2003-08-10 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
1e698235 4# Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
104c1213
JM
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
d8864532
AC
22# Make certain that the script is running in an internationalized
23# environment.
24LANG=c ; export LANG
1bd316f0 25LC_ALL=c ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
0b8f9e4d 44read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
3d9a5942
AC
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
50248794
AC
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
e669114a 88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
50248794
AC
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
06b25f14
AC
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
34620563
AC
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
06b25f14 114
ae45cd16
AC
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
34620563 118 "" )
f7968451 119 if test -n "${predefault}"
34620563
AC
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 122 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
34620563
AC
129 fi
130 ;;
ae45cd16 131 * )
1e9f55d0 132 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
133 kill $$
134 exit 1
135 ;;
136 esac
34620563
AC
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
72e74a21 146 if [ -n "${postdefault}" ]
34620563
AC
147 then
148 fallbackdefault="${postdefault}"
72e74a21 149 elif [ -n "${predefault}" ]
34620563
AC
150 then
151 fallbackdefault="${predefault}"
152 else
73d3c16e 153 fallbackdefault="0"
34620563
AC
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
f0d4cc9e 160 fi
34620563 161 done
72e74a21 162 if [ -n "${class}" ]
34620563
AC
163 then
164 true
c0e8c252
AC
165 else
166 false
167 fi
168}
169
104c1213 170
f0d4cc9e
AC
171fallback_default_p ()
172{
72e74a21
JB
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
175}
176
177class_is_variable_p ()
178{
4a5c6a1d
AC
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_function_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191}
192
193class_is_multiarch_p ()
194{
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201class_is_predicate_p ()
202{
4a5c6a1d
AC
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
f0d4cc9e
AC
207}
208
209class_is_info_p ()
210{
4a5c6a1d
AC
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
f0d4cc9e
AC
215}
216
217
cff3e48b
JM
218# dump out/verify the doco
219for field in ${read}
220do
221 case ${field} in
222
223 class ) : ;;
c4093a6a 224
c0e8c252
AC
225 # # -> line disable
226 # f -> function
227 # hiding a function
2ada493a
AC
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
c0e8c252
AC
230 # v -> variable
231 # hiding a variable
2ada493a
AC
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
c0e8c252
AC
234 # i -> set from info
235 # hiding something from the ``struct info'' object
4a5c6a1d
AC
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
240
241 level ) : ;;
242
c0e8c252
AC
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
cff3e48b
JM
246
247 macro ) : ;;
248
c0e8c252 249 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
250
251 returntype ) : ;;
252
c0e8c252 253 # For functions, the return type; for variables, the data type
cff3e48b
JM
254
255 function ) : ;;
256
c0e8c252
AC
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
260
261 formal ) : ;;
262
c0e8c252
AC
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
cff3e48b
JM
267
268 actual ) : ;;
269
c0e8c252
AC
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
cff3e48b
JM
273
274 attrib ) : ;;
275
c0e8c252
AC
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
cff3e48b 278
0b8f9e4d 279 staticdefault ) : ;;
c0e8c252
AC
280
281 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
cff3e48b 285
0b8f9e4d 286 # If STATICDEFAULT is empty, zero is used.
c0e8c252 287
0b8f9e4d 288 predefault ) : ;;
cff3e48b 289
10312cc4
AC
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
cff3e48b 294
0b8f9e4d
AC
295 # If PREDEFAULT is empty, zero is used.
296
10312cc4
AC
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
f0d4cc9e
AC
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
0b8f9e4d
AC
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
10312cc4
AC
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
f0d4cc9e
AC
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
cff3e48b 328
c4093a6a 329 invalid_p ) : ;;
cff3e48b 330
0b8f9e4d 331 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 332 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
f0d4cc9e
AC
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
343
344 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
345
346 fmt ) : ;;
347
c0e8c252
AC
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
0b8f9e4d 352 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
353
354 print ) : ;;
355
c0e8c252
AC
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
0b8f9e4d 359 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
360
361 print_p ) : ;;
362
c0e8c252
AC
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
4b9b3959 366 # () -> Call a custom function to do the dump.
c0e8c252
AC
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
cff3e48b 369
0b8f9e4d
AC
370 # If PRINT_P is empty, ``1'' is always used.
