M68K Linux: Define regset structures.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
638f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
640v:int:cannot_step_breakpoint:::0:0::0
641v:int:have_nonsteppable_watchpoint:::0:0::0
642F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
644
645# Return the appropriate type_flags for the supplied address class.
646# This function should return 1 if the address class was recognized and
647# type_flags was set, zero otherwise.
97030eea 648M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 649# Is a register in a group
97030eea 650m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 651# Fetch the pointer to the ith function argument.
97030eea 652F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
653
654# Return the appropriate register set for a core file section with
655# name SECT_NAME and size SECT_SIZE.
97030eea 656M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 657
17ea7499
CES
658# Supported register notes in a core file.
659v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
6432734d
UW
661# Create core file notes
662M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
b3ac9c77
SDJ
664# The elfcore writer hook to use to write Linux prpsinfo notes to core
665# files. Most Linux architectures use the same prpsinfo32 or
666# prpsinfo64 layouts, and so won't need to provide this hook, as we
667# call the Linux generic routines in bfd to write prpsinfo notes by
668# default.
669F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
35c2fab7
UW
671# Find core file memory regions
672M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
de584861 674# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
675# core file into buffer READBUF with length LEN. Return the number of bytes read
676# (zero indicates failure).
677# failed, otherwise, return the red length of READBUF.
678M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 679
356a5233
JB
680# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
681# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
682# Return the number of bytes read (zero indicates failure).
683M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 684
c0edd9ed 685# How the core target converts a PTID from a core file to a string.
28439f5e
PA
686M:char *:core_pid_to_str:ptid_t ptid:ptid
687
a78c2d62 688# BFD target to use when generating a core file.
86ba1042 689V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 690
0d5de010
DJ
691# If the elements of C++ vtables are in-place function descriptors rather
692# than normal function pointers (which may point to code or a descriptor),
693# set this to one.
97030eea 694v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
695
696# Set if the least significant bit of the delta is used instead of the least
697# significant bit of the pfn for pointers to virtual member functions.
97030eea 698v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
699
700# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 701F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 702
1668ae25 703# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
704V:ULONGEST:max_insn_length:::0:0
705
706# Copy the instruction at FROM to TO, and make any adjustments
707# necessary to single-step it at that address.
708#
709# REGS holds the state the thread's registers will have before
710# executing the copied instruction; the PC in REGS will refer to FROM,
711# not the copy at TO. The caller should update it to point at TO later.
712#
713# Return a pointer to data of the architecture's choice to be passed
714# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
715# the instruction's effects have been completely simulated, with the
716# resulting state written back to REGS.
717#
718# For a general explanation of displaced stepping and how GDB uses it,
719# see the comments in infrun.c.
720#
721# The TO area is only guaranteed to have space for
722# gdbarch_max_insn_length (arch) bytes, so this function must not
723# write more bytes than that to that area.
724#
725# If you do not provide this function, GDB assumes that the
726# architecture does not support displaced stepping.
727#
728# If your architecture doesn't need to adjust instructions before
729# single-stepping them, consider using simple_displaced_step_copy_insn
730# here.
731M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
732
99e40580
UW
733# Return true if GDB should use hardware single-stepping to execute
734# the displaced instruction identified by CLOSURE. If false,
735# GDB will simply restart execution at the displaced instruction
736# location, and it is up to the target to ensure GDB will receive
737# control again (e.g. by placing a software breakpoint instruction
738# into the displaced instruction buffer).
739#
740# The default implementation returns false on all targets that
741# provide a gdbarch_software_single_step routine, and true otherwise.
742m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
743
237fc4c9
PA
744# Fix up the state resulting from successfully single-stepping a
745# displaced instruction, to give the result we would have gotten from
746# stepping the instruction in its original location.
747#
748# REGS is the register state resulting from single-stepping the
749# displaced instruction.
750#
751# CLOSURE is the result from the matching call to
752# gdbarch_displaced_step_copy_insn.
753#
754# If you provide gdbarch_displaced_step_copy_insn.but not this
755# function, then GDB assumes that no fixup is needed after
756# single-stepping the instruction.
757#
758# For a general explanation of displaced stepping and how GDB uses it,
759# see the comments in infrun.c.
760M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
761
762# Free a closure returned by gdbarch_displaced_step_copy_insn.
763#
764# If you provide gdbarch_displaced_step_copy_insn, you must provide
765# this function as well.
766#
767# If your architecture uses closures that don't need to be freed, then
768# you can use simple_displaced_step_free_closure here.
769#
770# For a general explanation of displaced stepping and how GDB uses it,
771# see the comments in infrun.c.
772m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
773
774# Return the address of an appropriate place to put displaced
775# instructions while we step over them. There need only be one such
776# place, since we're only stepping one thread over a breakpoint at a
777# time.
778#
779# For a general explanation of displaced stepping and how GDB uses it,
780# see the comments in infrun.c.
781m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
782
dde08ee1
PA
783# Relocate an instruction to execute at a different address. OLDLOC
784# is the address in the inferior memory where the instruction to
785# relocate is currently at. On input, TO points to the destination
786# where we want the instruction to be copied (and possibly adjusted)
787# to. On output, it points to one past the end of the resulting
788# instruction(s). The effect of executing the instruction at TO shall
789# be the same as if executing it at FROM. For example, call
790# instructions that implicitly push the return address on the stack
791# should be adjusted to return to the instruction after OLDLOC;
792# relative branches, and other PC-relative instructions need the
793# offset adjusted; etc.
794M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
795
1c772458 796# Refresh overlay mapped state for section OSECT.
97030eea 797F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 798
97030eea 799M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
800
801# Handle special encoding of static variables in stabs debug info.
0d5cff50 802F:const char *:static_transform_name:const char *name:name
203c3895 803# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 804v:int:sofun_address_maybe_missing:::0:0::0
1cded358 805
0508c3ec
HZ
806# Parse the instruction at ADDR storing in the record execution log
807# the registers REGCACHE and memory ranges that will be affected when
808# the instruction executes, along with their current values.
809# Return -1 if something goes wrong, 0 otherwise.
810M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
811
3846b520
HZ
812# Save process state after a signal.
813# Return -1 if something goes wrong, 0 otherwise.
2ea28649 814M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 815
22203bbf 816# Signal translation: translate inferior's signal (target's) number
86b49880
PA
817# into GDB's representation. The implementation of this method must
818# be host independent. IOW, don't rely on symbols of the NAT_FILE
819# header (the nm-*.h files), the host <signal.h> header, or similar
820# headers. This is mainly used when cross-debugging core files ---
821# "Live" targets hide the translation behind the target interface
1f8cf220
PA
822# (target_wait, target_resume, etc.).
823M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 824
eb14d406
SDJ
825# Signal translation: translate the GDB's internal signal number into
826# the inferior's signal (target's) representation. The implementation
827# of this method must be host independent. IOW, don't rely on symbols
828# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
829# header, or similar headers.
830# Return the target signal number if found, or -1 if the GDB internal
831# signal number is invalid.
832M:int:gdb_signal_to_target:enum gdb_signal signal:signal
833
4aa995e1
PA
834# Extra signal info inspection.
