2004-02-17 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
9ab9195f 2 Copyright 2002, 2003, 2004 Free Software Foundation, Inc.
456f8b9d
DB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21#include "defs.h"
8baa6f92 22#include "gdb_string.h"
456f8b9d 23#include "inferior.h"
456f8b9d
DB
24#include "gdbcore.h"
25#include "arch-utils.h"
26#include "regcache.h"
8baa6f92 27#include "frame.h"
1cb761c7
KB
28#include "frame-unwind.h"
29#include "frame-base.h"
8baa6f92 30#include "trad-frame.h"
dcc6aaff 31#include "dis-asm.h"
526eef89
KB
32#include "gdb_assert.h"
33#include "sim-regno.h"
34#include "gdb/sim-frv.h"
35#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
456f8b9d
DB
36
37extern void _initialize_frv_tdep (void);
38
39static gdbarch_init_ftype frv_gdbarch_init;
40
41static gdbarch_register_name_ftype frv_register_name;
456f8b9d 42static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc;
46a16dba 43static gdbarch_adjust_breakpoint_address_ftype frv_gdbarch_adjust_breakpoint_address;
456f8b9d 44static gdbarch_skip_prologue_ftype frv_skip_prologue;
456f8b9d 45
526eef89
KB
46/* Register numbers. The order in which these appear define the
47 remote protocol, so take care in changing them. */
456f8b9d 48enum {
456f8b9d
DB
49 /* Register numbers 0 -- 63 are always reserved for general-purpose
50 registers. The chip at hand may have less. */
51 first_gpr_regnum = 0,
52 sp_regnum = 1,
53 fp_regnum = 2,
54 struct_return_regnum = 3,
55 last_gpr_regnum = 63,
56
57 /* Register numbers 64 -- 127 are always reserved for floating-point
58 registers. The chip at hand may have less. */
59 first_fpr_regnum = 64,
60 last_fpr_regnum = 127,
61
526eef89 62 /* The PC register. */
456f8b9d 63 pc_regnum = 128,
526eef89
KB
64
65 /* Register numbers 129 on up are always reserved for special-purpose
66 registers. */
67 first_spr_regnum = 129,
456f8b9d
DB
68 psr_regnum = 129,
69 ccr_regnum = 130,
70 cccr_regnum = 131,
71 tbr_regnum = 135,
72 brr_regnum = 136,
73 dbar0_regnum = 137,
74 dbar1_regnum = 138,
75 dbar2_regnum = 139,
76 dbar3_regnum = 140,
77 lr_regnum = 145,
78 lcr_regnum = 146,
526eef89
KB
79 iacc0h_regnum = 147,
80 iacc0l_regnum = 148,
81 last_spr_regnum = 148,
82
83 /* The total number of registers we know exist. */
6a748db6
KB
84 frv_num_regs = last_spr_regnum + 1,
85
86 /* Pseudo registers */
87 first_pseudo_regnum = frv_num_regs,
88
89 /* iacc0 - the 64-bit concatenation of iacc0h and iacc0l. */
90 iacc0_regnum = first_pseudo_regnum + 0,
91
92 last_pseudo_regnum = iacc0_regnum,
65ed7f0a 93 frv_num_pseudo_regs = last_pseudo_regnum - first_pseudo_regnum + 1,
456f8b9d
DB
94};
95
96static LONGEST frv_call_dummy_words[] =
97{0};
98
99
1cb761c7 100struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 101 {
1cb761c7
KB
102 /* The previous frame's inner-most stack address. Used as this
103 frame ID's stack_addr. */
104 CORE_ADDR prev_sp;
456f8b9d 105
1cb761c7
KB
106 /* The frame's base, optionally used by the high-level debug info. */
107 CORE_ADDR base;
8baa6f92
KB
108
109 /* Table indicating the location of each and every register. */
110 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
111 };
112
113
114/* A structure describing a particular variant of the FRV.
115 We allocate and initialize one of these structures when we create
116 the gdbarch object for a variant.
117
118 At the moment, all the FR variants we support differ only in which
119 registers are present; the portable code of GDB knows that
120 registers whose names are the empty string don't exist, so the
121 `register_names' array captures all the per-variant information we
122 need.
123
124 in the future, if we need to have per-variant maps for raw size,
125 virtual type, etc., we should replace register_names with an array
126 of structures, each of which gives all the necessary info for one
127 register. Don't stick parallel arrays in here --- that's so
128 Fortran. */
129struct gdbarch_tdep
130{
131 /* How many general-purpose registers does this variant have? */
132 int num_gprs;
133
134 /* How many floating-point registers does this variant have? */
135 int num_fprs;
136
137 /* How many hardware watchpoints can it support? */
138 int num_hw_watchpoints;
139
140 /* How many hardware breakpoints can it support? */
141 int num_hw_breakpoints;
142
143 /* Register names. */
144 char **register_names;
145};
146
147#define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch))
148
149
150/* Allocate a new variant structure, and set up default values for all
151 the fields. */
152static struct gdbarch_tdep *
5ae5f592 153new_variant (void)
456f8b9d
DB
154{
155 struct gdbarch_tdep *var;
156 int r;
157 char buf[20];
158
159 var = xmalloc (sizeof (*var));
160 memset (var, 0, sizeof (*var));
161
162 var->num_gprs = 64;
163 var->num_fprs = 64;
164 var->num_hw_watchpoints = 0;
165 var->num_hw_breakpoints = 0;
166
167 /* By default, don't supply any general-purpose or floating-point
168 register names. */
6a748db6
KB
169 var->register_names
170 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
171 * sizeof (char *));
172 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
173 var->register_names[r] = "";
174
526eef89 175 /* Do, however, supply default names for the known special-purpose
456f8b9d 176 registers. */
456f8b9d
DB
177
178 var->register_names[pc_regnum] = "pc";
179 var->register_names[lr_regnum] = "lr";
180 var->register_names[lcr_regnum] = "lcr";
181
182 var->register_names[psr_regnum] = "psr";
183 var->register_names[ccr_regnum] = "ccr";
184 var->register_names[cccr_regnum] = "cccr";
185 var->register_names[tbr_regnum] = "tbr";
186
187 /* Debug registers. */
188 var->register_names[brr_regnum] = "brr";
189 var->register_names[dbar0_regnum] = "dbar0";
190 var->register_names[dbar1_regnum] = "dbar1";
191 var->register_names[dbar2_regnum] = "dbar2";
192 var->register_names[dbar3_regnum] = "dbar3";
193
526eef89
KB
194 /* iacc0 (Only found on MB93405.) */
195 var->register_names[iacc0h_regnum] = "iacc0h";
