testsuite: Fix timeout issues during print of vla-arrays.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
618f726f 5# Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
012b3a21
WT
449# Some targets/architectures can do extra processing/display of
450# segmentation faults. E.g., Intel MPX boundary faults.
451# Call the architecture dependent function to handle the fault.
452# UIOUT is the output stream where the handler will place information.
453M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
454
c2169756
AC
455# GDB's standard (or well known) register numbers. These can map onto
456# a real register or a pseudo (computed) register or not be defined at
1200cd6e 457# all (-1).
3e8c568d 458# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
459v:int:sp_regnum:::-1:-1::0
460v:int:pc_regnum:::-1:-1::0
461v:int:ps_regnum:::-1:-1::0
462v:int:fp0_regnum:::0:-1::0
88c72b7d 463# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 464m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 465# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 466m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 467# Convert from an sdb register number to an internal gdb register number.
d3f73121 468m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 469# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 470# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 471m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 472m:const char *:register_name:int regnr:regnr::0
9c04cab7 473
7b9ee6a8
DJ
474# Return the type of a register specified by the architecture. Only
475# the register cache should call this function directly; others should
476# use "register_type".
97030eea 477M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 478
669fac23
DJ
479M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
480# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 481# deprecated_fp_regnum.
97030eea 482v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 483
97030eea
UW
484M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
485v:int:call_dummy_location::::AT_ENTRY_POINT::0
486M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 487
97030eea 488m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 489m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 490M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
491# MAP a GDB RAW register number onto a simulator register number. See
492# also include/...-sim.h.
e7faf938 493m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
494m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
495m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
496
497# Determine the address where a longjmp will land and save this address
498# in PC. Return nonzero on success.
499#
500# FRAME corresponds to the longjmp frame.
97030eea 501F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 502
104c1213 503#
97030eea 504v:int:believe_pcc_promotion:::::::
104c1213 505#
0abe36f5 506m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 507f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 508f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 509# Construct a value representing the contents of register REGNUM in
2ed3c037 510# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
511# allocate and return a struct value with all value attributes
512# (but not the value contents) filled in.
2ed3c037 513m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 514#
9898f801
UW
515m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
516m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 517M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 518
6a3a010b
MR
519# Return the return-value convention that will be used by FUNCTION
520# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
521# case the return convention is computed based only on VALTYPE.
522#
523# If READBUF is not NULL, extract the return value and save it in this buffer.
524#
525# If WRITEBUF is not NULL, it contains a return value which will be
526# stored into the appropriate register. This can be used when we want
527# to force the value returned by a function (see the "return" command
528# for instance).
6a3a010b 529M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 530
18648a37
YQ
531# Return true if the return value of function is stored in the first hidden
532# parameter. In theory, this feature should be language-dependent, specified
533# by language and its ABI, such as C++. Unfortunately, compiler may
534# implement it to a target-dependent feature. So that we need such hook here
535# to be aware of this in GDB.
536m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
537
6093d2eb 538m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 539M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
540# On some platforms, a single function may provide multiple entry points,
541# e.g. one that is used for function-pointer calls and a different one
542# that is used for direct function calls.
543# In order to ensure that breakpoints set on the function will trigger
544# no matter via which entry point the function is entered, a platform
545# may provide the skip_entrypoint callback. It is called with IP set
546# to the main entry point of a function (as determined by the symbol table),
547# and should return the address of the innermost entry point, where the
548# actual breakpoint needs to be set. Note that skip_entrypoint is used
549# by GDB common code even when debugging optimized code, where skip_prologue
550# is not used.
551M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
552
97030eea 553f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 554m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
555# Return the adjusted address and kind to use for Z0/Z1 packets.
556# KIND is usually the memory length of the breakpoint, but may have a
557# different target-specific meaning.
0e05dfcb 558m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 559M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
560m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
561m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 562v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
563
564# A function can be addressed by either it's "pointer" (possibly a
565# descriptor address) or "entry point" (first executable instruction).
566# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 567# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
568# a simplified subset of that functionality - the function's address
569# corresponds to the "function pointer" and the function's start
570# corresponds to the "function entry point" - and hence is redundant.
571
97030eea 572v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 573
123dc839
DJ
574# Return the remote protocol register number associated with this
575# register. Normally the identity mapping.
97030eea 576m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 577
b2756930 578# Fetch the target specific address used to represent a load module.
97030eea 579F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 580#
97030eea
UW
581v:CORE_ADDR:frame_args_skip:::0:::0
582M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
583M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
584# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
585# frame-base. Enable frame-base before frame-unwind.
97030eea 586F:int:frame_num_args:struct frame_info *frame:frame
104c1213 587#
97030eea
UW
588M:CORE_ADDR:frame_align:CORE_ADDR address:address
589m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
590v:int:frame_red_zone_size
f0d4cc9e 591#
97030eea 592m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
593# On some machines there are bits in addresses which are not really
594# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 595# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
596# we get a "real" address such as one would find in a symbol table.
597# This is used only for addresses of instructions, and even then I'm
598# not sure it's used in all contexts. It exists to deal with there
599# being a few stray bits in the PC which would mislead us, not as some
600# sort of generic thing to handle alignment or segmentation (it's
601# possible it should be in TARGET_READ_PC instead).
24568a2c 602m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
603
604# FIXME/cagney/2001-01-18: This should be split in two. A target method that
605# indicates if the target needs software single step. An ISA method to
606# implement it.
607#
608# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
609# breakpoints using the breakpoint system instead of blatting memory directly
610# (as with rs6000).
64c4637f 611#
e6590a1b
UW
612# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
613# target can single step. If not, then implement single step using breakpoints.
64c4637f 614#
6f112b18 615# A return value of 1 means that the software_single_step breakpoints
e6590a1b 616# were inserted; 0 means they were not.
97030eea 617F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 618
3352ef37
AC
619# Return non-zero if the processor is executing a delay slot and a
620# further single-step is needed before the instruction finishes.
97030eea 621M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 622# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 623# disassembler. Perhaps objdump can handle it?
97030eea
UW
624f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
625f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
626
627
cfd8ab24 628# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
629# evaluates non-zero, this is the address where the debugger will place
630# a step-resume breakpoint to get us past the dynamic linker.
97030eea 631m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 632# Some systems also have trampoline code for returning from shared libs.
2c02bd72 633m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 634
c12260ac
CV
635# A target might have problems with watchpoints as soon as the stack
636# frame of the current function has been destroyed. This mostly happens
c9cf6e20 637# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
638# is defined to return a non-zero value if either the given addr is one
639# instruction after the stack destroying instruction up to the trailing
640# return instruction or if we can figure out that the stack frame has
641# already been invalidated regardless of the value of addr. Targets
642# which don't suffer from that problem could just let this functionality
643# untouched.
c9cf6e20 644m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
645# Process an ELF symbol in the minimal symbol table in a backend-specific
646# way. Normally this hook is supposed to do nothing, however if required,
647# then this hook can be used to apply tranformations to symbols that are
648# considered special in some way. For example the MIPS backend uses it
649# to interpret \`st_other' information to mark compressed code symbols so
650# that they can be treated in the appropriate manner in the processing of
651# the main symbol table and DWARF-2 records.
652F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 653f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
654# Process a symbol in the main symbol table in a backend-specific way.
655# Normally this hook is supposed to do nothing, however if required,
656# then this hook can be used to apply tranformations to symbols that
657# are considered special in some way. This is currently used by the
658# MIPS backend to make sure compressed code symbols have the ISA bit
659# set. This in turn is needed for symbol values seen in GDB to match
660# the values used at the runtime by the program itself, for function
661# and label references.
662f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
663# Adjust the address retrieved from a DWARF-2 record other than a line
664# entry in a backend-specific way. Normally this hook is supposed to
665# return the address passed unchanged, however if that is incorrect for
666# any reason, then this hook can be used to fix the address up in the
667# required manner. This is currently used by the MIPS backend to make
668# sure addresses in FDE, range records, etc. referring to compressed
669# code have the ISA bit set, matching line information and the symbol
670# table.
671f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
672# Adjust the address updated by a line entry in a backend-specific way.
673# Normally this hook is supposed to return the address passed unchanged,
674# however in the case of inconsistencies in these records, this hook can
675# be used to fix them up in the required manner. This is currently used
676# by the MIPS backend to make sure all line addresses in compressed code
677# are presented with the ISA bit set, which is not always the case. This
678# in turn ensures breakpoint addresses are correctly matched against the
679# stop PC.
680f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
681v:int:cannot_step_breakpoint:::0:0::0
682v:int:have_nonsteppable_watchpoint:::0:0::0
683F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
684M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
685
686# Return the appropriate type_flags for the supplied address class.
