size (int reg)
247{
248 return 4;
249}
250
251static struct type *
252frv_register_virtual_type (int reg)
253{
254 if (reg >= 64 && reg <= 127)
255 return builtin_type_float;
256 else
257 return builtin_type_int;
258}
259
260static int
261frv_register_byte (int reg)
262{
263 return (reg * 4);
264}
265
266static const unsigned char *
267frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
268{
269 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
270 *lenp = sizeof (breakpoint);
271 return breakpoint;
272}
273
456f8b9d
DB
274
275/* Return true if REG is a caller-saves ("scratch") register,
276 false otherwise. */
277static int
278is_caller_saves_reg (int reg)
279{
280 return ((4 <= reg && reg <= 7)
281 || (14 <= reg && reg <= 15)
282 || (32 <= reg && reg <= 47));
283}
284
285
286/* Return true if REG is a callee-saves register, false otherwise. */
287static int
288is_callee_saves_reg (int reg)
289{
290 return ((16 <= reg && reg <= 31)
291 || (48 <= reg && reg <= 63));
292}
293
294
295/* Return true if REG is an argument register, false otherwise. */
296static int
297is_argument_reg (int reg)
298{
299 return (8 <= reg && reg <= 13);
300}
301
302
303/* Scan an FR-V prologue, starting at PC, until frame->PC.
304 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
305 We assume FRAME's saved_regs array has already been allocated and cleared.
306 Return the first PC value after the prologue.
307
308 Note that, for unoptimized code, we almost don't need this function
309 at all; all arguments and locals live on the stack, so we just need
310 the FP to find everything. The catch: structures passed by value
311 have their addresses living in registers; they're never spilled to
312 the stack. So if you ever want to be able to get to these
313 arguments in any frame but the top, you'll need to do this serious
314 prologue analysis. */
315static CORE_ADDR
1cb761c7
KB
316frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
317 struct frv_unwind_cache *info)
456f8b9d
DB
318{
319 /* When writing out instruction bitpatterns, we use the following
320 letters to label instruction fields:
321 P - The parallel bit. We don't use this.
322 J - The register number of GRj in the instruction description.
323 K - The register number of GRk in the instruction description.
324 I - The register number of GRi.
325 S - a signed imediate offset.
326 U - an unsigned immediate offset.
327
328 The dots below the numbers indicate where hex digit boundaries
329 fall, to make it easier to check the numbers. */
330
331 /* Non-zero iff we've seen the instruction that initializes the
332 frame pointer for this function's frame. */
333 int fp_set = 0;
334
335 /* If fp_set is non_zero, then this is the distance from
336 the stack pointer to frame pointer: fp = sp + fp_offset. */
337 int fp_offset = 0;
338
339 /* Total size of frame prior to any alloca operations. */
340 int framesize = 0;
341
1cb761c7
KB
342 /* Flag indicating if lr has been saved on the stack. */
343 int lr_saved_on_stack = 0;
344
456f8b9d
DB
345 /* The number of the general-purpose register we saved the return
346 address ("link register") in, or -1 if we haven't moved it yet. */
347 int lr_save_reg = -1;
348
1cb761c7
KB
349 /* Offset (from sp) at which lr has been saved on the stack. */
350
351 int lr_sp_offset = 0;
456f8b9d
DB
352
353 /* If gr_saved[i] is non-zero, then we've noticed that general
354 register i has been saved at gr_sp_offset[i] from the stack
355 pointer. */
356 char gr_saved[64];
357 int gr_sp_offset[64];
358
359 memset (gr_saved, 0, sizeof (gr_saved));
360
1cb761c7 361 while (! next_frame || pc < frame_pc_unwind (next_frame))
456f8b9d
DB
362 {
363 LONGEST op = read_memory_integer (pc, 4);
364
365 /* The tests in this chain of ifs should be in order of
366 decreasing selectivity, so that more particular patterns get
367 to fire before less particular patterns. */
368
369 /* Setting the FP from the SP:
370 ori sp, 0, fp
371 P 000010 0100010 000001 000000000000 = 0x04881000
372 0 111111 1111111 111111 111111111111 = 0x7fffffff
373 . . . . . . . .