835#
836# Return a type suitable to inspect extra signal information.
837M:struct type *:get_siginfo_type:void:
838
60c5725c
DJ
839# Record architecture-specific information from the symbol table.
840M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 841
a96d9b2e
SDJ
842# Function for the 'catch syscall' feature.
843
844# Get architecture-specific system calls information from registers.
845M:LONGEST:get_syscall_number:ptid_t ptid:ptid
846
55aa24fb
SDJ
847# SystemTap related fields and functions.
848
05c0465e
SDJ
849# A NULL-terminated array of prefixes used to mark an integer constant
850# on the architecture's assembly.
55aa24fb
SDJ
851# For example, on x86 integer constants are written as:
852#
853# \$10 ;; integer constant 10
854#
855# in this case, this prefix would be the character \`\$\'.
05c0465e 856v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 857
05c0465e
SDJ
858# A NULL-terminated array of suffixes used to mark an integer constant
859# on the architecture's assembly.
860v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 861
05c0465e
SDJ
862# A NULL-terminated array of prefixes used to mark a register name on
863# the architecture's assembly.
55aa24fb
SDJ
864# For example, on x86 the register name is written as:
865#
866# \%eax ;; register eax
867#
868# in this case, this prefix would be the character \`\%\'.
05c0465e 869v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 870
05c0465e
SDJ
871# A NULL-terminated array of suffixes used to mark a register name on
872# the architecture's assembly.
873v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 874
05c0465e
SDJ
875# A NULL-terminated array of prefixes used to mark a register
876# indirection on the architecture's assembly.
55aa24fb
SDJ
877# For example, on x86 the register indirection is written as:
878#
879# \(\%eax\) ;; indirecting eax
880#
881# in this case, this prefix would be the charater \`\(\'.
882#
883# Please note that we use the indirection prefix also for register
884# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 885v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 886
05c0465e
SDJ
887# A NULL-terminated array of suffixes used to mark a register
888# indirection on the architecture's assembly.
55aa24fb
SDJ
889# For example, on x86 the register indirection is written as:
890#
891# \(\%eax\) ;; indirecting eax
892#
893# in this case, this prefix would be the charater \`\)\'.
894#
895# Please note that we use the indirection suffix also for register
896# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 897v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 898
05c0465e 899# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
900#
901# For example, on PPC a register is represented by a number in the assembly
902# language (e.g., \`10\' is the 10th general-purpose register). However,
903# inside GDB this same register has an \`r\' appended to its name, so the 10th
904# register would be represented as \`r10\' internally.
08af7a40 905v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
906
907# Suffix used to name a register using GDB's nomenclature.
08af7a40 908v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
909
910# Check if S is a single operand.
911#
912# Single operands can be:
913# \- Literal integers, e.g. \`\$10\' on x86
914# \- Register access, e.g. \`\%eax\' on x86
915# \- Register indirection, e.g. \`\(\%eax\)\' on x86
916# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
917#
918# This function should check for these patterns on the string
919# and return 1 if some were found, or zero otherwise. Please try to match
920# as much info as you can from the string, i.e., if you have to match
921# something like \`\(\%\', do not match just the \`\(\'.
922M:int:stap_is_single_operand:const char *s:s
923
924# Function used to handle a "special case" in the parser.
925#
926# A "special case" is considered to be an unknown token, i.e., a token
927# that the parser does not know how to parse. A good example of special
928# case would be ARM's register displacement syntax:
929#
930# [R0, #4] ;; displacing R0 by 4
931#
932# Since the parser assumes that a register displacement is of the form:
933#
934# <number> <indirection_prefix> <register_name> <indirection_suffix>
935#
936# it means that it will not be able to recognize and parse this odd syntax.
937# Therefore, we should add a special case function that will handle this token.
938#
939# This function should generate the proper expression form of the expression
940# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
941# and so on). It should also return 1 if the parsing was successful, or zero
942# if the token was not recognized as a special token (in this case, returning
943# zero means that the special parser is deferring the parsing to the generic
944# parser), and should advance the buffer pointer (p->arg).
945M:int:stap_parse_special_token:struct stap_parse_info *p:p
946
947
50c71eaf
PA
948# True if the list of shared libraries is one and only for all
949# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
950# This usually means that all processes, although may or may not share
951# an address space, will see the same set of symbols at the same
952# addresses.
50c71eaf 953v:int:has_global_solist:::0:0::0
2567c7d9
PA
954
955# On some targets, even though each inferior has its own private
956# address space, the debug interface takes care of making breakpoints
957# visible to all address spaces automatically. For such cases,
958# this property should be set to true.
959v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
960
961# True if inferiors share an address space (e.g., uClinux).
962m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
963
964# True if a fast tracepoint can be set at an address.
965m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 966
f870a310
TT
967# Return the "auto" target charset.
968f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
969# Return the "auto" target wide charset.
970f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
971
972# If non-empty, this is a file extension that will be opened in place
973# of the file extension reported by the shared library list.
974#
975# This is most useful for toolchains that use a post-linker tool,
976# where the names of the files run on the target differ in extension
977# compared to the names of the files GDB should load for debug info.
978v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
979
980# If true, the target OS has DOS-based file system semantics. That
981# is, absolute paths include a drive name, and the backslash is
982# considered a directory separator.
983v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
984
985# Generate bytecodes to collect the return address in a frame.
986# Since the bytecodes run on the target, possibly with GDB not even
987# connected, the full unwinding machinery is not available, and
988# typically this function will issue bytecodes for one or more likely
989# places that the return address may be found.
990m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
991
3030c96e 992# Implement the "info proc" command.
7bc112c1 993M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 994
451b7c33
TT
995# Implement the "info proc" command for core files. Noe that there
996# are two "info_proc"-like methods on gdbarch -- one for core files,
997# one for live targets.
7bc112c1 998M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 999
19630284
JB
1000# Iterate over all objfiles in the order that makes the most sense
1001# for the architecture to make global symbol searches.
1002#
1003# CB is a callback function where OBJFILE is the objfile to be searched,
1004# and CB_DATA a pointer to user-defined data (the same data that is passed
1005# when calling this gdbarch method). The iteration stops if this function
1006# returns nonzero.
1007#
1008# CB_DATA is a pointer to some user-defined data to be passed to
1009# the callback.
1010#
1011# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1012# inspected when the symbol search was requested.
1013m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1014
7e35103a
JB
1015# Ravenscar arch-dependent ops.
1016v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1017
1018# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1019m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1020
1021# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1022m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1023
1024# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1025m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1026
1027# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1028# Return 0 if *READPTR is already at the end of the buffer.
1029# Return -1 if there is insufficient buffer for a whole entry.
1030# Return 1 if an entry was read into *TYPEP and *VALP.
