* gdb.threads/pthreads.c (thread1, thread2, main): Fix printf
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6# 2008, 2009, 2010 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532 24# environment.
0e05dfcb
DJ
25LANG=C ; export LANG
26LC_ALL=C ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
489# Return the adjusted address and kind to use for Z0/Z1 packets.
490# KIND is usually the memory length of the breakpoint, but may have a
491# different target-specific meaning.
0e05dfcb 492m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 493M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
494m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 496v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
497
498# A function can be addressed by either it's "pointer" (possibly a
499# descriptor address) or "entry point" (first executable instruction).
500# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 501# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
502# a simplified subset of that functionality - the function's address
503# corresponds to the "function pointer" and the function's start
504# corresponds to the "function entry point" - and hence is redundant.
505
97030eea 506v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 507
123dc839
DJ
508# Return the remote protocol register number associated with this
509# register. Normally the identity mapping.
97030eea 510m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 511
b2756930 512# Fetch the target specific address used to represent a load module.
97030eea 513F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 514#
97030eea
UW
515v:CORE_ADDR:frame_args_skip:::0:::0
516M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
518# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519# frame-base. Enable frame-base before frame-unwind.
97030eea 520F:int:frame_num_args:struct frame_info *frame:frame
104c1213 521#
97030eea
UW
522M:CORE_ADDR:frame_align:CORE_ADDR address:address
523m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524v:int:frame_red_zone_size
f0d4cc9e 525#
97030eea 526m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
527# On some machines there are bits in addresses which are not really
528# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 529# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
530# we get a "real" address such as one would find in a symbol table.
531# This is used only for addresses of instructions, and even then I'm
532# not sure it's used in all contexts. It exists to deal with there
533# being a few stray bits in the PC which would mislead us, not as some
534# sort of generic thing to handle alignment or segmentation (it's
535# possible it should be in TARGET_READ_PC instead).
24568a2c 536m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 537# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 538# gdbarch_addr_bits_remove.
24568a2c 539m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
540
541# FIXME/cagney/2001-01-18: This should be split in two. A target method that
542# indicates if the target needs software single step. An ISA method to
543# implement it.
544#
545# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546# breakpoints using the breakpoint system instead of blatting memory directly
547# (as with rs6000).
64c4637f 548#
e6590a1b
UW
549# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550# target can single step. If not, then implement single step using breakpoints.
64c4637f 551#
e6590a1b
UW
552# A return value of 1 means that the software_single_step breakpoints
553# were inserted; 0 means they were not.
97030eea 554F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 555
3352ef37
AC
556# Return non-zero if the processor is executing a delay slot and a
557# further single-step is needed before the instruction finishes.
97030eea 558M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 559# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 560# disassembler. Perhaps objdump can handle it?
97030eea
UW
561f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
563
564
cfd8ab24 565# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
566# evaluates non-zero, this is the address where the debugger will place
567# a step-resume breakpoint to get us past the dynamic linker.
97030eea 568m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 569# Some systems also have trampoline code for returning from shared libs.
e17a4113 570m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 571
c12260ac
CV
572# A target might have problems with watchpoints as soon as the stack
573# frame of the current function has been destroyed. This mostly happens
574# as the first action in a funtion's epilogue. in_function_epilogue_p()
575# is defined to return a non-zero value if either the given addr is one
576# instruction after the stack destroying instruction up to the trailing
577# return instruction or if we can figure out that the stack frame has
578# already been invalidated regardless of the value of addr. Targets
579# which don't suffer from that problem could just let this functionality
580# untouched.
97030eea 581m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
582f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
584v:int:cannot_step_breakpoint:::0:0::0
585v:int:have_nonsteppable_watchpoint:::0:0::0
586F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 589# Is a register in a group
97030eea 590m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 591# Fetch the pointer to the ith function argument.
97030eea 592F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
593
594# Return the appropriate register set for a core file section with
595# name SECT_NAME and size SECT_SIZE.
97030eea 596M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 597
959b8724
PA
598# When creating core dumps, some systems encode the PID in addition
599# to the LWP id in core file register section names. In those cases, the
600# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601# is set to true for such architectures; false if "XXX" represents an LWP
602# or thread id with no special encoding.
603v:int:core_reg_section_encodes_pid:::0:0::0
604
17ea7499
CES
605# Supported register notes in a core file.
606v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
de584861
PA
608# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609# core file into buffer READBUF with length LEN.
97030eea 610M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 611
28439f5e
PA
612# How the core_stratum layer converts a PTID from a core file to a
613# string.
614M:char *:core_pid_to_str:ptid_t ptid:ptid
615
a78c2d62
UW
616# BFD target to use when generating a core file.
617V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
0d5de010
DJ
619# If the elements of C++ vtables are in-place function descriptors rather
620# than normal function pointers (which may point to code or a descriptor),
621# set this to one.
97030eea 622v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
623
624# Set if the least significant bit of the delta is used instead of the least
625# significant bit of the pfn for pointers to virtual member functions.
97030eea 626v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
627
628# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 629F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 630
237fc4c9
PA
631# The maximum length of an instruction on this architecture.
632V:ULONGEST:max_insn_length:::0:0
633
634# Copy the instruction at FROM to TO, and make any adjustments
635# necessary to single-step it at that address.
636#
637# REGS holds the state the thread's registers will have before
638# executing the copied instruction; the PC in REGS will refer to FROM,
639# not the copy at TO. The caller should update it to point at TO later.
640#
641# Return a pointer to data of the architecture's choice to be passed
642# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643# the instruction's effects have been completely simulated, with the
644# resulting state written back to REGS.
645#
646# For a general explanation of displaced stepping and how GDB uses it,
647# see the comments in infrun.c.
648#
649# The TO area is only guaranteed to have space for
650# gdbarch_max_insn_length (arch) bytes, so this function must not
651# write more bytes than that to that area.
652#
653# If you do not provide this function, GDB assumes that the
654# architecture does not support displaced stepping.
655#
656# If your architecture doesn't need to adjust instructions before
657# single-stepping them, consider using simple_displaced_step_copy_insn
658# here.
659M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
99e40580
UW
661# Return true if GDB should use hardware single-stepping to execute
662# the displaced instruction identified by CLOSURE. If false,
663# GDB will simply restart execution at the displaced instruction
664# location, and it is up to the target to ensure GDB will receive
665# control again (e.g. by placing a software breakpoint instruction
666# into the displaced instruction buffer).
667#
668# The default implementation returns false on all targets that
669# provide a gdbarch_software_single_step routine, and true otherwise.