374 We treat this as part of the prologue. */
375 if ((op & 0x7fffffff) == 0x04881000)
376 {
377 fp_set = 1;
378 fp_offset = 0;
379 }
380
381 /* Move the link register to the scratch register grJ, before saving:
382 movsg lr, grJ
383 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
384 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
385 . . . . . . . .
386 We treat this as part of the prologue. */
387 else if ((op & 0x7fffffc0) == 0x080d01c0)
388 {
389 int gr_j = op & 0x3f;
390
391 /* If we're moving it to a scratch register, that's fine. */
392 if (is_caller_saves_reg (gr_j))
393 lr_save_reg = gr_j;
394 /* Otherwise it's not a prologue instruction that we
395 recognize. */
396 else
397 break;
398 }
399
400 /* To save multiple callee-saves registers on the stack, at
401 offset zero:
402
403 std grK,@(sp,gr0)
404 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
405 0 000000 1111111 111111 111111 111111 = 0x01ffffff
406
407 stq grK,@(sp,gr0)
408 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
409 0 000000 1111111 111111 111111 111111 = 0x01ffffff
410 . . . . . . . .
411 We treat this as part of the prologue, and record the register's
412 saved address in the frame structure. */
413 else if ((op & 0x01ffffff) == 0x000c10c0
414 || (op & 0x01ffffff) == 0x000c1100)
415 {
416 int gr_k = ((op >> 25) & 0x3f);
417 int ope = ((op >> 6) & 0x3f);
418 int count;
419 int i;
420
421 /* Is it an std or an stq? */
422 if (ope == 0x03)
423 count = 2;
424 else
425 count = 4;
426
427 /* Is it really a callee-saves register? */
428 if (is_callee_saves_reg (gr_k))
429 {
430 for (i = 0; i < count; i++)
431 {
432 gr_saved[gr_k + i] = 1;
433 gr_sp_offset[gr_k + i] = 4 * i;
434 }
435 }
436 else
437 /* It's not a prologue instruction. */
438 break;
439 }
440
441 /* Adjusting the stack pointer. (The stack pointer is GR1.)
442 addi sp, S, sp
443 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
444 0 111111 1111111 111111 000000000000 = 0x7ffff000
445 . . . . . . . .
446 We treat this as part of the prologue. */
447 else if ((op & 0x7ffff000) == 0x02401000)
448 {
449 /* Sign-extend the twelve-bit field.
450 (Isn't there a better way to do this?) */
451 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
452
453 framesize -= s;
454 }
455
456 /* Setting the FP to a constant distance from the SP:
457 addi sp, S, fp
458 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
459 0 111111 1111111 111111 000000000000 = 0x7ffff000
460 . . . . . . . .
461 We treat this as part of the prologue. */
462 else if ((op & 0x7ffff000) == 0x04401000)
463 {
464 /* Sign-extend the twelve-bit field.
465 (Isn't there a better way to do this?) */
466 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
467 fp_set = 1;
468 fp_offset = s;
469 }
470
471 /* To spill an argument register to a scratch register:
472 ori GRi, 0, GRk
473 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
474 0 000000 1111111 000000 111111111111 = 0x01fc0fff
475 . . . . . . . .
476 For the time being, we treat this as a prologue instruction,
477 assuming that GRi is an argument register. This one's kind
478 of suspicious, because it seems like it could be part of a
479 legitimate body instruction. But we only come here when the
480 source info wasn't helpful, so we have to do the best we can.
481 Hopefully once GCC and GDB agree on how to emit line number
482 info for prologues, then this code will never come into play. */
483 else if ((op & 0x01fc0fff) == 0x00880000)
484 {
485 int gr_i = ((op >> 12) & 0x3f);
486
487 /* If the source isn't an arg register, then this isn't a
488 prologue instruction. */
489 if (! is_argument_reg (gr_i))
490 break;
491 }
492
493 /* To spill 16-bit values to the stack:
494 sthi GRk, @(fp, s)
495 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
496 0 000000 1111111 111111 000000000000 = 0x01fff000
497 . . . . . . . .
498 And for 8-bit values, we use STB instructions.
499 stbi GRk, @(fp, s)
500 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
501 0 000000 1111111 111111 000000000000 = 0x01fff000
502 . . . . . . . .