687# This function should return 1 if the address class was recognized and
688# type_flags was set, zero otherwise.
97030eea 689M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 690# Is a register in a group
97030eea 691m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 692# Fetch the pointer to the ith function argument.
97030eea 693F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 694
5aa82d05
AA
695# Iterate over all supported register notes in a core file. For each
696# supported register note section, the iterator must call CB and pass
697# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
698# the supported register note sections based on the current register
699# values. Otherwise it should enumerate all supported register note
700# sections.
701M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 702
6432734d
UW
703# Create core file notes
704M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
705
b3ac9c77
SDJ
706# The elfcore writer hook to use to write Linux prpsinfo notes to core
707# files. Most Linux architectures use the same prpsinfo32 or
708# prpsinfo64 layouts, and so won't need to provide this hook, as we
709# call the Linux generic routines in bfd to write prpsinfo notes by
710# default.
711F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
712
35c2fab7
UW
713# Find core file memory regions
714M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
715
de584861 716# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
717# core file into buffer READBUF with length LEN. Return the number of bytes read
718# (zero indicates failure).
719# failed, otherwise, return the red length of READBUF.
720M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 721
356a5233
JB
722# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
723# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
724# Return the number of bytes read (zero indicates failure).
725M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 726
c0edd9ed 727# How the core target converts a PTID from a core file to a string.
28439f5e
PA
728M:char *:core_pid_to_str:ptid_t ptid:ptid
729
4dfc5dbc
JB
730# How the core target extracts the name of a thread from a core file.
731M:const char *:core_thread_name:struct thread_info *thr:thr
732
a78c2d62 733# BFD target to use when generating a core file.
86ba1042 734V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 735
0d5de010
DJ
736# If the elements of C++ vtables are in-place function descriptors rather
737# than normal function pointers (which may point to code or a descriptor),
738# set this to one.
97030eea 739v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
740
741# Set if the least significant bit of the delta is used instead of the least
742# significant bit of the pfn for pointers to virtual member functions.
97030eea 743v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
744
745# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 746f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 747
1668ae25 748# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
749V:ULONGEST:max_insn_length:::0:0
750
751# Copy the instruction at FROM to TO, and make any adjustments
752# necessary to single-step it at that address.
753#
754# REGS holds the state the thread's registers will have before
755# executing the copied instruction; the PC in REGS will refer to FROM,
756# not the copy at TO. The caller should update it to point at TO later.
757#
758# Return a pointer to data of the architecture's choice to be passed
759# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
760# the instruction's effects have been completely simulated, with the
761# resulting state written back to REGS.
762#
763# For a general explanation of displaced stepping and how GDB uses it,
764# see the comments in infrun.c.
765#
766# The TO area is only guaranteed to have space for
767# gdbarch_max_insn_length (arch) bytes, so this function must not
768# write more bytes than that to that area.
769#
770# If you do not provide this function, GDB assumes that the
771# architecture does not support displaced stepping.
772#
773# If your architecture doesn't need to adjust instructions before
774# single-stepping them, consider using simple_displaced_step_copy_insn
775# here.
7f03bd92
PA
776#
777# If the instruction cannot execute out of line, return NULL. The
778# core falls back to stepping past the instruction in-line instead in
779# that case.
237fc4c9
PA
780M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
781
99e40580
UW
782# Return true if GDB should use hardware single-stepping to execute
783# the displaced instruction identified by CLOSURE. If false,
784# GDB will simply restart execution at the displaced instruction
785# location, and it is up to the target to ensure GDB will receive
786# control again (e.g. by placing a software breakpoint instruction
787# into the displaced instruction buffer).
788#
789# The default implementation returns false on all targets that
790# provide a gdbarch_software_single_step routine, and true otherwise.
791m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
792
237fc4c9
PA
793# Fix up the state resulting from successfully single-stepping a
794# displaced instruction, to give the result we would have gotten from
795# stepping the instruction in its original location.
796#
797# REGS is the register state resulting from single-stepping the
798# displaced instruction.
799#
800# CLOSURE is the result from the matching call to
801# gdbarch_displaced_step_copy_insn.
802#
803# If you provide gdbarch_displaced_step_copy_insn.but not this
804# function, then GDB assumes that no fixup is needed after
805# single-stepping the instruction.
806#
807# For a general explanation of displaced stepping and how GDB uses it,
808# see the comments in infrun.c.
809M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
810
811# Free a closure returned by gdbarch_displaced_step_copy_insn.
812#
813# If you provide gdbarch_displaced_step_copy_insn, you must provide
814# this function as well.
815#
816# If your architecture uses closures that don't need to be freed, then
817# you can use simple_displaced_step_free_closure here.
818#
819# For a general explanation of displaced stepping and how GDB uses it,
820# see the comments in infrun.c.
821m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
822
823# Return the address of an appropriate place to put displaced
824# instructions while we step over them. There need only be one such
825# place, since we're only stepping one thread over a breakpoint at a
826# time.
827#
828# For a general explanation of displaced stepping and how GDB uses it,
829# see the comments in infrun.c.
830m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
831
dde08ee1
PA
832# Relocate an instruction to execute at a different address. OLDLOC
833# is the address in the inferior memory where the instruction to
834# relocate is currently at. On input, TO points to the destination
835# where we want the instruction to be copied (and possibly adjusted)
836# to. On output, it points to one past the end of the resulting
837# instruction(s). The effect of executing the instruction at TO shall
838# be the same as if executing it at FROM. For example, call
839# instructions that implicitly push the return address on the stack
840# should be adjusted to return to the instruction after OLDLOC;
841# relative branches, and other PC-relative instructions need the
842# offset adjusted; etc.
843M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
844
1c772458 845# Refresh overlay mapped state for section OSECT.
97030eea 846F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 847
97030eea 848M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
849
850# Handle special encoding of static variables in stabs debug info.
0d5cff50 851F:const char *:static_transform_name:const char *name:name
203c3895 852# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 853v:int:sofun_address_maybe_missing:::0:0::0
1cded358 854
0508c3ec
HZ
855# Parse the instruction at ADDR storing in the record execution log
856# the registers REGCACHE and memory ranges that will be affected when
857# the instruction executes, along with their current values.
858# Return -1 if something goes wrong, 0 otherwise.
859M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
860
3846b520
HZ
861# Save process state after a signal.
862# Return -1 if something goes wrong, 0 otherwise.
2ea28649 863M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 864
22203bbf 865# Signal translation: translate inferior's signal (target's) number
86b49880
PA
866# into GDB's representation. The implementation of this method must
867# be host independent. IOW, don't rely on symbols of the NAT_FILE
868# header (the nm-*.h files), the host <signal.h> header, or similar
869# headers. This is mainly used when cross-debugging core files ---
870# "Live" targets hide the translation behind the target interface
1f8cf220
PA
871# (target_wait, target_resume, etc.).
872M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 873
eb14d406
SDJ
874# Signal translation: translate the GDB's internal signal number into
875# the inferior's signal (target's) representation. The implementation
876# of this method must be host independent. IOW, don't rely on symbols
877# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
878# header, or similar headers.
879# Return the target signal number if found, or -1 if the GDB internal
880# signal number is invalid.
881M:int:gdb_signal_to_target:enum gdb_signal signal:signal
882
4aa995e1
PA
883# Extra signal info inspection.
884#
885# Return a type suitable to inspect extra signal information.
886M:struct type *:get_siginfo_type:void:
887
60c5725c
DJ
888# Record architecture-specific information from the symbol table.
889M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 890
a96d9b2e
SDJ
891# Function for the 'catch syscall' feature.
892
893# Get architecture-specific system calls information from registers.
894M:LONGEST:get_syscall_number:ptid_t ptid:ptid
895
458c8db8
SDJ
896# The filename of the XML syscall for this architecture.
897v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
898
899# Information about system calls from this architecture
900v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
901
55aa24fb
SDJ
902# SystemTap related fields and functions.
903
05c0465e
SDJ
904# A NULL-terminated array of prefixes used to mark an integer constant
905# on the architecture's assembly.
55aa24fb
SDJ
906# For example, on x86 integer constants are written as:
907#
908# \$10 ;; integer constant 10
909#
910# in this case, this prefix would be the character \`\$\'.
05c0465e 911v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 912
05c0465e
SDJ
913# A NULL-terminated array of suffixes used to mark an integer constant
914# on the architecture's assembly.
915v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 916
05c0465e
SDJ
917# A NULL-terminated array of prefixes used to mark a register name on
918# the architecture's assembly.