196 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 197 var->register_names[iacc0_regnum] = "iacc0";
526eef89 198
456f8b9d
DB
199 return var;
200}
201
202
203/* Indicate that the variant VAR has NUM_GPRS general-purpose
204 registers, and fill in the names array appropriately. */
205static void
206set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
207{
208 int r;
209
210 var->num_gprs = num_gprs;
211
212 for (r = 0; r < num_gprs; ++r)
213 {
214 char buf[20];
215
216 sprintf (buf, "gr%d", r);
217 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
218 }
219}
220
221
222/* Indicate that the variant VAR has NUM_FPRS floating-point
223 registers, and fill in the names array appropriately. */
224static void
225set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
226{
227 int r;
228
229 var->num_fprs = num_fprs;
230
231 for (r = 0; r < num_fprs; ++r)
232 {
233 char buf[20];
234
235 sprintf (buf, "fr%d", r);
236 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
237 }
238}
239
240
241static const char *
242frv_register_name (int reg)
243{
244 if (reg < 0)
245 return "?toosmall?";
6a748db6 246 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
247 return "?toolarge?";
248
249 return CURRENT_VARIANT->register_names[reg];
250}
251
526eef89 252
456f8b9d 253static struct type *
7f398216 254frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 255{
526eef89 256 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
456f8b9d 257 return builtin_type_float;
6a748db6
KB
258 else if (reg == iacc0_regnum)
259 return builtin_type_int64;
456f8b9d 260 else
526eef89 261 return builtin_type_int32;
456f8b9d
DB
262}
263
6a748db6
KB
264static void
265frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
266 int reg, void *buffer)
267{
268 if (reg == iacc0_regnum)
269 {
270 regcache_raw_read (regcache, iacc0h_regnum, buffer);
271 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
272 }
273}
274
275static void
276frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
277 int reg, const void *buffer)
278{
279 if (reg == iacc0_regnum)
280 {
281 regcache_raw_write (regcache, iacc0h_regnum, buffer);
282 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
283 }
284}
285
526eef89
KB
286static int
287frv_register_sim_regno (int reg)
288{
289 static const int spr_map[] =
290 {
291 H_SPR_PSR, /* psr_regnum */
292 H_SPR_CCR, /* ccr_regnum */
293 H_SPR_CCCR, /* cccr_regnum */
294 -1, /* 132 */
295 -1, /* 133 */
296 -1, /* 134 */
297 H_SPR_TBR, /* tbr_regnum */
298 H_SPR_BRR, /* brr_regnum */
299 H_SPR_DBAR0, /* dbar0_regnum */
300 H_SPR_DBAR1, /* dbar1_regnum */
301 H_SPR_DBAR2, /* dbar2_regnum */
302 H_SPR_DBAR3, /* dbar3_regnum */
303 -1, /* 141 */
304 -1, /* 142 */
305 -1, /* 143 */
306 -1, /* 144 */
307 H_SPR_LR, /* lr_regnum */
308 H_SPR_LCR, /* lcr_regnum */
309 H_SPR_IACC0H, /* iacc0h_regnum */
310 H_SPR_IACC0L /* iacc0l_regnum */
311 };
312
313 gdb_assert (reg >= 0 && reg < NUM_REGS);
314
315 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
316 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
317 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
318 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
319 else if (pc_regnum == reg)
320 return SIM_FRV_PC_REGNUM;
321 else if (reg >= first_spr_regnum
322 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
323 {
324 int spr_reg_offset = spr_map[reg - first_spr_regnum];
325
326 if (spr_reg_offset < 0)
327 return SIM_REGNO_DOES_NOT_EXIST;
328 else
329 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
330 }
331
332 internal_error (__FILE__, __LINE__, "Bad register number %d", reg);
333}
334
456f8b9d
DB
335static const unsigned char *
336frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp)
337{
338 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
339 *lenp = sizeof (breakpoint);
340 return breakpoint;
341}
342
46a16dba
KB
343/* Define the maximum number of instructions which may be packed into a
344 bundle (VLIW instruction). */
345static const int max_instrs_per_bundle = 8;
346
347/* Define the size (in bytes) of an FR-V instruction. */
348static const int frv_instr_size = 4;
349
350/* Adjust a breakpoint's address to account for the FR-V architecture's
351 constraint that a break instruction must not appear as any but the
352 first instruction in the bundle. */
353static CORE_ADDR
354frv_gdbarch_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
355{
356 int count = max_instrs_per_bundle;
357 CORE_ADDR addr = bpaddr - frv_instr_size;
358 CORE_ADDR func_start = get_pc_function_start (bpaddr);
359
360 /* Find the end of the previous packing sequence. This will be indicated
361 by either attempting to access some inaccessible memory or by finding
362 an instruction word whose packing bit is set to one. */
363 while (count-- > 0 && addr >= func_start)
364 {
365 char instr[frv_instr_size];
366 int status;
367
368 status = read_memory_nobpt (addr, instr, sizeof instr);
369
370 if (status != 0)
371 break;
372
373 /* This is a big endian architecture, so byte zero will have most
374 significant byte. The most significant bit of this byte is the
375 packing bit. */
376 if (instr[0] & 0x80)
377 break;
378
379 addr -= frv_instr_size;
380 }
381
382 if (count > 0)
383 bpaddr = addr + frv_instr_size;
384
385 return bpaddr;
386}
387
456f8b9d
DB
388
389/* Return true if REG is a caller-saves ("scratch") register,
390 false otherwise. */
391static int
392is_caller_saves_reg (int reg)
393{
394 return ((4 <= reg && reg <= 7)
395 || (14 <= reg && reg <= 15)
396 || (32 <= reg && reg <= 47));
397}
398
399
400/* Return true if REG is a callee-saves register, false otherwise. */
401static int
402is_callee_saves_reg (int reg)
403{
404 return ((16 <= reg && reg <= 31)
405 || (48 <= reg && reg <= 63));
406}
407
408
409/* Return true if REG is an argument register, false otherwise. */
410static int
411is_argument_reg (int reg)
412{
413 return (8 <= reg && reg <= 13);
414}
415
d40fcd7b
KB
416/* Given PC at the function's start address, attempt to find the
417 prologue end using SAL information. Return zero if the skip fails.