503 We check that GRk is really an argument register, and treat
504 all such as part of the prologue. */
505 else if ( (op & 0x01fff000) == 0x01442000
506 || (op & 0x01fff000) == 0x01402000)
507 {
508 int gr_k = ((op >> 25) & 0x3f);
509
510 if (! is_argument_reg (gr_k))
511 break; /* Source isn't an arg register. */
512 }
513
514 /* To save multiple callee-saves register on the stack, at a
515 non-zero offset:
516
517 stdi GRk, @(sp, s)
518 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
519 0 000000 1111111 111111 000000000000 = 0x01fff000
520 . . . . . . . .
521 stqi GRk, @(sp, s)
522 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
523 0 000000 1111111 111111 000000000000 = 0x01fff000
524 . . . . . . . .
525 We treat this as part of the prologue, and record the register's
526 saved address in the frame structure. */
527 else if ((op & 0x01fff000) == 0x014c1000
528 || (op & 0x01fff000) == 0x01501000)
529 {
530 int gr_k = ((op >> 25) & 0x3f);
531 int count;
532 int i;
533
534 /* Is it a stdi or a stqi? */
535 if ((op & 0x01fff000) == 0x014c1000)
536 count = 2;
537 else
538 count = 4;
539
540 /* Is it really a callee-saves register? */
541 if (is_callee_saves_reg (gr_k))
542 {
543 /* Sign-extend the twelve-bit field.
544 (Isn't there a better way to do this?) */
545 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
546
547 for (i = 0; i < count; i++)
548 {
549 gr_saved[gr_k + i] = 1;
550 gr_sp_offset[gr_k + i] = s + (4 * i);
551 }
552 }
553 else
554 /* It's not a prologue instruction. */
555 break;
556 }
557
558 /* Storing any kind of integer register at any constant offset
559 from any other register.
560
561 st GRk, @(GRi, gr0)
562 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
563 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
564 . . . . . . . .
565 sti GRk, @(GRi, d12)
566 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
567 0 000000 1111111 000000 000000000000 = 0x01fc0000
568 . . . . . . . .
569 These could be almost anything, but a lot of prologue
570 instructions fall into this pattern, so let's decode the
571 instruction once, and then work at a higher level. */
572 else if (((op & 0x01fc0fff) == 0x000c0080)
573 || ((op & 0x01fc0000) == 0x01480000))
574 {
575 int gr_k = ((op >> 25) & 0x3f);
576 int gr_i = ((op >> 12) & 0x3f);
577 int offset;
578
579 /* Are we storing with gr0 as an offset, or using an
580 immediate value? */
581 if ((op & 0x01fc0fff) == 0x000c0080)
582 offset = 0;
583 else
584 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
585
586 /* If the address isn't relative to the SP or FP, it's not a
587 prologue instruction. */
588 if (gr_i != sp_regnum && gr_i != fp_regnum)
589 break;
590
591 /* Saving the old FP in the new frame (relative to the SP). */
592 if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
593 {
594 gr_saved[fp_regnum] = 1;
595 gr_sp_offset[fp_regnum] = offset;
596 }
456f8b9d
DB
597
598 /* Saving callee-saves register(s) on the stack, relative to
599 the SP. */
600 else if (gr_i == sp_regnum
601 && is_callee_saves_reg (gr_k))
602 {
603 gr_saved[gr_k] = 1;
1cb761c7
KB
604 if (gr_i == sp_regnum)
605 gr_sp_offset[gr_k] = offset;
606 else
607 gr_sp_offset[gr_k] = offset + fp_offset;
456f8b9d
DB
608 }
609
610 /* Saving the scratch register holding the return address. */
611 else if (lr_save_reg != -1
612 && gr_k == lr_save_reg)
1cb761c7
KB
613 {
614 lr_saved_on_stack = 1;
615 if (gr_i == sp_regnum)
616 lr_sp_offset = offset;
617 else
618 lr_sp_offset = offset + fp_offset;
619 }
456f8b9d
DB
620
621 /* Spilling int-sized arguments to the stack. */
622 else if (is_argument_reg (gr_k))
623 ;
624
625 /* It's not a store instruction we recognize, so this must
626 be the end of the prologue. */
627 else
628 break;
629 }
630
631 /* It's not any instruction we recognize, so this must be the end
632 of the prologue. */
633 else
634 break;
635
636 pc += 4;
637 }
638
1cb761c7 639 if (next_frame && info)
456f8b9d 640 {
1cb761c7
KB
641 int i;
642 ULONGEST this_base;
456f8b9d
DB
643
644 /* If we know the relationship between the stack and frame
645 pointers, record the addresses of the registers we noticed.