1031M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
104c1213 1032EOF
104c1213
JM
1033}
1034
0b8f9e4d
AC
1035#
1036# The .log file
1037#
1038exec > new-gdbarch.log
34620563 1039function_list | while do_read
0b8f9e4d
AC
1040do
1041 cat <<EOF
2f9b146e 1042${class} ${returntype} ${function} ($formal)
104c1213 1043EOF
3d9a5942
AC
1044 for r in ${read}
1045 do
1046 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1047 done
f0d4cc9e 1048 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1049 then
66d659b1 1050 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1051 kill $$
1052 exit 1
1053 fi
72e74a21 1054 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1055 then
1056 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1057 kill $$
1058 exit 1
1059 fi
a72293e2
AC
1060 if class_is_multiarch_p
1061 then
1062 if class_is_predicate_p ; then :
1063 elif test "x${predefault}" = "x"
1064 then
2f9b146e 1065 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1066 kill $$
1067 exit 1
1068 fi
1069 fi
3d9a5942 1070 echo ""
0b8f9e4d
AC
1071done
1072
1073exec 1>&2
1074compare_new gdbarch.log
1075
104c1213
JM
1076
1077copyright ()
1078{
1079cat <<EOF
c4bfde41
JK
1080/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1081/* vi:set ro: */
59233f88 1082
104c1213 1083/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1084
ecd75fc8 1085 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1086
1087 This file is part of GDB.
1088
1089 This program is free software; you can redistribute it and/or modify
1090 it under the terms of the GNU General Public License as published by
50efebf8 1091 the Free Software Foundation; either version 3 of the License, or
104c1213 1092 (at your option) any later version.
50efebf8 1093
104c1213
JM
1094 This program is distributed in the hope that it will be useful,
1095 but WITHOUT ANY WARRANTY; without even the implied warranty of
1096 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1097 GNU General Public License for more details.
50efebf8 1098
104c1213 1099 You should have received a copy of the GNU General Public License
50efebf8 1100 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1101
104c1213
JM
1102/* This file was created with the aid of \`\`gdbarch.sh''.
1103
52204a0b 1104 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1105 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1106 against the existing \`\`gdbarch.[hc]''. Any differences found
1107 being reported.
1108
1109 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1110 changes into that script. Conversely, when making sweeping changes
104c1213 1111 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1112 easier. */
104c1213
JM
1113
1114EOF
1115}
1116
1117#
1118# The .h file
1119#
1120
1121exec > new-gdbarch.h
1122copyright
1123cat <<EOF
1124#ifndef GDBARCH_H
1125#define GDBARCH_H
1126
da3331ec
AC
1127struct floatformat;
1128struct ui_file;
104c1213
JM
1129struct frame_info;
1130struct value;
b6af0555 1131struct objfile;
1c772458 1132struct obj_section;
a2cf933a 1133struct minimal_symbol;
049ee0e4 1134struct regcache;
b59ff9d5 1135struct reggroup;
6ce6d90f 1136struct regset;
a89aa300 1137struct disassemble_info;
e2d0e7eb 1138struct target_ops;
030f20e1 1139struct obstack;
8181d85f 1140struct bp_target_info;
424163ea 1141struct target_desc;
237fc4c9 1142struct displaced_step_closure;
17ea7499 1143struct core_regset_section;
a96d9b2e 1144struct syscall;
175ff332 1145struct agent_expr;
6710bf39 1146struct axs_value;
55aa24fb 1147struct stap_parse_info;
7e35103a 1148struct ravenscar_arch_ops;
b3ac9c77 1149struct elf_internal_linux_prpsinfo;
104c1213 1150
6ecd4729
PA
1151/* The architecture associated with the inferior through the
1152 connection to the target.
1153
1154 The architecture vector provides some information that is really a
1155 property of the inferior, accessed through a particular target:
1156 ptrace operations; the layout of certain RSP packets; the solib_ops
1157 vector; etc. To differentiate architecture accesses to
1158 per-inferior/target properties from
1159 per-thread/per-frame/per-objfile properties, accesses to
1160 per-inferior/target properties should be made through this
1161 gdbarch. */
1162
1163/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1164extern struct gdbarch *target_gdbarch (void);
6ecd4729 1165
19630284
JB
1166/* Callback type for the 'iterate_over_objfiles_in_search_order'
1167 gdbarch method. */
1168
1169typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1170 (struct objfile *objfile, void *cb_data);
104c1213
JM
1171EOF
1172
1173# function typedef's
3d9a5942
AC
1174printf "\n"
1175printf "\n"
0963b4bd 1176printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1177function_list | while do_read
104c1213 1178do
2ada493a
AC
1179 if class_is_info_p
1180 then
3d9a5942
AC
1181 printf "\n"
1182 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1183 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1184 fi
104c1213
JM
1185done
1186
1187# function typedef's
3d9a5942
AC
1188printf "\n"
1189printf "\n"
0963b4bd 1190printf "/* The following are initialized by the target dependent code. */\n"
34620563 1191function_list | while do_read
104c1213 1192do
72e74a21 1193 if [ -n "${comment}" ]
34620563
AC
1194 then
1195 echo "${comment}" | sed \
1196 -e '2 s,#,/*,' \
1197 -e '3,$ s,#, ,' \
1198 -e '$ s,$, */,'
1199 fi
412d5987
AC
1200
1201 if class_is_predicate_p
2ada493a 1202 then
412d5987
AC
1203 printf "\n"
1204 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1205 fi
2ada493a
AC
1206 if class_is_variable_p
1207 then
3d9a5942
AC
1208 printf "\n"
1209 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1210 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1211 fi
1212 if class_is_function_p
1213 then
3d9a5942 1214 printf "\n"
72e74a21 1215 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1216 then
1217 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1218 elif class_is_multiarch_p
1219 then
1220 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1221 else
1222 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1223 fi
72e74a21 1224 if [ "x${formal}" = "xvoid" ]
104c1213 1225 then
3d9a5942 1226 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1227 else
3d9a5942 1228 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1229 fi
3d9a5942 1230 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1231 fi
104c1213
JM
1232done
1233
1234# close it off
1235cat <<EOF
1236
a96d9b2e
SDJ
1237/* Definition for an unknown syscall, used basically in error-cases. */
1238#define UNKNOWN_SYSCALL (-1)
1239
104c1213
JM
1240extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1241
1242
1243/* Mechanism for co-ordinating the selection of a specific
1244 architecture.
1245
1246 GDB targets (*-tdep.c) can register an interest in a specific
1247 architecture. Other GDB components can register a need to maintain
1248 per-architecture data.
1249
1250 The mechanisms below ensures that there is only a loose connection
1251 between the set-architecture command and the various GDB
0fa6923a 1252 components. Each component can independently register their need
104c1213
JM
1253 to maintain architecture specific data with gdbarch.
1254
1255 Pragmatics:
1256
1257 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1258 didn't scale.
1259
1260 The more traditional mega-struct containing architecture specific
1261 data for all the various GDB components was also considered. Since
0fa6923a 1262 GDB is built from a variable number of (fairly independent)
104c1213 1263 components it was determined that the global aproach was not
0963b4bd 1264 applicable. */
104c1213
JM
1265
1266
1267/* Register a new architectural family with GDB.
1268
1269 Register support for the specified ARCHITECTURE with GDB. When
1270 gdbarch determines that the specified architecture has been
1271 selected, the corresponding INIT function is called.