418
419 A non-optimized prologue traditionally has one SAL for the function
420 and a second for the function body. A single line function has
421 them both pointing at the same line.
422
423 An optimized prologue is similar but the prologue may contain
424 instructions (SALs) from the instruction body. Need to skip those
425 while not getting into the function body.
426
427 The functions end point and an increasing SAL line are used as
428 indicators of the prologue's endpoint.
429
430 This code is based on the function refine_prologue_limit (versions
431 found in both ia64 and ppc). */
432
433static CORE_ADDR
434skip_prologue_using_sal (CORE_ADDR func_addr)
435{
436 struct symtab_and_line prologue_sal;
437 CORE_ADDR start_pc;
438 CORE_ADDR end_pc;
439
440 /* Get an initial range for the function. */
441 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
442 start_pc += FUNCTION_START_OFFSET;
443
444 prologue_sal = find_pc_line (start_pc, 0);
445 if (prologue_sal.line != 0)
446 {
447 while (prologue_sal.end < end_pc)
448 {
449 struct symtab_and_line sal;
450
451 sal = find_pc_line (prologue_sal.end, 0);
452 if (sal.line == 0)
453 break;
454 /* Assume that a consecutive SAL for the same (or larger)
455 line mark the prologue -> body transition. */
456 if (sal.line >= prologue_sal.line)
457 break;
458 /* The case in which compiler's optimizer/scheduler has
459 moved instructions into the prologue. We look ahead in
460 the function looking for address ranges whose
461 corresponding line number is less the first one that we
462 found for the function. This is more conservative then
463 refine_prologue_limit which scans a large number of SALs
464 looking for any in the prologue */
465 prologue_sal = sal;
466 }
467 }
468 return prologue_sal.end;
469}
470
456f8b9d
DB
471
472/* Scan an FR-V prologue, starting at PC, until frame->PC.
473 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
474 We assume FRAME's saved_regs array has already been allocated and cleared.
475 Return the first PC value after the prologue.
476
477 Note that, for unoptimized code, we almost don't need this function
478 at all; all arguments and locals live on the stack, so we just need
479 the FP to find everything. The catch: structures passed by value
480 have their addresses living in registers; they're never spilled to
481 the stack. So if you ever want to be able to get to these
482 arguments in any frame but the top, you'll need to do this serious
483 prologue analysis. */
484static CORE_ADDR
1cb761c7
KB
485frv_analyze_prologue (CORE_ADDR pc, struct frame_info *next_frame,
486 struct frv_unwind_cache *info)
456f8b9d
DB
487{
488 /* When writing out instruction bitpatterns, we use the following
489 letters to label instruction fields:
490 P - The parallel bit. We don't use this.
491 J - The register number of GRj in the instruction description.
492 K - The register number of GRk in the instruction description.
493 I - The register number of GRi.
494 S - a signed imediate offset.
495 U - an unsigned immediate offset.
496
497 The dots below the numbers indicate where hex digit boundaries
498 fall, to make it easier to check the numbers. */
499
500 /* Non-zero iff we've seen the instruction that initializes the
501 frame pointer for this function's frame. */
502 int fp_set = 0;
503
504 /* If fp_set is non_zero, then this is the distance from
505 the stack pointer to frame pointer: fp = sp + fp_offset. */
506 int fp_offset = 0;
507
508 /* Total size of frame prior to any alloca operations. */
509 int framesize = 0;
510
1cb761c7
KB
511 /* Flag indicating if lr has been saved on the stack. */
512 int lr_saved_on_stack = 0;
513
456f8b9d
DB
514 /* The number of the general-purpose register we saved the return
515 address ("link register") in, or -1 if we haven't moved it yet. */
516 int lr_save_reg = -1;
517
1cb761c7
KB
518 /* Offset (from sp) at which lr has been saved on the stack. */
519
520 int lr_sp_offset = 0;
456f8b9d
DB
521
522 /* If gr_saved[i] is non-zero, then we've noticed that general
523 register i has been saved at gr_sp_offset[i] from the stack
524 pointer. */
525 char gr_saved[64];
526 int gr_sp_offset[64];
527
d40fcd7b
KB
528 /* The address of the most recently scanned prologue instruction. */
529 CORE_ADDR last_prologue_pc;
530
531 /* The address of the next instruction. */
532 CORE_ADDR next_pc;
533
534 /* The upper bound to of the pc values to scan. */
535 CORE_ADDR lim_pc;
536
456f8b9d
DB
537 memset (gr_saved, 0, sizeof (gr_saved));
538
d40fcd7b
KB
539 last_prologue_pc = pc;
540
541 /* Try to compute an upper limit (on how far to scan) based on the
542 line number info. */
543 lim_pc = skip_prologue_using_sal (pc);
544 /* If there's no line number info, lim_pc will be 0. In that case,
545 set the limit to be 100 instructions away from pc. Hopefully, this
546 will be far enough away to account for the entire prologue. Don't
547 worry about overshooting the end of the function. The scan loop
548 below contains some checks to avoid scanning unreasonably far. */
549 if (lim_pc == 0)
550 lim_pc = pc + 400;
551
552 /* If we have a frame, we don't want to scan past the frame's pc. This
553 will catch those cases where the pc is in the prologue. */
554 if (next_frame)
555 {
556 CORE_ADDR frame_pc = frame_pc_unwind (next_frame);
557 if (frame_pc < lim_pc)
558 lim_pc = frame_pc;
559 }
560
561 /* Scan the prologue. */
562 while (pc < lim_pc)
456f8b9d
DB
563 {
564 LONGEST op = read_memory_integer (pc, 4);
d40fcd7b 565 next_pc = pc + 4;
456f8b9d
DB
566
567 /* The tests in this chain of ifs should be in order of
568 decreasing selectivity, so that more particular patterns get
569 to fire before less particular patterns. */
570
d40fcd7b
KB
571 /* Some sort of control transfer instruction: stop scanning prologue.