55aa24fb
SDJ
919# For example, on x86 the register name is written as:
920#
921# \%eax ;; register eax
922#
923# in this case, this prefix would be the character \`\%\'.
05c0465e 924v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 925
05c0465e
SDJ
926# A NULL-terminated array of suffixes used to mark a register name on
927# the architecture's assembly.
928v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 929
05c0465e
SDJ
930# A NULL-terminated array of prefixes used to mark a register
931# indirection on the architecture's assembly.
55aa24fb
SDJ
932# For example, on x86 the register indirection is written as:
933#
934# \(\%eax\) ;; indirecting eax
935#
936# in this case, this prefix would be the charater \`\(\'.
937#
938# Please note that we use the indirection prefix also for register
939# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 940v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 941
05c0465e
SDJ
942# A NULL-terminated array of suffixes used to mark a register
943# indirection on the architecture's assembly.
55aa24fb
SDJ
944# For example, on x86 the register indirection is written as:
945#
946# \(\%eax\) ;; indirecting eax
947#
948# in this case, this prefix would be the charater \`\)\'.
949#
950# Please note that we use the indirection suffix also for register
951# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 952v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 953
05c0465e 954# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
955#
956# For example, on PPC a register is represented by a number in the assembly
957# language (e.g., \`10\' is the 10th general-purpose register). However,
958# inside GDB this same register has an \`r\' appended to its name, so the 10th
959# register would be represented as \`r10\' internally.
08af7a40 960v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
961
962# Suffix used to name a register using GDB's nomenclature.
08af7a40 963v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
964
965# Check if S is a single operand.
966#
967# Single operands can be:
968# \- Literal integers, e.g. \`\$10\' on x86
969# \- Register access, e.g. \`\%eax\' on x86
970# \- Register indirection, e.g. \`\(\%eax\)\' on x86
971# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
972#
973# This function should check for these patterns on the string
974# and return 1 if some were found, or zero otherwise. Please try to match
975# as much info as you can from the string, i.e., if you have to match
976# something like \`\(\%\', do not match just the \`\(\'.
977M:int:stap_is_single_operand:const char *s:s
978
979# Function used to handle a "special case" in the parser.
980#
981# A "special case" is considered to be an unknown token, i.e., a token
982# that the parser does not know how to parse. A good example of special
983# case would be ARM's register displacement syntax:
984#
985# [R0, #4] ;; displacing R0 by 4
986#
987# Since the parser assumes that a register displacement is of the form:
988#
989# <number> <indirection_prefix> <register_name> <indirection_suffix>
990#
991# it means that it will not be able to recognize and parse this odd syntax.
992# Therefore, we should add a special case function that will handle this token.
993#
994# This function should generate the proper expression form of the expression
995# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
996# and so on). It should also return 1 if the parsing was successful, or zero
997# if the token was not recognized as a special token (in this case, returning
998# zero means that the special parser is deferring the parsing to the generic
999# parser), and should advance the buffer pointer (p->arg).
1000M:int:stap_parse_special_token:struct stap_parse_info *p:p
1001
8b367e17
JM
1002# DTrace related functions.
1003
1004# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1005# NARG must be >= 0.
1006M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1007
1008# True if the given ADDR does not contain the instruction sequence
1009# corresponding to a disabled DTrace is-enabled probe.
1010M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1011
1012# Enable a DTrace is-enabled probe at ADDR.
1013M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1014
1015# Disable a DTrace is-enabled probe at ADDR.
1016M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1017
50c71eaf
PA
1018# True if the list of shared libraries is one and only for all
1019# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1020# This usually means that all processes, although may or may not share
1021# an address space, will see the same set of symbols at the same
1022# addresses.
50c71eaf 1023v:int:has_global_solist:::0:0::0
2567c7d9
PA
1024
1025# On some targets, even though each inferior has its own private
1026# address space, the debug interface takes care of making breakpoints
1027# visible to all address spaces automatically. For such cases,
1028# this property should be set to true.
1029v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1030
1031# True if inferiors share an address space (e.g., uClinux).
1032m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1033
1034# True if a fast tracepoint can be set at an address.
6b940e6a 1035m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1036
5f034a78
MK
1037# Guess register state based on tracepoint location. Used for tracepoints
1038# where no registers have been collected, but there's only one location,
1039# allowing us to guess the PC value, and perhaps some other registers.
1040# On entry, regcache has all registers marked as unavailable.
1041m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1042
f870a310
TT
1043# Return the "auto" target charset.
1044f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1045# Return the "auto" target wide charset.
1046f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1047
1048# If non-empty, this is a file extension that will be opened in place
1049# of the file extension reported by the shared library list.
1050#
1051# This is most useful for toolchains that use a post-linker tool,
1052# where the names of the files run on the target differ in extension
1053# compared to the names of the files GDB should load for debug info.
1054v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1055
1056# If true, the target OS has DOS-based file system semantics. That
1057# is, absolute paths include a drive name, and the backslash is
1058# considered a directory separator.
1059v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1060
1061# Generate bytecodes to collect the return address in a frame.
1062# Since the bytecodes run on the target, possibly with GDB not even
1063# connected, the full unwinding machinery is not available, and
1064# typically this function will issue bytecodes for one or more likely
1065# places that the return address may be found.
1066m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1067
3030c96e 1068# Implement the "info proc" command.
7bc112c1 1069M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1070
451b7c33
TT
1071# Implement the "info proc" command for core files. Noe that there
1072# are two "info_proc"-like methods on gdbarch -- one for core files,
1073# one for live targets.
7bc112c1 1074M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1075
19630284
JB
1076# Iterate over all objfiles in the order that makes the most sense
1077# for the architecture to make global symbol searches.
1078#
1079# CB is a callback function where OBJFILE is the objfile to be searched,
1080# and CB_DATA a pointer to user-defined data (the same data that is passed
1081# when calling this gdbarch method). The iteration stops if this function
1082# returns nonzero.
1083#
1084# CB_DATA is a pointer to some user-defined data to be passed to
1085# the callback.
1086#
1087# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1088# inspected when the symbol search was requested.
1089m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1090
7e35103a
JB
1091# Ravenscar arch-dependent ops.
1092v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1093
1094# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1095m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1096
1097# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1098m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1099
1100# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1101m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1102
1103# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1104# Return 0 if *READPTR is already at the end of the buffer.
1105# Return -1 if there is insufficient buffer for a whole entry.
1106# Return 1 if an entry was read into *TYPEP and *VALP.
1107M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1108
1109# Find the address range of the current inferior's vsyscall/vDSO, and
1110# write it to *RANGE. If the vsyscall's length can't be determined, a
1111# range with zero length is returned. Returns true if the vsyscall is
1112# found, false otherwise.
1113m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1114
1115# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1116# PROT has GDB_MMAP_PROT_* bitmask format.
1117# Throw an error if it is not possible. Returned address is always valid.
1118f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1119
7f361056
JK
1120# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1121# Print a warning if it is not possible.
1122f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1123
f208eee0
JK
1124# Return string (caller has to use xfree for it) with options for GCC
1125# to produce code for this target, typically "-m64", "-m32" or "-m31".
1126# These options are put before CU's DW_AT_producer compilation options so that
1127# they can override it. Method may also return NULL.
1128m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1129
1130# Return a regular expression that matches names used by this
1131# architecture in GNU configury triplets. The result is statically
1132# allocated and must not be freed. The default implementation simply
1133# returns the BFD architecture name, which is correct in nearly every
1134# case.
1135m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1136
1137# Return the size in 8-bit bytes of an addressable memory unit on this
1138# architecture. This corresponds to the number of 8-bit bytes associated to
1139# each address in memory.
1140m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1141
104c1213 1142EOF
104c1213
JM
1143}
1144
0b8f9e4d
AC
1145#
1146# The .log file
1147#
1148exec > new-gdbarch.log
34620563 1149function_list | while do_read
0b8f9e4d
AC
1150do
1151 cat <<EOF
2f9b146e 1152${class} ${returntype} ${function} ($formal)
104c1213 1153EOF
3d9a5942
AC
1154 for r in ${read}
1155 do
1156 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1157 done
f0d4cc9e 1158 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1159 then
66d659b1 1160 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1161 kill $$
1162 exit 1
1163 fi
72e74a21 1164 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1165 then
1166 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1167 kill $$
1168 exit 1
1169 fi
a72293e2
AC
1170 if class_is_multiarch_p
1171 then
1172 if class_is_predicate_p ; then :
1173 elif test "x${predefault}" = "x"
1174 then
2f9b146e 1175 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1176 kill $$
1177 exit 1
1178 fi
1179 fi
3d9a5942 1180 echo ""
0b8f9e4d
AC
1181done
1182
1183exec 1>&2
1184compare_new gdbarch.log
1185
104c1213
JM
1186
1187copyright ()
1188{
1189cat <<EOF
c4bfde41
JK
1190/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1191/* vi:set ro: */
59233f88 1192
104c1213 1193/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1194
618f726f 1195 Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
1196
1197 This file is part of GDB.
1198
1199 This program is free software; you can redistribute it and/or modify
1200 it under the terms of the GNU General Public License as published by
50efebf8 1201 the Free Software Foundation; either version 3 of the License, or
104c1213 1202 (at your option) any later version.
