Introduce complete_nested_command_line
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
42a4f53d 5# Copyright (C) 1998-2019 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
ea480a30 352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
32c9a795 353
66b43ecb 354# Number of bits in a short or unsigned short for the target machine.
ea480a30 355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 356# Number of bits in an int or unsigned int for the target machine.
ea480a30 357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 358# Number of bits in a long or unsigned long for the target machine.
ea480a30 359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
360# Number of bits in a long long or unsigned long long for the target
361# machine.
ea480a30 362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 363
f9e9243a
UW
364# The ABI default bit-size and format for "half", "float", "double", and
365# "long double". These bit/format pairs should eventually be combined
366# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
367# Each format describes both the big and little endian layouts (if
368# useful).
456fcf94 369
ea480a30
SM
370v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 378
53375380
PA
379# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380# starting with C++11.
ea480a30 381v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 382# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 383v;int;wchar_signed;;;1;-1;1
53375380 384
9b790ce7
UW
385# Returns the floating-point format to be used for values of length LENGTH.
386# NAME, if non-NULL, is the type name, which may be used to distinguish
387# different target formats of the same length.
ea480a30 388m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 389
52204a0b
DT
390# For most targets, a pointer on the target and its representation as an
391# address in GDB have the same size and "look the same". For such a
17a912b6 392# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
393# / addr_bit will be set from it.
394#
17a912b6 395# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
396# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397# gdbarch_address_to_pointer as well.
52204a0b
DT
398#
399# ptr_bit is the size of a pointer on the target
ea480a30 400v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 401# addr_bit is the size of a target address as represented in gdb
ea480a30 402v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 403#
8da614df
CV
404# dwarf2_addr_size is the target address size as used in the Dwarf debug
405# info. For .debug_frame FDEs, this is supposed to be the target address
406# size from the associated CU header, and which is equivalent to the
407# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408# Unfortunately there is no good way to determine this value. Therefore
409# dwarf2_addr_size simply defaults to the target pointer size.
410#
411# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412# defined using the target's pointer size so far.
413#
414# Note that dwarf2_addr_size only needs to be redefined by a target if the
415# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416# and if Dwarf versions < 4 need to be supported.
ea480a30 417v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 418#
4e409299 419# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 420v;int;char_signed;;;1;-1;1
4e409299 421#
c113ed0c 422F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 423F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
424# Function for getting target's idea of a frame pointer. FIXME: GDB's
425# whole scheme for dealing with "frames" and "frame pointers" needs a
426# serious shakedown.
ea480a30 427m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 428#
849d0ba8 429M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
430# Read a register into a new struct value. If the register is wholly
431# or partly unavailable, this should call mark_value_bytes_unavailable
432# as appropriate. If this is defined, then pseudo_register_read will
433# never be called.
849d0ba8 434M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 435M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 436#
ea480a30 437v;int;num_regs;;;0;-1
0aba1244
EZ
438# This macro gives the number of pseudo-registers that live in the
439# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
440# These pseudo-registers may be aliases for other registers,
441# combinations of other registers, or they may be computed by GDB.
ea480a30 442v;int;num_pseudo_regs;;;0;0;;0
c2169756 443
175ff332
HZ
444# Assemble agent expression bytecode to collect pseudo-register REG.
445# Return -1 if something goes wrong, 0 otherwise.
ea480a30 446M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
447
448# Assemble agent expression bytecode to push the value of pseudo-register
449# REG on the interpreter stack.
450# Return -1 if something goes wrong, 0 otherwise.
ea480a30 451M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 452
012b3a21
WT
453# Some targets/architectures can do extra processing/display of
454# segmentation faults. E.g., Intel MPX boundary faults.
455# Call the architecture dependent function to handle the fault.
456# UIOUT is the output stream where the handler will place information.
ea480a30 457M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 458
c2169756
AC
459# GDB's standard (or well known) register numbers. These can map onto
460# a real register or a pseudo (computed) register or not be defined at
1200cd6e 461# all (-1).
3e8c568d 462# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
463v;int;sp_regnum;;;-1;-1;;0
464v;int;pc_regnum;;;-1;-1;;0
465v;int;ps_regnum;;;-1;-1;;0
466v;int;fp0_regnum;;;0;-1;;0
88c72b7d 467# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 468m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 469# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 470m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 471# Convert from an sdb register number to an internal gdb register number.
ea480a30 472m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 473# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 474# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
475m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476m;const char *;register_name;int regnr;regnr;;0
9c04cab7 477
7b9ee6a8
DJ
478# Return the type of a register specified by the architecture. Only
479# the register cache should call this function directly; others should
480# use "register_type".
ea480a30 481M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 482
8bcb5208
AB
483# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
484# a dummy frame. A dummy frame is created before an inferior call,
485# the frame_id returned here must match the frame_id that was built
486# for the inferior call. Usually this means the returned frame_id's
487# stack address should match the address returned by
488# gdbarch_push_dummy_call, and the returned frame_id's code address
489# should match the address at which the breakpoint was set in the dummy
490# frame.
491m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 492# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 493# deprecated_fp_regnum.
ea480a30 494v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 495
cf84fa6b 496M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
497v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
498M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 499
7eb89530 500# Return true if the code of FRAME is writable.
ea480a30 501m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 502
ea480a30
SM
503m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
504m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
505M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
506# MAP a GDB RAW register number onto a simulator register number. See
507# also include/...-sim.h.
ea480a30
SM
508m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
509m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
510m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
511
512# Determine the address where a longjmp will land and save this address
513# in PC. Return nonzero on success.
514#
515# FRAME corresponds to the longjmp frame.
ea480a30 516F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 517
104c1213 518#
ea480a30 519v;int;believe_pcc_promotion;;;;;;;
104c1213 520#
ea480a30
SM
521m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
522f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
523f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 524# Construct a value representing the contents of register REGNUM in
2ed3c037 525# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
526# allocate and return a struct value with all value attributes
527# (but not the value contents) filled in.
ea480a30 528m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 529#
ea480a30
SM
530m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
531m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
532M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 533
6a3a010b
MR
534# Return the return-value convention that will be used by FUNCTION
535# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
536# case the return convention is computed based only on VALTYPE.
537#
538# If READBUF is not NULL, extract the return value and save it in this buffer.
539#
540# If WRITEBUF is not NULL, it contains a return value which will be
541# stored into the appropriate register. This can be used when we want
542# to force the value returned by a function (see the "return" command
543# for instance).
ea480a30 544M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 545
18648a37
YQ
546# Return true if the return value of function is stored in the first hidden
547# parameter. In theory, this feature should be language-dependent, specified
548# by language and its ABI, such as C++. Unfortunately, compiler may
549# implement it to a target-dependent feature. So that we need such hook here
550# to be aware of this in GDB.
ea480a30 551m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 552
ea480a30
SM
553m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
554M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
555# On some platforms, a single function may provide multiple entry points,
556# e.g. one that is used for function-pointer calls and a different one
557# that is used for direct function calls.
558# In order to ensure that breakpoints set on the function will trigger
559# no matter via which entry point the function is entered, a platform
560# may provide the skip_entrypoint callback. It is called with IP set
561# to the main entry point of a function (as determined by the symbol table),
562# and should return the address of the innermost entry point, where the
563# actual breakpoint needs to be set. Note that skip_entrypoint is used
564# by GDB common code even when debugging optimized code, where skip_prologue
565# is not used.
ea480a30 566M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 567
ea480a30
SM
568f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
569m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
570
571# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 572m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
573
574# Return the software breakpoint from KIND. KIND can have target
575# specific meaning like the Z0 kind parameter.
576# SIZE is set to the software breakpoint's length in memory.
ea480a30 577m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 578
833b7ab5
YQ
579# Return the breakpoint kind for this target based on the current
580# processor state (e.g. the current instruction mode on ARM) and the
581# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 582m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 583
ea480a30
SM
584M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
585m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
586m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
587v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
588
589# A function can be addressed by either it's "pointer" (possibly a
590# descriptor address) or "entry point" (first executable instruction).
591# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 592# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
593# a simplified subset of that functionality - the function's address
594# corresponds to the "function pointer" and the function's start
595# corresponds to the "function entry point" - and hence is redundant.
596
ea480a30 597v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 598
123dc839
DJ
599# Return the remote protocol register number associated with this
600# register. Normally the identity mapping.
ea480a30 601m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 602
b2756930 603# Fetch the target specific address used to represent a load module.
ea480a30 604F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
605
606# Return the thread-local address at OFFSET in the thread-local
607# storage for the thread PTID and the shared library or executable
608# file given by LM_ADDR. If that block of thread-local storage hasn't
609# been allocated yet, this function may throw an error. LM_ADDR may
610# be zero for statically linked multithreaded inferiors.
611
612M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 613#
ea480a30 614v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
615m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
616m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
617# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
618# frame-base. Enable frame-base before frame-unwind.
ea480a30 619F;int;frame_num_args;struct frame_info *frame;frame
104c1213 620#
ea480a30
SM
621M;CORE_ADDR;frame_align;CORE_ADDR address;address
622m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
623v;int;frame_red_zone_size
f0d4cc9e 624#
ea480a30 625m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
626# On some machines there are bits in addresses which are not really
627# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 628# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
629# we get a "real" address such as one would find in a symbol table.
