* alphafbsd-tdep.c: Update for unwinder changes.
[deliverable/binutils-gdb.git] / gdb / frv-tdep.c
CommitLineData
456f8b9d 1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
0fd88904 2
9b254dd1
DJ
3 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008
4 Free Software Foundation, Inc.
456f8b9d
DB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
456f8b9d
DB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
456f8b9d
DB
20
21#include "defs.h"
8baa6f92 22#include "gdb_string.h"
456f8b9d 23#include "inferior.h"
456f8b9d
DB
24#include "gdbcore.h"
25#include "arch-utils.h"
26#include "regcache.h"
8baa6f92 27#include "frame.h"
1cb761c7
KB
28#include "frame-unwind.h"
29#include "frame-base.h"
8baa6f92 30#include "trad-frame.h"
dcc6aaff 31#include "dis-asm.h"
526eef89
KB
32#include "gdb_assert.h"
33#include "sim-regno.h"
34#include "gdb/sim-frv.h"
35#include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
634aa483 36#include "symtab.h"
7e295833
KB
37#include "elf-bfd.h"
38#include "elf/frv.h"
39#include "osabi.h"
7d9b040b 40#include "infcall.h"
917630e4 41#include "solib.h"
7e295833 42#include "frv-tdep.h"
456f8b9d
DB
43
44extern void _initialize_frv_tdep (void);
45
1cb761c7 46struct frv_unwind_cache /* was struct frame_extra_info */
456f8b9d 47 {
1cb761c7
KB
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
50 CORE_ADDR prev_sp;
456f8b9d 51
1cb761c7
KB
52 /* The frame's base, optionally used by the high-level debug info. */
53 CORE_ADDR base;
8baa6f92
KB
54
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
456f8b9d
DB
57 };
58
456f8b9d
DB
59/* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
62
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
67 need.
68
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
73 Fortran. */
74struct gdbarch_tdep
75{
7e295833
KB
76 /* Which ABI is in use? */
77 enum frv_abi frv_abi;
78
456f8b9d
DB
79 /* How many general-purpose registers does this variant have? */
80 int num_gprs;
81
82 /* How many floating-point registers does this variant have? */
83 int num_fprs;
84
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
87
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
90
91 /* Register names. */
92 char **register_names;
93};
94
7e295833
KB
95/* Return the FR-V ABI associated with GDBARCH. */
96enum frv_abi
97frv_abi (struct gdbarch *gdbarch)
98{
99 return gdbarch_tdep (gdbarch)->frv_abi;
100}
101
102/* Fetch the interpreter and executable loadmap addresses (for shared
103 library support) for the FDPIC ABI. Return 0 if successful, -1 if
104 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
105int
106frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
107 CORE_ADDR *exec_addr)
108{
109 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
110 return -1;
111 else
112 {
594f7785
UW
113 struct regcache *regcache = get_current_regcache ();
114
7e295833
KB
115 if (interp_addr != NULL)
116 {
117 ULONGEST val;
594f7785 118 regcache_cooked_read_unsigned (regcache,
7e295833
KB
119 fdpic_loadmap_interp_regnum, &val);
120 *interp_addr = val;
121 }
122 if (exec_addr != NULL)
123 {
124 ULONGEST val;
594f7785 125 regcache_cooked_read_unsigned (regcache,
7e295833
KB
126 fdpic_loadmap_exec_regnum, &val);
127 *exec_addr = val;
128 }
129 return 0;
130 }
131}
456f8b9d
DB
132
133/* Allocate a new variant structure, and set up default values for all
134 the fields. */
135static struct gdbarch_tdep *
5ae5f592 136new_variant (void)
456f8b9d
DB
137{
138 struct gdbarch_tdep *var;
139 int r;
140 char buf[20];
141
142 var = xmalloc (sizeof (*var));
143 memset (var, 0, sizeof (*var));
144
7e295833 145 var->frv_abi = FRV_ABI_EABI;
456f8b9d
DB
146 var->num_gprs = 64;
147 var->num_fprs = 64;
148 var->num_hw_watchpoints = 0;
149 var->num_hw_breakpoints = 0;
150
151 /* By default, don't supply any general-purpose or floating-point
152 register names. */
6a748db6
KB
153 var->register_names
154 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
155 * sizeof (char *));
156 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
456f8b9d
DB
157 var->register_names[r] = "";
158
526eef89 159 /* Do, however, supply default names for the known special-purpose
456f8b9d 160 registers. */
456f8b9d
DB
161
162 var->register_names[pc_regnum] = "pc";
163 var->register_names[lr_regnum] = "lr";
164 var->register_names[lcr_regnum] = "lcr";
165
166 var->register_names[psr_regnum] = "psr";
167 var->register_names[ccr_regnum] = "ccr";
168 var->register_names[cccr_regnum] = "cccr";
169 var->register_names[tbr_regnum] = "tbr";
170
171 /* Debug registers. */
172 var->register_names[brr_regnum] = "brr";
173 var->register_names[dbar0_regnum] = "dbar0";
174 var->register_names[dbar1_regnum] = "dbar1";
175 var->register_names[dbar2_regnum] = "dbar2";
176 var->register_names[dbar3_regnum] = "dbar3";
177
526eef89
KB
178 /* iacc0 (Only found on MB93405.) */
179 var->register_names[iacc0h_regnum] = "iacc0h";
180 var->register_names[iacc0l_regnum] = "iacc0l";
6a748db6 181 var->register_names[iacc0_regnum] = "iacc0";
526eef89 182
8b67aa36
KB
183 /* fsr0 (Found on FR555 and FR501.) */
184 var->register_names[fsr0_regnum] = "fsr0";
185
186 /* acc0 - acc7. The architecture provides for the possibility of many
187 more (up to 64 total), but we don't want to make that big of a hole
188 in the G packet. If we need more in the future, we'll add them
189 elsewhere. */
190 for (r = acc0_regnum; r <= acc7_regnum; r++)
191 {
192 char *buf;
b435e160 193 buf = xstrprintf ("acc%d", r - acc0_regnum);
8b67aa36
KB
194 var->register_names[r] = buf;
195 }
196
197 /* accg0 - accg7: These are one byte registers. The remote protocol
198 provides the raw values packed four into a slot. accg0123 and
199 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
200 We don't provide names for accg0123 and accg4567 since the user will
201 likely not want to see these raw values. */
202
203 for (r = accg0_regnum; r <= accg7_regnum; r++)
204 {
205 char *buf;
b435e160 206 buf = xstrprintf ("accg%d", r - accg0_regnum);
8b67aa36
KB
207 var->register_names[r] = buf;
208 }
209
210 /* msr0 and msr1. */
211
212 var->register_names[msr0_regnum] = "msr0";
213 var->register_names[msr1_regnum] = "msr1";
214
215 /* gner and fner registers. */
216 var->register_names[gner0_regnum] = "gner0";
217 var->register_names[gner1_regnum] = "gner1";
218 var->register_names[fner0_regnum] = "fner0";