618f726f 1203
104c1213
JM
1204 This program is distributed in the hope that it will be useful,
1205 but WITHOUT ANY WARRANTY; without even the implied warranty of
1206 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1207 GNU General Public License for more details.
618f726f 1208
104c1213 1209 You should have received a copy of the GNU General Public License
50efebf8 1210 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1211
104c1213
JM
1212/* This file was created with the aid of \`\`gdbarch.sh''.
1213
52204a0b 1214 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1215 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1216 against the existing \`\`gdbarch.[hc]''. Any differences found
1217 being reported.
1218
1219 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1220 changes into that script. Conversely, when making sweeping changes
104c1213 1221 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1222 easier. */
104c1213
JM
1223
1224EOF
1225}
1226
1227#
1228# The .h file
1229#
1230
1231exec > new-gdbarch.h
1232copyright
1233cat <<EOF
1234#ifndef GDBARCH_H
1235#define GDBARCH_H
1236
eb7a547a
JB
1237#include "frame.h"
1238
da3331ec
AC
1239struct floatformat;
1240struct ui_file;
104c1213 1241struct value;
b6af0555 1242struct objfile;
1c772458 1243struct obj_section;
a2cf933a 1244struct minimal_symbol;
049ee0e4 1245struct regcache;
b59ff9d5 1246struct reggroup;
6ce6d90f 1247struct regset;
a89aa300 1248struct disassemble_info;
e2d0e7eb 1249struct target_ops;
030f20e1 1250struct obstack;
8181d85f 1251struct bp_target_info;
424163ea 1252struct target_desc;
3e29f34a
MR
1253struct objfile;
1254struct symbol;
237fc4c9 1255struct displaced_step_closure;
a96d9b2e 1256struct syscall;
175ff332 1257struct agent_expr;
6710bf39 1258struct axs_value;
55aa24fb 1259struct stap_parse_info;
8b367e17 1260struct parser_state;
7e35103a 1261struct ravenscar_arch_ops;
b3ac9c77 1262struct elf_internal_linux_prpsinfo;
3437254d 1263struct mem_range;
458c8db8 1264struct syscalls_info;
4dfc5dbc 1265struct thread_info;
012b3a21 1266struct ui_out;
104c1213 1267
8a526fa6
PA
1268#include "regcache.h"
1269
6ecd4729
PA
1270/* The architecture associated with the inferior through the
1271 connection to the target.
1272
1273 The architecture vector provides some information that is really a
1274 property of the inferior, accessed through a particular target:
1275 ptrace operations; the layout of certain RSP packets; the solib_ops
1276 vector; etc. To differentiate architecture accesses to
1277 per-inferior/target properties from
1278 per-thread/per-frame/per-objfile properties, accesses to
1279 per-inferior/target properties should be made through this
1280 gdbarch. */
1281
1282/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1283extern struct gdbarch *target_gdbarch (void);
6ecd4729 1284
19630284
JB
1285/* Callback type for the 'iterate_over_objfiles_in_search_order'
1286 gdbarch method. */
1287
1288typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1289 (struct objfile *objfile, void *cb_data);
5aa82d05 1290
1528345d
AA
1291/* Callback type for regset section iterators. The callback usually
1292 invokes the REGSET's supply or collect method, to which it must
1293 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1294 section name, and HUMAN_NAME is used for diagnostic messages.
1295 CB_DATA should have been passed unchanged through the iterator. */
1296
5aa82d05 1297typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1298 (const char *sect_name, int size, const struct regset *regset,
1299 const char *human_name, void *cb_data);
104c1213
JM
1300EOF
1301
1302# function typedef's
3d9a5942
AC
1303printf "\n"
1304printf "\n"
0963b4bd 1305printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1306function_list | while do_read
104c1213 1307do
2ada493a
AC
1308 if class_is_info_p
1309 then
3d9a5942
AC
1310 printf "\n"
1311 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1312 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1313 fi
104c1213
JM
1314done
1315
1316# function typedef's
3d9a5942
AC
1317printf "\n"
1318printf "\n"
0963b4bd 1319printf "/* The following are initialized by the target dependent code. */\n"
34620563 1320function_list | while do_read
104c1213 1321do
72e74a21 1322 if [ -n "${comment}" ]
34620563
AC
1323 then
1324 echo "${comment}" | sed \
1325 -e '2 s,#,/*,' \
1326 -e '3,$ s,#, ,' \
1327 -e '$ s,$, */,'
1328 fi
412d5987
AC
1329
1330 if class_is_predicate_p
2ada493a 1331 then
412d5987
AC
1332 printf "\n"
1333 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1334 fi
2ada493a
AC
1335 if class_is_variable_p
1336 then
3d9a5942
AC
1337 printf "\n"
1338 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1339 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1340 fi
1341 if class_is_function_p
1342 then
3d9a5942 1343 printf "\n"
72e74a21 1344 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1345 then
1346 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1347 elif class_is_multiarch_p
1348 then
1349 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1350 else
1351 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1352 fi
72e74a21 1353 if [ "x${formal}" = "xvoid" ]
104c1213 1354 then
3d9a5942 1355 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1356 else
3d9a5942 1357 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1358 fi
3d9a5942 1359 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1360 fi
104c1213
JM
1361done
1362
1363# close it off
1364cat <<EOF
1365
a96d9b2e
SDJ
1366/* Definition for an unknown syscall, used basically in error-cases. */
1367#define UNKNOWN_SYSCALL (-1)
1368
104c1213
JM
1369extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1370
1371
1372/* Mechanism for co-ordinating the selection of a specific
1373 architecture.
1374
1375 GDB targets (*-tdep.c) can register an interest in a specific
1376 architecture. Other GDB components can register a need to maintain
1377 per-architecture data.
1378
1379 The mechanisms below ensures that there is only a loose connection
1380 between the set-architecture command and the various GDB
0fa6923a 1381 components. Each component can independently register their need
104c1213
JM
1382 to maintain architecture specific data with gdbarch.
1383
1384 Pragmatics:
1385
1386 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1387 didn't scale.
1388
1389 The more traditional mega-struct containing architecture specific
1390 data for all the various GDB components was also considered. Since
0fa6923a 1391 GDB is built from a variable number of (fairly independent)
104c1213 1392 components it was determined that the global aproach was not
0963b4bd 1393 applicable. */
104c1213
JM
1394
1395
1396/* Register a new architectural family with GDB.
1397
1398 Register support for the specified ARCHITECTURE with GDB. When
1399 gdbarch determines that the specified architecture has been
1400 selected, the corresponding INIT function is called.
1401
1402 --
1403
1404 The INIT function takes two parameters: INFO which contains the
1405 information available to gdbarch about the (possibly new)
1406 architecture; ARCHES which is a list of the previously created
1407 \`\`struct gdbarch'' for this architecture.
1408
0f79675b 1409 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1410 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1411
1412 The ARCHES parameter is a linked list (sorted most recently used)
1413 of all the previously created architures for this architecture
1414 family. The (possibly NULL) ARCHES->gdbarch can used to access
1415 values from the previously selected architecture for this
59837fe0 1416 architecture family.
104c1213
JM
1417
1418 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1419 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1420 gdbarch'' from the ARCHES list - indicating that the new
1421 architecture is just a synonym for an earlier architecture (see
1422 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1423 - that describes the selected architecture (see gdbarch_alloc()).