630# This is used only for addresses of instructions, and even then I'm
631# not sure it's used in all contexts. It exists to deal with there
632# being a few stray bits in the PC which would mislead us, not as some
633# sort of generic thing to handle alignment or segmentation (it's
634# possible it should be in TARGET_READ_PC instead).
ea480a30 635m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 636
a738ea1d
YQ
637# On some machines, not all bits of an address word are significant.
638# For example, on AArch64, the top bits of an address known as the "tag"
639# are ignored by the kernel, the hardware, etc. and can be regarded as
640# additional data associated with the address.
5969f0db 641v;int;significant_addr_bit;;;;;;0
a738ea1d 642
e6590a1b
UW
643# FIXME/cagney/2001-01-18: This should be split in two. A target method that
644# indicates if the target needs software single step. An ISA method to
645# implement it.
646#
e6590a1b
UW
647# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
648# target can single step. If not, then implement single step using breakpoints.
64c4637f 649#
93f9a11f
YQ
650# Return a vector of addresses on which the software single step
651# breakpoints should be inserted. NULL means software single step is
652# not used.
653# Multiple breakpoints may be inserted for some instructions such as
654# conditional branch. However, each implementation must always evaluate
655# the condition and only put the breakpoint at the branch destination if
656# the condition is true, so that we ensure forward progress when stepping
657# past a conditional branch to self.
a0ff9e1a 658F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 659
3352ef37
AC
660# Return non-zero if the processor is executing a delay slot and a
661# further single-step is needed before the instruction finishes.
ea480a30 662M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 663# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 664# disassembler. Perhaps objdump can handle it?
39503f82 665f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 666f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
667
668
cfd8ab24 669# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
670# evaluates non-zero, this is the address where the debugger will place
671# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 672m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 673# Some systems also have trampoline code for returning from shared libs.
ea480a30 674m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 675
1d509aa6
MM
676# Return true if PC lies inside an indirect branch thunk.
677m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
678
c12260ac
CV
679# A target might have problems with watchpoints as soon as the stack
680# frame of the current function has been destroyed. This mostly happens
c9cf6e20 681# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
682# is defined to return a non-zero value if either the given addr is one
683# instruction after the stack destroying instruction up to the trailing
684# return instruction or if we can figure out that the stack frame has
685# already been invalidated regardless of the value of addr. Targets
686# which don't suffer from that problem could just let this functionality
687# untouched.
ea480a30 688m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
689# Process an ELF symbol in the minimal symbol table in a backend-specific
690# way. Normally this hook is supposed to do nothing, however if required,
691# then this hook can be used to apply tranformations to symbols that are
692# considered special in some way. For example the MIPS backend uses it
693# to interpret \`st_other' information to mark compressed code symbols so
694# that they can be treated in the appropriate manner in the processing of
695# the main symbol table and DWARF-2 records.
ea480a30
SM
696F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
697f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
698# Process a symbol in the main symbol table in a backend-specific way.
699# Normally this hook is supposed to do nothing, however if required,
700# then this hook can be used to apply tranformations to symbols that
701# are considered special in some way. This is currently used by the
702# MIPS backend to make sure compressed code symbols have the ISA bit
703# set. This in turn is needed for symbol values seen in GDB to match
704# the values used at the runtime by the program itself, for function
705# and label references.
ea480a30 706f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
707# Adjust the address retrieved from a DWARF-2 record other than a line
708# entry in a backend-specific way. Normally this hook is supposed to
709# return the address passed unchanged, however if that is incorrect for
710# any reason, then this hook can be used to fix the address up in the
711# required manner. This is currently used by the MIPS backend to make
712# sure addresses in FDE, range records, etc. referring to compressed
713# code have the ISA bit set, matching line information and the symbol
714# table.
ea480a30 715f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
716# Adjust the address updated by a line entry in a backend-specific way.
717# Normally this hook is supposed to return the address passed unchanged,
718# however in the case of inconsistencies in these records, this hook can
719# be used to fix them up in the required manner. This is currently used
720# by the MIPS backend to make sure all line addresses in compressed code
721# are presented with the ISA bit set, which is not always the case. This
722# in turn ensures breakpoint addresses are correctly matched against the
723# stop PC.
ea480a30
SM
724f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
725v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
726# See comment in target.h about continuable, steppable and
727# non-steppable watchpoints.
ea480a30
SM
728v;int;have_nonsteppable_watchpoint;;;0;0;;0
729F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
730M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
731# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
732# FS are passed from the generic execute_cfa_program function.
ea480a30 733m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
734
735# Return the appropriate type_flags for the supplied address class.
736# This function should return 1 if the address class was recognized and
737# type_flags was set, zero otherwise.
ea480a30 738M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 739# Is a register in a group
ea480a30 740m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 741# Fetch the pointer to the ith function argument.
ea480a30 742F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 743
5aa82d05
AA
744# Iterate over all supported register notes in a core file. For each
745# supported register note section, the iterator must call CB and pass
746# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
747# the supported register note sections based on the current register
748# values. Otherwise it should enumerate all supported register note
749# sections.
ea480a30 750M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 751
6432734d 752# Create core file notes
ea480a30 753M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 754
35c2fab7 755# Find core file memory regions
ea480a30 756M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 757
de584861 758# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
759# core file into buffer READBUF with length LEN. Return the number of bytes read
760# (zero indicates failure).
761# failed, otherwise, return the red length of READBUF.
ea480a30 762M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 763
356a5233
JB
764# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
765# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 766# Return the number of bytes read (zero indicates failure).
ea480a30 767M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 768
c0edd9ed 769# How the core target converts a PTID from a core file to a string.
a068643d 770M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 771
4dfc5dbc 772# How the core target extracts the name of a thread from a core file.
ea480a30 773M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 774
382b69bb
JB
775# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
776# from core file into buffer READBUF with length LEN. Return the number
777# of bytes read (zero indicates EOF, a negative value indicates failure).
778M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
779
a78c2d62 780# BFD target to use when generating a core file.
ea480a30 781V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 782
0d5de010
DJ
783# If the elements of C++ vtables are in-place function descriptors rather
784# than normal function pointers (which may point to code or a descriptor),
785# set this to one.
ea480a30 786v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
787
788# Set if the least significant bit of the delta is used instead of the least
789# significant bit of the pfn for pointers to virtual member functions.
ea480a30 790v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
791
792# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 793f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 794
1668ae25 795# The maximum length of an instruction on this architecture in bytes.
ea480a30 796V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
797
798# Copy the instruction at FROM to TO, and make any adjustments
799# necessary to single-step it at that address.
800#
801# REGS holds the state the thread's registers will have before
802# executing the copied instruction; the PC in REGS will refer to FROM,
803# not the copy at TO. The caller should update it to point at TO later.
804#
805# Return a pointer to data of the architecture's choice to be passed
806# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
807# the instruction's effects have been completely simulated, with the
808# resulting state written back to REGS.
809#
810# For a general explanation of displaced stepping and how GDB uses it,
811# see the comments in infrun.c.
812#
813# The TO area is only guaranteed to have space for
814# gdbarch_max_insn_length (arch) bytes, so this function must not
815# write more bytes than that to that area.
816#
817# If you do not provide this function, GDB assumes that the
818# architecture does not support displaced stepping.
819#
7f03bd92
PA
820# If the instruction cannot execute out of line, return NULL. The
821# core falls back to stepping past the instruction in-line instead in
822# that case.
ea480a30 823M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 824
99e40580
UW
825# Return true if GDB should use hardware single-stepping to execute
826# the displaced instruction identified by CLOSURE. If false,
827# GDB will simply restart execution at the displaced instruction
828# location, and it is up to the target to ensure GDB will receive
829# control again (e.g. by placing a software breakpoint instruction
830# into the displaced instruction buffer).
831#
832# The default implementation returns false on all targets that
833# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 834m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 835
237fc4c9
PA
836# Fix up the state resulting from successfully single-stepping a
837# displaced instruction, to give the result we would have gotten from
838# stepping the instruction in its original location.
839#
840# REGS is the register state resulting from single-stepping the
841# displaced instruction.
842#
843# CLOSURE is the result from the matching call to
844# gdbarch_displaced_step_copy_insn.
845#
846# If you provide gdbarch_displaced_step_copy_insn.but not this
847# function, then GDB assumes that no fixup is needed after
848# single-stepping the instruction.
849#
850# For a general explanation of displaced stepping and how GDB uses it,
851# see the comments in infrun.c.
ea480a30 852M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 853
237fc4c9
PA
854# Return the address of an appropriate place to put displaced
855# instructions while we step over them. There need only be one such
856# place, since we're only stepping one thread over a breakpoint at a
857# time.
858#
859# For a general explanation of displaced stepping and how GDB uses it,
860# see the comments in infrun.c.
ea480a30 861m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 862
dde08ee1
PA
863# Relocate an instruction to execute at a different address. OLDLOC
864# is the address in the inferior memory where the instruction to
865# relocate is currently at. On input, TO points to the destination
866# where we want the instruction to be copied (and possibly adjusted)
867# to. On output, it points to one past the end of the resulting
868# instruction(s). The effect of executing the instruction at TO shall
869# be the same as if executing it at FROM. For example, call
870# instructions that implicitly push the return address on the stack
871# should be adjusted to return to the instruction after OLDLOC;
872# relative branches, and other PC-relative instructions need the
873# offset adjusted; etc.
ea480a30 874M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 875
1c772458 876# Refresh overlay mapped state for section OSECT.
ea480a30 877F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 878
ea480a30 879M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
880
881# Handle special encoding of static variables in stabs debug info.
ea480a30 882F;const char *;static_transform_name;const char *name;name
203c3895 883# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 884v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 885
0508c3ec
HZ
886# Parse the instruction at ADDR storing in the record execution log
887# the registers REGCACHE and memory ranges that will be affected when
888# the instruction executes, along with their current values.