219 var->register_names[fner1_regnum] = "fner1";
220
456f8b9d
DB
221 return var;
222}
223
224
225/* Indicate that the variant VAR has NUM_GPRS general-purpose
226 registers, and fill in the names array appropriately. */
227static void
228set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
229{
230 int r;
231
232 var->num_gprs = num_gprs;
233
234 for (r = 0; r < num_gprs; ++r)
235 {
236 char buf[20];
237
238 sprintf (buf, "gr%d", r);
239 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
240 }
241}
242
243
244/* Indicate that the variant VAR has NUM_FPRS floating-point
245 registers, and fill in the names array appropriately. */
246static void
247set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
248{
249 int r;
250
251 var->num_fprs = num_fprs;
252
253 for (r = 0; r < num_fprs; ++r)
254 {
255 char buf[20];
256
257 sprintf (buf, "fr%d", r);
258 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
259 }
260}
261
7e295833
KB
262static void
263set_variant_abi_fdpic (struct gdbarch_tdep *var)
264{
265 var->frv_abi = FRV_ABI_FDPIC;
266 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
267 var->register_names[fdpic_loadmap_interp_regnum] = xstrdup ("loadmap_interp");
268}
456f8b9d 269
b2d6d697
KB
270static void
271set_variant_scratch_registers (struct gdbarch_tdep *var)
272{
273 var->register_names[scr0_regnum] = xstrdup ("scr0");
274 var->register_names[scr1_regnum] = xstrdup ("scr1");
275 var->register_names[scr2_regnum] = xstrdup ("scr2");
276 var->register_names[scr3_regnum] = xstrdup ("scr3");
277}
278
456f8b9d 279static const char *
d93859e2 280frv_register_name (struct gdbarch *gdbarch, int reg)
456f8b9d
DB
281{
282 if (reg < 0)
283 return "?toosmall?";
6a748db6 284 if (reg >= frv_num_regs + frv_num_pseudo_regs)
456f8b9d
DB
285 return "?toolarge?";
286
7a22ecfc 287 return gdbarch_tdep (gdbarch)->register_names[reg];
456f8b9d
DB
288}
289
526eef89 290
456f8b9d 291static struct type *
7f398216 292frv_register_type (struct gdbarch *gdbarch, int reg)
456f8b9d 293{
526eef89 294 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
456f8b9d 295 return builtin_type_float;
6a748db6
KB
296 else if (reg == iacc0_regnum)
297 return builtin_type_int64;
456f8b9d 298 else
526eef89 299 return builtin_type_int32;
456f8b9d
DB
300}
301
6a748db6
KB
302static void
303frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 304 int reg, gdb_byte *buffer)
6a748db6
KB
305{
306 if (reg == iacc0_regnum)
307 {
308 regcache_raw_read (regcache, iacc0h_regnum, buffer);
309 regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
310 }
8b67aa36
KB
311 else if (accg0_regnum <= reg && reg <= accg7_regnum)
312 {
313 /* The accg raw registers have four values in each slot with the
314 lowest register number occupying the first byte. */
315
316 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
317 int byte_num = (reg - accg0_regnum) % 4;
318 bfd_byte buf[4];
319
320 regcache_raw_read (regcache, raw_regnum, buf);
321 memset (buffer, 0, 4);
322 /* FR-V is big endian, so put the requested byte in the first byte
323 of the buffer allocated to hold the pseudo-register. */
324 ((bfd_byte *) buffer)[0] = buf[byte_num];
325 }
6a748db6
KB
326}
327
328static void
329frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
e2b7c966 330 int reg, const gdb_byte *buffer)
6a748db6
KB
331{
332 if (reg == iacc0_regnum)
333 {
334 regcache_raw_write (regcache, iacc0h_regnum, buffer);
335 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
336 }
8b67aa36
KB
337 else if (accg0_regnum <= reg && reg <= accg7_regnum)
338 {
339 /* The accg raw registers have four values in each slot with the
340 lowest register number occupying the first byte. */
341
342 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
343 int byte_num = (reg - accg0_regnum) % 4;
344 char buf[4];
345
346 regcache_raw_read (regcache, raw_regnum, buf);
347 buf[byte_num] = ((bfd_byte *) buffer)[0];
348 regcache_raw_write (regcache, raw_regnum, buf);
349 }
6a748db6
KB
350}
351
526eef89 352static int
e7faf938 353frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
526eef89
KB
354{
355 static const int spr_map[] =
356 {
357 H_SPR_PSR, /* psr_regnum */
358 H_SPR_CCR, /* ccr_regnum */
359 H_SPR_CCCR, /* cccr_regnum */
8b67aa36
KB
360 -1, /* fdpic_loadmap_exec_regnum */
361 -1, /* fdpic_loadmap_interp_regnum */
526eef89
KB
362 -1, /* 134 */
363 H_SPR_TBR, /* tbr_regnum */
364 H_SPR_BRR, /* brr_regnum */
365 H_SPR_DBAR0, /* dbar0_regnum */
366 H_SPR_DBAR1, /* dbar1_regnum */
367 H_SPR_DBAR2, /* dbar2_regnum */
368 H_SPR_DBAR3, /* dbar3_regnum */
8b67aa36
KB
369 H_SPR_SCR0, /* scr0_regnum */
370 H_SPR_SCR1, /* scr1_regnum */
371 H_SPR_SCR2, /* scr2_regnum */
372 H_SPR_SCR3, /* scr3_regnum */
526eef89
KB
373 H_SPR_LR, /* lr_regnum */
374 H_SPR_LCR, /* lcr_regnum */
375 H_SPR_IACC0H, /* iacc0h_regnum */
8b67aa36
KB
376 H_SPR_IACC0L, /* iacc0l_regnum */
377 H_SPR_FSR0, /* fsr0_regnum */
378 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
379 -1, /* acc0_regnum */
380 -1, /* acc1_regnum */
381 -1, /* acc2_regnum */
382 -1, /* acc3_regnum */
383 -1, /* acc4_regnum */
384 -1, /* acc5_regnum */
385 -1, /* acc6_regnum */
386 -1, /* acc7_regnum */
387 -1, /* acc0123_regnum */
388 -1, /* acc4567_regnum */
389 H_SPR_MSR0, /* msr0_regnum */
390 H_SPR_MSR1, /* msr1_regnum */
391 H_SPR_GNER0, /* gner0_regnum */
392 H_SPR_GNER1, /* gner1_regnum */
393 H_SPR_FNER0, /* fner0_regnum */
394 H_SPR_FNER1, /* fner1_regnum */
526eef89
KB
395 };
396
e7faf938 397 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
526eef89
KB
398
399 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
400 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
401 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
402 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
403 else if (pc_regnum == reg)
404 return SIM_FRV_PC_REGNUM;
405 else if (reg >= first_spr_regnum
406 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
407 {
408 int spr_reg_offset = spr_map[reg - first_spr_regnum];
409
410 if (spr_reg_offset < 0)
411 return SIM_REGNO_DOES_NOT_EXIST;
412 else
413 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
414 }
415
e2e0b3e5 416 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
526eef89
KB
417}
418
456f8b9d 419static const unsigned char *
67d57894 420frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
456f8b9d
DB
421{
422 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