670m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
237fc4c9
PA
672# Fix up the state resulting from successfully single-stepping a
673# displaced instruction, to give the result we would have gotten from
674# stepping the instruction in its original location.
675#
676# REGS is the register state resulting from single-stepping the
677# displaced instruction.
678#
679# CLOSURE is the result from the matching call to
680# gdbarch_displaced_step_copy_insn.
681#
682# If you provide gdbarch_displaced_step_copy_insn.but not this
683# function, then GDB assumes that no fixup is needed after
684# single-stepping the instruction.
685#
686# For a general explanation of displaced stepping and how GDB uses it,
687# see the comments in infrun.c.
688M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690# Free a closure returned by gdbarch_displaced_step_copy_insn.
691#
692# If you provide gdbarch_displaced_step_copy_insn, you must provide
693# this function as well.
694#
695# If your architecture uses closures that don't need to be freed, then
696# you can use simple_displaced_step_free_closure here.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702# Return the address of an appropriate place to put displaced
703# instructions while we step over them. There need only be one such
704# place, since we're only stepping one thread over a breakpoint at a
705# time.
706#
707# For a general explanation of displaced stepping and how GDB uses it,
708# see the comments in infrun.c.
709m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
1c772458 711# Refresh overlay mapped state for section OSECT.
97030eea 712F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 713
97030eea 714M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
715
716# Handle special encoding of static variables in stabs debug info.
97030eea 717F:char *:static_transform_name:char *name:name
203c3895 718# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 719v:int:sofun_address_maybe_missing:::0:0::0
1cded358 720
0508c3ec
HZ
721# Parse the instruction at ADDR storing in the record execution log
722# the registers REGCACHE and memory ranges that will be affected when
723# the instruction executes, along with their current values.
724# Return -1 if something goes wrong, 0 otherwise.
725M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
3846b520
HZ
727# Save process state after a signal.
728# Return -1 if something goes wrong, 0 otherwise.
729M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
1cded358
AR
731# Signal translation: translate inferior's signal (host's) number into
732# GDB's representation.
733m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734# Signal translation: translate GDB's signal number into inferior's host
735# signal number.
736m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 737
4aa995e1
PA
738# Extra signal info inspection.
739#
740# Return a type suitable to inspect extra signal information.
741M:struct type *:get_siginfo_type:void:
742
60c5725c
DJ
743# Record architecture-specific information from the symbol table.
744M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 745
a96d9b2e
SDJ
746# Function for the 'catch syscall' feature.
747
748# Get architecture-specific system calls information from registers.
749M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
50c71eaf
PA
751# True if the list of shared libraries is one and only for all
752# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
753# This usually means that all processes, although may or may not share
754# an address space, will see the same set of symbols at the same
755# addresses.
50c71eaf 756v:int:has_global_solist:::0:0::0
2567c7d9
PA
757
758# On some targets, even though each inferior has its own private
759# address space, the debug interface takes care of making breakpoints
760# visible to all address spaces automatically. For such cases,
761# this property should be set to true.
762v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
763
764# True if inferiors share an address space (e.g., uClinux).
765m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
766
767# True if a fast tracepoint can be set at an address.
768m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9
L
769
770# Not NULL if a target has additonal field for qSupported.
771v:const char *:qsupported:::0:0::0:gdbarch->qsupported
f870a310
TT
772
773# Return the "auto" target charset.
774f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
775# Return the "auto" target wide charset.
776f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
777
778# If non-empty, this is a file extension that will be opened in place
779# of the file extension reported by the shared library list.
780#
781# This is most useful for toolchains that use a post-linker tool,
782# where the names of the files run on the target differ in extension
783# compared to the names of the files GDB should load for debug info.
784v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
104c1213 785EOF
104c1213
JM
786}
787
0b8f9e4d
AC
788#
789# The .log file
790#
791exec > new-gdbarch.log
34620563 792function_list | while do_read
0b8f9e4d
AC
793do
794 cat <<EOF
2f9b146e 795${class} ${returntype} ${function} ($formal)
104c1213 796EOF
3d9a5942
AC
797 for r in ${read}
798 do
799 eval echo \"\ \ \ \ ${r}=\${${r}}\"
800 done
f0d4cc9e 801 if class_is_predicate_p && fallback_default_p
0b8f9e4d 802 then
66d659b1 803 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
804 kill $$
805 exit 1
806 fi
72e74a21 807 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
808 then
809 echo "Error: postdefault is useless when invalid_p=0" 1>&2
810 kill $$
811 exit 1
812 fi
a72293e2
AC
813 if class_is_multiarch_p
814 then
815 if class_is_predicate_p ; then :
816 elif test "x${predefault}" = "x"
817 then
2f9b146e 818 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
819 kill $$
820 exit 1
821 fi
822 fi
3d9a5942 823 echo ""
0b8f9e4d
AC
824done
825
826exec 1>&2
827compare_new gdbarch.log
828
104c1213
JM
829
830copyright ()
831{
832cat <<EOF
59233f88
AC
833/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
834
104c1213 835/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 836
f801e1e0
MS
837 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
838 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
839
840 This file is part of GDB.
841
842 This program is free software; you can redistribute it and/or modify
843 it under the terms of the GNU General Public License as published by
50efebf8 844 the Free Software Foundation; either version 3 of the License, or
104c1213 845 (at your option) any later version.
50efebf8 846
104c1213
JM
847 This program is distributed in the hope that it will be useful,
848 but WITHOUT ANY WARRANTY; without even the implied warranty of
849 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
850 GNU General Public License for more details.
50efebf8 851
104c1213 852 You should have received a copy of the GNU General Public License
50efebf8 853 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 854
104c1213
JM
855/* This file was created with the aid of \`\`gdbarch.sh''.
856
52204a0b 857 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
858 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
859 against the existing \`\`gdbarch.[hc]''. Any differences found
860 being reported.
861
862 If editing this file, please also run gdbarch.sh and merge any
52204a0b 863 changes into that script. Conversely, when making sweeping changes
104c1213
JM
864 to this file, modifying gdbarch.sh and using its output may prove
865 easier. */
866
867EOF
868}
869
870#
871# The .h file
872#
873
874exec > new-gdbarch.h
875copyright
876cat <<EOF
877#ifndef GDBARCH_H
878#define GDBARCH_H
879
da3331ec
AC
880struct floatformat;
881struct ui_file;
104c1213
JM
882struct frame_info;
883struct value;
b6af0555 884struct objfile;
1c772458 885struct obj_section;
a2cf933a 886struct minimal_symbol;
049ee0e4 887struct regcache;
b59ff9d5 888struct reggroup;
6ce6d90f 889struct regset;
a89aa300 890struct disassemble_info;
e2d0e7eb 891struct target_ops;
030f20e1 892struct obstack;
8181d85f 893struct bp_target_info;
424163ea 894struct target_desc;
237fc4c9 895struct displaced_step_closure;
17ea7499 896struct core_regset_section;
a96d9b2e 897struct syscall;
104c1213 898
9e2ace22
JB
899/* The architecture associated with the connection to the target.