889# Return -1 if something goes wrong, 0 otherwise.
ea480a30 890M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 891
3846b520
HZ
892# Save process state after a signal.
893# Return -1 if something goes wrong, 0 otherwise.
ea480a30 894M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 895
22203bbf 896# Signal translation: translate inferior's signal (target's) number
86b49880
PA
897# into GDB's representation. The implementation of this method must
898# be host independent. IOW, don't rely on symbols of the NAT_FILE
899# header (the nm-*.h files), the host <signal.h> header, or similar
900# headers. This is mainly used when cross-debugging core files ---
901# "Live" targets hide the translation behind the target interface
1f8cf220 902# (target_wait, target_resume, etc.).
ea480a30 903M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 904
eb14d406
SDJ
905# Signal translation: translate the GDB's internal signal number into
906# the inferior's signal (target's) representation. The implementation
907# of this method must be host independent. IOW, don't rely on symbols
908# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
909# header, or similar headers.
910# Return the target signal number if found, or -1 if the GDB internal
911# signal number is invalid.
ea480a30 912M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 913
4aa995e1
PA
914# Extra signal info inspection.
915#
916# Return a type suitable to inspect extra signal information.
ea480a30 917M;struct type *;get_siginfo_type;void;
4aa995e1 918
60c5725c 919# Record architecture-specific information from the symbol table.
ea480a30 920M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 921
a96d9b2e
SDJ
922# Function for the 'catch syscall' feature.
923
924# Get architecture-specific system calls information from registers.
00431a78 925M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 926
458c8db8 927# The filename of the XML syscall for this architecture.
ea480a30 928v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
929
930# Information about system calls from this architecture
ea480a30 931v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 932
55aa24fb
SDJ
933# SystemTap related fields and functions.
934
05c0465e
SDJ
935# A NULL-terminated array of prefixes used to mark an integer constant
936# on the architecture's assembly.
55aa24fb
SDJ
937# For example, on x86 integer constants are written as:
938#
939# \$10 ;; integer constant 10
940#
941# in this case, this prefix would be the character \`\$\'.
ea480a30 942v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 943
05c0465e
SDJ
944# A NULL-terminated array of suffixes used to mark an integer constant
945# on the architecture's assembly.
ea480a30 946v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 947
05c0465e
SDJ
948# A NULL-terminated array of prefixes used to mark a register name on
949# the architecture's assembly.
55aa24fb
SDJ
950# For example, on x86 the register name is written as:
951#
952# \%eax ;; register eax
953#
954# in this case, this prefix would be the character \`\%\'.
ea480a30 955v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 956
05c0465e
SDJ
957# A NULL-terminated array of suffixes used to mark a register name on
958# the architecture's assembly.
ea480a30 959v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 960
05c0465e
SDJ
961# A NULL-terminated array of prefixes used to mark a register
962# indirection on the architecture's assembly.
55aa24fb
SDJ
963# For example, on x86 the register indirection is written as:
964#
965# \(\%eax\) ;; indirecting eax
966#
967# in this case, this prefix would be the charater \`\(\'.
968#
969# Please note that we use the indirection prefix also for register
970# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 971v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 972
05c0465e
SDJ
973# A NULL-terminated array of suffixes used to mark a register
974# indirection on the architecture's assembly.
55aa24fb
SDJ
975# For example, on x86 the register indirection is written as:
976#
977# \(\%eax\) ;; indirecting eax
978#
979# in this case, this prefix would be the charater \`\)\'.
980#
981# Please note that we use the indirection suffix also for register
982# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 983v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 984
05c0465e 985# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
986#
987# For example, on PPC a register is represented by a number in the assembly
988# language (e.g., \`10\' is the 10th general-purpose register). However,
989# inside GDB this same register has an \`r\' appended to its name, so the 10th
990# register would be represented as \`r10\' internally.
ea480a30 991v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
992
993# Suffix used to name a register using GDB's nomenclature.
ea480a30 994v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
995
996# Check if S is a single operand.
997#
998# Single operands can be:
999# \- Literal integers, e.g. \`\$10\' on x86
1000# \- Register access, e.g. \`\%eax\' on x86
1001# \- Register indirection, e.g. \`\(\%eax\)\' on x86
1002# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
1003#
1004# This function should check for these patterns on the string
1005# and return 1 if some were found, or zero otherwise. Please try to match
1006# as much info as you can from the string, i.e., if you have to match
1007# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 1008M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
1009
1010# Function used to handle a "special case" in the parser.
1011#
1012# A "special case" is considered to be an unknown token, i.e., a token
1013# that the parser does not know how to parse. A good example of special
1014# case would be ARM's register displacement syntax:
1015#
1016# [R0, #4] ;; displacing R0 by 4
1017#
1018# Since the parser assumes that a register displacement is of the form:
1019#
1020# <number> <indirection_prefix> <register_name> <indirection_suffix>
1021#
1022# it means that it will not be able to recognize and parse this odd syntax.
1023# Therefore, we should add a special case function that will handle this token.
1024#
1025# This function should generate the proper expression form of the expression
1026# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1027# and so on). It should also return 1 if the parsing was successful, or zero
1028# if the token was not recognized as a special token (in this case, returning
1029# zero means that the special parser is deferring the parsing to the generic
1030# parser), and should advance the buffer pointer (p->arg).
ea480a30 1031M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1032
8b367e17
JM
1033# DTrace related functions.
1034
1035# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1036# NARG must be >= 0.
37eedb39 1037M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1038
1039# True if the given ADDR does not contain the instruction sequence
1040# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1041M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1042
1043# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1044M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1045
1046# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1047M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1048
50c71eaf
PA
1049# True if the list of shared libraries is one and only for all
1050# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1051# This usually means that all processes, although may or may not share
1052# an address space, will see the same set of symbols at the same
1053# addresses.
ea480a30 1054v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1055
1056# On some targets, even though each inferior has its own private
1057# address space, the debug interface takes care of making breakpoints
1058# visible to all address spaces automatically. For such cases,
1059# this property should be set to true.
ea480a30 1060v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1061
1062# True if inferiors share an address space (e.g., uClinux).
ea480a30 1063m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1064
1065# True if a fast tracepoint can be set at an address.
281d762b 1066m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1067
5f034a78
MK
1068# Guess register state based on tracepoint location. Used for tracepoints
1069# where no registers have been collected, but there's only one location,
1070# allowing us to guess the PC value, and perhaps some other registers.
1071# On entry, regcache has all registers marked as unavailable.
ea480a30 1072m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1073
f870a310 1074# Return the "auto" target charset.
ea480a30 1075f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1076# Return the "auto" target wide charset.
ea480a30 1077f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1078
1079# If non-empty, this is a file extension that will be opened in place
1080# of the file extension reported by the shared library list.
1081#
1082# This is most useful for toolchains that use a post-linker tool,
1083# where the names of the files run on the target differ in extension
1084# compared to the names of the files GDB should load for debug info.
ea480a30 1085v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1086
1087# If true, the target OS has DOS-based file system semantics. That
1088# is, absolute paths include a drive name, and the backslash is
1089# considered a directory separator.
ea480a30 1090v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1091
1092# Generate bytecodes to collect the return address in a frame.
1093# Since the bytecodes run on the target, possibly with GDB not even
1094# connected, the full unwinding machinery is not available, and
1095# typically this function will issue bytecodes for one or more likely
1096# places that the return address may be found.
ea480a30 1097m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1098
3030c96e 1099# Implement the "info proc" command.
ea480a30 1100M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1101
451b7c33
TT
1102# Implement the "info proc" command for core files. Noe that there
1103# are two "info_proc"-like methods on gdbarch -- one for core files,
1104# one for live targets.
ea480a30 1105M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1106
19630284
JB
1107# Iterate over all objfiles in the order that makes the most sense
1108# for the architecture to make global symbol searches.
1109#
1110# CB is a callback function where OBJFILE is the objfile to be searched,
1111# and CB_DATA a pointer to user-defined data (the same data that is passed
1112# when calling this gdbarch method). The iteration stops if this function
1113# returns nonzero.
1114#
1115# CB_DATA is a pointer to some user-defined data to be passed to
1116# the callback.
1117#
1118# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1119# inspected when the symbol search was requested.
ea480a30 1120m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1121
7e35103a 1122# Ravenscar arch-dependent ops.
ea480a30 1123v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1124
1125# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1126m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1127
1128# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1129m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1130
1131# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1132m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1133
1134# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1135# Return 0 if *READPTR is already at the end of the buffer.
1136# Return -1 if there is insufficient buffer for a whole entry.
1137# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1138M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1139
2faa3447
JB
1140# Print the description of a single auxv entry described by TYPE and VAL
1141# to FILE.
ea480a30 1142m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1143
3437254d
PA
1144# Find the address range of the current inferior's vsyscall/vDSO, and
1145# write it to *RANGE. If the vsyscall's length can't be determined, a
1146# range with zero length is returned. Returns true if the vsyscall is
1147# found, false otherwise.
ea480a30 1148m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1149
1150# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1151# PROT has GDB_MMAP_PROT_* bitmask format.