1272
1273 --
1274
1275 The INIT function takes two parameters: INFO which contains the
1276 information available to gdbarch about the (possibly new)
1277 architecture; ARCHES which is a list of the previously created
1278 \`\`struct gdbarch'' for this architecture.
1279
0f79675b 1280 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1281 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1282
1283 The ARCHES parameter is a linked list (sorted most recently used)
1284 of all the previously created architures for this architecture
1285 family. The (possibly NULL) ARCHES->gdbarch can used to access
1286 values from the previously selected architecture for this
59837fe0 1287 architecture family.
104c1213
JM
1288
1289 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1290 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1291 gdbarch'' from the ARCHES list - indicating that the new
1292 architecture is just a synonym for an earlier architecture (see
1293 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1294 - that describes the selected architecture (see gdbarch_alloc()).
1295
1296 The DUMP_TDEP function shall print out all target specific values.
1297 Care should be taken to ensure that the function works in both the
0963b4bd 1298 multi-arch and non- multi-arch cases. */
104c1213
JM
1299
1300struct gdbarch_list
1301{
1302 struct gdbarch *gdbarch;
1303 struct gdbarch_list *next;
1304};
1305
1306struct gdbarch_info
1307{
0963b4bd 1308 /* Use default: NULL (ZERO). */
104c1213
JM
1309 const struct bfd_arch_info *bfd_arch_info;
1310
428721aa 1311 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1312 enum bfd_endian byte_order;
104c1213 1313
94123b4f 1314 enum bfd_endian byte_order_for_code;
9d4fde75 1315
0963b4bd 1316 /* Use default: NULL (ZERO). */
104c1213
JM
1317 bfd *abfd;
1318
0963b4bd 1319 /* Use default: NULL (ZERO). */
104c1213 1320 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1321
1322 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1323 enum gdb_osabi osabi;
424163ea
DJ
1324
1325 /* Use default: NULL (ZERO). */
1326 const struct target_desc *target_desc;
104c1213
JM
1327};
1328
1329typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1330typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1331
4b9b3959 1332/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1333extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1334
4b9b3959
AC
1335extern void gdbarch_register (enum bfd_architecture architecture,
1336 gdbarch_init_ftype *,
1337 gdbarch_dump_tdep_ftype *);
1338
104c1213 1339
b4a20239
AC
1340/* Return a freshly allocated, NULL terminated, array of the valid
1341 architecture names. Since architectures are registered during the
1342 _initialize phase this function only returns useful information
0963b4bd 1343 once initialization has been completed. */
b4a20239
AC
1344
1345extern const char **gdbarch_printable_names (void);
1346
1347
104c1213 1348/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1349 matches the information provided by INFO. */
104c1213 1350
424163ea 1351extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1352
1353
1354/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1355 basic initialization using values obtained from the INFO and TDEP
104c1213 1356 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1357 initialization of the object. */
104c1213
JM
1358
1359extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1360
1361
4b9b3959
AC
1362/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1363 It is assumed that the caller freeds the \`\`struct
0963b4bd 1364 gdbarch_tdep''. */
4b9b3959 1365
058f20d5
JB
1366extern void gdbarch_free (struct gdbarch *);
1367
1368
aebd7893
AC
1369/* Helper function. Allocate memory from the \`\`struct gdbarch''
1370 obstack. The memory is freed when the corresponding architecture
1371 is also freed. */
1372
1373extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1374#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1375#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1376
1377
0963b4bd 1378/* Helper function. Force an update of the current architecture.
104c1213 1379
b732d07d
AC
1380 The actual architecture selected is determined by INFO, \`\`(gdb) set
1381 architecture'' et.al., the existing architecture and BFD's default
1382 architecture. INFO should be initialized to zero and then selected
1383 fields should be updated.
104c1213 1384
0963b4bd 1385 Returns non-zero if the update succeeds. */
16f33e29
AC
1386
1387extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1388
1389
ebdba546
AC
1390/* Helper function. Find an architecture matching info.
1391
1392 INFO should be initialized using gdbarch_info_init, relevant fields
1393 set, and then finished using gdbarch_info_fill.
1394
1395 Returns the corresponding architecture, or NULL if no matching
59837fe0 1396 architecture was found. */
ebdba546
AC
1397
1398extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1399
1400
aff68abb 1401/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1402
aff68abb 1403extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1404
104c1213
JM
1405
1406/* Register per-architecture data-pointer.
1407
1408 Reserve space for a per-architecture data-pointer. An identifier
1409 for the reserved data-pointer is returned. That identifer should
95160752 1410 be saved in a local static variable.
104c1213 1411
fcc1c85c
AC
1412 Memory for the per-architecture data shall be allocated using
1413 gdbarch_obstack_zalloc. That memory will be deleted when the
1414 corresponding architecture object is deleted.
104c1213 1415
95160752
AC
1416 When a previously created architecture is re-selected, the
1417 per-architecture data-pointer for that previous architecture is
76860b5f 1418 restored. INIT() is not re-called.