1424
1425 The DUMP_TDEP function shall print out all target specific values.
1426 Care should be taken to ensure that the function works in both the
0963b4bd 1427 multi-arch and non- multi-arch cases. */
104c1213
JM
1428
1429struct gdbarch_list
1430{
1431 struct gdbarch *gdbarch;
1432 struct gdbarch_list *next;
1433};
1434
1435struct gdbarch_info
1436{
0963b4bd 1437 /* Use default: NULL (ZERO). */
104c1213
JM
1438 const struct bfd_arch_info *bfd_arch_info;
1439
428721aa 1440 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1441 enum bfd_endian byte_order;
104c1213 1442
94123b4f 1443 enum bfd_endian byte_order_for_code;
9d4fde75 1444
0963b4bd 1445 /* Use default: NULL (ZERO). */
104c1213
JM
1446 bfd *abfd;
1447
0963b4bd 1448 /* Use default: NULL (ZERO). */
ede5f151 1449 void *tdep_info;
4be87837
DJ
1450
1451 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1452 enum gdb_osabi osabi;
424163ea
DJ
1453
1454 /* Use default: NULL (ZERO). */
1455 const struct target_desc *target_desc;
104c1213
JM
1456};
1457
1458typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1459typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1460
4b9b3959 1461/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1462extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1463
4b9b3959
AC
1464extern void gdbarch_register (enum bfd_architecture architecture,
1465 gdbarch_init_ftype *,
1466 gdbarch_dump_tdep_ftype *);
1467
104c1213 1468
b4a20239
AC
1469/* Return a freshly allocated, NULL terminated, array of the valid
1470 architecture names. Since architectures are registered during the
1471 _initialize phase this function only returns useful information
0963b4bd 1472 once initialization has been completed. */
b4a20239
AC
1473
1474extern const char **gdbarch_printable_names (void);
1475
1476
104c1213 1477/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1478 matches the information provided by INFO. */
104c1213 1479
424163ea 1480extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1481
1482
1483/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1484 basic initialization using values obtained from the INFO and TDEP
104c1213 1485 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1486 initialization of the object. */
104c1213
JM
1487
1488extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1489
1490
4b9b3959
AC
1491/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1492 It is assumed that the caller freeds the \`\`struct
0963b4bd 1493 gdbarch_tdep''. */
4b9b3959 1494
058f20d5
JB
1495extern void gdbarch_free (struct gdbarch *);
1496
1497
aebd7893
AC
1498/* Helper function. Allocate memory from the \`\`struct gdbarch''
1499 obstack. The memory is freed when the corresponding architecture
1500 is also freed. */
1501
1502extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1503#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1504#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1505
6c214e7c
PP
1506/* Duplicate STRING, returning an equivalent string that's allocated on the
1507 obstack associated with GDBARCH. The string is freed when the corresponding
1508 architecture is also freed. */
1509
1510extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1511
0963b4bd 1512/* Helper function. Force an update of the current architecture.
104c1213 1513
b732d07d
AC
1514 The actual architecture selected is determined by INFO, \`\`(gdb) set
1515 architecture'' et.al., the existing architecture and BFD's default
1516 architecture. INFO should be initialized to zero and then selected
1517 fields should be updated.
104c1213 1518
0963b4bd 1519 Returns non-zero if the update succeeds. */
16f33e29
AC
1520
1521extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1522
1523
ebdba546
AC
1524/* Helper function. Find an architecture matching info.
1525
1526 INFO should be initialized using gdbarch_info_init, relevant fields
1527 set, and then finished using gdbarch_info_fill.
1528
1529 Returns the corresponding architecture, or NULL if no matching
59837fe0 1530 architecture was found. */
ebdba546
AC
1531
1532extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1533
1534
aff68abb 1535/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1536
aff68abb 1537extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1538
104c1213
JM
1539
1540/* Register per-architecture data-pointer.
1541
1542 Reserve space for a per-architecture data-pointer. An identifier
1543 for the reserved data-pointer is returned. That identifer should
95160752 1544 be saved in a local static variable.
104c1213 1545
fcc1c85c
AC
1546 Memory for the per-architecture data shall be allocated using
1547 gdbarch_obstack_zalloc. That memory will be deleted when the
1548 corresponding architecture object is deleted.
104c1213 1549
95160752
AC
1550 When a previously created architecture is re-selected, the
1551 per-architecture data-pointer for that previous architecture is
76860b5f 1552 restored. INIT() is not re-called.
104c1213
JM
1553
1554 Multiple registrarants for any architecture are allowed (and
1555 strongly encouraged). */
1556
95160752 1557struct gdbarch_data;
104c1213 1558
030f20e1
AC
1559typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1560extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1561typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1562extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1563extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1564 struct gdbarch_data *data,
1565 void *pointer);
104c1213 1566
451fbdda 1567extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1568
1569
0fa6923a 1570/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1571 byte-order, ...) using information found in the BFD. */
104c1213
JM
1572
1573extern void set_gdbarch_from_file (bfd *);
1574
1575
e514a9d6
JM
1576/* Initialize the current architecture to the "first" one we find on
1577 our list. */
1578
1579extern void initialize_current_architecture (void);
1580
104c1213 1581/* gdbarch trace variable */
ccce17b0 1582extern unsigned int gdbarch_debug;
104c1213 1583
4b9b3959 1584extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1585
1586#endif
1587EOF
1588exec 1>&2
1589#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1590compare_new gdbarch.h
104c1213
JM
1591
1592
1593#
1594# C file
1595#
1596
1597exec > new-gdbarch.c
1598copyright
1599cat <<EOF
1600
1601#include "defs.h"
7355ddba 1602#include "arch-utils.h"
104c1213 1603
104c1213 1604#include "gdbcmd.h"
faaf634c 1605#include "inferior.h"
104c1213
JM
1606#include "symcat.h"
1607
f0d4cc9e 1608#include "floatformat.h"
b59ff9d5 1609#include "reggroups.h"
4be87837 1610#include "osabi.h"
aebd7893 1611#include "gdb_obstack.h"
383f836e 1612#include "observer.h"
a3ecef73 1613#include "regcache.h"
19630284 1614#include "objfiles.h"
95160752 1615
104c1213
JM
1616/* Static function declarations */
1617
b3cc3077 1618static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1619
104c1213
JM
1620/* Non-zero if we want to trace architecture code. */
1621
1622#ifndef GDBARCH_DEBUG
1623#define GDBARCH_DEBUG 0
1624#endif
ccce17b0 1625unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1626static void
1627show_gdbarch_debug (struct ui_file *file, int from_tty,
1628 struct cmd_list_element *c, const char *value)
1629{
1630 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1631}
104c1213 1632
456fcf94 1633static const char *
8da61cc4 1634pformat (const struct floatformat **format)
456fcf94
AC
1635{
1636 if (format == NULL)
1637 return "(null)";
1638 else
8da61cc4
DJ
1639 /* Just print out one of them - this is only for diagnostics. */
1640 return format[0]->name;
456fcf94
AC
1641}
1642
08105857
PA
1643static const char *
1644pstring (const char *string)
1645{
1646 if (string == NULL)
1647 return "(null)";
1648 return string;
05c0465e
SDJ
1649}
1650
1651/* Helper function to print a list of strings, represented as "const
1652 char *const *". The list is printed comma-separated. */
1653
1654static char *
1655pstring_list (const char *const *list)
1656{
1657 static char ret[100];
1658 const char *const *p;
1659 size_t offset = 0;
1660
1661 if (list == NULL)
1662 return "(null)";
1663
1664 ret[0] = '\0';
1665 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1666 {
1667 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1668 offset += 2 + s;
1669 }
1670
1671 if (offset > 0)
1672 {
1673 gdb_assert (offset - 2 < sizeof (ret));
1674 ret[offset - 2] = '\0';
1675 }
1676
1677 return ret;
08105857
PA
1678}
1679
104c1213
JM
1680EOF
1681
1682# gdbarch open the gdbarch object
3d9a5942 1683printf "\n"
0963b4bd 1684printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1685printf "\n"
1686printf "struct gdbarch\n"
1687printf "{\n"
76860b5f
AC
1688printf " /* Has this architecture been fully initialized? */\n"
1689printf " int initialized_p;\n"
aebd7893
AC
1690printf "\n"
1691printf " /* An obstack bound to the lifetime of the architecture. */\n"
1692printf " struct obstack *obstack;\n"
1693printf "\n"
0963b4bd 1694printf " /* basic architectural information. */\n"
34620563 1695function_list | while do_read
104c1213 1696do
2ada493a
AC
1697 if class_is_info_p
1698 then
3d9a5942 1699 printf " ${returntype} ${function};\n"
2ada493a 1700 fi
104c1213 1701done
3d9a5942 1702printf "\n"
0963b4bd 1703printf " /* target specific vector. */\n"
3d9a5942
AC
1704printf " struct gdbarch_tdep *tdep;\n"
1705printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1706printf "\n"
0963b4bd 1707printf " /* per-architecture data-pointers. */\n"
95160752 1708printf " unsigned nr_data;\n"
3d9a5942
AC
1709printf " void **data;\n"
1710printf "\n"
104c1213
JM
1711cat <<EOF
1712 /* Multi-arch values.