1152# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1153f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1154
7f361056
JK
1155# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1156# Print a warning if it is not possible.
ea480a30 1157f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1158
f208eee0
JK
1159# Return string (caller has to use xfree for it) with options for GCC
1160# to produce code for this target, typically "-m64", "-m32" or "-m31".
1161# These options are put before CU's DW_AT_producer compilation options so that
1162# they can override it. Method may also return NULL.
ea480a30 1163m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1164
1165# Return a regular expression that matches names used by this
1166# architecture in GNU configury triplets. The result is statically
1167# allocated and must not be freed. The default implementation simply
1168# returns the BFD architecture name, which is correct in nearly every
1169# case.
ea480a30 1170m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1171
1172# Return the size in 8-bit bytes of an addressable memory unit on this
1173# architecture. This corresponds to the number of 8-bit bytes associated to
1174# each address in memory.
ea480a30 1175m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1176
65b48a81 1177# Functions for allowing a target to modify its disassembler options.
471b9d15 1178v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1179v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1180v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1181
5561fc30
AB
1182# Type alignment override method. Return the architecture specific
1183# alignment required for TYPE. If there is no special handling
1184# required for TYPE then return the value 0, GDB will then apply the
1185# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1186m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1187
104c1213 1188EOF
104c1213
JM
1189}
1190
0b8f9e4d
AC
1191#
1192# The .log file
1193#
1194exec > new-gdbarch.log
34620563 1195function_list | while do_read
0b8f9e4d
AC
1196do
1197 cat <<EOF
2f9b146e 1198${class} ${returntype} ${function} ($formal)
104c1213 1199EOF
3d9a5942
AC
1200 for r in ${read}
1201 do
1202 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1203 done
f0d4cc9e 1204 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1205 then
66d659b1 1206 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1207 kill $$
1208 exit 1
1209 fi
72e74a21 1210 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1211 then
1212 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1213 kill $$
1214 exit 1
1215 fi
a72293e2
AC
1216 if class_is_multiarch_p
1217 then
1218 if class_is_predicate_p ; then :
1219 elif test "x${predefault}" = "x"
1220 then
2f9b146e 1221 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1222 kill $$
1223 exit 1
1224 fi
1225 fi
3d9a5942 1226 echo ""
0b8f9e4d
AC
1227done
1228
1229exec 1>&2
1230compare_new gdbarch.log
1231
104c1213
JM
1232
1233copyright ()
1234{
1235cat <<EOF
c4bfde41
JK
1236/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1237/* vi:set ro: */
59233f88 1238
104c1213 1239/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1240
c6f4a5d0 1241 Copyright (C) 1998-2019 Free Software Foundation, Inc.
104c1213
JM
1242
1243 This file is part of GDB.
1244
1245 This program is free software; you can redistribute it and/or modify
1246 it under the terms of the GNU General Public License as published by
50efebf8 1247 the Free Software Foundation; either version 3 of the License, or
104c1213 1248 (at your option) any later version.
618f726f 1249
104c1213
JM
1250 This program is distributed in the hope that it will be useful,
1251 but WITHOUT ANY WARRANTY; without even the implied warranty of
1252 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1253 GNU General Public License for more details.
618f726f 1254
104c1213 1255 You should have received a copy of the GNU General Public License
50efebf8 1256 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1257
104c1213
JM
1258/* This file was created with the aid of \`\`gdbarch.sh''.
1259
52204a0b 1260 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1261 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1262 against the existing \`\`gdbarch.[hc]''. Any differences found
1263 being reported.
1264
1265 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1266 changes into that script. Conversely, when making sweeping changes
104c1213 1267 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1268 easier. */
104c1213
JM
1269
1270EOF
1271}
1272
1273#
1274# The .h file
1275#
1276
1277exec > new-gdbarch.h
1278copyright
1279cat <<EOF
1280#ifndef GDBARCH_H
1281#define GDBARCH_H
1282
a0ff9e1a 1283#include <vector>
eb7a547a 1284#include "frame.h"
65b48a81 1285#include "dis-asm.h"
284a0e3c 1286#include "gdb_obstack.h"
eb7a547a 1287
da3331ec
AC
1288struct floatformat;
1289struct ui_file;
104c1213 1290struct value;
b6af0555 1291struct objfile;
1c772458 1292struct obj_section;
a2cf933a 1293struct minimal_symbol;
049ee0e4 1294struct regcache;
b59ff9d5 1295struct reggroup;
6ce6d90f 1296struct regset;
a89aa300 1297struct disassemble_info;
e2d0e7eb 1298struct target_ops;
030f20e1 1299struct obstack;
8181d85f 1300struct bp_target_info;
424163ea 1301struct target_desc;
3e29f34a 1302struct symbol;
237fc4c9 1303struct displaced_step_closure;
a96d9b2e 1304struct syscall;
175ff332 1305struct agent_expr;
6710bf39 1306struct axs_value;
55aa24fb 1307struct stap_parse_info;
37eedb39 1308struct expr_builder;
7e35103a 1309struct ravenscar_arch_ops;
3437254d 1310struct mem_range;
458c8db8 1311struct syscalls_info;
4dfc5dbc 1312struct thread_info;
012b3a21 1313struct ui_out;
104c1213 1314
8a526fa6
PA
1315#include "regcache.h"
1316
6ecd4729
PA
1317/* The architecture associated with the inferior through the
1318 connection to the target.
1319
1320 The architecture vector provides some information that is really a
1321 property of the inferior, accessed through a particular target:
1322 ptrace operations; the layout of certain RSP packets; the solib_ops
1323 vector; etc. To differentiate architecture accesses to
1324 per-inferior/target properties from
1325 per-thread/per-frame/per-objfile properties, accesses to
1326 per-inferior/target properties should be made through this
1327 gdbarch. */
1328
1329/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1330extern struct gdbarch *target_gdbarch (void);
6ecd4729 1331
19630284
JB
1332/* Callback type for the 'iterate_over_objfiles_in_search_order'
1333 gdbarch method. */
1334
1335typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1336 (struct objfile *objfile, void *cb_data);
5aa82d05 1337
1528345d
AA
1338/* Callback type for regset section iterators. The callback usually
1339 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1340 pass a buffer - for collects this buffer will need to be created using
1341 COLLECT_SIZE, for supply the existing buffer being read from should
1342 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1343 is used for diagnostic messages. CB_DATA should have been passed
1344 unchanged through the iterator. */
1528345d 1345
5aa82d05 1346typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1347 (const char *sect_name, int supply_size, int collect_size,
1348 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1349
1350/* For a function call, does the function return a value using a
1351 normal value return or a structure return - passing a hidden
1352 argument pointing to storage. For the latter, there are two
1353 cases: language-mandated structure return and target ABI
1354 structure return. */
1355
1356enum function_call_return_method
1357{
1358 /* Standard value return. */
1359 return_method_normal = 0,
1360
1361 /* Language ABI structure return. This is handled
1362 by passing the return location as the first parameter to
1363 the function, even preceding "this". */
1364 return_method_hidden_param,
1365
1366 /* Target ABI struct return. This is target-specific; for instance,
1367 on ia64 the first argument is passed in out0 but the hidden
1368 structure return pointer would normally be passed in r8. */
1369 return_method_struct,
1370};
1371
104c1213
JM
1372EOF
1373
1374# function typedef's
3d9a5942
AC
1375printf "\n"
1376printf "\n"
0963b4bd 1377printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1378function_list | while do_read
104c1213 1379do
2ada493a
AC
1380 if class_is_info_p
1381 then
3d9a5942
AC
1382 printf "\n"
1383 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1384 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1385 fi
104c1213
JM
1386done
1387
1388# function typedef's
3d9a5942
AC
1389printf "\n"
1390printf "\n"
0963b4bd 1391printf "/* The following are initialized by the target dependent code. */\n"
34620563 1392function_list | while do_read
104c1213 1393do
72e74a21 1394 if [ -n "${comment}" ]
34620563
AC
1395 then
1396 echo "${comment}" | sed \
1397 -e '2 s,#,/*,' \
1398 -e '3,$ s,#, ,' \
1399 -e '$ s,$, */,'
1400 fi
412d5987
AC
1401
1402 if class_is_predicate_p
2ada493a 1403 then
412d5987
AC
1404 printf "\n"
1405 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1406 fi
2ada493a
AC
1407 if class_is_variable_p
1408 then
3d9a5942
AC
1409 printf "\n"
1410 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1411 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1412 fi
1413 if class_is_function_p
1414 then
3d9a5942 1415 printf "\n"
72e74a21 1416 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1417 then
1418 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1419 elif class_is_multiarch_p
1420 then
1421 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1422 else
1423 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1424 fi
72e74a21 1425 if [ "x${formal}" = "xvoid" ]
104c1213 1426 then
3d9a5942 1427 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1428 else
3d9a5942 1429 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1430 fi
3d9a5942 1431 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1432 fi
104c1213
JM
1433done
1434
1435# close it off
1436cat <<EOF
1437
1438extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1439
1440
1441/* Mechanism for co-ordinating the selection of a specific
1442 architecture.
1443
1444 GDB targets (*-tdep.c) can register an interest in a specific
1445 architecture. Other GDB components can register a need to maintain
1446 per-architecture data.