423 *lenp = sizeof (breakpoint);
424 return breakpoint;
425}
426
46a16dba
KB
427/* Define the maximum number of instructions which may be packed into a
428 bundle (VLIW instruction). */
429static const int max_instrs_per_bundle = 8;
430
431/* Define the size (in bytes) of an FR-V instruction. */
432static const int frv_instr_size = 4;
433
434/* Adjust a breakpoint's address to account for the FR-V architecture's
435 constraint that a break instruction must not appear as any but the
436 first instruction in the bundle. */
437static CORE_ADDR
1208538e 438frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
46a16dba
KB
439{
440 int count = max_instrs_per_bundle;
441 CORE_ADDR addr = bpaddr - frv_instr_size;
442 CORE_ADDR func_start = get_pc_function_start (bpaddr);
443
444 /* Find the end of the previous packing sequence. This will be indicated
445 by either attempting to access some inaccessible memory or by finding
446 an instruction word whose packing bit is set to one. */
447 while (count-- > 0 && addr >= func_start)
448 {
449 char instr[frv_instr_size];
450 int status;
451
8defab1a 452 status = target_read_memory (addr, instr, sizeof instr);
46a16dba
KB
453
454 if (status != 0)
455 break;
456
457 /* This is a big endian architecture, so byte zero will have most
458 significant byte. The most significant bit of this byte is the
459 packing bit. */
460 if (instr[0] & 0x80)
461 break;
462
463 addr -= frv_instr_size;
464 }
465
466 if (count > 0)
467 bpaddr = addr + frv_instr_size;
468
469 return bpaddr;
470}
471
456f8b9d
DB
472
473/* Return true if REG is a caller-saves ("scratch") register,
474 false otherwise. */
475static int
476is_caller_saves_reg (int reg)
477{
478 return ((4 <= reg && reg <= 7)
479 || (14 <= reg && reg <= 15)
480 || (32 <= reg && reg <= 47));
481}
482
483
484/* Return true if REG is a callee-saves register, false otherwise. */
485static int
486is_callee_saves_reg (int reg)
487{
488 return ((16 <= reg && reg <= 31)
489 || (48 <= reg && reg <= 63));
490}
491
492
493/* Return true if REG is an argument register, false otherwise. */
494static int
495is_argument_reg (int reg)
496{
497 return (8 <= reg && reg <= 13);
498}
499
456f8b9d
DB
500/* Scan an FR-V prologue, starting at PC, until frame->PC.
501 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502 We assume FRAME's saved_regs array has already been allocated and cleared.
503 Return the first PC value after the prologue.
504
505 Note that, for unoptimized code, we almost don't need this function
506 at all; all arguments and locals live on the stack, so we just need
507 the FP to find everything. The catch: structures passed by value
508 have their addresses living in registers; they're never spilled to
509 the stack. So if you ever want to be able to get to these
510 arguments in any frame but the top, you'll need to do this serious
511 prologue analysis. */
512static CORE_ADDR
94afd7a6 513frv_analyze_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1cb761c7 514 struct frv_unwind_cache *info)
456f8b9d
DB
515{
516 /* When writing out instruction bitpatterns, we use the following
517 letters to label instruction fields:
518 P - The parallel bit. We don't use this.
519 J - The register number of GRj in the instruction description.
520 K - The register number of GRk in the instruction description.
521 I - The register number of GRi.
522 S - a signed imediate offset.
523 U - an unsigned immediate offset.
524
525 The dots below the numbers indicate where hex digit boundaries
526 fall, to make it easier to check the numbers. */
527
528 /* Non-zero iff we've seen the instruction that initializes the
529 frame pointer for this function's frame. */
530 int fp_set = 0;
531
532 /* If fp_set is non_zero, then this is the distance from
533 the stack pointer to frame pointer: fp = sp + fp_offset. */
534 int fp_offset = 0;
535
536 /* Total size of frame prior to any alloca operations. */
537 int framesize = 0;
538
1cb761c7
KB
539 /* Flag indicating if lr has been saved on the stack. */
540 int lr_saved_on_stack = 0;
541
456f8b9d
DB
542 /* The number of the general-purpose register we saved the return
543 address ("link register") in, or -1 if we haven't moved it yet. */
544 int lr_save_reg = -1;
545
1cb761c7
KB
546 /* Offset (from sp) at which lr has been saved on the stack. */
547
548 int lr_sp_offset = 0;
456f8b9d
DB
549
550 /* If gr_saved[i] is non-zero, then we've noticed that general
551 register i has been saved at gr_sp_offset[i] from the stack
552 pointer. */
553 char gr_saved[64];
554 int gr_sp_offset[64];
555
d40fcd7b
KB
556 /* The address of the most recently scanned prologue instruction. */
557 CORE_ADDR last_prologue_pc;
558
559 /* The address of the next instruction. */
560 CORE_ADDR next_pc;
561
562 /* The upper bound to of the pc values to scan. */
563 CORE_ADDR lim_pc;
564
456f8b9d
DB
565 memset (gr_saved, 0, sizeof (gr_saved));
566
d40fcd7b
KB
567 last_prologue_pc = pc;
568
569 /* Try to compute an upper limit (on how far to scan) based on the
570 line number info. */
571 lim_pc = skip_prologue_using_sal (pc);
572 /* If there's no line number info, lim_pc will be 0. In that case,
573 set the limit to be 100 instructions away from pc. Hopefully, this
574 will be far enough away to account for the entire prologue. Don't
575 worry about overshooting the end of the function. The scan loop
576 below contains some checks to avoid scanning unreasonably far. */
577 if (lim_pc == 0)
578 lim_pc = pc + 400;
579
580 /* If we have a frame, we don't want to scan past the frame's pc. This
581 will catch those cases where the pc is in the prologue. */
94afd7a6 582 if (this_frame)
d40fcd7b 583 {
94afd7a6 584 CORE_ADDR frame_pc = get_frame_pc (this_frame);
d40fcd7b
KB
585 if (frame_pc < lim_pc)
586 lim_pc = frame_pc;
587 }
588
589 /* Scan the prologue. */
590 while (pc < lim_pc)
456f8b9d 591 {
1ccda5e9
KB
592 char buf[frv_instr_size];
593 LONGEST op;
594
595 if (target_read_memory (pc, buf, sizeof buf) != 0)
596 break;
597 op = extract_signed_integer (buf, sizeof buf);
598
d40fcd7b 599 next_pc = pc + 4;
456f8b9d
DB
600
601 /* The tests in this chain of ifs should be in order of
602 decreasing selectivity, so that more particular patterns get
603 to fire before less particular patterns. */
604
d40fcd7b
KB
605 /* Some sort of control transfer instruction: stop scanning prologue.