371
cff3e48b
JM
372 description ) : ;;
373
0b8f9e4d 374 # Currently unused.
cff3e48b 375
50248794
AC
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
cff3e48b
JM
379 esac
380done
381
cff3e48b 382
104c1213
JM
383function_list ()
384{
cff3e48b 385 # See below (DOCO) for description of each field
34620563 386 cat <<EOF
0b8f9e4d 387i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 388#
d7449b42 389i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
4be87837
DJ
390#
391i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
66b43ecb
AC
392# Number of bits in a char or unsigned char for the target machine.
393# Just like CHAR_BIT in <limits.h> but describes the target machine.
e669114a 394# v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
395#
396# Number of bits in a short or unsigned short for the target machine.
e669114a 397v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 398# Number of bits in an int or unsigned int for the target machine.
e669114a 399v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 400# Number of bits in a long or unsigned long for the target machine.
e669114a 401v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
402# Number of bits in a long long or unsigned long long for the target
403# machine.
e669114a 404v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
66b43ecb 405# Number of bits in a float for the target machine.
e669114a 406v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
66b43ecb 407# Number of bits in a double for the target machine.
e669114a 408v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
66b43ecb 409# Number of bits in a long double for the target machine.
e669114a 410v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
411# For most targets, a pointer on the target and its representation as an
412# address in GDB have the same size and "look the same". For such a
413# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414# / addr_bit will be set from it.
415#
416# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418#
419# ptr_bit is the size of a pointer on the target
e669114a 420v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b 421# addr_bit is the size of a target address as represented in gdb
e669114a 422v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb 423# Number of bits in a BFD_VMA for the target object file format.
e669114a 424v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 425#
4e409299 426# One if \`char' acts like \`signed char', zero if \`unsigned char'.
e669114a 427v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 428#
cde9ea48 429F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
e669114a 430f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
a9e5fdc2 431# UNWIND_SP is a direct replacement for TARGET_READ_SP.
bd1ce8ba 432F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
39d4ef09
AC
433# Function for getting target's idea of a frame pointer. FIXME: GDB's
434# whole scheme for dealing with "frames" and "frame pointers" needs a
435# serious shakedown.
e669114a 436f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 437#
f7968451
AC
438M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
61a0eb5b 440#
104c1213 441v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
442# This macro gives the number of pseudo-registers that live in the
443# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
444# These pseudo-registers may be aliases for other registers,
445# combinations of other registers, or they may be computed by GDB.
0aba1244 446v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
447
448# GDB's standard (or well known) register numbers. These can map onto
449# a real register or a pseudo (computed) register or not be defined at
1200cd6e 450# all (-1).
a9e5fdc2 451# SP_REGNUM will hopefully be replaced by UNWIND_SP.
1200cd6e 452v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
1200cd6e 453v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 454v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d
AC
455v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
88c72b7d
AC
457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
460f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461# Provide a default mapping from a DWARF register number to a gdb REGNUM.
462f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463# Convert from an sdb register number to an internal gdb register number.
464# This should be defined in tm.h, if REGISTER_NAMES is not set up
465# to map one to one onto the sdb register numbers.