104c1213
JM
1419
1420 Multiple registrarants for any architecture are allowed (and
1421 strongly encouraged). */
1422
95160752 1423struct gdbarch_data;
104c1213 1424
030f20e1
AC
1425typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1426extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1427typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1428extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1429extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1430 struct gdbarch_data *data,
1431 void *pointer);
104c1213 1432
451fbdda 1433extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1434
1435
0fa6923a 1436/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1437 byte-order, ...) using information found in the BFD. */
104c1213
JM
1438
1439extern void set_gdbarch_from_file (bfd *);
1440
1441
e514a9d6
JM
1442/* Initialize the current architecture to the "first" one we find on
1443 our list. */
1444
1445extern void initialize_current_architecture (void);
1446
104c1213 1447/* gdbarch trace variable */
ccce17b0 1448extern unsigned int gdbarch_debug;
104c1213 1449
4b9b3959 1450extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1451
1452#endif
1453EOF
1454exec 1>&2
1455#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1456compare_new gdbarch.h
104c1213
JM
1457
1458
1459#
1460# C file
1461#
1462
1463exec > new-gdbarch.c
1464copyright
1465cat <<EOF
1466
1467#include "defs.h"
7355ddba 1468#include "arch-utils.h"
104c1213 1469
104c1213 1470#include "gdbcmd.h"
faaf634c 1471#include "inferior.h"
104c1213
JM
1472#include "symcat.h"
1473
f0d4cc9e 1474#include "floatformat.h"
b59ff9d5 1475#include "reggroups.h"
4be87837 1476#include "osabi.h"
aebd7893 1477#include "gdb_obstack.h"
383f836e 1478#include "observer.h"
a3ecef73 1479#include "regcache.h"
19630284 1480#include "objfiles.h"
95160752 1481
104c1213
JM
1482/* Static function declarations */
1483
b3cc3077 1484static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1485
104c1213
JM
1486/* Non-zero if we want to trace architecture code. */
1487
1488#ifndef GDBARCH_DEBUG
1489#define GDBARCH_DEBUG 0
1490#endif
ccce17b0 1491unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1492static void
1493show_gdbarch_debug (struct ui_file *file, int from_tty,
1494 struct cmd_list_element *c, const char *value)
1495{
1496 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1497}
104c1213 1498
456fcf94 1499static const char *
8da61cc4 1500pformat (const struct floatformat **format)
456fcf94
AC
1501{
1502 if (format == NULL)
1503 return "(null)";
1504 else
8da61cc4
DJ
1505 /* Just print out one of them - this is only for diagnostics. */
1506 return format[0]->name;
456fcf94
AC
1507}
1508
08105857
PA
1509static const char *
1510pstring (const char *string)
1511{
1512 if (string == NULL)
1513 return "(null)";
1514 return string;
05c0465e
SDJ
1515}
1516
1517/* Helper function to print a list of strings, represented as "const
1518 char *const *". The list is printed comma-separated. */
1519
1520static char *
1521pstring_list (const char *const *list)
1522{
1523 static char ret[100];
1524 const char *const *p;
1525 size_t offset = 0;
1526
1527 if (list == NULL)
1528 return "(null)";
1529
1530 ret[0] = '\0';
1531 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1532 {
1533 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1534 offset += 2 + s;
1535 }
1536
1537 if (offset > 0)
1538 {
1539 gdb_assert (offset - 2 < sizeof (ret));
1540 ret[offset - 2] = '\0';
1541 }
1542
1543 return ret;
08105857
PA
1544}
1545
104c1213
JM
1546EOF
1547
1548# gdbarch open the gdbarch object
3d9a5942 1549printf "\n"
0963b4bd 1550printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1551printf "\n"
1552printf "struct gdbarch\n"
1553printf "{\n"
76860b5f
AC
1554printf " /* Has this architecture been fully initialized? */\n"
1555printf " int initialized_p;\n"
aebd7893
AC
1556printf "\n"
1557printf " /* An obstack bound to the lifetime of the architecture. */\n"
1558printf " struct obstack *obstack;\n"
1559printf "\n"
0963b4bd 1560printf " /* basic architectural information. */\n"
34620563 1561function_list | while do_read
104c1213 1562do
2ada493a
AC
1563 if class_is_info_p
1564 then
3d9a5942 1565 printf " ${returntype} ${function};\n"
2ada493a 1566 fi
104c1213 1567done
3d9a5942 1568printf "\n"
0963b4bd 1569printf " /* target specific vector. */\n"
3d9a5942
AC
1570printf " struct gdbarch_tdep *tdep;\n"
1571printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1572printf "\n"
0963b4bd 1573printf " /* per-architecture data-pointers. */\n"
95160752 1574printf " unsigned nr_data;\n"
3d9a5942
AC
1575printf " void **data;\n"
1576printf "\n"
104c1213
JM
1577cat <<EOF
1578 /* Multi-arch values.
1579
1580 When extending this structure you must:
1581
1582 Add the field below.
1583
1584 Declare set/get functions and define the corresponding
1585 macro in gdbarch.h.
1586
1587 gdbarch_alloc(): If zero/NULL is not a suitable default,
1588 initialize the new field.
1589
1590 verify_gdbarch(): Confirm that the target updated the field
1591 correctly.
1592
7e73cedf 1593 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1594 field is dumped out
1595
104c1213
JM
1596 get_gdbarch(): Implement the set/get functions (probably using
1597 the macro's as shortcuts).
1598
1599 */
1600
1601EOF
34620563 1602function_list | while do_read
104c1213 1603do
2ada493a
AC
1604 if class_is_variable_p
1605 then
3d9a5942 1606 printf " ${returntype} ${function};\n"
2ada493a
AC
1607 elif class_is_function_p
1608 then
2f9b146e 1609 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1610 fi
104c1213 1611done
3d9a5942 1612printf "};\n"
104c1213 1613
104c1213 1614# Create a new gdbarch struct
104c1213 1615cat <<EOF
7de2341d 1616
66b43ecb 1617/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1618 \`\`struct gdbarch_info''. */
104c1213 1619EOF
3d9a5942 1620printf "\n"
104c1213
JM
1621cat <<EOF
1622struct gdbarch *
1623gdbarch_alloc (const struct gdbarch_info *info,
1624 struct gdbarch_tdep *tdep)
1625{
be7811ad 1626 struct gdbarch *gdbarch;
aebd7893
AC
1627
1628 /* Create an obstack for allocating all the per-architecture memory,
1629 then use that to allocate the architecture vector. */
70ba0933 1630 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1631 obstack_init (obstack);
be7811ad
MD
1632 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1633 memset (gdbarch, 0, sizeof (*gdbarch));
1634 gdbarch->obstack = obstack;
85de9627 1635
be7811ad 1636 alloc_gdbarch_data (gdbarch);
85de9627 1637
be7811ad 1638 gdbarch->tdep = tdep;
104c1213 1639EOF
3d9a5942 1640printf "\n"
34620563 1641function_list | while do_read
104c1213 1642do
2ada493a
AC
1643 if class_is_info_p
1644 then
be7811ad 1645 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1646 fi
104c1213 1647done
3d9a5942 1648printf "\n"
0963b4bd 1649printf " /* Force the explicit initialization of these. */\n"
34620563 1650function_list | while do_read
104c1213 1651do
2ada493a
AC
1652 if class_is_function_p || class_is_variable_p
1653 then
72e74a21 1654 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1655 then
be7811ad 1656 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1657 fi
2ada493a 1658 fi
104c1213
JM
1659done
1660cat <<EOF
1661 /* gdbarch_alloc() */
1662
be7811ad 1663 return gdbarch;
104c1213
JM
1664}
1665EOF
1666
058f20d5 1667# Free a gdbarch struct.
3d9a5942
AC
1668printf "\n"
1669printf "\n"
058f20d5 1670cat <<EOF
aebd7893
AC
1671/* Allocate extra space using the per-architecture obstack. */
1672
1673void *
1674gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1675{
1676 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1677
aebd7893
AC
1678 memset (data, 0, size);
1679 return data;
1680}
1681
1682
058f20d5
JB
1683/* Free a gdbarch struct. This should never happen in normal
1684 operation --- once you've created a gdbarch, you keep it around.