606 Integer Conditional Branch:
607 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
608 Floating-point / media Conditional Branch:
609 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
610 LCR Conditional Branch to LR
611 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
612 Integer conditional Branches to LR
613 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
614 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
615 Floating-point/Media Branches to LR
616 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
617 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
618 Jump and Link
619 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
620 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
621 Call
622 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
623 Return from Trap
624 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
625 Integer Conditional Trap
626 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
627 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
628 Floating-point /media Conditional Trap
629 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
630 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
631 Break
632 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
633 Media Trap
634 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
635 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
636 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
637 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
638 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
639 {
640 /* Stop scanning; not in prologue any longer. */
641 break;
642 }
643
644 /* Loading something from memory into fp probably means that
645 we're in the epilogue. Stop scanning the prologue.
646 ld @(GRi, GRk), fp
647 X 000010 0000010 XXXXXX 000100 XXXXXX
648 ldi @(GRi, d12), fp
649 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
650 else if ((op & 0x7ffc0fc0) == 0x04080100
651 || (op & 0x7ffc0000) == 0x04c80000)
652 {
653 break;
654 }
655
456f8b9d
DB
656 /* Setting the FP from the SP:
657 ori sp, 0, fp
658 P 000010 0100010 000001 000000000000 = 0x04881000
659 0 111111 1111111 111111 111111111111 = 0x7fffffff
660 . . . . . . . .
661 We treat this as part of the prologue. */
d40fcd7b 662 else if ((op & 0x7fffffff) == 0x04881000)
456f8b9d
DB
663 {
664 fp_set = 1;
665 fp_offset = 0;
d40fcd7b 666 last_prologue_pc = next_pc;
456f8b9d
DB
667 }
668
669 /* Move the link register to the scratch register grJ, before saving:
670 movsg lr, grJ
671 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
672 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
673 . . . . . . . .
674 We treat this as part of the prologue. */
675 else if ((op & 0x7fffffc0) == 0x080d01c0)
676 {
677 int gr_j = op & 0x3f;
678
679 /* If we're moving it to a scratch register, that's fine. */
680 if (is_caller_saves_reg (gr_j))
d40fcd7b
KB
681 {
682 lr_save_reg = gr_j;
683 last_prologue_pc = next_pc;
684 }
456f8b9d
DB
685 }
686
687 /* To save multiple callee-saves registers on the stack, at
688 offset zero:
689
690 std grK,@(sp,gr0)
691 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
692 0 000000 1111111 111111 111111 111111 = 0x01ffffff
693
694 stq grK,@(sp,gr0)
695 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
696 0 000000 1111111 111111 111111 111111 = 0x01ffffff
697 . . . . . . . .
698 We treat this as part of the prologue, and record the register's
699 saved address in the frame structure. */
700 else if ((op & 0x01ffffff) == 0x000c10c0
701 || (op & 0x01ffffff) == 0x000c1100)
702 {
703 int gr_k = ((op >> 25) & 0x3f);
704 int ope = ((op >> 6) & 0x3f);
705 int count;
706 int i;
707
708 /* Is it an std or an stq? */
709 if (ope == 0x03)
710 count = 2;
711 else
712 count = 4;
713
714 /* Is it really a callee-saves register? */
715 if (is_callee_saves_reg (gr_k))
716 {
717 for (i = 0; i < count; i++)
718 {
719 gr_saved[gr_k + i] = 1;
720 gr_sp_offset[gr_k + i] = 4 * i;
721 }
d40fcd7b 722 last_prologue_pc = next_pc;
456f8b9d 723 }
456f8b9d
DB
724 }
725
726 /* Adjusting the stack pointer. (The stack pointer is GR1.)
727 addi sp, S, sp
728 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
729 0 111111 1111111 111111 000000000000 = 0x7ffff000
730 . . . . . . . .
731 We treat this as part of the prologue. */
732 else if ((op & 0x7ffff000) == 0x02401000)
733 {
d40fcd7b
KB
734 if (framesize == 0)
735 {
736 /* Sign-extend the twelve-bit field.
737 (Isn't there a better way to do this?) */
738 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
456f8b9d 739
d40fcd7b
KB
740 framesize -= s;
741 last_prologue_pc = pc;
742 }
743 else
744 {
745 /* If the prologue is being adjusted again, we've
746 likely gone too far; i.e. we're probably in the
747 epilogue. */
748 break;
749 }
456f8b9d
DB
750 }
751
752 /* Setting the FP to a constant distance from the SP:
753 addi sp, S, fp
754 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
755 0 111111 1111111 111111 000000000000 = 0x7ffff000
756 . . . . . . . .
757 We treat this as part of the prologue. */
758 else if ((op & 0x7ffff000) == 0x04401000)
759 {
760 /* Sign-extend the twelve-bit field.
761 (Isn't there a better way to do this?) */
762 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
763 fp_set = 1;
764 fp_offset = s;
d40fcd7b 765 last_prologue_pc = pc;
456f8b9d
DB
766 }
767
768 /* To spill an argument register to a scratch register:
769 ori GRi, 0, GRk
770 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
771 0 000000 1111111 000000 111111111111 = 0x01fc0fff
772 . . . . . . . .
773 For the time being, we treat this as a prologue instruction,
774 assuming that GRi is an argument register. This one's kind
775 of suspicious, because it seems like it could be part of a
776 legitimate body instruction. But we only come here when the
777 source info wasn't helpful, so we have to do the best we can.
778 Hopefully once GCC and GDB agree on how to emit line number
779 info for prologues, then this code will never come into play. */
780 else if ((op & 0x01fc0fff) == 0x00880000)
781 {
782 int gr_i = ((op >> 12) & 0x3f);
783
d40fcd7b
KB
784 /* Make sure that the source is an arg register; if it is, we'll
785 treat it as a prologue instruction. */
786 if (is_argument_reg (gr_i))
787 last_prologue_pc = next_pc;
456f8b9d
DB
788 }
789
790 /* To spill 16-bit values to the stack:
791 sthi GRk, @(fp, s)
792 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
793 0 000000 1111111 111111 000000000000 = 0x01fff000
794 . . . . . . . .
795 And for 8-bit values, we use STB instructions.
796 stbi GRk, @(fp, s)
797 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
798 0 000000 1111111 111111 000000000000 = 0x01fff000
799 . . . . . . . .
800 We check that GRk is really an argument register, and treat
801 all such as part of the prologue. */
802 else if ( (op & 0x01fff000) == 0x01442000
803 || (op & 0x01fff000) == 0x01402000)
804 {
805 int gr_k = ((op >> 25) & 0x3f);
806
d40fcd7b
KB
807 /* Make sure that GRk is really an argument register; treat
808 it as a prologue instruction if so. */
809 if (is_argument_reg (gr_k))
810 last_prologue_pc = next_pc;
456f8b9d
DB
811 }
812
813 /* To save multiple callee-saves register on the stack, at a
814 non-zero offset:
815
816 stdi GRk, @(sp, s)
817 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
818 0 000000 1111111 111111 000000000000 = 0x01fff000
819 . . . . . . . .