900
901 The architecture vector provides some information that is really
902 a property of the target: The layout of certain packets, for instance;
903 or the solib_ops vector. Etc. To differentiate architecture accesses
904 to per-target properties from per-thread/per-frame/per-objfile properties,
905 accesses to per-target properties should be made through target_gdbarch.
906
907 Eventually, when support for multiple targets is implemented in
908 GDB, this global should be made target-specific. */
1cf3db46 909extern struct gdbarch *target_gdbarch;
104c1213
JM
910EOF
911
912# function typedef's
3d9a5942
AC
913printf "\n"
914printf "\n"
915printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 916function_list | while do_read
104c1213 917do
2ada493a
AC
918 if class_is_info_p
919 then
3d9a5942
AC
920 printf "\n"
921 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
922 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 923 fi
104c1213
JM
924done
925
926# function typedef's
3d9a5942
AC
927printf "\n"
928printf "\n"
929printf "/* The following are initialized by the target dependent code. */\n"
34620563 930function_list | while do_read
104c1213 931do
72e74a21 932 if [ -n "${comment}" ]
34620563
AC
933 then
934 echo "${comment}" | sed \
935 -e '2 s,#,/*,' \
936 -e '3,$ s,#, ,' \
937 -e '$ s,$, */,'
938 fi
412d5987
AC
939
940 if class_is_predicate_p
2ada493a 941 then
412d5987
AC
942 printf "\n"
943 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 944 fi
2ada493a
AC
945 if class_is_variable_p
946 then
3d9a5942
AC
947 printf "\n"
948 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
949 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
950 fi
951 if class_is_function_p
952 then
3d9a5942 953 printf "\n"
72e74a21 954 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
955 then
956 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
957 elif class_is_multiarch_p
958 then
959 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
960 else
961 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
962 fi
72e74a21 963 if [ "x${formal}" = "xvoid" ]
104c1213 964 then
3d9a5942 965 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 966 else
3d9a5942 967 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 968 fi
3d9a5942 969 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 970 fi
104c1213
JM
971done
972
973# close it off
974cat <<EOF
975
a96d9b2e
SDJ
976/* Definition for an unknown syscall, used basically in error-cases. */
977#define UNKNOWN_SYSCALL (-1)
978
104c1213
JM
979extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
980
981
982/* Mechanism for co-ordinating the selection of a specific
983 architecture.
984
985 GDB targets (*-tdep.c) can register an interest in a specific
986 architecture. Other GDB components can register a need to maintain
987 per-architecture data.
988
989 The mechanisms below ensures that there is only a loose connection
990 between the set-architecture command and the various GDB
0fa6923a 991 components. Each component can independently register their need
104c1213
JM
992 to maintain architecture specific data with gdbarch.
993
994 Pragmatics:
995
996 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
997 didn't scale.
998
999 The more traditional mega-struct containing architecture specific
1000 data for all the various GDB components was also considered. Since
0fa6923a 1001 GDB is built from a variable number of (fairly independent)
104c1213
JM
1002 components it was determined that the global aproach was not
1003 applicable. */
1004
1005
1006/* Register a new architectural family with GDB.
1007
1008 Register support for the specified ARCHITECTURE with GDB. When
1009 gdbarch determines that the specified architecture has been
1010 selected, the corresponding INIT function is called.
1011
1012 --
1013
1014 The INIT function takes two parameters: INFO which contains the
1015 information available to gdbarch about the (possibly new)
1016 architecture; ARCHES which is a list of the previously created
1017 \`\`struct gdbarch'' for this architecture.
1018
0f79675b 1019 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1020 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1021
1022 The ARCHES parameter is a linked list (sorted most recently used)
1023 of all the previously created architures for this architecture
1024 family. The (possibly NULL) ARCHES->gdbarch can used to access
1025 values from the previously selected architecture for this
59837fe0 1026 architecture family.
104c1213
JM
1027
1028 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1029 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1030 gdbarch'' from the ARCHES list - indicating that the new
1031 architecture is just a synonym for an earlier architecture (see
1032 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1033 - that describes the selected architecture (see gdbarch_alloc()).
1034
1035 The DUMP_TDEP function shall print out all target specific values.
1036 Care should be taken to ensure that the function works in both the
1037 multi-arch and non- multi-arch cases. */
104c1213
JM
1038
1039struct gdbarch_list
1040{
1041 struct gdbarch *gdbarch;
1042 struct gdbarch_list *next;
1043};
1044
1045struct gdbarch_info
1046{
104c1213
JM
1047 /* Use default: NULL (ZERO). */
1048 const struct bfd_arch_info *bfd_arch_info;
1049
428721aa 1050 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1051 int byte_order;
1052
9d4fde75
SS
1053 int byte_order_for_code;
1054
104c1213
JM
1055 /* Use default: NULL (ZERO). */
1056 bfd *abfd;
1057
1058 /* Use default: NULL (ZERO). */
1059 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1060
1061 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1062 enum gdb_osabi osabi;
424163ea
DJ
1063
1064 /* Use default: NULL (ZERO). */
1065 const struct target_desc *target_desc;
104c1213
JM
1066};
1067
1068typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1069typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1070
4b9b3959 1071/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1072extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1073
4b9b3959
AC
1074extern void gdbarch_register (enum bfd_architecture architecture,
1075 gdbarch_init_ftype *,
1076 gdbarch_dump_tdep_ftype *);
1077
104c1213 1078
b4a20239
AC
1079/* Return a freshly allocated, NULL terminated, array of the valid
1080 architecture names. Since architectures are registered during the
1081 _initialize phase this function only returns useful information
1082 once initialization has been completed. */
1083
1084extern const char **gdbarch_printable_names (void);
1085
1086
104c1213
JM
1087/* Helper function. Search the list of ARCHES for a GDBARCH that
1088 matches the information provided by INFO. */
1089
424163ea 1090extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1091
1092
1093/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1094 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1095 parameters. set_gdbarch_*() functions are called to complete the
1096 initialization of the object. */
1097
1098extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1099
1100
4b9b3959
AC
1101/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1102 It is assumed that the caller freeds the \`\`struct
1103 gdbarch_tdep''. */
1104
058f20d5
JB
1105extern void gdbarch_free (struct gdbarch *);
1106
1107
aebd7893
AC
1108/* Helper function. Allocate memory from the \`\`struct gdbarch''
1109 obstack. The memory is freed when the corresponding architecture
1110 is also freed. */
1111
1112extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1113#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1114#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1115
1116
b732d07d 1117/* Helper function. Force an update of the current architecture.