1685 However, if an architecture's init function encounters an error
1686 building the structure, it may need to clean up a partially
1687 constructed gdbarch. */
4b9b3959 1688
058f20d5
JB
1689void
1690gdbarch_free (struct gdbarch *arch)
1691{
aebd7893 1692 struct obstack *obstack;
05c547f6 1693
95160752 1694 gdb_assert (arch != NULL);
aebd7893
AC
1695 gdb_assert (!arch->initialized_p);
1696 obstack = arch->obstack;
1697 obstack_free (obstack, 0); /* Includes the ARCH. */
1698 xfree (obstack);
058f20d5
JB
1699}
1700EOF
1701
104c1213 1702# verify a new architecture
104c1213 1703cat <<EOF
db446970
AC
1704
1705
1706/* Ensure that all values in a GDBARCH are reasonable. */
1707
104c1213 1708static void
be7811ad 1709verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1710{
f16a1923
AC
1711 struct ui_file *log;
1712 struct cleanup *cleanups;
759ef836 1713 long length;
f16a1923 1714 char *buf;
05c547f6 1715
f16a1923
AC
1716 log = mem_fileopen ();
1717 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1718 /* fundamental */
be7811ad 1719 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1720 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1721 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1722 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1723 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1724EOF
34620563 1725function_list | while do_read
104c1213 1726do
2ada493a
AC
1727 if class_is_function_p || class_is_variable_p
1728 then
72e74a21 1729 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1730 then
3d9a5942 1731 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1732 elif class_is_predicate_p
1733 then
0963b4bd 1734 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1735 # FIXME: See do_read for potential simplification
72e74a21 1736 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1737 then
3d9a5942 1738 printf " if (${invalid_p})\n"
be7811ad 1739 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1740 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1741 then
be7811ad
MD
1742 printf " if (gdbarch->${function} == ${predefault})\n"
1743 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1744 elif [ -n "${postdefault}" ]
f0d4cc9e 1745 then
be7811ad
MD
1746 printf " if (gdbarch->${function} == 0)\n"
1747 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1748 elif [ -n "${invalid_p}" ]
104c1213 1749 then
4d60522e 1750 printf " if (${invalid_p})\n"
f16a1923 1751 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1752 elif [ -n "${predefault}" ]
104c1213 1753 then
be7811ad 1754 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1755 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1756 fi
2ada493a 1757 fi
104c1213
JM
1758done
1759cat <<EOF
759ef836 1760 buf = ui_file_xstrdup (log, &length);
f16a1923 1761 make_cleanup (xfree, buf);
759ef836 1762 if (length > 0)
f16a1923 1763 internal_error (__FILE__, __LINE__,
85c07804 1764 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1765 buf);
1766 do_cleanups (cleanups);
104c1213
JM
1767}
1768EOF
1769
1770# dump the structure
3d9a5942
AC
1771printf "\n"
1772printf "\n"
104c1213 1773cat <<EOF
0963b4bd 1774/* Print out the details of the current architecture. */
4b9b3959 1775
104c1213 1776void
be7811ad 1777gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1778{
b78960be 1779 const char *gdb_nm_file = "<not-defined>";
05c547f6 1780
b78960be
AC
1781#if defined (GDB_NM_FILE)
1782 gdb_nm_file = GDB_NM_FILE;
1783#endif
1784 fprintf_unfiltered (file,
1785 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1786 gdb_nm_file);
104c1213 1787EOF
97030eea 1788function_list | sort -t: -k 3 | while do_read
104c1213 1789do
1e9f55d0
AC
1790 # First the predicate
1791 if class_is_predicate_p
1792 then
7996bcec 1793 printf " fprintf_unfiltered (file,\n"
48f7351b 1794 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1795 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1796 fi
48f7351b 1797 # Print the corresponding value.
283354d8 1798 if class_is_function_p
4b9b3959 1799 then
7996bcec 1800 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1801 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1802 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1803 else
48f7351b 1804 # It is a variable
2f9b146e
AC
1805 case "${print}:${returntype}" in
1806 :CORE_ADDR )
0b1553bc
UW
1807 fmt="%s"
1808 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1809 ;;
2f9b146e 1810 :* )
48f7351b 1811 fmt="%s"
623d3eb1 1812 print="plongest (gdbarch->${function})"
48f7351b
AC
1813 ;;
1814 * )
2f9b146e 1815 fmt="%s"
48f7351b
AC
1816 ;;
1817 esac
3d9a5942 1818 printf " fprintf_unfiltered (file,\n"
48f7351b 1819 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1820 printf " ${print});\n"
2ada493a 1821 fi
104c1213 1822done
381323f4 1823cat <<EOF
be7811ad
MD
1824 if (gdbarch->dump_tdep != NULL)
1825 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1826}
1827EOF
104c1213
JM
1828
1829
1830# GET/SET
3d9a5942 1831printf "\n"
104c1213
JM
1832cat <<EOF
1833struct gdbarch_tdep *
1834gdbarch_tdep (struct gdbarch *gdbarch)
1835{
1836 if (gdbarch_debug >= 2)
3d9a5942 1837 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1838 return gdbarch->tdep;
1839}
1840EOF
3d9a5942 1841printf "\n"
34620563 1842function_list | while do_read
104c1213 1843do
2ada493a
AC
1844 if class_is_predicate_p
1845 then
3d9a5942
AC
1846 printf "\n"
1847 printf "int\n"
1848 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1849 printf "{\n"
8de9bdc4 1850 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1851 printf " return ${predicate};\n"
3d9a5942 1852 printf "}\n"
2ada493a
AC
1853 fi
1854 if class_is_function_p
1855 then
3d9a5942
AC
1856 printf "\n"
1857 printf "${returntype}\n"
72e74a21 1858 if [ "x${formal}" = "xvoid" ]
104c1213 1859 then
3d9a5942 1860 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1861 else
3d9a5942 1862 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1863 fi
3d9a5942 1864 printf "{\n"
8de9bdc4 1865 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1866 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1867 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1868 then
1869 # Allow a call to a function with a predicate.