820 stqi GRk, @(sp, s)
821 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
822 0 000000 1111111 111111 000000000000 = 0x01fff000
823 . . . . . . . .
824 We treat this as part of the prologue, and record the register's
825 saved address in the frame structure. */
826 else if ((op & 0x01fff000) == 0x014c1000
827 || (op & 0x01fff000) == 0x01501000)
828 {
829 int gr_k = ((op >> 25) & 0x3f);
830 int count;
831 int i;
832
833 /* Is it a stdi or a stqi? */
834 if ((op & 0x01fff000) == 0x014c1000)
835 count = 2;
836 else
837 count = 4;
838
839 /* Is it really a callee-saves register? */
840 if (is_callee_saves_reg (gr_k))
841 {
842 /* Sign-extend the twelve-bit field.
843 (Isn't there a better way to do this?) */
844 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
845
846 for (i = 0; i < count; i++)
847 {
848 gr_saved[gr_k + i] = 1;
849 gr_sp_offset[gr_k + i] = s + (4 * i);
850 }
d40fcd7b 851 last_prologue_pc = next_pc;
456f8b9d 852 }
456f8b9d
DB
853 }
854
855 /* Storing any kind of integer register at any constant offset
856 from any other register.
857
858 st GRk, @(GRi, gr0)
859 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
860 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
861 . . . . . . . .
862 sti GRk, @(GRi, d12)
863 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
864 0 000000 1111111 000000 000000000000 = 0x01fc0000
865 . . . . . . . .
866 These could be almost anything, but a lot of prologue
867 instructions fall into this pattern, so let's decode the
868 instruction once, and then work at a higher level. */
869 else if (((op & 0x01fc0fff) == 0x000c0080)
870 || ((op & 0x01fc0000) == 0x01480000))
871 {
872 int gr_k = ((op >> 25) & 0x3f);
873 int gr_i = ((op >> 12) & 0x3f);
874 int offset;
875
876 /* Are we storing with gr0 as an offset, or using an
877 immediate value? */
878 if ((op & 0x01fc0fff) == 0x000c0080)
879 offset = 0;
880 else
881 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
882
883 /* If the address isn't relative to the SP or FP, it's not a
884 prologue instruction. */
885 if (gr_i != sp_regnum && gr_i != fp_regnum)
d40fcd7b
KB
886 {
887 /* Do nothing; not a prologue instruction. */
888 }
456f8b9d
DB
889
890 /* Saving the old FP in the new frame (relative to the SP). */
d40fcd7b 891 else if (gr_k == fp_regnum && gr_i == sp_regnum)
1cb761c7
KB
892 {
893 gr_saved[fp_regnum] = 1;
894 gr_sp_offset[fp_regnum] = offset;
d40fcd7b 895 last_prologue_pc = next_pc;
1cb761c7 896 }
456f8b9d
DB
897
898 /* Saving callee-saves register(s) on the stack, relative to
899 the SP. */
900 else if (gr_i == sp_regnum
901 && is_callee_saves_reg (gr_k))
902 {
903 gr_saved[gr_k] = 1;
1cb761c7
KB
904 if (gr_i == sp_regnum)
905 gr_sp_offset[gr_k] = offset;
906 else
907 gr_sp_offset[gr_k] = offset + fp_offset;
d40fcd7b 908 last_prologue_pc = next_pc;
456f8b9d
DB
909 }
910
911 /* Saving the scratch register holding the return address. */
912 else if (lr_save_reg != -1
913 && gr_k == lr_save_reg)
1cb761c7
KB
914 {
915 lr_saved_on_stack = 1;
916 if (gr_i == sp_regnum)
917 lr_sp_offset = offset;
918 else
919 lr_sp_offset = offset + fp_offset;
d40fcd7b 920 last_prologue_pc = next_pc;
1cb761c7 921 }
456f8b9d
DB
922
923 /* Spilling int-sized arguments to the stack. */
924 else if (is_argument_reg (gr_k))
d40fcd7b 925 last_prologue_pc = next_pc;
456f8b9d 926 }
d40fcd7b 927 pc = next_pc;
456f8b9d
DB
928 }
929
94afd7a6 930 if (this_frame && info)
456f8b9d 931 {
1cb761c7
KB
932 int i;
933 ULONGEST this_base;
456f8b9d
DB
934
935 /* If we know the relationship between the stack and frame
936 pointers, record the addresses of the registers we noticed.
937 Note that we have to do this as a separate step at the end,
938 because instructions may save relative to the SP, but we need
939 their addresses relative to the FP. */
940 if (fp_set)
94afd7a6 941 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
1cb761c7 942 else
94afd7a6 943 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
456f8b9d 944
1cb761c7
KB
945 for (i = 0; i < 64; i++)
946 if (gr_saved[i])
947 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
456f8b9d 948
1cb761c7
KB
949 info->prev_sp = this_base - fp_offset + framesize;
950 info->base = this_base;
951
952 /* If LR was saved on the stack, record its location. */
953 if (lr_saved_on_stack)
954 info->saved_regs[lr_regnum].addr = this_base - fp_offset + lr_sp_offset;
955
956 /* The call instruction moves the caller's PC in the callee's LR.
957 Since this is an unwind, do the reverse. Copy the location of LR
958 into PC (the address / regnum) so that a request for PC will be
959 converted into a request for the LR. */
960 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
961
962 /* Save the previous frame's computed SP value. */
963 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
456f8b9d
DB
964 }
965
d40fcd7b 966 return last_prologue_pc;
456f8b9d
DB
967}
968
969
970static CORE_ADDR
6093d2eb 971frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
456f8b9d
DB
972{
973 CORE_ADDR func_addr, func_end, new_pc;
974
975 new_pc = pc;
976
977 /* If the line table has entry for a line *within* the function
978 (i.e., not in the prologue, and not past the end), then that's
979 our location. */
980 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
981 {
982 struct symtab_and_line sal;
983
984 sal = find_pc_line (func_addr, 0);
985
986 if (sal.line != 0 && sal.end < func_end)
987 {
988 new_pc = sal.end;
989 }
990 }
991
992 /* The FR-V prologue is at least five instructions long (twenty bytes).