104c1213 1118
b732d07d
AC
1119 The actual architecture selected is determined by INFO, \`\`(gdb) set
1120 architecture'' et.al., the existing architecture and BFD's default
1121 architecture. INFO should be initialized to zero and then selected
1122 fields should be updated.
104c1213 1123
16f33e29
AC
1124 Returns non-zero if the update succeeds */
1125
1126extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1127
1128
ebdba546
AC
1129/* Helper function. Find an architecture matching info.
1130
1131 INFO should be initialized using gdbarch_info_init, relevant fields
1132 set, and then finished using gdbarch_info_fill.
1133
1134 Returns the corresponding architecture, or NULL if no matching
59837fe0 1135 architecture was found. */
ebdba546
AC
1136
1137extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1138
1139
59837fe0 1140/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1141
1142 FIXME: kettenis/20031124: Of the functions that follow, only
1143 gdbarch_from_bfd is supposed to survive. The others will
1144 dissappear since in the future GDB will (hopefully) be truly
1145 multi-arch. However, for now we're still stuck with the concept of
1146 a single active architecture. */
1147
59837fe0 1148extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1149
104c1213
JM
1150
1151/* Register per-architecture data-pointer.
1152
1153 Reserve space for a per-architecture data-pointer. An identifier
1154 for the reserved data-pointer is returned. That identifer should
95160752 1155 be saved in a local static variable.
104c1213 1156
fcc1c85c
AC
1157 Memory for the per-architecture data shall be allocated using
1158 gdbarch_obstack_zalloc. That memory will be deleted when the
1159 corresponding architecture object is deleted.
104c1213 1160
95160752
AC
1161 When a previously created architecture is re-selected, the
1162 per-architecture data-pointer for that previous architecture is
76860b5f 1163 restored. INIT() is not re-called.
104c1213
JM
1164
1165 Multiple registrarants for any architecture are allowed (and
1166 strongly encouraged). */
1167
95160752 1168struct gdbarch_data;
104c1213 1169
030f20e1
AC
1170typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1171extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1172typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1173extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1174extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1175 struct gdbarch_data *data,
1176 void *pointer);
104c1213 1177
451fbdda 1178extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1179
1180
0fa6923a 1181/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1182 byte-order, ...) using information found in the BFD */
1183
1184extern void set_gdbarch_from_file (bfd *);
1185
1186
e514a9d6
JM
1187/* Initialize the current architecture to the "first" one we find on
1188 our list. */
1189
1190extern void initialize_current_architecture (void);
1191
104c1213
JM
1192/* gdbarch trace variable */
1193extern int gdbarch_debug;
1194
4b9b3959 1195extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1196
1197#endif
1198EOF
1199exec 1>&2
1200#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1201compare_new gdbarch.h
104c1213
JM
1202
1203
1204#
1205# C file
1206#
1207
1208exec > new-gdbarch.c
1209copyright
1210cat <<EOF
1211
1212#include "defs.h"
7355ddba 1213#include "arch-utils.h"
104c1213 1214
104c1213 1215#include "gdbcmd.h"
faaf634c 1216#include "inferior.h"
104c1213
JM
1217#include "symcat.h"
1218
f0d4cc9e 1219#include "floatformat.h"
104c1213 1220
95160752 1221#include "gdb_assert.h"
b66d6d2e 1222#include "gdb_string.h"
b59ff9d5 1223#include "reggroups.h"
4be87837 1224#include "osabi.h"
aebd7893 1225#include "gdb_obstack.h"
383f836e 1226#include "observer.h"
a3ecef73 1227#include "regcache.h"
95160752 1228
104c1213
JM
1229/* Static function declarations */
1230
b3cc3077 1231static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1232
104c1213
JM
1233/* Non-zero if we want to trace architecture code. */
1234
1235#ifndef GDBARCH_DEBUG
1236#define GDBARCH_DEBUG 0
1237#endif
1238int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1239static void
1240show_gdbarch_debug (struct ui_file *file, int from_tty,
1241 struct cmd_list_element *c, const char *value)
1242{
1243 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1244}
104c1213 1245
456fcf94 1246static const char *
8da61cc4 1247pformat (const struct floatformat **format)
456fcf94
AC
1248{
1249 if (format == NULL)
1250 return "(null)";
1251 else
8da61cc4
DJ
1252 /* Just print out one of them - this is only for diagnostics. */
1253 return format[0]->name;
456fcf94
AC
1254}
1255
08105857
PA
1256static const char *
1257pstring (const char *string)
1258{
1259 if (string == NULL)
1260 return "(null)";
1261 return string;
1262}
1263
104c1213
JM
1264EOF
1265
1266# gdbarch open the gdbarch object
3d9a5942
AC
1267printf "\n"
1268printf "/* Maintain the struct gdbarch object */\n"
1269printf "\n"
1270printf "struct gdbarch\n"
1271printf "{\n"
76860b5f
AC
1272printf " /* Has this architecture been fully initialized? */\n"
1273printf " int initialized_p;\n"
aebd7893
AC
1274printf "\n"
1275printf " /* An obstack bound to the lifetime of the architecture. */\n"
1276printf " struct obstack *obstack;\n"
1277printf "\n"
3d9a5942 1278printf " /* basic architectural information */\n"
34620563 1279function_list | while do_read
104c1213 1280do
2ada493a
AC
1281 if class_is_info_p
1282 then
3d9a5942 1283 printf " ${returntype} ${function};\n"
2ada493a 1284 fi
104c1213 1285done
3d9a5942
AC
1286printf "\n"
1287printf " /* target specific vector. */\n"
1288printf " struct gdbarch_tdep *tdep;\n"
1289printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1290printf "\n"
1291printf " /* per-architecture data-pointers */\n"
95160752 1292printf " unsigned nr_data;\n"
3d9a5942
AC
1293printf " void **data;\n"
1294printf "\n"
1295printf " /* per-architecture swap-regions */\n"
1296printf " struct gdbarch_swap *swap;\n"
1297printf "\n"
104c1213
JM
1298cat <<EOF
1299 /* Multi-arch values.
1300
1301 When extending this structure you must:
1302
1303 Add the field below.
1304
1305 Declare set/get functions and define the corresponding
1306 macro in gdbarch.h.