956ac328 1870 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1871 fi
3d9a5942
AC
1872 printf " if (gdbarch_debug >= 2)\n"
1873 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1874 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1875 then
1876 if class_is_multiarch_p
1877 then
1878 params="gdbarch"
1879 else
1880 params=""
1881 fi
1882 else
1883 if class_is_multiarch_p
1884 then
1885 params="gdbarch, ${actual}"
1886 else
1887 params="${actual}"
1888 fi
1889 fi
72e74a21 1890 if [ "x${returntype}" = "xvoid" ]
104c1213 1891 then
4a5c6a1d 1892 printf " gdbarch->${function} (${params});\n"
104c1213 1893 else
4a5c6a1d 1894 printf " return gdbarch->${function} (${params});\n"
104c1213 1895 fi
3d9a5942
AC
1896 printf "}\n"
1897 printf "\n"
1898 printf "void\n"
1899 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1900 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1901 printf "{\n"
1902 printf " gdbarch->${function} = ${function};\n"
1903 printf "}\n"
2ada493a
AC
1904 elif class_is_variable_p
1905 then
3d9a5942
AC
1906 printf "\n"
1907 printf "${returntype}\n"
1908 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1909 printf "{\n"
8de9bdc4 1910 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1911 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1912 then
3d9a5942 1913 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1914 elif [ -n "${invalid_p}" ]
104c1213 1915 then
956ac328
AC
1916 printf " /* Check variable is valid. */\n"
1917 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1918 elif [ -n "${predefault}" ]
104c1213 1919 then
956ac328
AC
1920 printf " /* Check variable changed from pre-default. */\n"
1921 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1922 fi
3d9a5942
AC
1923 printf " if (gdbarch_debug >= 2)\n"
1924 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1925 printf " return gdbarch->${function};\n"
1926 printf "}\n"
1927 printf "\n"
1928 printf "void\n"
1929 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1930 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1931 printf "{\n"
1932 printf " gdbarch->${function} = ${function};\n"
1933 printf "}\n"
2ada493a
AC
1934 elif class_is_info_p
1935 then
3d9a5942
AC
1936 printf "\n"
1937 printf "${returntype}\n"
1938 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1939 printf "{\n"
8de9bdc4 1940 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1941 printf " if (gdbarch_debug >= 2)\n"
1942 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1943 printf " return gdbarch->${function};\n"
1944 printf "}\n"
2ada493a 1945 fi
104c1213
JM
1946done
1947
1948# All the trailing guff
1949cat <<EOF
1950
1951
f44c642f 1952/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1953 modules. */
104c1213
JM
1954
1955struct gdbarch_data
1956{
95160752 1957 unsigned index;
76860b5f 1958 int init_p;
030f20e1
AC
1959 gdbarch_data_pre_init_ftype *pre_init;
1960 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1961};
1962
1963struct gdbarch_data_registration
1964{
104c1213
JM
1965 struct gdbarch_data *data;
1966 struct gdbarch_data_registration *next;
1967};
1968
f44c642f 1969struct gdbarch_data_registry
104c1213 1970{
95160752 1971 unsigned nr;
104c1213
JM
1972 struct gdbarch_data_registration *registrations;
1973};
1974
f44c642f 1975struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1976{
1977 0, NULL,
1978};
1979
030f20e1
AC
1980static struct gdbarch_data *
1981gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1982 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1983{
1984 struct gdbarch_data_registration **curr;
05c547f6
MS
1985
1986 /* Append the new registration. */
f44c642f 1987 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1988 (*curr) != NULL;
1989 curr = &(*curr)->next);
70ba0933 1990 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 1991 (*curr)->next = NULL;
70ba0933 1992 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 1993 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1994 (*curr)->data->pre_init = pre_init;
1995 (*curr)->data->post_init = post_init;
76860b5f 1996 (*curr)->data->init_p = 1;
104c1213
JM
1997 return (*curr)->data;
1998}
1999
030f20e1
AC
2000struct gdbarch_data *
2001gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2002{
2003 return gdbarch_data_register (pre_init, NULL);
2004}
2005
2006struct gdbarch_data *
2007gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2008{
2009 return gdbarch_data_register (NULL, post_init);
2010}
104c1213 2011
0963b4bd 2012/* Create/delete the gdbarch data vector. */
95160752
AC
2013
2014static void
b3cc3077 2015alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2016{
b3cc3077
JB
2017 gdb_assert (gdbarch->data == NULL);
2018 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2019 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2020}
3c875b6f 2021
76860b5f 2022/* Initialize the current value of the specified per-architecture
0963b4bd 2023 data-pointer. */
b3cc3077 2024
95160752 2025void
030f20e1
AC
2026deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2027 struct gdbarch_data *data,
2028 void *pointer)
95160752
AC
2029{
2030 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2031 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2032 gdb_assert (data->pre_init == NULL);
95160752
AC
2033 gdbarch->data[data->index] = pointer;
2034}
2035
104c1213 2036/* Return the current value of the specified per-architecture
0963b4bd 2037 data-pointer. */
104c1213
JM
2038
2039void *
451fbdda 2040gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2041{
451fbdda 2042 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2043 if (gdbarch->data[data->index] == NULL)
76860b5f 2044 {
030f20e1
AC
2045 /* The data-pointer isn't initialized, call init() to get a
2046 value. */
2047 if (data->pre_init != NULL)
2048 /* Mid architecture creation: pass just the obstack, and not
2049 the entire architecture, as that way it isn't possible for
2050 pre-init code to refer to undefined architecture
2051 fields. */
2052 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2053 else if (gdbarch->initialized_p
2054 && data->post_init != NULL)
2055 /* Post architecture creation: pass the entire architecture
2056 (as all fields are valid), but be careful to also detect
2057 recursive references. */
2058 {
2059 gdb_assert (data->init_p);
2060 data->init_p = 0;
2061 gdbarch->data[data->index] = data->post_init (gdbarch);
2062 data->init_p = 1;
2063 }
2064 else
2065 /* The architecture initialization hasn't completed - punt -
2066 hope that the caller knows what they are doing. Once
2067 deprecated_set_gdbarch_data has been initialized, this can be
2068 changed to an internal error. */
2069 return NULL;
76860b5f
AC
2070 gdb_assert (gdbarch->data[data->index] != NULL);
2071 }
451fbdda 2072 return gdbarch->data[data->index];
104c1213
JM
2073}
2074
2075
0963b4bd 2076/* Keep a registry of the architectures known by GDB. */
104c1213 2077
4b9b3959 2078struct gdbarch_registration
104c1213
JM
2079{
2080 enum bfd_architecture bfd_architecture;
2081 gdbarch_init_ftype *init;
4b9b3959 2082 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2083 struct gdbarch_list *arches;
4b9b3959 2084 struct gdbarch_registration *next;
104c1213
JM
2085};
2086
f44c642f 2087static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2088
b4a20239
AC
2089static void
2090append_name (const char ***buf, int *nr, const char *name)
2091{
2092 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2093 (*buf)[*nr] = name;
2094 *nr += 1;
2095}
2096
2097const char **
2098gdbarch_printable_names (void)
2099{
7996bcec 2100 /* Accumulate a list of names based on the registed list of
0963b4bd 2101 architectures. */
7996bcec
AC
2102 int nr_arches = 0;
2103 const char **arches = NULL;
2104 struct gdbarch_registration *rego;
05c547f6 2105
7996bcec
AC
2106 for (rego = gdbarch_registry;
2107 rego != NULL;
2108 rego = rego->next)
b4a20239 2109 {
7996bcec
AC
2110 const struct bfd_arch_info *ap;
2111 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2112 if (ap == NULL)
2113 internal_error (__FILE__, __LINE__,
85c07804 2114 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2115 do
2116 {
2117 append_name (&arches, &nr_arches, ap->printable_name);
2118 ap = ap->next;
2119 }
2120 while (ap != NULL);
b4a20239 2121 }
7996bcec
AC
2122 append_name (&arches, &nr_arches, NULL);
2123 return arches;
b4a20239
AC
2124}
2125
2126