572 Integer Conditional Branch:
573 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
574 Floating-point / media Conditional Branch:
575 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
576 LCR Conditional Branch to LR
577 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
578 Integer conditional Branches to LR
579 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
580 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
581 Floating-point/Media Branches to LR
582 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
583 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
584 Jump and Link
585 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
586 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
587 Call
588 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
589 Return from Trap
590 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
591 Integer Conditional Trap
592 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
593 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
594 Floating-point /media Conditional Trap
595 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
596 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
597 Break
598 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
599 Media Trap
600 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
601 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
602 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
603 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
604 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
605 {
606 /* Stop scanning; not in prologue any longer. */
607 break;
608 }
609
610 /* Loading something from memory into fp probably means that
611 we're in the epilogue. Stop scanning the prologue.
612 ld @(GRi, GRk), fp
613 X 000010 0000010 XXXXXX 000100 XXXXXX
614 ldi @(GRi, d12), fp
615 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
616 else if ((op & 0x7ffc0fc0) == 0x04080100
617 || (op & 0x7ffc0000) == 0x04c80000)
618 {
619 break;
620 }
621
456f8b9d
DB
622 /* Setting the FP from the SP:
623 ori sp, 0, fp
624 P 000010 0100010 000001 000000000000 = 0x04881000
625 0 111111 1111111 111111 111111111111 = 0x7fffffff
626 . . . . . . . .
627 We treat this as part of the prologue. */
d40fcd7b 628 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
629 {
630 fp_set = 1;
631 fp_offset = 0;
d40fcd7b 632 last_prologue_pc = next_pc;
456f8b9d
DB
633 }
634
635 /* Move the link register to the scratch register grJ, before saving:
636 movsg lr, grJ
637 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
638 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
639 . . . . . . . .
640 We treat this as part of the prologue. */
641 else if ((op & 0x7fffffc0) == 0x080d01c0)
642 {
643 int gr_j = op & 0x3f;
644
645 /* If we're moving it to a scratch register, that's fine. */
646 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
647 {
648 lr_save_reg = gr_j;
649 last_prologue_pc = next_pc;
650 }
456f8b9d
DB
651 }
652
653 /* To save multiple callee-saves registers on the stack, at
654 offset zero:
655
656 std grK,@(sp,gr0)
657 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
658 0 000000 1111111 111111 111111 111111 = 0x01ffffff
659
660 stq grK,@(sp,gr0)
661 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
662 0 000000 1111111 111111 111111 111111 = 0x01ffffff
663 . . . . . . . .
664 We treat this as part of the prologue, and record the register's
665 saved address in the frame structure. */
666 else if ((op & 0x01ffffff) == 0x000c10c0
667 || (op & 0x01ffffff) == 0x000c1100)
668 {
669 int gr_k = ((op >> 25) & 0x3f);
670 int ope = ((op >> 6) & 0x3f);
671 int count;
672 int i;
673
674 /* Is it an std or an stq? */
675 if (ope == 0x03)
676 count = 2;
677 else
678 count = 4;
679
680 /* Is it really a callee-saves register? */
681 if (is_callee_saves_reg (gr_k))
682 {
683 for (i = 0; i < count; i++)
684 {
685 gr_saved[gr_k + i] = 1;
686 gr_sp_offset[gr_k + i] = 4 * i;
687 }
d40fcd7b 688 last_prologue_pc = next_pc;
456f8b9d 689 }
456f8b9d
DB
690 }
691
692 /* Adjusting the stack pointer. (The stack pointer is GR1.)
693 addi sp, S, sp
694 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
695 0 111111 1111111 111111 000000000000 = 0x7ffff000
696 . . . . . . . .
697 We treat this as part of the prologue. */
698 else if ((op & 0x7ffff000) == 0x02401000)
699 {
d40fcd7b
KB
700 if (framesize == 0)
701 {
702 /* Sign-extend the twelve-bit field.
703 (Isn't there a better way to do this?) */
704 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 705
d40fcd7b
KB
706 framesize -= s;
707 last_prologue_pc = pc;
708 }
709 else
710 {
711 /* If the prologue is being adjusted again, we've
712 likely gone too far; i.e. we're probably in the
713 epilogue. */
714 break;
715 }
456f8b9d
DB
716 }
717
718 /* Setting the FP to a constant distance from the SP:
719 addi sp, S, fp
720 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
721 0 111111 1111111 111111 000000000000 = 0x7ffff000
722 . . . . . . . .
723 We treat this as part of the prologue. */
724 else if ((op & 0x7ffff000) == 0x04401000)
725 {
726 /* Sign-extend the twelve-bit field.
727 (Isn't there a better way to do this?) */
728 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
729 fp_set = 1;
730 fp_offset = s;
d40fcd7b 731 last_prologue_pc = pc;
456f8b9d
DB
732 }
733
734 /* To spill an argument register to a scratch register:
735 ori GRi, 0, GRk
736 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
737 0 000000 1111111 000000 111111111111 = 0x01fc0fff
738 . . . . . . . .
739 For the time being, we treat this as a prologue instruction,
740 assuming that GRi is an argument register. This one's kind
741 of suspicious, because it seems like it could be part of a
742 legitimate body instruction. But we only come here when the
743 source info wasn't helpful, so we have to do the best we can.