1307
1308 gdbarch_alloc(): If zero/NULL is not a suitable default,
1309 initialize the new field.
1310
1311 verify_gdbarch(): Confirm that the target updated the field
1312 correctly.
1313
7e73cedf 1314 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1315 field is dumped out
1316
c0e8c252 1317 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1318 variable (base values on the host's c-type system).
1319
1320 get_gdbarch(): Implement the set/get functions (probably using
1321 the macro's as shortcuts).
1322
1323 */
1324
1325EOF
34620563 1326function_list | while do_read
104c1213 1327do
2ada493a
AC
1328 if class_is_variable_p
1329 then
3d9a5942 1330 printf " ${returntype} ${function};\n"
2ada493a
AC
1331 elif class_is_function_p
1332 then
2f9b146e 1333 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1334 fi
104c1213 1335done
3d9a5942 1336printf "};\n"
104c1213
JM
1337
1338# A pre-initialized vector
3d9a5942
AC
1339printf "\n"
1340printf "\n"
104c1213
JM
1341cat <<EOF
1342/* The default architecture uses host values (for want of a better
1343 choice). */
1344EOF
3d9a5942
AC
1345printf "\n"
1346printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1347printf "\n"
1348printf "struct gdbarch startup_gdbarch =\n"
1349printf "{\n"
76860b5f 1350printf " 1, /* Always initialized. */\n"
aebd7893 1351printf " NULL, /* The obstack. */\n"
3d9a5942 1352printf " /* basic architecture information */\n"
4b9b3959 1353function_list | while do_read
104c1213 1354do
2ada493a
AC
1355 if class_is_info_p
1356 then
ec5cbaec 1357 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1358 fi
104c1213
JM
1359done
1360cat <<EOF
4b9b3959
AC
1361 /* target specific vector and its dump routine */
1362 NULL, NULL,
104c1213
JM
1363 /*per-architecture data-pointers and swap regions */
1364 0, NULL, NULL,
1365 /* Multi-arch values */
1366EOF
34620563 1367function_list | while do_read
104c1213 1368do
2ada493a
AC
1369 if class_is_function_p || class_is_variable_p
1370 then
ec5cbaec 1371 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1372 fi
104c1213
JM
1373done
1374cat <<EOF
c0e8c252 1375 /* startup_gdbarch() */
104c1213 1376};
4b9b3959 1377
1cf3db46 1378struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1379EOF
1380
1381# Create a new gdbarch struct
104c1213 1382cat <<EOF
7de2341d 1383
66b43ecb 1384/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1385 \`\`struct gdbarch_info''. */
1386EOF
3d9a5942 1387printf "\n"
104c1213
JM
1388cat <<EOF
1389struct gdbarch *
1390gdbarch_alloc (const struct gdbarch_info *info,
1391 struct gdbarch_tdep *tdep)
1392{
be7811ad 1393 struct gdbarch *gdbarch;
aebd7893
AC
1394
1395 /* Create an obstack for allocating all the per-architecture memory,
1396 then use that to allocate the architecture vector. */
1397 struct obstack *obstack = XMALLOC (struct obstack);
1398 obstack_init (obstack);
be7811ad
MD
1399 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1400 memset (gdbarch, 0, sizeof (*gdbarch));
1401 gdbarch->obstack = obstack;
85de9627 1402
be7811ad 1403 alloc_gdbarch_data (gdbarch);
85de9627 1404
be7811ad 1405 gdbarch->tdep = tdep;
104c1213 1406EOF
3d9a5942 1407printf "\n"
34620563 1408function_list | while do_read
104c1213 1409do
2ada493a
AC
1410 if class_is_info_p
1411 then
be7811ad 1412 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1413 fi
104c1213 1414done
3d9a5942
AC
1415printf "\n"
1416printf " /* Force the explicit initialization of these. */\n"
34620563 1417function_list | while do_read
104c1213 1418do
2ada493a
AC
1419 if class_is_function_p || class_is_variable_p
1420 then
72e74a21 1421 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1422 then
be7811ad 1423 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1424 fi
2ada493a 1425 fi
104c1213
JM
1426done
1427cat <<EOF
1428 /* gdbarch_alloc() */
1429
be7811ad 1430 return gdbarch;
104c1213
JM
1431}
1432EOF
1433
058f20d5 1434# Free a gdbarch struct.
3d9a5942
AC
1435printf "\n"
1436printf "\n"
058f20d5 1437cat <<EOF
aebd7893
AC
1438/* Allocate extra space using the per-architecture obstack. */
1439
1440void *
1441gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1442{
1443 void *data = obstack_alloc (arch->obstack, size);
1444 memset (data, 0, size);
1445 return data;
1446}
1447
1448
058f20d5
JB
1449/* Free a gdbarch struct. This should never happen in normal
1450 operation --- once you've created a gdbarch, you keep it around.