104c1213 2127void
4b9b3959
AC
2128gdbarch_register (enum bfd_architecture bfd_architecture,
2129 gdbarch_init_ftype *init,
2130 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2131{
4b9b3959 2132 struct gdbarch_registration **curr;
104c1213 2133 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2134
ec3d358c 2135 /* Check that BFD recognizes this architecture */
104c1213
JM
2136 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2137 if (bfd_arch_info == NULL)
2138 {
8e65ff28 2139 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2140 _("gdbarch: Attempt to register "
2141 "unknown architecture (%d)"),
8e65ff28 2142 bfd_architecture);
104c1213 2143 }
0963b4bd 2144 /* Check that we haven't seen this architecture before. */
f44c642f 2145 for (curr = &gdbarch_registry;
104c1213
JM
2146 (*curr) != NULL;
2147 curr = &(*curr)->next)
2148 {
2149 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2150 internal_error (__FILE__, __LINE__,
64b9b334 2151 _("gdbarch: Duplicate registration "
0963b4bd 2152 "of architecture (%s)"),
8e65ff28 2153 bfd_arch_info->printable_name);
104c1213
JM
2154 }
2155 /* log it */
2156 if (gdbarch_debug)
30737ed9 2157 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2158 bfd_arch_info->printable_name,
30737ed9 2159 host_address_to_string (init));
104c1213 2160 /* Append it */
70ba0933 2161 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2162 (*curr)->bfd_architecture = bfd_architecture;
2163 (*curr)->init = init;
4b9b3959 2164 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2165 (*curr)->arches = NULL;
2166 (*curr)->next = NULL;
4b9b3959
AC
2167}
2168
2169void
2170register_gdbarch_init (enum bfd_architecture bfd_architecture,
2171 gdbarch_init_ftype *init)
2172{
2173 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2174}
104c1213
JM
2175
2176
424163ea 2177/* Look for an architecture using gdbarch_info. */
104c1213
JM
2178
2179struct gdbarch_list *
2180gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2181 const struct gdbarch_info *info)
2182{
2183 for (; arches != NULL; arches = arches->next)
2184 {
2185 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2186 continue;
2187 if (info->byte_order != arches->gdbarch->byte_order)
2188 continue;
4be87837
DJ
2189 if (info->osabi != arches->gdbarch->osabi)
2190 continue;
424163ea
DJ
2191 if (info->target_desc != arches->gdbarch->target_desc)
2192 continue;
104c1213
JM
2193 return arches;
2194 }
2195 return NULL;
2196}
2197
2198
ebdba546 2199/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2200 architecture if needed. Return that new architecture. */
104c1213 2201
59837fe0
UW
2202struct gdbarch *
2203gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2204{
2205 struct gdbarch *new_gdbarch;
4b9b3959 2206 struct gdbarch_registration *rego;
104c1213 2207
b732d07d 2208 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2209 sources: "set ..."; INFOabfd supplied; and the global
2210 defaults. */
2211 gdbarch_info_fill (&info);
4be87837 2212
0963b4bd 2213 /* Must have found some sort of architecture. */
b732d07d 2214 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2215
2216 if (gdbarch_debug)
2217 {
2218 fprintf_unfiltered (gdb_stdlog,
59837fe0 2219 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2220 (info.bfd_arch_info != NULL
2221 ? info.bfd_arch_info->printable_name
2222 : "(null)"));
2223 fprintf_unfiltered (gdb_stdlog,
59837fe0 2224 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2225 info.byte_order,
d7449b42 2226 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2227 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2228 : "default"));
4be87837 2229 fprintf_unfiltered (gdb_stdlog,
59837fe0 2230 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2231 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2232 fprintf_unfiltered (gdb_stdlog,
59837fe0 2233 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2234 host_address_to_string (info.abfd));
104c1213 2235 fprintf_unfiltered (gdb_stdlog,
59837fe0 2236 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2237 host_address_to_string (info.tdep_info));
104c1213
JM
2238 }
2239
ebdba546 2240 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2241 for (rego = gdbarch_registry;
2242 rego != NULL;
2243 rego = rego->next)
2244 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2245 break;
2246 if (rego == NULL)
2247 {
2248 if (gdbarch_debug)
59837fe0 2249 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2250 "No matching architecture\n");
b732d07d
AC
2251 return 0;
2252 }
2253
ebdba546 2254 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2255 new_gdbarch = rego->init (info, rego->arches);
2256
ebdba546
AC
2257 /* Did the tdep code like it? No. Reject the change and revert to
2258 the old architecture. */
104c1213
JM
2259 if (new_gdbarch == NULL)
2260 {
2261 if (gdbarch_debug)
59837fe0 2262 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2263 "Target rejected architecture\n");
2264 return NULL;
104c1213
JM
2265 }
2266
ebdba546
AC
2267 /* Is this a pre-existing architecture (as determined by already
2268 being initialized)? Move it to the front of the architecture
2269 list (keeping the list sorted Most Recently Used). */
2270 if (new_gdbarch->initialized_p)
104c1213 2271 {
ebdba546
AC
2272 struct gdbarch_list **list;
2273 struct gdbarch_list *this;
104c1213 2274 if (gdbarch_debug)
59837fe0 2275 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2276 "Previous architecture %s (%s) selected\n",
2277 host_address_to_string (new_gdbarch),
104c1213 2278 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2279 /* Find the existing arch in the list. */
2280 for (list = &rego->arches;
2281 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2282 list = &(*list)->next);
2283 /* It had better be in the list of architectures. */
2284 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2285 /* Unlink THIS. */
2286 this = (*list);
2287 (*list) = this->next;
2288 /* Insert THIS at the front. */
2289 this->next = rego->arches;
2290 rego->arches = this;
2291 /* Return it. */
2292 return new_gdbarch;
104c1213
JM
2293 }
2294
ebdba546
AC
2295 /* It's a new architecture. */
2296 if (gdbarch_debug)
59837fe0 2297 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2298 "New architecture %s (%s) selected\n",
2299 host_address_to_string (new_gdbarch),
ebdba546
AC
2300 new_gdbarch->bfd_arch_info->printable_name);
2301
2302 /* Insert the new architecture into the front of the architecture
2303 list (keep the list sorted Most Recently Used). */
0f79675b 2304 {
70ba0933 2305 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2306 this->next = rego->arches;
2307 this->gdbarch = new_gdbarch;
2308 rego->arches = this;
2309 }
104c1213 2310
4b9b3959
AC
2311 /* Check that the newly installed architecture is valid. Plug in
2312 any post init values. */
2313 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2314 verify_gdbarch (new_gdbarch);
ebdba546 2315 new_gdbarch->initialized_p = 1;
104c1213 2316
4b9b3959 2317 if (gdbarch_debug)
ebdba546
AC
2318 gdbarch_dump (new_gdbarch, gdb_stdlog);
2319
2320 return new_gdbarch;
2321}
2322
e487cc15 2323/* Make the specified architecture current. */
ebdba546
AC
2324
2325void
aff68abb 2326set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2327{
2328 gdb_assert (new_gdbarch != NULL);
ebdba546 2329 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2330 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2331 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2332 registers_changed ();
ebdba546 2333}
104c1213 2334
f5656ead 2335/* Return the current inferior's arch. */
6ecd4729
PA
2336
2337struct gdbarch *
f5656ead 2338target_gdbarch (void)
6ecd4729
PA
2339{
2340 return current_inferior ()->gdbarch;
2341}
2342
104c1213 2343extern void _initialize_gdbarch (void);
b4a20239 2344
104c1213 2345void
34620563 2346_initialize_gdbarch (void)
104c1213 2347{
ccce17b0 2348 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2349Set architecture debugging."), _("\\
2350Show architecture debugging."), _("\\
2351When non-zero, architecture debugging is enabled."),
2352 NULL,
920d2a44 2353 show_gdbarch_debug,
85c07804 2354 &setdebuglist, &showdebuglist);
104c1213
JM
2355}
2356EOF
2357
2358# close things off
2359exec 1>&2
2360#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2361compare_new gdbarch.c
This page took 2.012177 seconds and 4 git commands to generate.