646 Note that we have to do this as a separate step at the end,
647 because instructions may save relative to the SP, but we need
648 their addresses relative to the FP. */
649 if (fp_set)
1cb761c7
KB
650 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
651 else
652 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
456f8b9d 653
1cb761c7
KB
654 for (i = 0; i < 64; i++)
655 if (gr_saved[i])
656 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 657
1cb761c7
KB
658 info->prev_sp = this_base - fp_offset + framesize;
659 info->base = this_base;
660
661 /* If LR was saved on the stack, record its location. */
662 if (lr_saved_on_stack)
663 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
664
665 /* The call instruction moves the caller's PC in the callee's LR.
666 Since this is an unwind, do the reverse. Copy the location of LR
667 into PC (the address / regnum) so that a request for PC will be
668 converted into a request for the LR. */
669 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
670
671 /* Save the previous frame's computed SP value. */
672 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
673 }
674
675 return pc;
676}
677
678
679static CORE_ADDR
680frv_skip_prologue (CORE_ADDR pc)
681{
682 CORE_ADDR func_addr, func_end, new_pc;
683
684 new_pc = pc;
685
686 /* If the line table has entry for a line *within* the function
687 (i.e., not in the prologue, and not past the end), then that's
688 our location. */
689 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
690 {
691 struct symtab_and_line sal;
692
693 sal = find_pc_line (func_addr, 0);
694
695 if (sal.line != 0 && sal.end < func_end)
696 {
697 new_pc = sal.end;
698 }
699 }
700
701 /* The FR-V prologue is at least five instructions long (twenty bytes).
702 If we didn't find a real source location past that, then
703 do a full analysis of the prologue. */
704 if (new_pc < pc + 20)
1cb761c7 705 new_pc = frv_analyze_prologue (pc, 0, 0);
456f8b9d
DB
706
707 return new_pc;
708}
709
1cb761c7
KB
710
711static struct frv_unwind_cache *
712frv_frame_unwind_cache (struct frame_info *next_frame,
713 void **this_prologue_cache)
456f8b9d 714{
1cb761c7
KB
715 struct gdbarch *gdbarch = get_frame_arch (next_frame);
716 CORE_ADDR pc;
717 ULONGEST prev_sp;
718 ULONGEST this_base;
719 struct frv_unwind_cache *info;
8baa6f92 720
1cb761c7
KB
721 if ((*this_prologue_cache))
722 return (*this_prologue_cache);
456f8b9d 723
1cb761c7
KB
724 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
725 (*this_prologue_cache) = info;
726 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
456f8b9d 727
1cb761c7
KB
728 /* Prologue analysis does the rest... */
729 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
456f8b9d 730
1cb761c7 731 return info;
456f8b9d
DB
732}
733
456f8b9d
DB
734static void
735frv_extract_return_value (struct type *type, char *regbuf, char *valbuf)
736{
737 memcpy (valbuf, (regbuf
738 + frv_register_byte (8)
739 + (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0)),
740 TYPE_LENGTH (type));
741}
742
743static CORE_ADDR
744frv_extract_struct_value_address (char *regbuf)
745{
8baa6f92
KB
746 return extract_unsigned_integer (regbuf +
747 frv_register_byte (struct_return_regnum),
7c0b4a20 748 4);
456f8b9d
DB
749}
750
751static void
752frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
753{
754 write_register (struct_return_regnum, addr);
755}
756
757static int
758frv_frameless_function_invocation (struct frame_info *frame)
759{
760 return frameless_look_for_prologue (frame);
761}
762
1cb761c7
KB
763static CORE_ADDR
764frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 765{
1cb761c7 766 /* Require dword alignment. */
5b03f266 767 return align_down (sp, 8);
456f8b9d
DB
768}
769
456f8b9d 770static CORE_ADDR
1cb761c7
KB
771frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
772 struct regcache *regcache, CORE_ADDR bp_addr,
773 int nargs, struct value **args, CORE_ADDR sp,
774 int struct_return, CORE_ADDR struct_addr)
456f8b9d
DB
775{
776 int argreg;
777 int argnum;
778 char *val;
779 char valbuf[4];
780 struct value *arg;
781 struct type *arg_type;
782 int len;