1451 However, if an architecture's init function encounters an error
1452 building the structure, it may need to clean up a partially
1453 constructed gdbarch. */
4b9b3959 1454
058f20d5
JB
1455void
1456gdbarch_free (struct gdbarch *arch)
1457{
aebd7893 1458 struct obstack *obstack;
95160752 1459 gdb_assert (arch != NULL);
aebd7893
AC
1460 gdb_assert (!arch->initialized_p);
1461 obstack = arch->obstack;
1462 obstack_free (obstack, 0); /* Includes the ARCH. */
1463 xfree (obstack);
058f20d5
JB
1464}
1465EOF
1466
104c1213 1467# verify a new architecture
104c1213 1468cat <<EOF
db446970
AC
1469
1470
1471/* Ensure that all values in a GDBARCH are reasonable. */
1472
104c1213 1473static void
be7811ad 1474verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1475{
f16a1923
AC
1476 struct ui_file *log;
1477 struct cleanup *cleanups;
759ef836 1478 long length;
f16a1923 1479 char *buf;
f16a1923
AC
1480 log = mem_fileopen ();
1481 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1482 /* fundamental */
be7811ad 1483 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1484 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1485 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1486 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1487 /* Check those that need to be defined for the given multi-arch level. */
1488EOF
34620563 1489function_list | while do_read
104c1213 1490do
2ada493a
AC
1491 if class_is_function_p || class_is_variable_p
1492 then
72e74a21 1493 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1494 then
3d9a5942 1495 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1496 elif class_is_predicate_p
1497 then
3d9a5942 1498 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1499 # FIXME: See do_read for potential simplification
72e74a21 1500 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1501 then
3d9a5942 1502 printf " if (${invalid_p})\n"
be7811ad 1503 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1504 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1505 then
be7811ad
MD
1506 printf " if (gdbarch->${function} == ${predefault})\n"
1507 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1508 elif [ -n "${postdefault}" ]
f0d4cc9e 1509 then
be7811ad
MD
1510 printf " if (gdbarch->${function} == 0)\n"
1511 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1512 elif [ -n "${invalid_p}" ]
104c1213 1513 then
4d60522e 1514 printf " if (${invalid_p})\n"
f16a1923 1515 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1516 elif [ -n "${predefault}" ]
104c1213 1517 then
be7811ad 1518 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1519 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1520 fi
2ada493a 1521 fi
104c1213
JM
1522done
1523cat <<EOF
759ef836 1524 buf = ui_file_xstrdup (log, &length);
f16a1923 1525 make_cleanup (xfree, buf);
759ef836 1526 if (length > 0)
f16a1923 1527 internal_error (__FILE__, __LINE__,
85c07804 1528 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1529 buf);
1530 do_cleanups (cleanups);
104c1213
JM
1531}
1532EOF
1533
1534# dump the structure
3d9a5942
AC
1535printf "\n"
1536printf "\n"
104c1213 1537cat <<EOF
4b9b3959
AC
1538/* Print out the details of the current architecture. */
1539
104c1213 1540void
be7811ad 1541gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1542{
b78960be 1543 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1544#if defined (GDB_NM_FILE)
1545 gdb_nm_file = GDB_NM_FILE;
1546#endif
1547 fprintf_unfiltered (file,
1548 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1549 gdb_nm_file);
104c1213 1550EOF
97030eea 1551function_list | sort -t: -k 3 | while do_read
104c1213 1552do
1e9f55d0
AC
1553 # First the predicate
1554 if class_is_predicate_p
1555 then
7996bcec 1556 printf " fprintf_unfiltered (file,\n"
48f7351b 1557 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1558 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1559 fi
48f7351b 1560 # Print the corresponding value.
283354d8 1561 if class_is_function_p
4b9b3959 1562 then
7996bcec 1563 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1564 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1565 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1566 else
48f7351b 1567 # It is a variable
2f9b146e
AC
1568 case "${print}:${returntype}" in
1569 :CORE_ADDR )
0b1553bc
UW
1570 fmt="%s"
1571 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1572 ;;
2f9b146e 1573 :* )
48f7351b 1574 fmt="%s"
623d3eb1 1575 print="plongest (gdbarch->${function})"
48f7351b
AC
1576 ;;
1577 * )
2f9b146e 1578 fmt="%s"
48f7351b
AC
1579 ;;
1580 esac
3d9a5942 1581 printf " fprintf_unfiltered (file,\n"
48f7351b 1582 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1583 printf " ${print});\n"
2ada493a 1584 fi
104c1213 1585done
381323f4 1586cat <<EOF
be7811ad
MD
1587 if (gdbarch->dump_tdep != NULL)
1588 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1589}
1590EOF
104c1213
JM
1591
1592
1593# GET/SET
3d9a5942 1594printf "\n"
104c1213
JM
1595cat <<EOF
1596struct gdbarch_tdep *
1597gdbarch_tdep (struct gdbarch *gdbarch)
1598{
1599 if (gdbarch_debug >= 2)
3d9a5942 1600 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1601 return gdbarch->tdep;
1602}
1603EOF
3d9a5942 1604printf "\n"
34620563 1605function_list | while do_read
104c1213 1606do
2ada493a
AC
1607 if class_is_predicate_p
1608 then
3d9a5942
AC
1609 printf "\n"
1610 printf "int\n"
1611 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1612 printf "{\n"
8de9bdc4 1613 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1614 printf " return ${predicate};\n"
3d9a5942 1615 printf "}\n"
2ada493a
AC
1616 fi
1617 if class_is_function_p
1618 then
3d9a5942
AC
1619 printf "\n"
1620 printf "${returntype}\n"
72e74a21 1621 if [ "x${formal}" = "xvoid" ]
104c1213 1622 then
3d9a5942 1623 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1624 else
3d9a5942 1625 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1626 fi
3d9a5942 1627 printf "{\n"
8de9bdc4 1628 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1629 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1630 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1631 then
1632 # Allow a call to a function with a predicate.
956ac328 1633 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1634 fi
3d9a5942
AC
1635 printf " if (gdbarch_debug >= 2)\n"
1636 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1637 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1638 then
1639 if class_is_multiarch_p
1640 then
1641 params="gdbarch"
1642 else
1643 params=""
1644 fi
1645 else
1646 if class_is_multiarch_p
1647 then
1648 params="gdbarch, ${actual}"
1649 else
1650 params="${actual}"
1651 fi
1652 fi
72e74a21 1653 if [ "x${returntype}" = "xvoid" ]
104c1213 1654 then
4a5c6a1d 1655 printf " gdbarch->${function} (${params});\n"
104c1213 1656 else
4a5c6a1d 1657 printf " return gdbarch->${function} (${params});\n"
104c1213 1658 fi
3d9a5942
AC
1659 printf "}\n"
1660 printf "\n"
1661 printf "void\n"
1662 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1663 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1664 printf "{\n"
1665 printf " gdbarch->${function} = ${function};\n"
1666 printf "}\n"
2ada493a
AC
1667 elif class_is_variable_p
1668 then
3d9a5942
AC
1669 printf "\n"
1670 printf "${returntype}\n"
1671 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1672 printf "{\n"
8de9bdc4 1673 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1674 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1675 then
3d9a5942 1676 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1677 elif [ -n "${invalid_p}" ]