1447
1448 The mechanisms below ensures that there is only a loose connection
1449 between the set-architecture command and the various GDB
0fa6923a 1450 components. Each component can independently register their need
104c1213
JM
1451 to maintain architecture specific data with gdbarch.
1452
1453 Pragmatics:
1454
1455 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1456 didn't scale.
1457
1458 The more traditional mega-struct containing architecture specific
1459 data for all the various GDB components was also considered. Since
0fa6923a 1460 GDB is built from a variable number of (fairly independent)
104c1213 1461 components it was determined that the global aproach was not
0963b4bd 1462 applicable. */
104c1213
JM
1463
1464
1465/* Register a new architectural family with GDB.
1466
1467 Register support for the specified ARCHITECTURE with GDB. When
1468 gdbarch determines that the specified architecture has been
1469 selected, the corresponding INIT function is called.
1470
1471 --
1472
1473 The INIT function takes two parameters: INFO which contains the
1474 information available to gdbarch about the (possibly new)
1475 architecture; ARCHES which is a list of the previously created
1476 \`\`struct gdbarch'' for this architecture.
1477
0f79675b 1478 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1479 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1480
1481 The ARCHES parameter is a linked list (sorted most recently used)
1482 of all the previously created architures for this architecture
1483 family. The (possibly NULL) ARCHES->gdbarch can used to access
1484 values from the previously selected architecture for this
59837fe0 1485 architecture family.
104c1213
JM
1486
1487 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1488 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1489 gdbarch'' from the ARCHES list - indicating that the new
1490 architecture is just a synonym for an earlier architecture (see
1491 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1492 - that describes the selected architecture (see gdbarch_alloc()).
1493
1494 The DUMP_TDEP function shall print out all target specific values.
1495 Care should be taken to ensure that the function works in both the
0963b4bd 1496 multi-arch and non- multi-arch cases. */
104c1213
JM
1497
1498struct gdbarch_list
1499{
1500 struct gdbarch *gdbarch;
1501 struct gdbarch_list *next;
1502};
1503
1504struct gdbarch_info
1505{
0963b4bd 1506 /* Use default: NULL (ZERO). */
104c1213
JM
1507 const struct bfd_arch_info *bfd_arch_info;
1508
428721aa 1509 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1510 enum bfd_endian byte_order;
104c1213 1511
94123b4f 1512 enum bfd_endian byte_order_for_code;
9d4fde75 1513
0963b4bd 1514 /* Use default: NULL (ZERO). */
104c1213
JM
1515 bfd *abfd;
1516
0963b4bd 1517 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1518 union
1519 {
1520 /* Architecture-specific information. The generic form for targets
1521 that have extra requirements. */
1522 struct gdbarch_tdep_info *tdep_info;
1523
1524 /* Architecture-specific target description data. Numerous targets
1525 need only this, so give them an easy way to hold it. */
1526 struct tdesc_arch_data *tdesc_data;
1527
1528 /* SPU file system ID. This is a single integer, so using the
1529 generic form would only complicate code. Other targets may
1530 reuse this member if suitable. */
1531 int *id;
1532 };
4be87837
DJ
1533
1534 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1535 enum gdb_osabi osabi;
424163ea
DJ
1536
1537 /* Use default: NULL (ZERO). */
1538 const struct target_desc *target_desc;
104c1213
JM
1539};
1540
1541typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1542typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1543
4b9b3959 1544/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1545extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1546
4b9b3959
AC
1547extern void gdbarch_register (enum bfd_architecture architecture,
1548 gdbarch_init_ftype *,
1549 gdbarch_dump_tdep_ftype *);
1550
104c1213 1551
b4a20239
AC
1552/* Return a freshly allocated, NULL terminated, array of the valid
1553 architecture names. Since architectures are registered during the
1554 _initialize phase this function only returns useful information
0963b4bd 1555 once initialization has been completed. */
b4a20239
AC
1556
1557extern const char **gdbarch_printable_names (void);
1558
1559
104c1213 1560/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1561 matches the information provided by INFO. */
104c1213 1562
424163ea 1563extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1564
1565
1566/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1567 basic initialization using values obtained from the INFO and TDEP
104c1213 1568 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1569 initialization of the object. */
104c1213
JM
1570
1571extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1572
1573
4b9b3959
AC
1574/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1575 It is assumed that the caller freeds the \`\`struct
0963b4bd 1576 gdbarch_tdep''. */
4b9b3959 1577
058f20d5
JB
1578extern void gdbarch_free (struct gdbarch *);
1579
284a0e3c
SM
1580/* Get the obstack owned by ARCH. */
1581
1582extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1583
aebd7893
AC
1584/* Helper function. Allocate memory from the \`\`struct gdbarch''
1585 obstack. The memory is freed when the corresponding architecture
1586 is also freed. */
1587
284a0e3c
SM
1588#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1589 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1590
1591#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1592 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1593
6c214e7c
PP
1594/* Duplicate STRING, returning an equivalent string that's allocated on the
1595 obstack associated with GDBARCH. The string is freed when the corresponding
1596 architecture is also freed. */
1597
1598extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1599
0963b4bd 1600/* Helper function. Force an update of the current architecture.
104c1213 1601
b732d07d
AC
1602 The actual architecture selected is determined by INFO, \`\`(gdb) set
1603 architecture'' et.al., the existing architecture and BFD's default
1604 architecture. INFO should be initialized to zero and then selected
1605 fields should be updated.
104c1213 1606
0963b4bd 1607 Returns non-zero if the update succeeds. */
16f33e29
AC
1608
1609extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1610
1611
ebdba546
AC
1612/* Helper function. Find an architecture matching info.
1613
1614 INFO should be initialized using gdbarch_info_init, relevant fields
1615 set, and then finished using gdbarch_info_fill.
1616
1617 Returns the corresponding architecture, or NULL if no matching
59837fe0 1618 architecture was found. */
ebdba546
AC
1619
1620extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1621
1622
aff68abb 1623/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1624
aff68abb 1625extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1626
104c1213
JM
1627
1628/* Register per-architecture data-pointer.
1629
1630 Reserve space for a per-architecture data-pointer. An identifier
1631 for the reserved data-pointer is returned. That identifer should
95160752 1632 be saved in a local static variable.
104c1213 1633
fcc1c85c
AC
1634 Memory for the per-architecture data shall be allocated using
1635 gdbarch_obstack_zalloc. That memory will be deleted when the
1636 corresponding architecture object is deleted.
104c1213 1637
95160752
AC
1638 When a previously created architecture is re-selected, the
1639 per-architecture data-pointer for that previous architecture is
76860b5f 1640 restored. INIT() is not re-called.
104c1213
JM
1641
1642 Multiple registrarants for any architecture are allowed (and
1643 strongly encouraged). */
1644
95160752 1645struct gdbarch_data;
104c1213 1646
030f20e1
AC
1647typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1648extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1649typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1650extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1651extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1652 struct gdbarch_data *data,
1653 void *pointer);
104c1213 1654
451fbdda 1655extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1656
1657
0fa6923a 1658/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1659 byte-order, ...) using information found in the BFD. */
104c1213
JM
1660
1661extern void set_gdbarch_from_file (bfd *);
1662
1663
e514a9d6
JM
1664/* Initialize the current architecture to the "first" one we find on
1665 our list. */
1666
1667extern void initialize_current_architecture (void);
1668
104c1213 1669/* gdbarch trace variable */
ccce17b0 1670extern unsigned int gdbarch_debug;
104c1213 1671
4b9b3959 1672extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1673
f6efe3f8
SM
1674/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1675
1676static inline int
1677gdbarch_num_cooked_regs (gdbarch *arch)
1678{
1679 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1680}
1681
104c1213
JM
1682#endif
1683EOF
1684exec 1>&2
1685#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1686compare_new gdbarch.h
104c1213
JM
1687
1688
1689#
1690# C file
1691#
1692
1693exec > new-gdbarch.c
1694copyright
1695cat <<EOF
1696
1697#include "defs.h"
7355ddba 1698#include "arch-utils.h"
104c1213 1699
104c1213 1700#include "gdbcmd.h"
faaf634c 1701#include "inferior.h"
104c1213
JM
1702#include "symcat.h"
1703
f0d4cc9e 1704#include "floatformat.h"
b59ff9d5 1705#include "reggroups.h"
4be87837 1706#include "osabi.h"
aebd7893 1707#include "gdb_obstack.h"
0bee6dd4 1708#include "observable.h"
a3ecef73 1709#include "regcache.h"
19630284 1710#include "objfiles.h"
2faa3447 1711#include "auxv.h"
8bcb5208
AB
1712#include "frame-unwind.h"
1713#include "dummy-frame.h"
95160752 1714
104c1213
JM
1715/* Static function declarations */
1716
b3cc3077 1717static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1718
104c1213
JM
1719/* Non-zero if we want to trace architecture code. */
1720
1721#ifndef GDBARCH_DEBUG
1722#define GDBARCH_DEBUG 0
1723#endif
ccce17b0 1724unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1725static void
1726show_gdbarch_debug (struct ui_file *file, int from_tty,
1727 struct cmd_list_element *c, const char *value)
1728{
1729 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1730}
104c1213 1731
456fcf94 1732static const char *
8da61cc4 1733pformat (const struct floatformat **format)
456fcf94
AC
1734{
1735 if (format == NULL)
1736 return "(null)";
1737 else
8da61cc4
DJ
1738 /* Just print out one of them - this is only for diagnostics. */
1739 return format[0]->name;
456fcf94
AC
1740}
1741
08105857
PA
1742static const char *
1743pstring (const char *string)
1744{
1745 if (string == NULL)
1746 return "(null)";
1747 return string;
05c0465e
SDJ
1748}
1749
a121b7c1 1750static const char *
f7bb4e3a
PB
1751pstring_ptr (char **string)
1752{
1753 if (string == NULL || *string == NULL)
1754 return "(null)";
1755 return *string;
1756}
1757
05c0465e
SDJ
1758/* Helper function to print a list of strings, represented as "const
1759 char *const *". The list is printed comma-separated. */
1760
a121b7c1 1761static const char *
05c0465e
SDJ
1762pstring_list (const char *const *list)
1763{
1764 static char ret[100];
1765 const char *const *p;
1766 size_t offset = 0;
1767
1768 if (list == NULL)
1769 return "(null)";
1770
1771 ret[0] = '\0';
1772 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1773 {
1774 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1775 offset += 2 + s;
1776 }
1777
1778 if (offset > 0)
1779 {
1780 gdb_assert (offset - 2 < sizeof (ret));
1781 ret[offset - 2] = '\0';
1782 }
1783
1784 return ret;
08105857
PA
1785}
1786
104c1213
JM
1787EOF
1788
1789# gdbarch open the gdbarch object
3d9a5942 1790printf "\n"
0963b4bd 1791printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1792printf "\n"
1793printf "struct gdbarch\n"
1794printf "{\n"
76860b5f
AC
1795printf " /* Has this architecture been fully initialized? */\n"
1796printf " int initialized_p;\n"
aebd7893
AC
1797printf "\n"
1798printf " /* An obstack bound to the lifetime of the architecture. */\n"
1799printf " struct obstack *obstack;\n"
1800printf "\n"
0963b4bd 1801printf " /* basic architectural information. */\n"
34620563 1802function_list | while do_read
104c1213 1803do
2ada493a
AC
1804 if class_is_info_p
1805 then
3d9a5942 1806 printf " ${returntype} ${function};\n"
2ada493a 1807 fi
104c1213 1808done
3d9a5942 1809printf "\n"
0963b4bd 1810printf " /* target specific vector. */\n"
3d9a5942
AC
1811printf " struct gdbarch_tdep *tdep;\n"
1812printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1813printf "\n"
0963b4bd 1814printf " /* per-architecture data-pointers. */\n"
95160752 1815printf " unsigned nr_data;\n"
3d9a5942
AC
1816printf " void **data;\n"
1817printf "\n"
104c1213
JM
1818cat <<EOF
1819 /* Multi-arch values.