993 If we didn't find a real source location past that, then
994 do a full analysis of the prologue. */
995 if (new_pc < pc + 20)
1cb761c7 996 new_pc = frv_analyze_prologue (pc, 0, 0);
456f8b9d
DB
997
998 return new_pc;
999}
1000
1cb761c7
KB
1001
1002static struct frv_unwind_cache *
94afd7a6 1003frv_frame_unwind_cache (struct frame_info *this_frame,
1cb761c7 1004 void **this_prologue_cache)
456f8b9d 1005{
94afd7a6 1006 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1cb761c7 1007 CORE_ADDR pc;
1cb761c7
KB
1008 ULONGEST this_base;
1009 struct frv_unwind_cache *info;
8baa6f92 1010
1cb761c7
KB
1011 if ((*this_prologue_cache))
1012 return (*this_prologue_cache);
456f8b9d 1013
1cb761c7
KB
1014 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1015 (*this_prologue_cache) = info;
94afd7a6 1016 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
456f8b9d 1017
1cb761c7 1018 /* Prologue analysis does the rest... */
94afd7a6 1019 frv_analyze_prologue (get_frame_func (this_frame), this_frame, info);
456f8b9d 1020
1cb761c7 1021 return info;
456f8b9d
DB
1022}
1023
456f8b9d 1024static void
cd31fb03 1025frv_extract_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1026 gdb_byte *valbuf)
456f8b9d 1027{
cd31fb03
KB
1028 int len = TYPE_LENGTH (type);
1029
1030 if (len <= 4)
1031 {
1032 ULONGEST gpr8_val;
1033 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1034 store_unsigned_integer (valbuf, len, gpr8_val);
1035 }
1036 else if (len == 8)
1037 {
1038 ULONGEST regval;
1039 regcache_cooked_read_unsigned (regcache, 8, &regval);
1040 store_unsigned_integer (valbuf, 4, regval);
1041 regcache_cooked_read_unsigned (regcache, 9, &regval);
1042 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, regval);
1043 }
1044 else
e2e0b3e5 1045 internal_error (__FILE__, __LINE__, _("Illegal return value length: %d"), len);
456f8b9d
DB
1046}
1047
1cb761c7
KB
1048static CORE_ADDR
1049frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
456f8b9d 1050{
1cb761c7 1051 /* Require dword alignment. */
5b03f266 1052 return align_down (sp, 8);
456f8b9d
DB
1053}
1054
c4d10515
KB
1055static CORE_ADDR
1056find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1057{
1058 CORE_ADDR descr;
1059 char valbuf[4];
35e08e03
KB
1060 CORE_ADDR start_addr;
1061
1062 /* If we can't find the function in the symbol table, then we assume
1063 that the function address is already in descriptor form. */
1064 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1065 || entry_point != start_addr)
1066 return entry_point;
c4d10515
KB
1067
1068 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1069
1070 if (descr != 0)
1071 return descr;
1072
1073 /* Construct a non-canonical descriptor from space allocated on
1074 the stack. */
1075
1076 descr = value_as_long (value_allocate_space_in_inferior (8));
1077 store_unsigned_integer (valbuf, 4, entry_point);
1078 write_memory (descr, valbuf, 4);
1079 store_unsigned_integer (valbuf, 4,
1080 frv_fdpic_find_global_pointer (entry_point));
1081 write_memory (descr + 4, valbuf, 4);
1082 return descr;
1083}
1084
1085static CORE_ADDR
1086frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1087 struct target_ops *targ)
1088{
1089 CORE_ADDR entry_point;
1090 CORE_ADDR got_address;
1091
1092 entry_point = get_target_memory_unsigned (targ, addr, 4);
1093 got_address = get_target_memory_unsigned (targ, addr + 4, 4);
1094
1095 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1096 return entry_point;
1097 else
1098 return addr;
1099}
1100
456f8b9d 1101static CORE_ADDR
7d9b040b 1102frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1cb761c7
KB
1103 struct regcache *regcache, CORE_ADDR bp_addr,
1104 int nargs, struct value **args, CORE_ADDR sp,
1105 int struct_return, CORE_ADDR struct_addr)
456f8b9d
DB
1106{
1107 int argreg;
1108 int argnum;
1109 char *val;
1110 char valbuf[4];
1111 struct value *arg;
1112 struct type *arg_type;
1113 int len;
1114 enum type_code typecode;
1115 CORE_ADDR regval;
1116 int stack_space;
1117 int stack_offset;
c4d10515 1118 enum frv_abi abi = frv_abi (gdbarch);
7d9b040b 1119 CORE_ADDR func_addr = find_function_addr (function, NULL);
456f8b9d
DB
1120
1121#if 0
1122 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1123 nargs, (int) sp, struct_return, struct_addr);
1124#endif
1125
1126 stack_space = 0;
1127 for (argnum = 0; argnum < nargs; ++argnum)
4991999e 1128 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
456f8b9d
DB
1129
1130 stack_space -= (6 * 4);
1131 if (stack_space > 0)
1132 sp -= stack_space;
1133
1134 /* Make sure stack is dword aligned. */
5b03f266 1135 sp = align_down (sp, 8);
456f8b9d
DB
1136
1137 stack_offset = 0;
1138
1139 argreg = 8;
1140
1141 if (struct_return)
1cb761c7
KB
1142 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1143 struct_addr);
456f8b9d
DB
1144
1145 for (argnum = 0; argnum < nargs; ++argnum)
1146 {
1147 arg = args[argnum];
4991999e 1148 arg_type = check_typedef (value_type (arg));
456f8b9d
DB
1149 len = TYPE_LENGTH (arg_type);
1150 typecode = TYPE_CODE (arg_type);
1151
1152 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1153 {
fbd9dcd3 1154 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (arg));
456f8b9d
DB
1155 typecode = TYPE_CODE_PTR;
1156 len = 4;
1157 val = valbuf;
1158 }
c4d10515
KB
1159 else if (abi == FRV_ABI_FDPIC
1160 && len == 4
1161 && typecode == TYPE_CODE_PTR
1162 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1163 {
1164 /* The FDPIC ABI requires function descriptors to be passed instead
1165 of entry points. */
1166 store_unsigned_integer
1167 (valbuf, 4,
1168 find_func_descr (gdbarch,
0fd88904 1169 extract_unsigned_integer (value_contents (arg),
c4d10515
KB
1170 4)));
1171 typecode = TYPE_CODE_PTR;
1172 len = 4;
1173 val = valbuf;
1174 }
456f8b9d
DB
1175 else
1176 {
0fd88904 1177 val = (char *) value_contents (arg);
456f8b9d
DB
1178 }
1179
1180 while (len > 0)
1181 {
1182 int partial_len = (len < 4 ? len : 4);
1183
1184 if (argreg < 14)
1185 {
7c0b4a20 1186 regval = extract_unsigned_integer (val, partial_len);
456f8b9d
DB
1187#if 0
1188 printf(" Argnum %d data %x -> reg %d\n",
1189 argnum, (int) regval, argreg);
1190#endif
1cb761c7 1191 regcache_cooked_write_unsigned (regcache, argreg, regval);
456f8b9d
DB
1192 ++argreg;
1193 }