744 Hopefully once GCC and GDB agree on how to emit line number
745 info for prologues, then this code will never come into play. */
746 else if ((op & 0x01fc0fff) == 0x00880000)
747 {
748 int gr_i = ((op >> 12) & 0x3f);
749
d40fcd7b
KB
750 /* Make sure that the source is an arg register; if it is, we'll
751 treat it as a prologue instruction. */
752 if (is_argument_reg (gr_i))
753 last_prologue_pc = next_pc;
456f8b9d
DB
754 }
755
756 /* To spill 16-bit values to the stack:
757 sthi GRk, @(fp, s)
758 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
759 0 000000 1111111 111111 000000000000 = 0x01fff000
760 . . . . . . . .
761 And for 8-bit values, we use STB instructions.
762 stbi GRk, @(fp, s)
763 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
764 0 000000 1111111 111111 000000000000 = 0x01fff000
765 . . . . . . . .
766 We check that GRk is really an argument register, and treat
767 all such as part of the prologue. */
768 else if ( (op & 0x01fff000) == 0x01442000
769 || (op & 0x01fff000) == 0x01402000)
770 {
771 int gr_k = ((op >> 25) & 0x3f);
772
d40fcd7b
KB
773 /* Make sure that GRk is really an argument register; treat
774 it as a prologue instruction if so. */
775 if (is_argument_reg (gr_k))
776 last_prologue_pc = next_pc;
456f8b9d
DB
777 }
778
779 /* To save multiple callee-saves register on the stack, at a
780 non-zero offset:
781
782 stdi GRk, @(sp, s)
783 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
784 0 000000 1111111 111111 000000000000 = 0x01fff000
785 . . . . . . . .
786 stqi GRk, @(sp, s)
787 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
788 0 000000 1111111 111111 000000000000 = 0x01fff000
789 . . . . . . . .
790 We treat this as part of the prologue, and record the register's
791 saved address in the frame structure. */
792 else if ((op & 0x01fff000) == 0x014c1000
793 || (op & 0x01fff000) == 0x01501000)
794 {
795 int gr_k = ((op >> 25) & 0x3f);
796 int count;
797 int i;
798
799 /* Is it a stdi or a stqi? */
800 if ((op & 0x01fff000) == 0x014c1000)
801 count = 2;
802 else
803 count = 4;
804
805 /* Is it really a callee-saves register? */
806 if (is_callee_saves_reg (gr_k))
807 {
808 /* Sign-extend the twelve-bit field.
809 (Isn't there a better way to do this?) */
810 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
811
812 for (i = 0; i < count; i++)
813 {
814 gr_saved[gr_k + i] = 1;
815 gr_sp_offset[gr_k + i] = s + (4 * i);
816 }
d40fcd7b 817 last_prologue_pc = next_pc;
456f8b9d 818 }
456f8b9d
DB
819 }
820
821 /* Storing any kind of integer register at any constant offset
822 from any other register.
823
824 st GRk, @(GRi, gr0)
825 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
826 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
827 . . . . . . . .
828 sti GRk, @(GRi, d12)
829 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
830 0 000000 1111111 000000 000000000000 = 0x01fc0000
831 . . . . . . . .
832 These could be almost anything, but a lot of prologue
833 instructions fall into this pattern, so let's decode the
834 instruction once, and then work at a higher level. */
835 else if (((op & 0x01fc0fff) == 0x000c0080)
836 || ((op & 0x01fc0000) == 0x01480000))
837 {
838 int gr_k = ((op >> 25) & 0x3f);
839 int gr_i = ((op >> 12) & 0x3f);
840 int offset;
841
842 /* Are we storing with gr0 as an offset, or using an
843 immediate value? */
844 if ((op & 0x01fc0fff) == 0x000c0080)
845 offset = 0;
846 else
847 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
848
849 /* If the address isn't relative to the SP or FP, it's not a
850 prologue instruction. */
851 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
852 {
853 /* Do nothing; not a prologue instruction. */
854 }
456f8b9d
DB
855
856 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 857 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
858 {
859 gr_saved[fp_regnum] = 1;
860 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 861 last_prologue_pc = next_pc;
1cb761c7 862 }
456f8b9d
DB
863
864 /* Saving callee-saves register(s) on the stack, relative to
865 the SP. */
866 else if (gr_i == sp_regnum
867 && is_callee_saves_reg (gr_k))
868 {
869 gr_saved[gr_k] = 1;
1cb761c7
KB
870 if (gr_i == sp_regnum)
871 gr_sp_offset[gr_k] = offset;
872 else
873 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 874 last_prologue_pc = next_pc;
456f8b9d
DB
875 }
876
877 /* Saving the scratch register holding the return address. */
878 else if (lr_save_reg != -1
879 && gr_k == lr_save_reg)
1cb761c7
KB
880 {
881 lr_saved_on_stack = 1;
882 if (gr_i == sp_regnum)
883 lr_sp_offset = offset;
884 else
885 lr_sp_offset = offset + fp_offset;
d40fcd7b 886 last_prologue_pc = next_pc;
1cb761c7 887 }
456f8b9d
DB
888
889 /* Spilling int-sized arguments to the stack. */
890 else if (is_argument_reg (gr_k))
d40fcd7b 891 last_prologue_pc = next_pc;
456f8b9d 892 }
d40fcd7b 893 pc = next_pc;
456f8b9d
DB
894 }
895
1cb761c7 896 if (next_frame && info)
456f8b9d 897 {
1cb761c7
KB
898 int i;
899 ULONGEST this_base;
456f8b9d
DB
900
901 /* If we know the relationship between the stack and frame
902 pointers, record the addresses of the registers we noticed.