1820
1821 When extending this structure you must:
1822
1823 Add the field below.
1824
1825 Declare set/get functions and define the corresponding
1826 macro in gdbarch.h.
1827
1828 gdbarch_alloc(): If zero/NULL is not a suitable default,
1829 initialize the new field.
1830
1831 verify_gdbarch(): Confirm that the target updated the field
1832 correctly.
1833
7e73cedf 1834 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1835 field is dumped out
1836
104c1213
JM
1837 get_gdbarch(): Implement the set/get functions (probably using
1838 the macro's as shortcuts).
1839
1840 */
1841
1842EOF
34620563 1843function_list | while do_read
104c1213 1844do
2ada493a
AC
1845 if class_is_variable_p
1846 then
3d9a5942 1847 printf " ${returntype} ${function};\n"
2ada493a
AC
1848 elif class_is_function_p
1849 then
2f9b146e 1850 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1851 fi
104c1213 1852done
3d9a5942 1853printf "};\n"
104c1213 1854
104c1213 1855# Create a new gdbarch struct
104c1213 1856cat <<EOF
7de2341d 1857
66b43ecb 1858/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1859 \`\`struct gdbarch_info''. */
104c1213 1860EOF
3d9a5942 1861printf "\n"
104c1213
JM
1862cat <<EOF
1863struct gdbarch *
1864gdbarch_alloc (const struct gdbarch_info *info,
1865 struct gdbarch_tdep *tdep)
1866{
be7811ad 1867 struct gdbarch *gdbarch;
aebd7893
AC
1868
1869 /* Create an obstack for allocating all the per-architecture memory,
1870 then use that to allocate the architecture vector. */
70ba0933 1871 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1872 obstack_init (obstack);
8d749320 1873 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1874 memset (gdbarch, 0, sizeof (*gdbarch));
1875 gdbarch->obstack = obstack;
85de9627 1876
be7811ad 1877 alloc_gdbarch_data (gdbarch);
85de9627 1878
be7811ad 1879 gdbarch->tdep = tdep;
104c1213 1880EOF
3d9a5942 1881printf "\n"
34620563 1882function_list | while do_read
104c1213 1883do
2ada493a
AC
1884 if class_is_info_p
1885 then
be7811ad 1886 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1887 fi
104c1213 1888done
3d9a5942 1889printf "\n"
0963b4bd 1890printf " /* Force the explicit initialization of these. */\n"
34620563 1891function_list | while do_read
104c1213 1892do
2ada493a
AC
1893 if class_is_function_p || class_is_variable_p
1894 then
72e74a21 1895 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1896 then
be7811ad 1897 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1898 fi
2ada493a 1899 fi
104c1213
JM
1900done
1901cat <<EOF
1902 /* gdbarch_alloc() */
1903
be7811ad 1904 return gdbarch;
104c1213
JM
1905}
1906EOF
1907
058f20d5 1908# Free a gdbarch struct.
3d9a5942
AC
1909printf "\n"
1910printf "\n"
058f20d5 1911cat <<EOF
aebd7893 1912
284a0e3c 1913obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1914{
284a0e3c 1915 return arch->obstack;
aebd7893
AC
1916}
1917
6c214e7c
PP
1918/* See gdbarch.h. */
1919
1920char *
1921gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1922{
1923 return obstack_strdup (arch->obstack, string);
1924}
1925
aebd7893 1926
058f20d5
JB
1927/* Free a gdbarch struct. This should never happen in normal
1928 operation --- once you've created a gdbarch, you keep it around.
1929 However, if an architecture's init function encounters an error
1930 building the structure, it may need to clean up a partially
1931 constructed gdbarch. */
4b9b3959 1932
058f20d5
JB
1933void
1934gdbarch_free (struct gdbarch *arch)
1935{
aebd7893 1936 struct obstack *obstack;
05c547f6 1937
95160752 1938 gdb_assert (arch != NULL);
aebd7893
AC
1939 gdb_assert (!arch->initialized_p);
1940 obstack = arch->obstack;
1941 obstack_free (obstack, 0); /* Includes the ARCH. */
1942 xfree (obstack);
058f20d5
JB
1943}
1944EOF
1945
104c1213 1946# verify a new architecture
104c1213 1947cat <<EOF
db446970
AC
1948
1949
1950/* Ensure that all values in a GDBARCH are reasonable. */
1951
104c1213 1952static void
be7811ad 1953verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1954{
d7e74731 1955 string_file log;
05c547f6 1956
104c1213 1957 /* fundamental */
be7811ad 1958 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1959 log.puts ("\n\tbyte-order");
be7811ad 1960 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1961 log.puts ("\n\tbfd_arch_info");
0963b4bd 1962 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1963EOF
34620563 1964function_list | while do_read
104c1213 1965do
2ada493a
AC
1966 if class_is_function_p || class_is_variable_p
1967 then
72e74a21 1968 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1969 then
3d9a5942 1970 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1971 elif class_is_predicate_p
1972 then
0963b4bd 1973 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1974 # FIXME: See do_read for potential simplification
72e74a21 1975 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1976 then
3d9a5942 1977 printf " if (${invalid_p})\n"
be7811ad 1978 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1979 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1980 then
be7811ad
MD
1981 printf " if (gdbarch->${function} == ${predefault})\n"
1982 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1983 elif [ -n "${postdefault}" ]
f0d4cc9e 1984 then
be7811ad
MD
1985 printf " if (gdbarch->${function} == 0)\n"
1986 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1987 elif [ -n "${invalid_p}" ]
104c1213 1988 then
4d60522e 1989 printf " if (${invalid_p})\n"
d7e74731 1990 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1991 elif [ -n "${predefault}" ]
104c1213 1992 then
be7811ad 1993 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1994 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1995 fi
2ada493a 1996 fi
104c1213
JM
1997done
1998cat <<EOF
d7e74731 1999 if (!log.empty ())
f16a1923 2000 internal_error (__FILE__, __LINE__,
85c07804 2001 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 2002 log.c_str ());
104c1213
JM
2003}
2004EOF
2005
2006# dump the structure
3d9a5942
AC
2007printf "\n"
2008printf "\n"
104c1213 2009cat <<EOF
0963b4bd 2010/* Print out the details of the current architecture. */
4b9b3959 2011
104c1213 2012void
be7811ad 2013gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2014{
b78960be 2015 const char *gdb_nm_file = "<not-defined>";
05c547f6 2016
b78960be
AC
2017#if defined (GDB_NM_FILE)
2018 gdb_nm_file = GDB_NM_FILE;
2019#endif
2020 fprintf_unfiltered (file,
2021 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2022 gdb_nm_file);
104c1213 2023EOF
ea480a30 2024function_list | sort '-t;' -k 3 | while do_read
104c1213 2025do
1e9f55d0
AC
2026 # First the predicate
2027 if class_is_predicate_p
2028 then
7996bcec 2029 printf " fprintf_unfiltered (file,\n"
48f7351b 2030 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 2031 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 2032 fi
48f7351b 2033 # Print the corresponding value.