1713
1714 When extending this structure you must:
1715
1716 Add the field below.
1717
1718 Declare set/get functions and define the corresponding
1719 macro in gdbarch.h.
1720
1721 gdbarch_alloc(): If zero/NULL is not a suitable default,
1722 initialize the new field.
1723
1724 verify_gdbarch(): Confirm that the target updated the field
1725 correctly.
1726
7e73cedf 1727 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1728 field is dumped out
1729
104c1213
JM
1730 get_gdbarch(): Implement the set/get functions (probably using
1731 the macro's as shortcuts).
1732
1733 */
1734
1735EOF
34620563 1736function_list | while do_read
104c1213 1737do
2ada493a
AC
1738 if class_is_variable_p
1739 then
3d9a5942 1740 printf " ${returntype} ${function};\n"
2ada493a
AC
1741 elif class_is_function_p
1742 then
2f9b146e 1743 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1744 fi
104c1213 1745done
3d9a5942 1746printf "};\n"
104c1213 1747
104c1213 1748# Create a new gdbarch struct
104c1213 1749cat <<EOF
7de2341d 1750
66b43ecb 1751/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1752 \`\`struct gdbarch_info''. */
104c1213 1753EOF
3d9a5942 1754printf "\n"
104c1213
JM
1755cat <<EOF
1756struct gdbarch *
1757gdbarch_alloc (const struct gdbarch_info *info,
1758 struct gdbarch_tdep *tdep)
1759{
be7811ad 1760 struct gdbarch *gdbarch;
aebd7893
AC
1761
1762 /* Create an obstack for allocating all the per-architecture memory,
1763 then use that to allocate the architecture vector. */
70ba0933 1764 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1765 obstack_init (obstack);
8d749320 1766 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1767 memset (gdbarch, 0, sizeof (*gdbarch));
1768 gdbarch->obstack = obstack;
85de9627 1769
be7811ad 1770 alloc_gdbarch_data (gdbarch);
85de9627 1771
be7811ad 1772 gdbarch->tdep = tdep;
104c1213 1773EOF
3d9a5942 1774printf "\n"
34620563 1775function_list | while do_read
104c1213 1776do
2ada493a
AC
1777 if class_is_info_p
1778 then
be7811ad 1779 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1780 fi
104c1213 1781done
3d9a5942 1782printf "\n"
0963b4bd 1783printf " /* Force the explicit initialization of these. */\n"
34620563 1784function_list | while do_read
104c1213 1785do
2ada493a
AC
1786 if class_is_function_p || class_is_variable_p
1787 then
72e74a21 1788 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1789 then
be7811ad 1790 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1791 fi
2ada493a 1792 fi
104c1213
JM
1793done
1794cat <<EOF
1795 /* gdbarch_alloc() */
1796
be7811ad 1797 return gdbarch;
104c1213
JM
1798}
1799EOF
1800
058f20d5 1801# Free a gdbarch struct.
3d9a5942
AC
1802printf "\n"
1803printf "\n"
058f20d5 1804cat <<EOF
aebd7893
AC
1805/* Allocate extra space using the per-architecture obstack. */
1806
1807void *
1808gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1809{
1810 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1811
aebd7893
AC
1812 memset (data, 0, size);
1813 return data;
1814}
1815
6c214e7c
PP
1816/* See gdbarch.h. */
1817
1818char *
1819gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1820{
1821 return obstack_strdup (arch->obstack, string);
1822}
1823
aebd7893 1824
058f20d5
JB
1825/* Free a gdbarch struct. This should never happen in normal
1826 operation --- once you've created a gdbarch, you keep it around.
1827 However, if an architecture's init function encounters an error
1828 building the structure, it may need to clean up a partially
1829 constructed gdbarch. */
4b9b3959 1830
058f20d5
JB
1831void
1832gdbarch_free (struct gdbarch *arch)
1833{
aebd7893 1834 struct obstack *obstack;
05c547f6 1835
95160752 1836 gdb_assert (arch != NULL);
aebd7893
AC
1837 gdb_assert (!arch->initialized_p);
1838 obstack = arch->obstack;
1839 obstack_free (obstack, 0); /* Includes the ARCH. */
1840 xfree (obstack);
058f20d5
JB
1841}
1842EOF
1843
104c1213 1844# verify a new architecture
104c1213 1845cat <<EOF
db446970
AC
1846
1847
1848/* Ensure that all values in a GDBARCH are reasonable. */
1849
104c1213 1850static void
be7811ad 1851verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1852{
f16a1923
AC
1853 struct ui_file *log;
1854 struct cleanup *cleanups;
759ef836 1855 long length;
f16a1923 1856 char *buf;
05c547f6 1857
f16a1923
AC
1858 log = mem_fileopen ();
1859 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1860 /* fundamental */
be7811ad 1861 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1862 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1863 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1864 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1865 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1866EOF
34620563 1867function_list | while do_read
104c1213 1868do
2ada493a
AC
1869 if class_is_function_p || class_is_variable_p
1870 then
72e74a21 1871 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1872 then
3d9a5942 1873 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1874 elif class_is_predicate_p
1875 then
0963b4bd 1876 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1877 # FIXME: See do_read for potential simplification
72e74a21 1878 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1879 then
3d9a5942 1880 printf " if (${invalid_p})\n"
be7811ad 1881 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1882 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1883 then
be7811ad
MD
1884 printf " if (gdbarch->${function} == ${predefault})\n"
1885 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1886 elif [ -n "${postdefault}" ]
f0d4cc9e 1887 then
be7811ad
MD
1888 printf " if (gdbarch->${function} == 0)\n"
1889 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1890 elif [ -n "${invalid_p}" ]
104c1213 1891 then
4d60522e 1892 printf " if (${invalid_p})\n"
f16a1923 1893 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1894 elif [ -n "${predefault}" ]
104c1213 1895 then
be7811ad 1896 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1897 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1898 fi
2ada493a 1899 fi
104c1213
JM
1900done
1901cat <<EOF
759ef836 1902 buf = ui_file_xstrdup (log, &length);
f16a1923 1903 make_cleanup (xfree, buf);
759ef836 1904 if (length > 0)
f16a1923 1905 internal_error (__FILE__, __LINE__,
85c07804 1906 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1907 buf);
1908 do_cleanups (cleanups);
104c1213
JM
1909}
1910EOF
1911
1912# dump the structure
3d9a5942
AC
1913printf "\n"
1914printf "\n"
104c1213 1915cat <<EOF
0963b4bd 1916/* Print out the details of the current architecture. */
4b9b3959 1917
104c1213 1918void
be7811ad 1919gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1920{
b78960be 1921 const char *gdb_nm_file = "<not-defined>";
05c547f6 1922
b78960be
AC
1923#if defined (GDB_NM_FILE)
1924 gdb_nm_file = GDB_NM_FILE;
1925#endif
1926 fprintf_unfiltered (file,
1927 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1928 gdb_nm_file);
104c1213 1929EOF
97030eea 1930function_list | sort -t: -k 3 | while do_read
104c1213 1931do
1e9f55d0
AC
1932 # First the predicate
1933 if class_is_predicate_p
1934 then
7996bcec 1935 printf " fprintf_unfiltered (file,\n"
48f7351b 1936 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1937 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1938 fi
48f7351b 1939 # Print the corresponding value.
283354d8 1940 if class_is_function_p
4b9b3959 1941 then
7996bcec 1942 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1943 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1944 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1945 else
48f7351b 1946 # It is a variable
2f9b146e
AC
1947 case "${print}:${returntype}" in
1948 :CORE_ADDR )
0b1553bc
UW
1949 fmt="%s"
1950 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1951 ;;
2f9b146e 1952 :* )
48f7351b 1953 fmt="%s"
623d3eb1 1954 print="plongest (gdbarch->${function})"
48f7351b
AC
1955 ;;
1956 * )
2f9b146e 1957 fmt="%s"
48f7351b
AC
1958 ;;
1959 esac
3d9a5942 1960 printf " fprintf_unfiltered (file,\n"
48f7351b 1961 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1962 printf " ${print});\n"
2ada493a 1963 fi
104c1213 1964done
381323f4 1965cat <<EOF
be7811ad
MD
1966 if (gdbarch->dump_tdep != NULL)
1967 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1968}
1969EOF
104c1213
JM
1970
1971
1972# GET/SET
3d9a5942 1973printf "\n"
104c1213
JM
1974cat <<EOF
1975struct gdbarch_tdep *
1976gdbarch_tdep (struct gdbarch *gdbarch)
1977{
1978 if (gdbarch_debug >= 2)
3d9a5942 1979 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1980 return gdbarch->tdep;
1981}
1982EOF
3d9a5942 1983printf "\n"
34620563 1984function_list | while do_read
104c1213 1985do
2ada493a
AC
1986 if class_is_predicate_p
1987 then
3d9a5942
AC
1988 printf "\n"
1989 printf "int\n"
1990 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1991 printf "{\n"
8de9bdc4 1992 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1993 printf " return ${predicate};\n"
3d9a5942 1994 printf "}\n"
2ada493a
AC
1995 fi
1996 if class_is_function_p
1997 then
3d9a5942
AC
1998 printf "\n"
1999 printf "${returntype}\n"
72e74a21 2000 if [ "x${formal}" = "xvoid" ]
104c1213 2001 then
3d9a5942 2002 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2003 else
3d9a5942 2004 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2005 fi
3d9a5942 2006 printf "{\n"
8de9bdc4 2007 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2008 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2009 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2010 then
2011 # Allow a call to a function with a predicate.