783 enum type_code typecode;
784 CORE_ADDR regval;
785 int stack_space;
786 int stack_offset;
787
788#if 0
789 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
790 nargs, (int) sp, struct_return, struct_addr);
791#endif
792
793 stack_space = 0;
794 for (argnum = 0; argnum < nargs; ++argnum)
5b03f266 795 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
456f8b9d
DB
796
797 stack_space -= (6 * 4);
798 if (stack_space > 0)
799 sp -= stack_space;
800
801 /* Make sure stack is dword aligned. */
5b03f266 802 sp = align_down (sp, 8);
456f8b9d
DB
803
804 stack_offset = 0;
805
806 argreg = 8;
807
808 if (struct_return)
1cb761c7
KB
809 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
810 struct_addr);
456f8b9d
DB
811
812 for (argnum = 0; argnum < nargs; ++argnum)
813 {
814 arg = args[argnum];
815 arg_type = check_typedef (VALUE_TYPE (arg));
816 len = TYPE_LENGTH (arg_type);
817 typecode = TYPE_CODE (arg_type);
818
819 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
820 {
fbd9dcd3 821 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
456f8b9d
DB
822 typecode = TYPE_CODE_PTR;
823 len = 4;
824 val = valbuf;
825 }
826 else
827 {
828 val = (char *) VALUE_CONTENTS (arg);
829 }
830
831 while (len > 0)
832 {
833 int partial_len = (len < 4 ? len : 4);
834
835 if (argreg < 14)
836 {
7c0b4a20 837 regval = extract_unsigned_integer (val, partial_len);
456f8b9d
DB
838#if 0
839 printf(" Argnum %d data %x -> reg %d\n",
840 argnum, (int) regval, argreg);
841#endif
1cb761c7 842 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
843 ++argreg;
844 }
845 else
846 {
847#if 0
848 printf(" Argnum %d data %x -> offset %d (%x)\n",
849 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
850#endif
851 write_memory (sp + stack_offset, val, partial_len);
5b03f266 852 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
853 }
854 len -= partial_len;
855 val += partial_len;
856 }
857 }
456f8b9d 858
1cb761c7
KB
859 /* Set the return address. For the frv, the return breakpoint is
860 always at BP_ADDR. */
861 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
862
863 /* Finally, update the SP register. */
864 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
865
456f8b9d
DB
866 return sp;
867}
868
869static void
870frv_store_return_value (struct type *type, char *valbuf)
871{
872 int length = TYPE_LENGTH (type);
873 int reg8_offset = frv_register_byte (8);
874
875 if (length <= 4)
73937e03
AC
876 deprecated_write_register_bytes (reg8_offset + (4 - length), valbuf,
877 length);
456f8b9d 878 else if (length == 8)
73937e03 879 deprecated_write_register_bytes (reg8_offset, valbuf, length);
456f8b9d
DB
880 else
881 internal_error (__FILE__, __LINE__,
882 "Don't know how to return a %d-byte value.", length);
883}
884
456f8b9d 885
456f8b9d
DB
886/* Hardware watchpoint / breakpoint support for the FR500
887 and FR400. */
888
889int
890frv_check_watch_resources (int type, int cnt, int ot)
891{
892 struct gdbarch_tdep *var = CURRENT_VARIANT;
893
894 /* Watchpoints not supported on simulator. */
895 if (strcmp (target_shortname, "sim") == 0)
896 return 0;
897
898 if (type == bp_hardware_breakpoint)
899 {
900 if (var->num_hw_breakpoints == 0)
901 return 0;
902 else if (cnt <= var->num_hw_breakpoints)
903 return 1;
904 }
905 else
906 {
907 if (var->num_hw_watchpoints == 0)
908 return 0;
909 else if (ot)
910 return -1;
911 else if (cnt <= var->num_hw_watchpoints)
912 return 1;
913 }
914 return -1;
915}
916
917
918CORE_ADDR
5ae5f592 919frv_stopped_data_address (void)
456f8b9d
DB
920{
921 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
922
923 brr = read_register (brr_regnum);
924 dbar0 = read_register (dbar0_regnum);
925 dbar1 = read_register (dbar1_regnum);
926 dbar2 = read_register (dbar2_regnum);
927 dbar3 = read_register (dbar3_regnum);
928
929 if (brr & (1<<11))
930 return dbar0;
931 else if (brr & (1<<10))
932 return dbar1;
933 else if (brr & (1<<9))
934 return dbar2;
935 else if (brr & (1<<8))
936 return dbar3;
937 else
938 return 0;
939}
940
1cb761c7
KB
941static CORE_ADDR
942frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
943{