903 Note that we have to do this as a separate step at the end,
904 because instructions may save relative to the SP, but we need
905 their addresses relative to the FP. */
906 if (fp_set)
1cb761c7
KB
907 frame_unwind_unsigned_register (next_frame, fp_regnum, &this_base);
908 else
909 frame_unwind_unsigned_register (next_frame, sp_regnum, &this_base);
456f8b9d 910
1cb761c7
KB
911 for (i = 0; i < 64; i++)
912 if (gr_saved[i])
913 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 914
1cb761c7
KB
915 info->prev_sp = this_base - fp_offset + framesize;
916 info->base = this_base;
917
918 /* If LR was saved on the stack, record its location. */
919 if (lr_saved_on_stack)
920 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
921
922 /* The call instruction moves the caller's PC in the callee's LR.
923 Since this is an unwind, do the reverse. Copy the location of LR
924 into PC (the address / regnum) so that a request for PC will be
925 converted into a request for the LR. */
926 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
927
928 /* Save the previous frame's computed SP value. */
929 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
930 }
931
d40fcd7b 932 return last_prologue_pc;
456f8b9d
DB
933}
934
935
936static CORE_ADDR
937frv_skip_prologue (CORE_ADDR pc)
938{
939 CORE_ADDR func_addr, func_end, new_pc;
940
941 new_pc = pc;
942
943 /* If the line table has entry for a line *within* the function
944 (i.e., not in the prologue, and not past the end), then that's
945 our location. */
946 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
947 {
948 struct symtab_and_line sal;
949
950 sal = find_pc_line (func_addr, 0);
951
952 if (sal.line != 0 && sal.end < func_end)
953 {
954 new_pc = sal.end;
955 }
956 }
957
958 /* The FR-V prologue is at least five instructions long (twenty bytes).
959 If we didn't find a real source location past that, then
960 do a full analysis of the prologue. */
961 if (new_pc < pc + 20)
1cb761c7 962 new_pc = frv_analyze_prologue (pc, 0, 0);
456f8b9d
DB
963
964 return new_pc;
965}
966
1cb761c7
KB
967
968static struct frv_unwind_cache *
969frv_frame_unwind_cache (struct frame_info *next_frame,
970 void **this_prologue_cache)
456f8b9d 971{
1cb761c7
KB
972 struct gdbarch *gdbarch = get_frame_arch (next_frame);
973 CORE_ADDR pc;
974 ULONGEST prev_sp;
975 ULONGEST this_base;
976 struct frv_unwind_cache *info;
8baa6f92 977
1cb761c7
KB
978 if ((*this_prologue_cache))
979 return (*this_prologue_cache);
456f8b9d 980
1cb761c7
KB
981 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
982 (*this_prologue_cache) = info;
983 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
456f8b9d 984
1cb761c7
KB
985 /* Prologue analysis does the rest... */
986 frv_analyze_prologue (frame_func_unwind (next_frame), next_frame, info);
456f8b9d 987
1cb761c7 988 return info;
456f8b9d
DB
989}
990
456f8b9d 991static void
cd31fb03
KB
992frv_extract_return_value (struct type *type, struct regcache *regcache,
993 void *valbuf)
456f8b9d 994{
cd31fb03
KB
995 int len = TYPE_LENGTH (type);
996
997 if (len <= 4)
998 {
999 ULONGEST gpr8_val;
1000 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1001 store_unsigned_integer (valbuf, len, gpr8_val);
1002 }
1003 else if (len == 8)
1004 {
1005 ULONGEST regval;
1006 regcache_cooked_read_unsigned (regcache, 8, &regval);
1007 store_unsigned_integer (valbuf, 4, regval);
1008 regcache_cooked_read_unsigned (regcache, 9, &regval);
1009 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1010 }
1011 else
1012 internal_error (__FILE__, __LINE__, "Illegal return value length: %d", len);
456f8b9d
DB
1013}
1014
1015static CORE_ADDR
cd31fb03 1016frv_extract_struct_value_address (struct regcache *regcache)
456f8b9d 1017{
cd31fb03
KB
1018 ULONGEST addr;
1019 regcache_cooked_read_unsigned (regcache, struct_return_regnum, &addr);
1020 return addr;
456f8b9d
DB
1021}
1022
1023static void
1024frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1025{
1026 write_register (struct_return_regnum, addr);
1027}
1028
1029static int
1030frv_frameless_function_invocation (struct frame_info *frame)
1031{
19772a2c 1032 return legacy_frameless_look_for_prologue (frame);
456f8b9d
DB
1033}
1034
1cb761c7
KB
1035static CORE_ADDR
1036frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1037{
1cb761c7 1038 /* Require dword alignment. */
5b03f266 1039 return align_down (sp, 8);
456f8b9d
DB
1040}
1041
456f8b9d 1042static CORE_ADDR
1cb761c7
KB
1043frv_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1044 struct regcache *regcache, CORE_ADDR bp_addr,
1045 int nargs, struct value **args, CORE_ADDR sp,
1046 int struct_return, CORE_ADDR struct_addr)
456f8b9d
DB
1047{
1048 int argreg;
1049 int argnum;
1050 char *val;
1051 char valbuf[4];
1052 struct value *arg;
1053 struct type *arg_type;
1054 int len;
1055 enum type_code typecode;
1056 CORE_ADDR regval;
1057 int stack_space;
1058 int stack_offset;
1059
1060#if 0
1061 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1062 nargs, (int) sp, struct_return, struct_addr);
1063#endif
1064
1065 stack_space = 0;
1066 for (argnum = 0; argnum < nargs; ++argnum)
5b03f266 1067 stack_space += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4);
456f8b9d
DB
1068
1069 stack_space -= (6 * 4);
1070 if (stack_space > 0)
1071 sp -= stack_space;
1072
1073 /* Make sure stack is dword aligned. */
5b03f266 1074 sp = align_down (sp, 8);
456f8b9d
DB
1075
1076 stack_offset = 0;
1077
1078 argreg = 8;
1079
1080 if (struct_return)
1cb761c7
KB
1081 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1082 struct_addr);
456f8b9d
DB
1083
1084 for (argnum = 0; argnum < nargs; ++argnum)
1085 {
1086 arg = args[argnum];
1087 arg_type = check_typedef (VALUE_TYPE (arg));