104c1213 1678 then
956ac328
AC
1679 printf " /* Check variable is valid. */\n"
1680 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1681 elif [ -n "${predefault}" ]
104c1213 1682 then
956ac328
AC
1683 printf " /* Check variable changed from pre-default. */\n"
1684 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1685 fi
3d9a5942
AC
1686 printf " if (gdbarch_debug >= 2)\n"
1687 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1688 printf " return gdbarch->${function};\n"
1689 printf "}\n"
1690 printf "\n"
1691 printf "void\n"
1692 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1693 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1694 printf "{\n"
1695 printf " gdbarch->${function} = ${function};\n"
1696 printf "}\n"
2ada493a
AC
1697 elif class_is_info_p
1698 then
3d9a5942
AC
1699 printf "\n"
1700 printf "${returntype}\n"
1701 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1702 printf "{\n"
8de9bdc4 1703 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1704 printf " if (gdbarch_debug >= 2)\n"
1705 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1706 printf " return gdbarch->${function};\n"
1707 printf "}\n"
2ada493a 1708 fi
104c1213
JM
1709done
1710
1711# All the trailing guff
1712cat <<EOF
1713
1714
f44c642f 1715/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1716 modules. */
1717
1718struct gdbarch_data
1719{
95160752 1720 unsigned index;
76860b5f 1721 int init_p;
030f20e1
AC
1722 gdbarch_data_pre_init_ftype *pre_init;
1723 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1724};
1725
1726struct gdbarch_data_registration
1727{
104c1213
JM
1728 struct gdbarch_data *data;
1729 struct gdbarch_data_registration *next;
1730};
1731
f44c642f 1732struct gdbarch_data_registry
104c1213 1733{
95160752 1734 unsigned nr;
104c1213
JM
1735 struct gdbarch_data_registration *registrations;
1736};
1737
f44c642f 1738struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1739{
1740 0, NULL,
1741};
1742
030f20e1
AC
1743static struct gdbarch_data *
1744gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1745 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1746{
1747 struct gdbarch_data_registration **curr;
76860b5f 1748 /* Append the new registraration. */
f44c642f 1749 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1750 (*curr) != NULL;
1751 curr = &(*curr)->next);
1752 (*curr) = XMALLOC (struct gdbarch_data_registration);
1753 (*curr)->next = NULL;
104c1213 1754 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1755 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1756 (*curr)->data->pre_init = pre_init;
1757 (*curr)->data->post_init = post_init;
76860b5f 1758 (*curr)->data->init_p = 1;
104c1213
JM
1759 return (*curr)->data;
1760}
1761
030f20e1
AC
1762struct gdbarch_data *
1763gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1764{
1765 return gdbarch_data_register (pre_init, NULL);
1766}
1767
1768struct gdbarch_data *
1769gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1770{
1771 return gdbarch_data_register (NULL, post_init);
1772}
104c1213 1773
b3cc3077 1774/* Create/delete the gdbarch data vector. */
95160752
AC
1775
1776static void
b3cc3077 1777alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1778{
b3cc3077
JB
1779 gdb_assert (gdbarch->data == NULL);
1780 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1781 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1782}
3c875b6f 1783
76860b5f 1784/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1785 data-pointer. */
1786
95160752 1787void
030f20e1
AC
1788deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1789 struct gdbarch_data *data,
1790 void *pointer)
95160752
AC
1791{
1792 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1793 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1794 gdb_assert (data->pre_init == NULL);
95160752
AC
1795 gdbarch->data[data->index] = pointer;
1796}
1797
104c1213
JM
1798/* Return the current value of the specified per-architecture
1799 data-pointer. */
1800
1801void *
451fbdda 1802gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1803{
451fbdda 1804 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1805 if (gdbarch->data[data->index] == NULL)
76860b5f 1806 {
030f20e1
AC
1807 /* The data-pointer isn't initialized, call init() to get a
1808 value. */
1809 if (data->pre_init != NULL)
1810 /* Mid architecture creation: pass just the obstack, and not
1811 the entire architecture, as that way it isn't possible for
1812 pre-init code to refer to undefined architecture
1813 fields. */
1814 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1815 else if (gdbarch->initialized_p
1816 && data->post_init != NULL)
1817 /* Post architecture creation: pass the entire architecture
1818 (as all fields are valid), but be careful to also detect
1819 recursive references. */
1820 {
1821 gdb_assert (data->init_p);
1822 data->init_p = 0;
1823 gdbarch->data[data->index] = data->post_init (gdbarch);
1824 data->init_p = 1;
1825 }
1826 else
1827 /* The architecture initialization hasn't completed - punt -
1828 hope that the caller knows what they are doing. Once
1829 deprecated_set_gdbarch_data has been initialized, this can be
1830 changed to an internal error. */
1831 return NULL;
76860b5f
AC
1832 gdb_assert (gdbarch->data[data->index] != NULL);
1833 }
451fbdda 1834 return gdbarch->data[data->index];
104c1213
JM
1835}
1836
1837
f44c642f 1838/* Keep a registry of the architectures known by GDB. */
104c1213 1839
4b9b3959 1840struct gdbarch_registration
104c1213
JM
1841{
1842 enum bfd_architecture bfd_architecture;
1843 gdbarch_init_ftype *init;
4b9b3959 1844 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1845 struct gdbarch_list *arches;
4b9b3959 1846 struct gdbarch_registration *next;
104c1213
JM
1847};
1848
f44c642f 1849static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1850
b4a20239
AC
1851static void
1852append_name (const char ***buf, int *nr, const char *name)
1853{
1854 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1855 (*buf)[*nr] = name;
1856 *nr += 1;
1857}
1858
1859const char **
1860gdbarch_printable_names (void)
1861{
7996bcec
AC
1862 /* Accumulate a list of names based on the registed list of
1863 architectures. */
1864 enum bfd_architecture a;
1865 int nr_arches = 0;
1866 const char **arches = NULL;
1867 struct gdbarch_registration *rego;
1868 for (rego = gdbarch_registry;
1869 rego != NULL;
1870 rego = rego->next)
b4a20239 1871 {
7996bcec
AC
1872 const struct bfd_arch_info *ap;
1873 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1874 if (ap == NULL)
1875 internal_error (__FILE__, __LINE__,
85c07804 1876 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1877 do
1878 {
1879 append_name (&arches, &nr_arches, ap->printable_name);
1880 ap = ap->next;
1881 }
1882 while (ap != NULL);
b4a20239 1883 }
7996bcec
AC
1884 append_name (&arches, &nr_arches, NULL);
1885 return arches;
b4a20239
AC
1886}
1887
1888
104c1213 1889void
4b9b3959
AC
1890gdbarch_register (enum bfd_architecture bfd_architecture,
1891 gdbarch_init_ftype *init,
1892 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1893{
4b9b3959 1894 struct gdbarch_registration **curr;
104c1213 1895 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1896 /* Check that BFD recognizes this architecture */
104c1213
JM
1897 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1898 if (bfd_arch_info == NULL)
1899 {
8e65ff28 1900 internal_error (__FILE__, __LINE__,
85c07804 1901 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1902 bfd_architecture);