1194 else
1195 {
1196#if 0
1197 printf(" Argnum %d data %x -> offset %d (%x)\n",
1198 argnum, *((int *)val), stack_offset, (int) (sp + stack_offset));
1199#endif
1200 write_memory (sp + stack_offset, val, partial_len);
5b03f266 1201 stack_offset += align_up (partial_len, 4);
456f8b9d
DB
1202 }
1203 len -= partial_len;
1204 val += partial_len;
1205 }
1206 }
456f8b9d 1207
1cb761c7
KB
1208 /* Set the return address. For the frv, the return breakpoint is
1209 always at BP_ADDR. */
1210 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1211
c4d10515
KB
1212 if (abi == FRV_ABI_FDPIC)
1213 {
1214 /* Set the GOT register for the FDPIC ABI. */
1215 regcache_cooked_write_unsigned
1216 (regcache, first_gpr_regnum + 15,
1217 frv_fdpic_find_global_pointer (func_addr));
1218 }
1219
1cb761c7
KB
1220 /* Finally, update the SP register. */
1221 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1222
456f8b9d
DB
1223 return sp;
1224}
1225
1226static void
cd31fb03 1227frv_store_return_value (struct type *type, struct regcache *regcache,
e2b7c966 1228 const gdb_byte *valbuf)
456f8b9d 1229{
cd31fb03
KB
1230 int len = TYPE_LENGTH (type);
1231
1232 if (len <= 4)
1233 {
1234 bfd_byte val[4];
1235 memset (val, 0, sizeof (val));
1236 memcpy (val + (4 - len), valbuf, len);
1237 regcache_cooked_write (regcache, 8, val);
1238 }
1239 else if (len == 8)
1240 {
1241 regcache_cooked_write (regcache, 8, valbuf);
1242 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1243 }
456f8b9d
DB
1244 else
1245 internal_error (__FILE__, __LINE__,
e2e0b3e5 1246 _("Don't know how to return a %d-byte value."), len);
456f8b9d
DB
1247}
1248
4c8b6ae0 1249enum return_value_convention
c055b101
CV
1250frv_return_value (struct gdbarch *gdbarch, struct type *func_type,
1251 struct type *valtype, struct regcache *regcache,
1252 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0
UW
1253{
1254 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1255 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1256 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1257
1258 if (writebuf != NULL)
1259 {
1260 gdb_assert (!struct_return);
1261 frv_store_return_value (valtype, regcache, writebuf);
1262 }
1263
1264 if (readbuf != NULL)
1265 {
1266 gdb_assert (!struct_return);
1267 frv_extract_return_value (valtype, regcache, readbuf);
1268 }
1269
1270 if (struct_return)
1271 return RETURN_VALUE_STRUCT_CONVENTION;
1272 else
1273 return RETURN_VALUE_REGISTER_CONVENTION;
1274}
1275
456f8b9d 1276
456f8b9d
DB
1277/* Hardware watchpoint / breakpoint support for the FR500
1278 and FR400. */
1279
1280int
7a22ecfc 1281frv_check_watch_resources (struct gdbarch *gdbarch, int type, int cnt, int ot)
456f8b9d 1282{
7a22ecfc 1283 struct gdbarch_tdep *var = gdbarch_tdep (gdbarch);
456f8b9d
DB
1284
1285 /* Watchpoints not supported on simulator. */
1286 if (strcmp (target_shortname, "sim") == 0)
1287 return 0;
1288
1289 if (type == bp_hardware_breakpoint)
1290 {
1291 if (var->num_hw_breakpoints == 0)
1292 return 0;
1293 else if (cnt <= var->num_hw_breakpoints)
1294 return 1;
1295 }
1296 else
1297 {
1298 if (var->num_hw_watchpoints == 0)
1299 return 0;
1300 else if (ot)
1301 return -1;
1302 else if (cnt <= var->num_hw_watchpoints)
1303 return 1;
1304 }
1305 return -1;
1306}
1307
1308
4aa7a7f5
JJ
1309int
1310frv_stopped_data_address (CORE_ADDR *addr_p)
456f8b9d 1311{
1b5a9a8f 1312 struct frame_info *frame = get_current_frame ();
456f8b9d
DB
1313 CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3;
1314
1b5a9a8f
UW
1315 brr = get_frame_register_unsigned (frame, brr_regnum);
1316 dbar0 = get_frame_register_unsigned (frame, dbar0_regnum);
1317 dbar1 = get_frame_register_unsigned (frame, dbar1_regnum);
1318 dbar2 = get_frame_register_unsigned (frame, dbar2_regnum);
1319 dbar3 = get_frame_register_unsigned (frame, dbar3_regnum);
456f8b9d
DB
1320
1321 if (brr & (1<<11))
4aa7a7f5 1322 *addr_p = dbar0;
456f8b9d 1323 else if (brr & (1<<10))
4aa7a7f5 1324 *addr_p = dbar1;
456f8b9d 1325 else if (brr & (1<<9))
4aa7a7f5 1326 *addr_p = dbar2;
456f8b9d 1327 else if (brr & (1<<8))
4aa7a7f5 1328 *addr_p = dbar3;
456f8b9d
DB
1329 else
1330 return 0;
4aa7a7f5
JJ
1331
1332 return 1;
1333}
1334
1335int
1336frv_have_stopped_data_address (void)
1337{
1338 CORE_ADDR addr = 0;
1339 return frv_stopped_data_address (&addr);
456f8b9d
DB
1340}
1341
1cb761c7
KB
1342static CORE_ADDR
1343frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1344{
1345 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1346}
1347
1348/* Given a GDB frame, determine the address of the calling function's
1349 frame. This will be used to create a new GDB frame struct. */
1350
1351static void
94afd7a6 1352frv_frame_this_id (struct frame_info *this_frame,
1cb761c7
KB
1353 void **this_prologue_cache, struct frame_id *this_id)
1354{
1355 struct frv_unwind_cache *info
94afd7a6 1356 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1cb761c7
KB
1357 CORE_ADDR base;
1358 CORE_ADDR func;
1359 struct minimal_symbol *msym_stack;
1360 struct frame_id id;
1361
1362 /* The FUNC is easy. */
94afd7a6 1363 func = get_frame_func (this_frame);
1cb761c7 1364
1cb761c7
KB
1365 /* Check if the stack is empty. */
1366 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1367 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
1368 return;
1369
1370 /* Hopefully the prologue analysis either correctly determined the
1371 frame's base (which is the SP from the previous frame), or set
1372 that base to "NULL". */
1373 base = info->prev_sp;
1374 if (base == 0)
1375 return;
1376
1377 id = frame_id_build (base, func);
1cb761c7
KB
1378 (*this_id) = id;
1379}
1380
94afd7a6
UW
1381static struct value *
1382frv_frame_prev_register (struct frame_info *this_frame,
1383 void **this_prologue_cache, int regnum)
1cb761c7
KB
1384{
1385 struct frv_unwind_cache *info
94afd7a6
UW
1386 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1387 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1cb761c7
KB
1388}
1389
1390static const struct frame_unwind frv_frame_unwind = {
1391 NORMAL_FRAME,
1392 frv_frame_this_id,
94afd7a6
UW
1393 frv_frame_prev_register,
1394 NULL,
1395 default_frame_sniffer
1cb761c7
KB
1396};
1397
1cb761c7 1398static CORE_ADDR
94afd7a6 1399frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1cb761c7