283354d8 2034 if class_is_function_p
4b9b3959 2035 then
7996bcec 2036 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
2037 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2038 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 2039 else
48f7351b 2040 # It is a variable
2f9b146e
AC
2041 case "${print}:${returntype}" in
2042 :CORE_ADDR )
0b1553bc
UW
2043 fmt="%s"
2044 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2045 ;;
2f9b146e 2046 :* )
48f7351b 2047 fmt="%s"
623d3eb1 2048 print="plongest (gdbarch->${function})"
48f7351b
AC
2049 ;;
2050 * )
2f9b146e 2051 fmt="%s"
48f7351b
AC
2052 ;;
2053 esac
3d9a5942 2054 printf " fprintf_unfiltered (file,\n"
48f7351b 2055 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 2056 printf " ${print});\n"
2ada493a 2057 fi
104c1213 2058done
381323f4 2059cat <<EOF
be7811ad
MD
2060 if (gdbarch->dump_tdep != NULL)
2061 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2062}
2063EOF
104c1213
JM
2064
2065
2066# GET/SET
3d9a5942 2067printf "\n"
104c1213
JM
2068cat <<EOF
2069struct gdbarch_tdep *
2070gdbarch_tdep (struct gdbarch *gdbarch)
2071{
2072 if (gdbarch_debug >= 2)
3d9a5942 2073 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2074 return gdbarch->tdep;
2075}
2076EOF
3d9a5942 2077printf "\n"
34620563 2078function_list | while do_read
104c1213 2079do
2ada493a
AC
2080 if class_is_predicate_p
2081 then
3d9a5942
AC
2082 printf "\n"
2083 printf "int\n"
2084 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2085 printf "{\n"
8de9bdc4 2086 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2087 printf " return ${predicate};\n"
3d9a5942 2088 printf "}\n"
2ada493a
AC
2089 fi
2090 if class_is_function_p
2091 then
3d9a5942
AC
2092 printf "\n"
2093 printf "${returntype}\n"
72e74a21 2094 if [ "x${formal}" = "xvoid" ]
104c1213 2095 then
3d9a5942 2096 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2097 else
3d9a5942 2098 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2099 fi
3d9a5942 2100 printf "{\n"
8de9bdc4 2101 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2102 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2103 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2104 then
2105 # Allow a call to a function with a predicate.
956ac328 2106 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2107 fi
3d9a5942
AC
2108 printf " if (gdbarch_debug >= 2)\n"
2109 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2110 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2111 then
2112 if class_is_multiarch_p
2113 then
2114 params="gdbarch"
2115 else
2116 params=""
2117 fi
2118 else
2119 if class_is_multiarch_p
2120 then
2121 params="gdbarch, ${actual}"
2122 else
2123 params="${actual}"
2124 fi
2125 fi
72e74a21 2126 if [ "x${returntype}" = "xvoid" ]
104c1213 2127 then
4a5c6a1d 2128 printf " gdbarch->${function} (${params});\n"
104c1213 2129 else
4a5c6a1d 2130 printf " return gdbarch->${function} (${params});\n"
104c1213 2131 fi
3d9a5942
AC
2132 printf "}\n"
2133 printf "\n"
2134 printf "void\n"
2135 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2136 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2137 printf "{\n"
2138 printf " gdbarch->${function} = ${function};\n"
2139 printf "}\n"
2ada493a
AC
2140 elif class_is_variable_p
2141 then
3d9a5942
AC
2142 printf "\n"
2143 printf "${returntype}\n"
2144 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2145 printf "{\n"
8de9bdc4 2146 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2147 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2148 then
3d9a5942 2149 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2150 elif [ -n "${invalid_p}" ]
104c1213 2151 then
956ac328
AC
2152 printf " /* Check variable is valid. */\n"
2153 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2154 elif [ -n "${predefault}" ]
104c1213 2155 then
956ac328
AC
2156 printf " /* Check variable changed from pre-default. */\n"
2157 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2158 fi
3d9a5942
AC
2159 printf " if (gdbarch_debug >= 2)\n"
2160 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2161 printf " return gdbarch->${function};\n"
2162 printf "}\n"
2163 printf "\n"
2164 printf "void\n"
2165 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2166 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2167 printf "{\n"
2168 printf " gdbarch->${function} = ${function};\n"
2169 printf "}\n"
2ada493a
AC
2170 elif class_is_info_p
2171 then
3d9a5942
AC
2172 printf "\n"
2173 printf "${returntype}\n"
2174 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2175 printf "{\n"
8de9bdc4 2176 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2177 printf " if (gdbarch_debug >= 2)\n"
2178 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2179 printf " return gdbarch->${function};\n"
2180 printf "}\n"
2ada493a 2181 fi
104c1213
JM
2182done
2183
2184# All the trailing guff
2185cat <<EOF
2186
2187
f44c642f 2188/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2189 modules. */
104c1213
JM
2190
2191struct gdbarch_data
2192{
95160752 2193 unsigned index;
76860b5f 2194 int init_p;
030f20e1
AC
2195 gdbarch_data_pre_init_ftype *pre_init;
2196 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2197};
2198
2199struct gdbarch_data_registration
2200{
104c1213
JM
2201 struct gdbarch_data *data;
2202 struct gdbarch_data_registration *next;
2203};
2204
f44c642f 2205struct gdbarch_data_registry
104c1213 2206{
95160752 2207 unsigned nr;
104c1213
JM
2208 struct gdbarch_data_registration *registrations;
2209};
2210
f44c642f 2211struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2212{
2213 0, NULL,
2214};
2215
030f20e1
AC
2216static struct gdbarch_data *
2217gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2218 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2219{
2220 struct gdbarch_data_registration **curr;
05c547f6
MS
2221
2222 /* Append the new registration. */
f44c642f 2223 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2224 (*curr) != NULL;
2225 curr = &(*curr)->next);
70ba0933 2226 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2227 (*curr)->next = NULL;
70ba0933 2228 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2229 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2230 (*curr)->data->pre_init = pre_init;
2231 (*curr)->data->post_init = post_init;
76860b5f 2232 (*curr)->data->init_p = 1;
104c1213
JM
2233 return (*curr)->data;
2234}
2235
030f20e1
AC
2236struct gdbarch_data *
2237gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2238{
2239 return gdbarch_data_register (pre_init, NULL);
2240}
2241
2242struct gdbarch_data *
2243gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2244{
2245 return gdbarch_data_register (NULL, post_init);
2246}
104c1213 2247
0963b4bd 2248/* Create/delete the gdbarch data vector. */
95160752
AC
2249
2250static void
b3cc3077 2251alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2252{
b3cc3077
JB
2253 gdb_assert (gdbarch->data == NULL);
2254 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2255 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2256}
3c875b6f 2257
76860b5f 2258/* Initialize the current value of the specified per-architecture
0963b4bd 2259 data-pointer. */
b3cc3077 2260
95160752 2261void
030f20e1
AC
2262deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2263 struct gdbarch_data *data,
2264 void *pointer)
95160752
AC
2265{
2266 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2267 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2268 gdb_assert (data->pre_init == NULL);
95160752
AC
2269 gdbarch->data[data->index] = pointer;
2270}
2271
104c1213 2272/* Return the current value of the specified per-architecture
0963b4bd 2273 data-pointer. */
104c1213
JM
2274
2275void *
451fbdda 2276gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2277{
451fbdda 2278 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2279 if (gdbarch->data[data->index] == NULL)
76860b5f 2280 {
030f20e1
AC
2281 /* The data-pointer isn't initialized, call init() to get a
2282 value. */
2283 if (data->pre_init != NULL)
2284 /* Mid architecture creation: pass just the obstack, and not
2285 the entire architecture, as that way it isn't possible for
2286 pre-init code to refer to undefined architecture
2287 fields. */
2288 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2289 else if (gdbarch->initialized_p
2290 && data->post_init != NULL)
2291 /* Post architecture creation: pass the entire architecture
2292 (as all fields are valid), but be careful to also detect
2293 recursive references. */
2294 {
2295 gdb_assert (data->init_p);
2296 data->init_p = 0;
2297 gdbarch->data[data->index] = data->post_init (gdbarch);
2298 data->init_p = 1;
2299 }
2300 else
2301 /* The architecture initialization hasn't completed - punt -
2302 hope that the caller knows what they are doing. Once
2303 deprecated_set_gdbarch_data has been initialized, this can be
2304 changed to an internal error. */
2305 return NULL;
76860b5f
AC
2306 gdb_assert (gdbarch->data[data->index] != NULL);
2307 }
451fbdda 2308 return gdbarch->data[data->index];
104c1213
JM
2309}
2310
2311
0963b4bd 2312/* Keep a registry of the architectures known by GDB. */
104c1213 2313
4b9b3959 2314struct gdbarch_registration
104c1213
JM
2315{
2316 enum bfd_architecture bfd_architecture;
2317 gdbarch_init_ftype *init;
4b9b3959 2318 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2319 struct gdbarch_list *arches;
4b9b3959 2320 struct gdbarch_registration *next;
104c1213
JM
2321};
2322