956ac328 2012 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2013 fi
3d9a5942
AC
2014 printf " if (gdbarch_debug >= 2)\n"
2015 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2016 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2017 then
2018 if class_is_multiarch_p
2019 then
2020 params="gdbarch"
2021 else
2022 params=""
2023 fi
2024 else
2025 if class_is_multiarch_p
2026 then
2027 params="gdbarch, ${actual}"
2028 else
2029 params="${actual}"
2030 fi
2031 fi
72e74a21 2032 if [ "x${returntype}" = "xvoid" ]
104c1213 2033 then
4a5c6a1d 2034 printf " gdbarch->${function} (${params});\n"
104c1213 2035 else
4a5c6a1d 2036 printf " return gdbarch->${function} (${params});\n"
104c1213 2037 fi
3d9a5942
AC
2038 printf "}\n"
2039 printf "\n"
2040 printf "void\n"
2041 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2042 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2043 printf "{\n"
2044 printf " gdbarch->${function} = ${function};\n"
2045 printf "}\n"
2ada493a
AC
2046 elif class_is_variable_p
2047 then
3d9a5942
AC
2048 printf "\n"
2049 printf "${returntype}\n"
2050 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2051 printf "{\n"
8de9bdc4 2052 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2053 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2054 then
3d9a5942 2055 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2056 elif [ -n "${invalid_p}" ]
104c1213 2057 then
956ac328
AC
2058 printf " /* Check variable is valid. */\n"
2059 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2060 elif [ -n "${predefault}" ]
104c1213 2061 then
956ac328
AC
2062 printf " /* Check variable changed from pre-default. */\n"
2063 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2064 fi
3d9a5942
AC
2065 printf " if (gdbarch_debug >= 2)\n"
2066 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2067 printf " return gdbarch->${function};\n"
2068 printf "}\n"
2069 printf "\n"
2070 printf "void\n"
2071 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2072 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2073 printf "{\n"
2074 printf " gdbarch->${function} = ${function};\n"
2075 printf "}\n"
2ada493a
AC
2076 elif class_is_info_p
2077 then
3d9a5942
AC
2078 printf "\n"
2079 printf "${returntype}\n"
2080 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2081 printf "{\n"
8de9bdc4 2082 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2083 printf " if (gdbarch_debug >= 2)\n"
2084 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2085 printf " return gdbarch->${function};\n"
2086 printf "}\n"
2ada493a 2087 fi
104c1213
JM
2088done
2089
2090# All the trailing guff
2091cat <<EOF
2092
2093
f44c642f 2094/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2095 modules. */
104c1213
JM
2096
2097struct gdbarch_data
2098{
95160752 2099 unsigned index;
76860b5f 2100 int init_p;
030f20e1
AC
2101 gdbarch_data_pre_init_ftype *pre_init;
2102 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2103};
2104
2105struct gdbarch_data_registration
2106{
104c1213
JM
2107 struct gdbarch_data *data;
2108 struct gdbarch_data_registration *next;
2109};
2110
f44c642f 2111struct gdbarch_data_registry
104c1213 2112{
95160752 2113 unsigned nr;
104c1213
JM
2114 struct gdbarch_data_registration *registrations;
2115};
2116
f44c642f 2117struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2118{
2119 0, NULL,
2120};
2121
030f20e1
AC
2122static struct gdbarch_data *
2123gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2124 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2125{
2126 struct gdbarch_data_registration **curr;
05c547f6
MS
2127
2128 /* Append the new registration. */
f44c642f 2129 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2130 (*curr) != NULL;
2131 curr = &(*curr)->next);
70ba0933 2132 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2133 (*curr)->next = NULL;
70ba0933 2134 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2135 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2136 (*curr)->data->pre_init = pre_init;
2137 (*curr)->data->post_init = post_init;
76860b5f 2138 (*curr)->data->init_p = 1;
104c1213
JM
2139 return (*curr)->data;
2140}
2141
030f20e1
AC
2142struct gdbarch_data *
2143gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2144{
2145 return gdbarch_data_register (pre_init, NULL);
2146}
2147
2148struct gdbarch_data *
2149gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2150{
2151 return gdbarch_data_register (NULL, post_init);
2152}
104c1213 2153
0963b4bd 2154/* Create/delete the gdbarch data vector. */
95160752
AC
2155
2156static void
b3cc3077 2157alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2158{
b3cc3077
JB
2159 gdb_assert (gdbarch->data == NULL);
2160 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2161 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2162}
3c875b6f 2163
76860b5f 2164/* Initialize the current value of the specified per-architecture
0963b4bd 2165 data-pointer. */
b3cc3077 2166
95160752 2167void
030f20e1
AC
2168deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2169 struct gdbarch_data *data,
2170 void *pointer)
95160752
AC
2171{
2172 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2173 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2174 gdb_assert (data->pre_init == NULL);
95160752
AC
2175 gdbarch->data[data->index] = pointer;
2176}
2177
104c1213 2178/* Return the current value of the specified per-architecture
0963b4bd 2179 data-pointer. */
104c1213
JM
2180
2181void *
451fbdda 2182gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2183{
451fbdda 2184 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2185 if (gdbarch->data[data->index] == NULL)
76860b5f 2186 {
030f20e1
AC
2187 /* The data-pointer isn't initialized, call init() to get a
2188 value. */
2189 if (data->pre_init != NULL)
2190 /* Mid architecture creation: pass just the obstack, and not
2191 the entire architecture, as that way it isn't possible for
2192 pre-init code to refer to undefined architecture
2193 fields. */
2194 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2195 else if (gdbarch->initialized_p
2196 && data->post_init != NULL)
2197 /* Post architecture creation: pass the entire architecture
2198 (as all fields are valid), but be careful to also detect
2199 recursive references. */
2200 {
2201 gdb_assert (data->init_p);
2202 data->init_p = 0;
2203 gdbarch->data[data->index] = data->post_init (gdbarch);
2204 data->init_p = 1;
2205 }
2206 else
2207 /* The architecture initialization hasn't completed - punt -
2208 hope that the caller knows what they are doing. Once
2209 deprecated_set_gdbarch_data has been initialized, this can be
2210 changed to an internal error. */
2211 return NULL;
76860b5f
AC
2212 gdb_assert (gdbarch->data[data->index] != NULL);
2213 }
451fbdda 2214 return gdbarch->data[data->index];
104c1213
JM
2215}
2216
2217
0963b4bd 2218/* Keep a registry of the architectures known by GDB. */
104c1213 2219
4b9b3959 2220struct gdbarch_registration
104c1213
JM
2221{
2222 enum bfd_architecture bfd_architecture;
2223 gdbarch_init_ftype *init;
4b9b3959 2224 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2225 struct gdbarch_list *arches;
4b9b3959 2226 struct gdbarch_registration *next;
104c1213
JM
2227};
2228
f44c642f 2229static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2230
b4a20239
AC
2231static void
2232append_name (const char ***buf, int *nr, const char *name)
2233{
1dc7a623 2234 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2235 (*buf)[*nr] = name;
2236 *nr += 1;
2237}
2238
2239const char **
2240gdbarch_printable_names (void)
2241{
7996bcec 2242 /* Accumulate a list of names based on the registed list of
0963b4bd 2243 architectures. */
7996bcec
AC
2244 int nr_arches = 0;
2245 const char **arches = NULL;
2246 struct gdbarch_registration *rego;
05c547f6 2247
7996bcec
AC
2248 for (rego = gdbarch_registry;
2249 rego != NULL;
2250 rego = rego->next)
b4a20239 2251 {
7996bcec
AC
2252 const struct bfd_arch_info *ap;
2253 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2254 if (ap == NULL)
2255 internal_error (__FILE__, __LINE__,
85c07804 2256 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2257 do
2258 {
2259 append_name (&arches, &nr_arches, ap->printable_name);
2260 ap = ap->next;
2261 }
2262 while (ap != NULL);
b4a20239 2263 }
7996bcec
AC
2264 append_name (&arches, &nr_arches, NULL);
2265 return arches;
b4a20239
AC
2266}
2267
2268
104c1213 2269void