466f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
e23457df 468f::REGISTER_NAME:const char *:register_name:int regnr:regnr
9c04cab7
AC
469
470# REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
f7968451 471M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 472# REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
f7968451 473F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
9c04cab7
AC
474# DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475# from REGISTER_TYPE.
b8b527c5 476v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
f3be58bc
AC
477# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478# register offsets computed using just REGISTER_TYPE, this can be
479# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480# function with predicate has a valid (callable) initial value. As a
481# consequence, even when the predicate is false, the corresponding
482# function works. This simplifies the migration process - old code,
483# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
9c04cab7 484F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
f3be58bc
AC
485# If all registers have identical raw and virtual sizes and those
486# sizes agree with the value computed from REGISTER_TYPE,
487# DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488# registers.
dadd712e 489F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
f3be58bc
AC
490# If all registers have identical raw and virtual sizes and those
491# sizes agree with the value computed from REGISTER_TYPE,
492# DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493# registers.
dadd712e 494F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
9c04cab7
AC
495# DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 497V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
9c04cab7
AC
498# DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 500V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
9c04cab7 501
f3be58bc 502# See gdbint.texinfo, and PUSH_DUMMY_CALL.
f7968451 503M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
f3be58bc
AC
504# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505# SAVE_DUMMY_FRAME_TOS.
a59fe496 506F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
f3be58bc
AC
507# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508# DEPRECATED_FP_REGNUM.
509v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511# DEPRECATED_TARGET_READ_FP.
512F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
b8de8283
AC
514# See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515# replacement for DEPRECATED_PUSH_ARGUMENTS.
516M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517# PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519# DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521# Implement PUSH_RETURN_ADDRESS, and then merge in
522# DEPRECATED_PUSH_RETURN_ADDRESS.
f7968451 523F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
b8de8283
AC
524# Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526# DEPRECATED_REGISTER_SIZE can be deleted.
527v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
530# DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532# DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534# DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536# DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
f7968451 541V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
b8de8283
AC
542# DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543# PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545# This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
f7968451 546M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
b8de8283 547# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
f7968451 548F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
b8de8283
AC
549# Implement PUSH_DUMMY_CALL, then delete
550# DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
903ad3a6 553F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
0ab7a791 554m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
23e3a7ac 555M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
e76f1f2e 556M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
557# MAP a GDB RAW register number onto a simulator register number. See
558# also include/...-sim.h.
8238d0bf 559f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
f7968451 560F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
01fb7433
AC
561f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0 563# setjmp/longjmp support.
f7968451 564F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
ae45cd16
AC
565# NOTE: cagney/2002-11-24: This function with predicate has a valid
566# (callable) initial value. As a consequence, even when the predicate
567# is false, the corresponding function works. This simplifies the
568# migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569# doesn't need to be modified.
55e1d7e7 570F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
97f46953 571F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
e669114a 572F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
104c1213 573#
f0d4cc9e 574v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
e669114a 575v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
129c1cd6 576F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
104c1213 577#
781a750d
AC
578# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579# For raw <-> cooked register conversions, replaced by pseudo registers.
580f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582# For raw <-> cooked register conversions, replaced by pseudo registers.
583f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585# For raw <-> cooked register conversions, replaced by pseudo registers.
586f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
13d01224 587#
ff2e87ac
AC
588f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
104c1213 591#
66140c26 592f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
ac2e2ef7 593f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 594F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 595#
0b8f9e4d 596f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
f7968451 597F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
4183d812 598# NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
f7968451 599F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
ebba8386 600#
e669114a
AC
601f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
ebba8386 605#
f7968451
AC
606F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
607F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
56f12751 608f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
104c1213 609#
f7968451
AC
610F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
611F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
104c1213
JM
612#
613f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
0b8f9e4d 614f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
104c1213 615f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
aaab4dba 616f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
0b8f9e4d
AC
617f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
104c1213
JM
619v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621#
f6684c31 622m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213
JM
623#
624v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
0b8f9e4d 625f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
f7968451
AC
626F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
627F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
8bedc050
AC
628# DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629# note, per UNWIND_PC's doco, that while the two have similar
630# interfaces they have very different underlying implementations.
f7968451
AC
631F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
632M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
633M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
634# DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635# frame-base. Enable frame-base before frame-unwind.
636F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638# frame-base. Enable frame-base before frame-unwind.