944 return frame_unwind_register_unsigned (next_frame, pc_regnum);
945}
946
947/* Given a GDB frame, determine the address of the calling function's
948 frame. This will be used to create a new GDB frame struct. */
949
950static void
951frv_frame_this_id (struct frame_info *next_frame,
952 void **this_prologue_cache, struct frame_id *this_id)
953{
954 struct frv_unwind_cache *info
955 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
956 CORE_ADDR base;
957 CORE_ADDR func;
958 struct minimal_symbol *msym_stack;
959 struct frame_id id;
960
961 /* The FUNC is easy. */
962 func = frame_func_unwind (next_frame);
963
964 /* This is meant to halt the backtrace at "_start". Make sure we
965 don't halt it at a generic dummy frame. */
627b3ba2 966 if (deprecated_inside_entry_file (func))
1cb761c7
KB
967 return;
968
969 /* Check if the stack is empty. */
970 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
971 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
972 return;
973
974 /* Hopefully the prologue analysis either correctly determined the
975 frame's base (which is the SP from the previous frame), or set
976 that base to "NULL". */
977 base = info->prev_sp;
978 if (base == 0)
979 return;
980
981 id = frame_id_build (base, func);
982
983 /* Check that we're not going round in circles with the same frame
984 ID (but avoid applying the test to sentinel frames which do go
985 round in circles). Can't use frame_id_eq() as that doesn't yet
986 compare the frame's PC value. */
987 if (frame_relative_level (next_frame) >= 0
988 && get_frame_type (next_frame) != DUMMY_FRAME
989 && frame_id_eq (get_frame_id (next_frame), id))
990 return;
991
992 (*this_id) = id;
993}
994
995static void
996frv_frame_prev_register (struct frame_info *next_frame,
997 void **this_prologue_cache,
998 int regnum, int *optimizedp,
999 enum lval_type *lvalp, CORE_ADDR *addrp,
1000 int *realnump, void *bufferp)
1001{
1002 struct frv_unwind_cache *info
1003 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1004 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1005 optimizedp, lvalp, addrp, realnump, bufferp);
1006}
1007
1008static const struct frame_unwind frv_frame_unwind = {
1009 NORMAL_FRAME,
1010 frv_frame_this_id,
1011 frv_frame_prev_register
1012};
1013
1014static const struct frame_unwind *
1015frv_frame_sniffer (struct frame_info *next_frame)
1016{
1017 return &frv_frame_unwind;
1018}
1019
1020static CORE_ADDR
1021frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1022{
1023 struct frv_unwind_cache *info
1024 = frv_frame_unwind_cache (next_frame, this_cache);
1025 return info->base;
1026}
1027
1028static const struct frame_base frv_frame_base = {
1029 &frv_frame_unwind,
1030 frv_frame_base_address,
1031 frv_frame_base_address,
1032 frv_frame_base_address
1033};
1034
1035static CORE_ADDR
1036frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1037{
1038 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1039}
1040
1041
1042/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1043 dummy frame. The frame ID's base needs to match the TOS value
1044 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1045 breakpoint. */
1046
1047static struct frame_id
1048frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1049{
1050 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1051 frame_pc_unwind (next_frame));
1052}
1053
1054
456f8b9d
DB
1055static struct gdbarch *
1056frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1057{
1058 struct gdbarch *gdbarch;
1059 struct gdbarch_tdep *var;
1060
1061 /* Check to see if we've already built an appropriate architecture
1062 object for this executable. */
1063 arches = gdbarch_list_lookup_by_info (arches, &info);
1064 if (arches)
1065 return arches->gdbarch;
1066
1067 /* Select the right tdep structure for this variant. */
1068 var = new_variant ();
1069 switch (info.bfd_arch_info->mach)
1070 {
1071 case bfd_mach_frv:
1072 case bfd_mach_frvsimple:
1073 case bfd_mach_fr500:
1074 case bfd_mach_frvtomcat:
1075 set_variant_num_gprs (var, 64);
1076 set_variant_num_fprs (var, 64);
1077 break;
1078
1079 case bfd_mach_fr400:
1080 set_variant_num_gprs (var, 32);