4b9b3959
AC
2270gdbarch_register (enum bfd_architecture bfd_architecture,
2271 gdbarch_init_ftype *init,
2272 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2273{
4b9b3959 2274 struct gdbarch_registration **curr;
104c1213 2275 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2276
ec3d358c 2277 /* Check that BFD recognizes this architecture */
104c1213
JM
2278 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2279 if (bfd_arch_info == NULL)
2280 {
8e65ff28 2281 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2282 _("gdbarch: Attempt to register "
2283 "unknown architecture (%d)"),
8e65ff28 2284 bfd_architecture);
104c1213 2285 }
0963b4bd 2286 /* Check that we haven't seen this architecture before. */
f44c642f 2287 for (curr = &gdbarch_registry;
104c1213
JM
2288 (*curr) != NULL;
2289 curr = &(*curr)->next)
2290 {
2291 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2292 internal_error (__FILE__, __LINE__,
64b9b334 2293 _("gdbarch: Duplicate registration "
0963b4bd 2294 "of architecture (%s)"),
8e65ff28 2295 bfd_arch_info->printable_name);
104c1213
JM
2296 }
2297 /* log it */
2298 if (gdbarch_debug)
30737ed9 2299 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2300 bfd_arch_info->printable_name,
30737ed9 2301 host_address_to_string (init));
104c1213 2302 /* Append it */
70ba0933 2303 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2304 (*curr)->bfd_architecture = bfd_architecture;
2305 (*curr)->init = init;
4b9b3959 2306 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2307 (*curr)->arches = NULL;
2308 (*curr)->next = NULL;
4b9b3959
AC
2309}
2310
2311void
2312register_gdbarch_init (enum bfd_architecture bfd_architecture,
2313 gdbarch_init_ftype *init)
2314{
2315 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2316}
104c1213
JM
2317
2318
424163ea 2319/* Look for an architecture using gdbarch_info. */
104c1213
JM
2320
2321struct gdbarch_list *
2322gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2323 const struct gdbarch_info *info)
2324{
2325 for (; arches != NULL; arches = arches->next)
2326 {
2327 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2328 continue;
2329 if (info->byte_order != arches->gdbarch->byte_order)
2330 continue;
4be87837
DJ
2331 if (info->osabi != arches->gdbarch->osabi)
2332 continue;
424163ea
DJ
2333 if (info->target_desc != arches->gdbarch->target_desc)
2334 continue;
104c1213
JM
2335 return arches;
2336 }
2337 return NULL;
2338}
2339
2340
ebdba546 2341/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2342 architecture if needed. Return that new architecture. */
104c1213 2343
59837fe0
UW
2344struct gdbarch *
2345gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2346{
2347 struct gdbarch *new_gdbarch;
4b9b3959 2348 struct gdbarch_registration *rego;
104c1213 2349
b732d07d 2350 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2351 sources: "set ..."; INFOabfd supplied; and the global
2352 defaults. */
2353 gdbarch_info_fill (&info);
4be87837 2354
0963b4bd 2355 /* Must have found some sort of architecture. */
b732d07d 2356 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2357
2358 if (gdbarch_debug)
2359 {
2360 fprintf_unfiltered (gdb_stdlog,
59837fe0 2361 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2362 (info.bfd_arch_info != NULL
2363 ? info.bfd_arch_info->printable_name
2364 : "(null)"));
2365 fprintf_unfiltered (gdb_stdlog,
59837fe0 2366 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2367 info.byte_order,
d7449b42 2368 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2369 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2370 : "default"));
4be87837 2371 fprintf_unfiltered (gdb_stdlog,
59837fe0 2372 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2373 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2374 fprintf_unfiltered (gdb_stdlog,
59837fe0 2375 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2376 host_address_to_string (info.abfd));
104c1213 2377 fprintf_unfiltered (gdb_stdlog,
59837fe0 2378 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2379 host_address_to_string (info.tdep_info));
104c1213
JM
2380 }
2381
ebdba546 2382 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2383 for (rego = gdbarch_registry;
2384 rego != NULL;
2385 rego = rego->next)
2386 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2387 break;
2388 if (rego == NULL)
2389 {
2390 if (gdbarch_debug)
59837fe0 2391 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2392 "No matching architecture\n");
b732d07d
AC
2393 return 0;
2394 }
2395
ebdba546 2396 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2397 new_gdbarch = rego->init (info, rego->arches);
2398
ebdba546
AC
2399 /* Did the tdep code like it? No. Reject the change and revert to
2400 the old architecture. */
104c1213
JM
2401 if (new_gdbarch == NULL)
2402 {
2403 if (gdbarch_debug)
59837fe0 2404 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2405 "Target rejected architecture\n");
2406 return NULL;
104c1213
JM
2407 }
2408
ebdba546
AC
2409 /* Is this a pre-existing architecture (as determined by already
2410 being initialized)? Move it to the front of the architecture
2411 list (keeping the list sorted Most Recently Used). */
2412 if (new_gdbarch->initialized_p)
104c1213 2413 {
ebdba546 2414 struct gdbarch_list **list;
fe978cb0 2415 struct gdbarch_list *self;
104c1213 2416 if (gdbarch_debug)
59837fe0 2417 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2418 "Previous architecture %s (%s) selected\n",
2419 host_address_to_string (new_gdbarch),
104c1213 2420 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2421 /* Find the existing arch in the list. */
2422 for (list = &rego->arches;
2423 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2424 list = &(*list)->next);
2425 /* It had better be in the list of architectures. */
2426 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2427 /* Unlink SELF. */
2428 self = (*list);
2429 (*list) = self->next;
2430 /* Insert SELF at the front. */
2431 self->next = rego->arches;
2432 rego->arches = self;
ebdba546
AC
2433 /* Return it. */
2434 return new_gdbarch;
104c1213
JM
2435 }
2436
ebdba546
AC
2437 /* It's a new architecture. */
2438 if (gdbarch_debug)
59837fe0 2439 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2440 "New architecture %s (%s) selected\n",
2441 host_address_to_string (new_gdbarch),
ebdba546
AC
2442 new_gdbarch->bfd_arch_info->printable_name);
2443
2444 /* Insert the new architecture into the front of the architecture
2445 list (keep the list sorted Most Recently Used). */
0f79675b 2446 {
fe978cb0
PA
2447 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2448 self->next = rego->arches;
2449 self->gdbarch = new_gdbarch;
2450 rego->arches = self;
0f79675b 2451 }
104c1213 2452
4b9b3959
AC
2453 /* Check that the newly installed architecture is valid. Plug in
2454 any post init values. */
2455 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2456 verify_gdbarch (new_gdbarch);
ebdba546 2457 new_gdbarch->initialized_p = 1;
104c1213 2458
4b9b3959 2459 if (gdbarch_debug)
ebdba546
AC
2460 gdbarch_dump (new_gdbarch, gdb_stdlog);
2461
2462 return new_gdbarch;
2463}
2464
e487cc15 2465/* Make the specified architecture current. */
ebdba546
AC
2466
2467void
aff68abb 2468set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2469{
2470 gdb_assert (new_gdbarch != NULL);
ebdba546 2471 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2472 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2473 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2474 registers_changed ();
ebdba546 2475}
104c1213 2476
f5656ead 2477/* Return the current inferior's arch. */
6ecd4729
PA
2478
2479struct gdbarch *
f5656ead 2480target_gdbarch (void)
6ecd4729
PA
2481{
2482 return current_inferior ()->gdbarch;
2483}
2484
104c1213 2485extern void _initialize_gdbarch (void);
b4a20239 2486
104c1213 2487void
34620563 2488_initialize_gdbarch (void)
104c1213 2489{
ccce17b0 2490 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2491Set architecture debugging."), _("\\
2492Show architecture debugging."), _("\\
2493When non-zero, architecture debugging is enabled."),
2494 NULL,
920d2a44 2495 show_gdbarch_debug,
85c07804 2496 &setdebuglist, &showdebuglist);
104c1213
JM
2497}
2498EOF
2499
2500# close things off
2501exec 1>&2
2502#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2503compare_new gdbarch.c
This page took 1.488676 seconds and 4 git commands to generate.