1088 len = TYPE_LENGTH (arg_type);
1089 typecode = TYPE_CODE (arg_type);
1090
1091 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1092 {
fbd9dcd3 1093 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
456f8b9d
DB
1094 typecode = TYPE_CODE_PTR;
1095 len = 4;
1096 val = valbuf;
1097 }
1098 else
1099 {
1100 val = (char *) VALUE_CONTENTS (arg);
1101 }
1102
1103 while (len > 0)
1104 {
1105 int partial_len = (len < 4 ? len : 4);
1106
1107 if (argreg < 14)
1108 {
7c0b4a20 1109 regval = extract_unsigned_integer (val, partial_len);
456f8b9d
DB
1110#if 0
1111 printf(" Argnum %d data %x -> reg %d\n",
1112 argnum, (int) regval, argreg);
1113#endif
1cb761c7 1114 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1115 ++argreg;
1116 }
1117 else
1118 {
1119#if 0
1120 printf(" Argnum %d data %x -> offset %d (%x)\n",
1121 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1122#endif
1123 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1124 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1125 }
1126 len -= partial_len;
1127 val += partial_len;
1128 }
1129 }
456f8b9d 1130
1cb761c7
KB
1131 /* Set the return address. For the frv, the return breakpoint is
1132 always at BP_ADDR. */
1133 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1134
1135 /* Finally, update the SP register. */
1136 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1137
456f8b9d
DB
1138 return sp;
1139}
1140
1141static void
cd31fb03
KB
1142frv_store_return_value (struct type *type, struct regcache *regcache,
1143 const void *valbuf)
456f8b9d 1144{
cd31fb03
KB
1145 int len = TYPE_LENGTH (type);
1146
1147 if (len <= 4)
1148 {
1149 bfd_byte val[4];
1150 memset (val, 0, sizeof (val));
1151 memcpy (val + (4 - len), valbuf, len);
1152 regcache_cooked_write (regcache, 8, val);
1153 }
1154 else if (len == 8)
1155 {
1156 regcache_cooked_write (regcache, 8, valbuf);
1157 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1158 }
456f8b9d
DB
1159 else
1160 internal_error (__FILE__, __LINE__,
cd31fb03 1161 "Don't know how to return a %d-byte value.", len);
456f8b9d
DB
1162}
1163
456f8b9d 1164
456f8b9d
DB
1165/* Hardware watchpoint / breakpoint support for the FR500
1166 and FR400. */
1167
1168int
1169frv_check_watch_resources (int type, int cnt, int ot)
1170{
1171 struct gdbarch_tdep *var = CURRENT_VARIANT;
1172
1173 /* Watchpoints not supported on simulator. */
1174 if (strcmp (target_shortname, "sim") == 0)
1175 return 0;
1176
1177 if (type == bp_hardware_breakpoint)
1178 {
1179 if (var->num_hw_breakpoints == 0)
1180 return 0;
1181 else if (cnt <= var->num_hw_breakpoints)
1182 return 1;
1183 }
1184 else
1185 {
1186 if (var->num_hw_watchpoints == 0)
1187 return 0;
1188 else if (ot)
1189 return -1;
1190 else if (cnt <= var->num_hw_watchpoints)
1191 return 1;
1192 }
1193 return -1;
1194}
1195
1196
1197CORE_ADDR
5ae5f592 1198frv_stopped_data_address (void)
456f8b9d
DB
1199{
1200 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1201
1202 brr = read_register (brr_regnum);
1203 dbar0 = read_register (dbar0_regnum);
1204 dbar1 = read_register (dbar1_regnum);
1205 dbar2 = read_register (dbar2_regnum);
1206 dbar3 = read_register (dbar3_regnum);
1207
1208 if (brr & (1<<11))
1209 return dbar0;
1210 else if (brr & (1<<10))
1211 return dbar1;
1212 else if (brr & (1<<9))
1213 return dbar2;
1214 else if (brr & (1<<8))
1215 return dbar3;
1216 else
1217 return 0;
1218}
1219
1cb761c7
KB
1220static CORE_ADDR
1221frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1222{
1223 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1224}
1225
1226/* Given a GDB frame, determine the address of the calling function's
1227 frame. This will be used to create a new GDB frame struct. */
1228
1229static void
1230frv_frame_this_id (struct frame_info *next_frame,
1231 void **this_prologue_cache, struct frame_id *this_id)
1232{
1233 struct frv_unwind_cache *info
1234 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1235 CORE_ADDR base;
1236 CORE_ADDR func;
1237 struct minimal_symbol *msym_stack;
1238 struct frame_id id;
1239
1240 /* The FUNC is easy. */
1241 func = frame_func_unwind (next_frame);
1242
1cb761c7
KB
1243 /* Check if the stack is empty. */
1244 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1245 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1246 return;
1247
1248 /* Hopefully the prologue analysis either correctly determined the
1249 frame's base (which is the SP from the previous frame), or set
1250 that base to "NULL". */
1251 base = info->prev_sp;
1252 if (base == 0)
1253 return;
1254
1255 id = frame_id_build (base, func);
1256
1257 /* Check that we're not going round in circles with the same frame
1258 ID (but avoid applying the test to sentinel frames which do go
1259 round in circles). Can't use frame_id_eq() as that doesn't yet
1260 compare the frame's PC value. */
1261 if (frame_relative_level (next_frame) >= 0
1262 && get_frame_type (next_frame) != DUMMY_FRAME
1263 && frame_id_eq (get_frame_id (next_frame), id))
1264 return;
1265
1266 (*this_id) = id;
1267}
1268
1269static void
1270frv_frame_prev_register (struct frame_info *next_frame,
1271 void **this_prologue_cache,
1272 int regnum, int *optimizedp,
1273 enum lval_type *lvalp, CORE_ADDR *addrp,
1274 int *realnump, void *bufferp)
1275{
1276 struct frv_unwind_cache *info
1277 = frv_frame_unwind_cache (next_frame, this_prologue_cache);
1278 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1279 optimizedp, lvalp, addrp, realnump, bufferp);
1280}
1281
1282static const struct frame_unwind frv_frame_unwind = {
1283 NORMAL_FRAME,
1284 frv_frame_this_id,
1285 frv_frame_prev_register
1286};
1287
1288static const struct frame_unwind *