104c1213
JM
1903 }
1904 /* Check that we haven't seen this architecture before */
f44c642f 1905 for (curr = &gdbarch_registry;
104c1213
JM
1906 (*curr) != NULL;
1907 curr = &(*curr)->next)
1908 {
1909 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1910 internal_error (__FILE__, __LINE__,
85c07804 1911 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1912 bfd_arch_info->printable_name);
104c1213
JM
1913 }
1914 /* log it */
1915 if (gdbarch_debug)
30737ed9 1916 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1917 bfd_arch_info->printable_name,
30737ed9 1918 host_address_to_string (init));
104c1213 1919 /* Append it */
4b9b3959 1920 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1921 (*curr)->bfd_architecture = bfd_architecture;
1922 (*curr)->init = init;
4b9b3959 1923 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1924 (*curr)->arches = NULL;
1925 (*curr)->next = NULL;
4b9b3959
AC
1926}
1927
1928void
1929register_gdbarch_init (enum bfd_architecture bfd_architecture,
1930 gdbarch_init_ftype *init)
1931{
1932 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1933}
104c1213
JM
1934
1935
424163ea 1936/* Look for an architecture using gdbarch_info. */
104c1213
JM
1937
1938struct gdbarch_list *
1939gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1940 const struct gdbarch_info *info)
1941{
1942 for (; arches != NULL; arches = arches->next)
1943 {
1944 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1945 continue;
1946 if (info->byte_order != arches->gdbarch->byte_order)
1947 continue;
4be87837
DJ
1948 if (info->osabi != arches->gdbarch->osabi)
1949 continue;
424163ea
DJ
1950 if (info->target_desc != arches->gdbarch->target_desc)
1951 continue;
104c1213
JM
1952 return arches;
1953 }
1954 return NULL;
1955}
1956
1957
ebdba546 1958/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1959 architecture if needed. Return that new architecture. */
104c1213 1960
59837fe0
UW
1961struct gdbarch *
1962gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1963{
1964 struct gdbarch *new_gdbarch;
4b9b3959 1965 struct gdbarch_registration *rego;
104c1213 1966
b732d07d 1967 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1968 sources: "set ..."; INFOabfd supplied; and the global
1969 defaults. */
1970 gdbarch_info_fill (&info);
4be87837 1971
b732d07d
AC
1972 /* Must have found some sort of architecture. */
1973 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1974
1975 if (gdbarch_debug)
1976 {
1977 fprintf_unfiltered (gdb_stdlog,
59837fe0 1978 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1979 (info.bfd_arch_info != NULL
1980 ? info.bfd_arch_info->printable_name
1981 : "(null)"));
1982 fprintf_unfiltered (gdb_stdlog,
59837fe0 1983 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 1984 info.byte_order,
d7449b42 1985 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1986 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1987 : "default"));
4be87837 1988 fprintf_unfiltered (gdb_stdlog,
59837fe0 1989 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 1990 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1991 fprintf_unfiltered (gdb_stdlog,
59837fe0 1992 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 1993 host_address_to_string (info.abfd));
104c1213 1994 fprintf_unfiltered (gdb_stdlog,
59837fe0 1995 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 1996 host_address_to_string (info.tdep_info));
104c1213
JM
1997 }
1998
ebdba546 1999 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2000 for (rego = gdbarch_registry;
2001 rego != NULL;
2002 rego = rego->next)
2003 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2004 break;
2005 if (rego == NULL)
2006 {
2007 if (gdbarch_debug)
59837fe0 2008 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2009 "No matching architecture\n");
b732d07d
AC
2010 return 0;
2011 }
2012
ebdba546 2013 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2014 new_gdbarch = rego->init (info, rego->arches);
2015
ebdba546
AC
2016 /* Did the tdep code like it? No. Reject the change and revert to
2017 the old architecture. */
104c1213
JM
2018 if (new_gdbarch == NULL)
2019 {
2020 if (gdbarch_debug)
59837fe0 2021 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2022 "Target rejected architecture\n");
2023 return NULL;
104c1213
JM
2024 }
2025
ebdba546
AC
2026 /* Is this a pre-existing architecture (as determined by already
2027 being initialized)? Move it to the front of the architecture
2028 list (keeping the list sorted Most Recently Used). */
2029 if (new_gdbarch->initialized_p)
104c1213 2030 {
ebdba546
AC
2031 struct gdbarch_list **list;
2032 struct gdbarch_list *this;
104c1213 2033 if (gdbarch_debug)
59837fe0 2034 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2035 "Previous architecture %s (%s) selected\n",
2036 host_address_to_string (new_gdbarch),
104c1213 2037 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2038 /* Find the existing arch in the list. */
2039 for (list = &rego->arches;
2040 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2041 list = &(*list)->next);
2042 /* It had better be in the list of architectures. */
2043 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2044 /* Unlink THIS. */
2045 this = (*list);
2046 (*list) = this->next;
2047 /* Insert THIS at the front. */
2048 this->next = rego->arches;
2049 rego->arches = this;
2050 /* Return it. */
2051 return new_gdbarch;
104c1213
JM
2052 }
2053
ebdba546
AC
2054 /* It's a new architecture. */
2055 if (gdbarch_debug)
59837fe0 2056 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2057 "New architecture %s (%s) selected\n",
2058 host_address_to_string (new_gdbarch),
ebdba546
AC
2059 new_gdbarch->bfd_arch_info->printable_name);
2060
2061 /* Insert the new architecture into the front of the architecture
2062 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2063 {
2064 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2065 this->next = rego->arches;
2066 this->gdbarch = new_gdbarch;
2067 rego->arches = this;
2068 }
104c1213 2069
4b9b3959
AC
2070 /* Check that the newly installed architecture is valid. Plug in
2071 any post init values. */
2072 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2073 verify_gdbarch (new_gdbarch);
ebdba546 2074 new_gdbarch->initialized_p = 1;
104c1213 2075
4b9b3959 2076 if (gdbarch_debug)
ebdba546
AC
2077 gdbarch_dump (new_gdbarch, gdb_stdlog);
2078
2079 return new_gdbarch;
2080}
2081
e487cc15 2082/* Make the specified architecture current. */
ebdba546
AC
2083
2084void
59837fe0 2085deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2086{
2087 gdb_assert (new_gdbarch != NULL);
ebdba546 2088 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2089 target_gdbarch = new_gdbarch;
383f836e 2090 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2091 registers_changed ();
ebdba546 2092}
104c1213 2093
104c1213 2094extern void _initialize_gdbarch (void);
b4a20239 2095
104c1213 2096void
34620563 2097_initialize_gdbarch (void)
104c1213 2098{
59233f88
AC
2099 struct cmd_list_element *c;
2100
85c07804
AC
2101 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2102Set architecture debugging."), _("\\
2103Show architecture debugging."), _("\\
2104When non-zero, architecture debugging is enabled."),
2105 NULL,
920d2a44 2106 show_gdbarch_debug,
85c07804 2107 &setdebuglist, &showdebuglist);
104c1213
JM
2108}
2109EOF
2110
2111# close things off
2112exec 1>&2
2113#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2114compare_new gdbarch.c
This page took 1.297382 seconds and 4 git commands to generate.