639F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
6913c89a 640F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
983a287a 641F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
104c1213 642#
f7968451 643F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp
dc604539 644M:::CORE_ADDR:frame_align:CORE_ADDR address:address
f7968451 645F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
58d5518e 646v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e 647#
52f87c51
AC
648v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
649v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
650v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
875e1767
AC
651f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
652# On some machines there are bits in addresses which are not really
653# part of the address, but are used by the kernel, the hardware, etc.
654# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
655# we get a "real" address such as one would find in a symbol table.
656# This is used only for addresses of instructions, and even then I'm
657# not sure it's used in all contexts. It exists to deal with there
658# being a few stray bits in the PC which would mislead us, not as some
659# sort of generic thing to handle alignment or segmentation (it's
660# possible it should be in TARGET_READ_PC instead).
661f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
181c1381
RE
662# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
663# ADDR_BITS_REMOVE.
664f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
665# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
666# the target needs software single step. An ISA method to implement it.
667#
668# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
669# using the breakpoint system instead of blatting memory directly (as with rs6000).
670#
671# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
672# single step. If not, then implement single step using breakpoints.
f7968451 673F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
2bf0cb65 674f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
bdcd319a 675f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
676
677
68e9cc94
CV
678# For SVR4 shared libraries, each call goes through a small piece of
679# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 680# to nonzero if we are currently stopped in one of these.
68e9cc94 681f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
682
683# Some systems also have trampoline code for returning from shared libs.
684f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
685
d7bd68ca
AC
686# Sigtramp is a routine that the kernel calls (which then calls the
687# signal handler). On most machines it is a library routine that is
688# linked into the executable.
689#
690# This macro, given a program counter value and the name of the
691# function in which that PC resides (which can be null if the name is
692# not known), returns nonzero if the PC and name show that we are in
693# sigtramp.
694#
695# On most machines just see if the name is sigtramp (and if we have
696# no name, assume we are not in sigtramp).
697#
698# FIXME: cagney/2002-04-21: The function find_pc_partial_function
699# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
700# This means PC_IN_SIGTRAMP function can't be implemented by doing its
701# own local NAME lookup.
702#
703# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
704# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
705# does not.
706f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
43156d82 707F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
e669114a 708F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
c12260ac
CV
709# A target might have problems with watchpoints as soon as the stack
710# frame of the current function has been destroyed. This mostly happens
711# as the first action in a funtion's epilogue. in_function_epilogue_p()
712# is defined to return a non-zero value if either the given addr is one
713# instruction after the stack destroying instruction up to the trailing
714# return instruction or if we can figure out that the stack frame has
715# already been invalidated regardless of the value of addr. Targets
716# which don't suffer from that problem could just let this functionality
717# untouched.
718m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
719# Given a vector of command-line arguments, return a newly allocated
720# string which, when passed to the create_inferior function, will be
721# parsed (on Unix systems, by the shell) to yield the same vector.
722# This function should call error() if the argument vector is not
723# representable for this target or if this target does not support
724# command-line arguments.
725# ARGC is the number of elements in the vector.
726# ARGV is an array of strings, one per argument.
727m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
a2cf933a
EZ
728f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
729f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
e669114a
AC
730v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
731v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
732v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
8b2dbe47 733F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
f7968451 734M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
321432c0 735M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 736# Is a register in a group
7e20f3fb 737m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
143985b7 738# Fetch the pointer to the ith function argument.
f7968451 739F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
104c1213 740EOF
104c1213
JM
741}
742
0b8f9e4d
AC
743#
744# The .log file
745#
746exec > new-gdbarch.log
34620563 747function_list | while do_read
0b8f9e4d
AC
748do
749 cat <<EOF
104c1213
JM
750${class} ${macro}(${actual})
751 ${returntype} ${function} ($formal)${attrib}
104c1213 752EOF
3d9a5942
AC
753 for r in ${read}
754 do
755 eval echo \"\ \ \ \ ${r}=\${${r}}\"
756 done
f0d4cc9e 757 if class_is_predicate_p && fallback_default_p
0b8f9e4d 758 then
66b43ecb 759 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
760 kill $$
761 exit 1
762 fi
72e74a21 763 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
764 then
765 echo "Error: postdefault is useless when invalid_p=0" 1>&2
766 kill $$
767 exit 1
768 fi
a72293e2
AC
769 if class_is_multiarch_p
770 then
771 if class_is_predicate_p ; then :
772 elif test "x${predefault}" = "x"
773 then
774 echo "Error: pure multi-arch function must have a predefault" 1>&2
775 kill $$
776 exit 1
777 fi
778 fi
3d9a5942 779 echo ""
0b8f9e4d
AC
780done
781
782exec 1>&2
783compare_new gdbarch.log
784
104c1213
JM
785
786copyright ()
787{
788cat <<EOF
59233f88
AC
789/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
790
104c1213 791/* Dynamic architecture support for GDB, the GNU debugger.