f44c642f 2323static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2324
b4a20239
AC
2325static void
2326append_name (const char ***buf, int *nr, const char *name)
2327{
1dc7a623 2328 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2329 (*buf)[*nr] = name;
2330 *nr += 1;
2331}
2332
2333const char **
2334gdbarch_printable_names (void)
2335{
7996bcec 2336 /* Accumulate a list of names based on the registed list of
0963b4bd 2337 architectures. */
7996bcec
AC
2338 int nr_arches = 0;
2339 const char **arches = NULL;
2340 struct gdbarch_registration *rego;
05c547f6 2341
7996bcec
AC
2342 for (rego = gdbarch_registry;
2343 rego != NULL;
2344 rego = rego->next)
b4a20239 2345 {
7996bcec
AC
2346 const struct bfd_arch_info *ap;
2347 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2348 if (ap == NULL)
2349 internal_error (__FILE__, __LINE__,
85c07804 2350 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2351 do
2352 {
2353 append_name (&arches, &nr_arches, ap->printable_name);
2354 ap = ap->next;
2355 }
2356 while (ap != NULL);
b4a20239 2357 }
7996bcec
AC
2358 append_name (&arches, &nr_arches, NULL);
2359 return arches;
b4a20239
AC
2360}
2361
2362
104c1213 2363void
4b9b3959
AC
2364gdbarch_register (enum bfd_architecture bfd_architecture,
2365 gdbarch_init_ftype *init,
2366 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2367{
4b9b3959 2368 struct gdbarch_registration **curr;
104c1213 2369 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2370
ec3d358c 2371 /* Check that BFD recognizes this architecture */
104c1213
JM
2372 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2373 if (bfd_arch_info == NULL)
2374 {
8e65ff28 2375 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2376 _("gdbarch: Attempt to register "
2377 "unknown architecture (%d)"),
8e65ff28 2378 bfd_architecture);
104c1213 2379 }
0963b4bd 2380 /* Check that we haven't seen this architecture before. */
f44c642f 2381 for (curr = &gdbarch_registry;
104c1213
JM
2382 (*curr) != NULL;
2383 curr = &(*curr)->next)
2384 {
2385 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2386 internal_error (__FILE__, __LINE__,
64b9b334 2387 _("gdbarch: Duplicate registration "
0963b4bd 2388 "of architecture (%s)"),
8e65ff28 2389 bfd_arch_info->printable_name);
104c1213
JM
2390 }
2391 /* log it */
2392 if (gdbarch_debug)
30737ed9 2393 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2394 bfd_arch_info->printable_name,
30737ed9 2395 host_address_to_string (init));
104c1213 2396 /* Append it */
70ba0933 2397 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2398 (*curr)->bfd_architecture = bfd_architecture;
2399 (*curr)->init = init;
4b9b3959 2400 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2401 (*curr)->arches = NULL;
2402 (*curr)->next = NULL;
4b9b3959
AC
2403}
2404
2405void
2406register_gdbarch_init (enum bfd_architecture bfd_architecture,
2407 gdbarch_init_ftype *init)
2408{
2409 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2410}
104c1213
JM
2411
2412
424163ea 2413/* Look for an architecture using gdbarch_info. */
104c1213
JM
2414
2415struct gdbarch_list *
2416gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2417 const struct gdbarch_info *info)
2418{
2419 for (; arches != NULL; arches = arches->next)
2420 {
2421 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2422 continue;
2423 if (info->byte_order != arches->gdbarch->byte_order)
2424 continue;
4be87837
DJ
2425 if (info->osabi != arches->gdbarch->osabi)
2426 continue;
424163ea
DJ
2427 if (info->target_desc != arches->gdbarch->target_desc)
2428 continue;
104c1213
JM
2429 return arches;
2430 }
2431 return NULL;
2432}
2433
2434
ebdba546 2435/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2436 architecture if needed. Return that new architecture. */
104c1213 2437
59837fe0
UW
2438struct gdbarch *
2439gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2440{
2441 struct gdbarch *new_gdbarch;
4b9b3959 2442 struct gdbarch_registration *rego;
104c1213 2443
b732d07d 2444 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2445 sources: "set ..."; INFOabfd supplied; and the global
2446 defaults. */
2447 gdbarch_info_fill (&info);
4be87837 2448
0963b4bd 2449 /* Must have found some sort of architecture. */
b732d07d 2450 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2451
2452 if (gdbarch_debug)
2453 {
2454 fprintf_unfiltered (gdb_stdlog,
59837fe0 2455 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2456 (info.bfd_arch_info != NULL
2457 ? info.bfd_arch_info->printable_name
2458 : "(null)"));
2459 fprintf_unfiltered (gdb_stdlog,
59837fe0 2460 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2461 info.byte_order,
d7449b42 2462 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2463 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2464 : "default"));
4be87837 2465 fprintf_unfiltered (gdb_stdlog,
59837fe0 2466 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2467 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2468 fprintf_unfiltered (gdb_stdlog,
59837fe0 2469 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2470 host_address_to_string (info.abfd));
104c1213 2471 fprintf_unfiltered (gdb_stdlog,
59837fe0 2472 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2473 host_address_to_string (info.tdep_info));
104c1213
JM
2474 }
2475
ebdba546 2476 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2477 for (rego = gdbarch_registry;
2478 rego != NULL;
2479 rego = rego->next)
2480 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2481 break;
2482 if (rego == NULL)
2483 {
2484 if (gdbarch_debug)
59837fe0 2485 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2486 "No matching architecture\n");
b732d07d
AC
2487 return 0;
2488 }
2489
ebdba546 2490 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2491 new_gdbarch = rego->init (info, rego->arches);
2492
ebdba546
AC
2493 /* Did the tdep code like it? No. Reject the change and revert to
2494 the old architecture. */
104c1213
JM
2495 if (new_gdbarch == NULL)
2496 {
2497 if (gdbarch_debug)
59837fe0 2498 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2499 "Target rejected architecture\n");
2500 return NULL;
104c1213
JM
2501 }
2502
ebdba546
AC
2503 /* Is this a pre-existing architecture (as determined by already
2504 being initialized)? Move it to the front of the architecture
2505 list (keeping the list sorted Most Recently Used). */
2506 if (new_gdbarch->initialized_p)
104c1213 2507 {
ebdba546 2508 struct gdbarch_list **list;
fe978cb0 2509 struct gdbarch_list *self;
104c1213 2510 if (gdbarch_debug)
59837fe0 2511 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2512 "Previous architecture %s (%s) selected\n",
2513 host_address_to_string (new_gdbarch),
104c1213 2514 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2515 /* Find the existing arch in the list. */
2516 for (list = &rego->arches;
2517 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2518 list = &(*list)->next);
2519 /* It had better be in the list of architectures. */
2520 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2521 /* Unlink SELF. */
2522 self = (*list);
2523 (*list) = self->next;
2524 /* Insert SELF at the front. */
2525 self->next = rego->arches;
2526 rego->arches = self;
ebdba546
AC
2527 /* Return it. */
2528 return new_gdbarch;
104c1213
JM
2529 }
2530
ebdba546
AC
2531 /* It's a new architecture. */
2532 if (gdbarch_debug)
59837fe0 2533 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2534 "New architecture %s (%s) selected\n",
2535 host_address_to_string (new_gdbarch),
ebdba546
AC
2536 new_gdbarch->bfd_arch_info->printable_name);
2537
2538 /* Insert the new architecture into the front of the architecture
2539 list (keep the list sorted Most Recently Used). */
0f79675b 2540 {
fe978cb0
PA
2541 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2542 self->next = rego->arches;
2543 self->gdbarch = new_gdbarch;
2544 rego->arches = self;
0f79675b 2545 }
104c1213 2546
4b9b3959
AC
2547 /* Check that the newly installed architecture is valid. Plug in
2548 any post init values. */
2549 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2550 verify_gdbarch (new_gdbarch);
ebdba546 2551 new_gdbarch->initialized_p = 1;
104c1213 2552
4b9b3959 2553 if (gdbarch_debug)
ebdba546
AC
2554 gdbarch_dump (new_gdbarch, gdb_stdlog);
2555
2556 return new_gdbarch;
2557}
2558
e487cc15 2559/* Make the specified architecture current. */
ebdba546
AC
2560
2561void
aff68abb 2562set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2563{
2564 gdb_assert (new_gdbarch != NULL);
ebdba546 2565 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2566 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2567 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2568 registers_changed ();
ebdba546 2569}
104c1213 2570
f5656ead 2571/* Return the current inferior's arch. */
6ecd4729
PA
2572
2573struct gdbarch *
f5656ead 2574target_gdbarch (void)
6ecd4729
PA
2575{
2576 return current_inferior ()->gdbarch;
2577}
2578
104c1213 2579void
34620563 2580_initialize_gdbarch (void)
104c1213 2581{
ccce17b0 2582 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2583Set architecture debugging."), _("\\
2584Show architecture debugging."), _("\\
2585When non-zero, architecture debugging is enabled."),
2586 NULL,
920d2a44 2587 show_gdbarch_debug,
85c07804 2588 &setdebuglist, &showdebuglist);
104c1213
JM
2589}
2590EOF
2591
2592# close things off
2593exec 1>&2
2594#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2595compare_new gdbarch.c
This page took 2.589908 seconds and 4 git commands to generate.