KB
1400{
1401 struct frv_unwind_cache *info
94afd7a6 1402 = frv_frame_unwind_cache (this_frame, this_cache);
1cb761c7
KB
1403 return info->base;
1404}
1405
1406static const struct frame_base frv_frame_base = {
1407 &frv_frame_unwind,
1408 frv_frame_base_address,
1409 frv_frame_base_address,
1410 frv_frame_base_address
1411};
1412
1413static CORE_ADDR
1414frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1415{
1416 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1417}
1418
1419
94afd7a6
UW
1420/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1421 frame. The frame ID's base needs to match the TOS value saved by
1422 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1cb761c7
KB
1423
1424static struct frame_id
94afd7a6 1425frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1cb761c7 1426{
94afd7a6
UW
1427 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1428 return frame_id_build (sp, get_frame_pc (this_frame));
1cb761c7
KB
1429}
1430
456f8b9d
DB
1431static struct gdbarch *
1432frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1433{
1434 struct gdbarch *gdbarch;
1435 struct gdbarch_tdep *var;
7e295833 1436 int elf_flags = 0;
456f8b9d
DB
1437
1438 /* Check to see if we've already built an appropriate architecture
1439 object for this executable. */
1440 arches = gdbarch_list_lookup_by_info (arches, &info);
1441 if (arches)
1442 return arches->gdbarch;
1443
1444 /* Select the right tdep structure for this variant. */
1445 var = new_variant ();
1446 switch (info.bfd_arch_info->mach)
1447 {
1448 case bfd_mach_frv:
1449 case bfd_mach_frvsimple:
1450 case bfd_mach_fr500:
1451 case bfd_mach_frvtomcat:
251a3ae3 1452 case bfd_mach_fr550:
456f8b9d
DB
1453 set_variant_num_gprs (var, 64);
1454 set_variant_num_fprs (var, 64);
1455 break;
1456
1457 case bfd_mach_fr400:
b2d6d697 1458 case bfd_mach_fr450:
456f8b9d
DB
1459 set_variant_num_gprs (var, 32);
1460 set_variant_num_fprs (var, 32);
1461 break;
1462
1463 default:
1464 /* Never heard of this variant. */
1465 return 0;
1466 }
7e295833
KB
1467
1468 /* Extract the ELF flags, if available. */
1469 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1470 elf_flags = elf_elfheader (info.abfd)->e_flags;
1471
1472 if (elf_flags & EF_FRV_FDPIC)
1473 set_variant_abi_fdpic (var);
1474
b2d6d697
KB
1475 if (elf_flags & EF_FRV_CPU_FR450)
1476 set_variant_scratch_registers (var);
1477
456f8b9d
DB
1478 gdbarch = gdbarch_alloc (&info, var);
1479
1480 set_gdbarch_short_bit (gdbarch, 16);
1481 set_gdbarch_int_bit (gdbarch, 32);
1482 set_gdbarch_long_bit (gdbarch, 32);
1483 set_gdbarch_long_long_bit (gdbarch, 64);
1484 set_gdbarch_float_bit (gdbarch, 32);
1485 set_gdbarch_double_bit (gdbarch, 64);
1486 set_gdbarch_long_double_bit (gdbarch, 64);
1487 set_gdbarch_ptr_bit (gdbarch, 32);
1488
1489 set_gdbarch_num_regs (gdbarch, frv_num_regs);
6a748db6
KB
1490 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1491
456f8b9d 1492 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
0ba6dca9 1493 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
456f8b9d
DB
1494 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1495
1496 set_gdbarch_register_name (gdbarch, frv_register_name);
7f398216 1497 set_gdbarch_register_type (gdbarch, frv_register_type);
526eef89 1498 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
456f8b9d 1499
6a748db6
KB
1500 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1501 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1502
456f8b9d
DB
1503 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1504 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1208538e
MK
1505 set_gdbarch_adjust_breakpoint_address
1506 (gdbarch, frv_adjust_breakpoint_address);
456f8b9d 1507
4c8b6ae0 1508 set_gdbarch_return_value (gdbarch, frv_return_value);
456f8b9d 1509
1cb761c7
KB
1510 /* Frame stuff. */
1511 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1512 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1513 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1cb761c7 1514 frame_base_set_default (gdbarch, &frv_frame_base);
5ecb7103
KB
1515 /* We set the sniffer lower down after the OSABI hooks have been
1516 established. */
456f8b9d 1517
1cb761c7
KB
1518 /* Settings for calling functions in the inferior. */
1519 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
94afd7a6 1520 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
456f8b9d
DB
1521
1522 /* Settings that should be unnecessary. */
1523 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1524
456f8b9d
DB
1525 /* Hardware watchpoint / breakpoint support. */
1526 switch (info.bfd_arch_info->mach)
1527 {
1528 case bfd_mach_frv:
1529 case bfd_mach_frvsimple:
1530 case bfd_mach_fr500:
1531 case bfd_mach_frvtomcat:
1532 /* fr500-style hardware debugging support. */
1533 var->num_hw_watchpoints = 4;
1534 var->num_hw_breakpoints = 4;
1535 break;
1536
1537 case bfd_mach_fr400:
b2d6d697 1538 case bfd_mach_fr450:
456f8b9d
DB
1539 /* fr400-style hardware debugging support. */
1540 var->num_hw_watchpoints = 2;
1541 var->num_hw_breakpoints = 4;
1542 break;
1543
1544 default:
1545 /* Otherwise, assume we don't have hardware debugging support. */
1546 var->num_hw_watchpoints = 0;
1547 var->num_hw_breakpoints = 0;
1548 break;
1549 }
1550
36482093 1551 set_gdbarch_print_insn (gdbarch, print_insn_frv);
c4d10515
KB
1552 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1553 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1554 frv_convert_from_func_ptr_addr);
36482093 1555
917630e4
UW
1556 set_solib_ops (gdbarch, &frv_so_ops);
1557
5ecb7103
KB
1558 /* Hook in ABI-specific overrides, if they have been registered. */
1559 gdbarch_init_osabi (info, gdbarch);
1560
5ecb7103 1561 /* Set the fallback (prologue based) frame sniffer. */
94afd7a6 1562 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
5ecb7103 1563
186993b4
KB
1564 /* Enable TLS support. */
1565 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1566 frv_fetch_objfile_link_map);
1567
456f8b9d
DB
1568 return gdbarch;
1569}
1570
1571void
1572_initialize_frv_tdep (void)
1573{
1574 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
456f8b9d 1575}
This page took 0.614941 seconds and 4 git commands to generate.