1289frv_frame_sniffer (struct frame_info *next_frame)
1290{
1291 return &frv_frame_unwind;
1292}
1293
1294static CORE_ADDR
1295frv_frame_base_address (struct frame_info *next_frame, void **this_cache)
1296{
1297 struct frv_unwind_cache *info
1298 = frv_frame_unwind_cache (next_frame, this_cache);
1299 return info->base;
1300}
1301
1302static const struct frame_base frv_frame_base = {
1303 &frv_frame_unwind,
1304 frv_frame_base_address,
1305 frv_frame_base_address,
1306 frv_frame_base_address
1307};
1308
1309static CORE_ADDR
1310frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1311{
1312 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1313}
1314
1315
1316/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1317 dummy frame. The frame ID's base needs to match the TOS value
1318 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1319 breakpoint. */
1320
1321static struct frame_id
1322frv_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1323{
1324 return frame_id_build (frv_unwind_sp (gdbarch, next_frame),
1325 frame_pc_unwind (next_frame));
1326}
1327
1328
456f8b9d
DB
1329static struct gdbarch *
1330frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1331{
1332 struct gdbarch *gdbarch;
1333 struct gdbarch_tdep *var;
1334
1335 /* Check to see if we've already built an appropriate architecture
1336 object for this executable. */
1337 arches = gdbarch_list_lookup_by_info (arches, &info);
1338 if (arches)
1339 return arches->gdbarch;
1340
1341 /* Select the right tdep structure for this variant. */
1342 var = new_variant ();
1343 switch (info.bfd_arch_info->mach)
1344 {
1345 case bfd_mach_frv:
1346 case bfd_mach_frvsimple:
1347 case bfd_mach_fr500:
1348 case bfd_mach_frvtomcat:
251a3ae3 1349 case bfd_mach_fr550:
456f8b9d
DB
1350 set_variant_num_gprs (var, 64);
1351 set_variant_num_fprs (var, 64);
1352 break;
1353
1354 case bfd_mach_fr400:
1355 set_variant_num_gprs (var, 32);
1356 set_variant_num_fprs (var, 32);
1357 break;
1358
1359 default:
1360 /* Never heard of this variant. */
1361 return 0;
1362 }
1363
1364 gdbarch = gdbarch_alloc (&info, var);
1365
1366 set_gdbarch_short_bit (gdbarch, 16);
1367 set_gdbarch_int_bit (gdbarch, 32);
1368 set_gdbarch_long_bit (gdbarch, 32);
1369 set_gdbarch_long_long_bit (gdbarch, 64);
1370 set_gdbarch_float_bit (gdbarch, 32);
1371 set_gdbarch_double_bit (gdbarch, 64);
1372 set_gdbarch_long_double_bit (gdbarch, 64);
1373 set_gdbarch_ptr_bit (gdbarch, 32);
1374
1375 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1376 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1377
456f8b9d 1378 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1379 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1380 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1381
1382 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1383 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1384 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1385
6a748db6
KB
1386 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1387 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1388
456f8b9d
DB
1389 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1390 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
46a16dba 1391 set_gdbarch_adjust_breakpoint_address (gdbarch, frv_gdbarch_adjust_breakpoint_address);
456f8b9d 1392
19772a2c 1393 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, frv_frameless_function_invocation);
456f8b9d 1394
1fd35568 1395 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
cd31fb03 1396 set_gdbarch_extract_return_value (gdbarch, frv_extract_return_value);
456f8b9d 1397
4183d812 1398 set_gdbarch_deprecated_store_struct_return (gdbarch, frv_store_struct_return);
cd31fb03 1399 set_gdbarch_store_return_value (gdbarch, frv_store_return_value);
74055713 1400 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address);
456f8b9d 1401
1cb761c7
KB
1402 /* Frame stuff. */
1403 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1404 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1405 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1406 frame_unwind_append_sniffer (gdbarch, frv_frame_sniffer);
1407 frame_base_set_default (gdbarch, &frv_frame_base);
456f8b9d 1408
1cb761c7
KB
1409 /* Settings for calling functions in the inferior. */
1410 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1411 set_gdbarch_unwind_dummy_id (gdbarch, frv_unwind_dummy_id);
456f8b9d
DB
1412
1413 /* Settings that should be unnecessary. */
1414 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1415
456f8b9d 1416 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
456f8b9d 1417
456f8b9d 1418 set_gdbarch_remote_translate_xfer_address
aed7f26a 1419 (gdbarch, generic_remote_translate_xfer_address);
456f8b9d
DB
1420
1421 /* Hardware watchpoint / breakpoint support. */
1422 switch (info.bfd_arch_info->mach)
1423 {
1424 case bfd_mach_frv:
1425 case bfd_mach_frvsimple:
1426 case bfd_mach_fr500:
1427 case bfd_mach_frvtomcat:
1428 /* fr500-style hardware debugging support. */
1429 var->num_hw_watchpoints = 4;
1430 var->num_hw_breakpoints = 4;
1431 break;
1432
1433 case bfd_mach_fr400:
1434 /* fr400-style hardware debugging support. */
1435 var->num_hw_watchpoints = 2;
1436 var->num_hw_breakpoints = 4;
1437 break;
1438
1439 default:
1440 /* Otherwise, assume we don't have hardware debugging support. */
1441 var->num_hw_watchpoints = 0;
1442 var->num_hw_breakpoints = 0;
1443 break;
1444 }
1445
36482093
AC
1446 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1447
456f8b9d
DB
1448 return gdbarch;
1449}
1450
1451void
1452_initialize_frv_tdep (void)
1453{
1454 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1455}
This page took 0.230917 seconds and 4 git commands to generate.