1081 set_variant_num_fprs (var, 32);
1082 break;
1083
1084 default:
1085 /* Never heard of this variant. */
1086 return 0;
1087 }
1088
1089 gdbarch = gdbarch_alloc (&info, var);
1090
1091 set_gdbarch_short_bit (gdbarch, 16);
1092 set_gdbarch_int_bit (gdbarch, 32);
1093 set_gdbarch_long_bit (gdbarch, 32);
1094 set_gdbarch_long_long_bit (gdbarch, 64);
1095 set_gdbarch_float_bit (gdbarch, 32);
1096 set_gdbarch_double_bit (gdbarch, 64);
1097 set_gdbarch_long_double_bit (gdbarch, 64);
1098 set_gdbarch_ptr_bit (gdbarch, 32);
1099
1100 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1101 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1102 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1103 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1104
1105 set_gdbarch_register_name (gdbarch, frv_register_name);
b1e29e33 1106 set_gdbarch_deprecated_register_size (gdbarch, 4);
b8b527c5 1107 set_gdbarch_deprecated_register_bytes (gdbarch, frv_num_regs * 4);
9c04cab7
AC
1108 set_gdbarch_deprecated_register_byte (gdbarch, frv_register_byte);
1109 set_gdbarch_deprecated_register_raw_size (gdbarch, frv_register_raw_size);
a0ed5532 1110 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
9c04cab7 1111 set_gdbarch_deprecated_register_virtual_size (gdbarch, frv_register_virtual_size);
a0ed5532 1112 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
9c04cab7 1113 set_gdbarch_deprecated_register_virtual_type (gdbarch, frv_register_virtual_type);
456f8b9d
DB
1114
1115 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1116 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1117
456f8b9d
DB
1118 set_gdbarch_frame_args_skip (gdbarch, 0);
1119 set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
1120
1fd35568 1121 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
456f8b9d
DB
1122 set_gdbarch_deprecated_extract_return_value (gdbarch, frv_extract_return_value);
1123
4183d812 1124 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
ebba8386 1125 set_gdbarch_deprecated_store_return_value (gdbarch, frv_store_return_value);
456f8b9d
DB
1126 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
1127
1cb761c7
KB
1128 /* Frame stuff. */
1129 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1130 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1131 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1132 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1133 frame_base_set_default (gdbarch, &frv_frame_base);
456f8b9d 1134
1cb761c7
KB
1135 /* Settings for calling functions in the inferior. */
1136 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1137 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
456f8b9d
DB
1138
1139 /* Settings that should be unnecessary. */
1140 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1141
456f8b9d 1142 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
456f8b9d 1143
456f8b9d
DB
1144 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1145 set_gdbarch_function_start_offset (gdbarch, 0);
456f8b9d
DB
1146
1147 set_gdbarch_remote_translate_xfer_address
aed7f26a 1148 (gdbarch, generic_remote_translate_xfer_address);
456f8b9d
DB
1149
1150 /* Hardware watchpoint / breakpoint support. */
1151 switch (info.bfd_arch_info->mach)
1152 {
1153 case bfd_mach_frv:
1154 case bfd_mach_frvsimple:
1155 case bfd_mach_fr500:
1156 case bfd_mach_frvtomcat:
1157 /* fr500-style hardware debugging support. */
1158 var->num_hw_watchpoints = 4;
1159 var->num_hw_breakpoints = 4;
1160 break;
1161
1162 case bfd_mach_fr400:
1163 /* fr400-style hardware debugging support. */
1164 var->num_hw_watchpoints = 2;
1165 var->num_hw_breakpoints = 4;
1166 break;
1167
1168 default:
1169 /* Otherwise, assume we don't have hardware debugging support. */
1170 var->num_hw_watchpoints = 0;
1171 var->num_hw_breakpoints = 0;
1172 break;
1173 }
1174
36482093
AC
1175 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1176
456f8b9d
DB
1177 return gdbarch;
1178}
1179
1180void
1181_initialize_frv_tdep (void)
1182{
1183 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1184}
This page took 0.218012 seconds and 4 git commands to generate.