1e698235 792 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
104c1213
JM
793
794 This file is part of GDB.
795
796 This program is free software; you can redistribute it and/or modify
797 it under the terms of the GNU General Public License as published by
798 the Free Software Foundation; either version 2 of the License, or
799 (at your option) any later version.
800
801 This program is distributed in the hope that it will be useful,
802 but WITHOUT ANY WARRANTY; without even the implied warranty of
803 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
804 GNU General Public License for more details.
805
806 You should have received a copy of the GNU General Public License
807 along with this program; if not, write to the Free Software
808 Foundation, Inc., 59 Temple Place - Suite 330,
809 Boston, MA 02111-1307, USA. */
810
104c1213
JM
811/* This file was created with the aid of \`\`gdbarch.sh''.
812
52204a0b 813 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
814 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
815 against the existing \`\`gdbarch.[hc]''. Any differences found
816 being reported.
817
818 If editing this file, please also run gdbarch.sh and merge any
52204a0b 819 changes into that script. Conversely, when making sweeping changes
104c1213
JM
820 to this file, modifying gdbarch.sh and using its output may prove
821 easier. */
822
823EOF
824}
825
826#
827# The .h file
828#
829
830exec > new-gdbarch.h
831copyright
832cat <<EOF
833#ifndef GDBARCH_H
834#define GDBARCH_H
835
2bf0cb65 836#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
fd0407d6 837#if !GDB_MULTI_ARCH
67a2b77e 838/* Pull in function declarations refered to, indirectly, via macros. */
67a2b77e 839#include "inferior.h" /* For unsigned_address_to_pointer(). */
e9a2674e 840#include "symfile.h" /* For entry_point_address(). */
fd0407d6 841#endif
2bf0cb65 842
da3331ec
AC
843struct floatformat;
844struct ui_file;
104c1213
JM
845struct frame_info;
846struct value;
b6af0555 847struct objfile;
a2cf933a 848struct minimal_symbol;
049ee0e4 849struct regcache;
b59ff9d5 850struct reggroup;
104c1213 851
104c1213
JM
852extern struct gdbarch *current_gdbarch;
853
854
104c1213
JM
855/* If any of the following are defined, the target wasn't correctly
856 converted. */
857
83905903
AC
858#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
859#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
860#endif
104c1213
JM
861EOF
862
863# function typedef's
3d9a5942
AC
864printf "\n"
865printf "\n"
866printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 867function_list | while do_read
104c1213 868do
2ada493a
AC
869 if class_is_info_p
870 then
3d9a5942
AC
871 printf "\n"
872 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
873 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 874 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
875 printf "#error \"Non multi-arch definition of ${macro}\"\n"
876 printf "#endif\n"
c25083af 877 printf "#if !defined (${macro})\n"
3d9a5942
AC
878 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
879 printf "#endif\n"
2ada493a 880 fi
104c1213
JM
881done
882
883# function typedef's
3d9a5942
AC
884printf "\n"
885printf "\n"
886printf "/* The following are initialized by the target dependent code. */\n"
34620563 887function_list | while do_read
104c1213 888do
72e74a21 889 if [ -n "${comment}" ]
34620563
AC
890 then
891 echo "${comment}" | sed \
892 -e '2 s,#,/*,' \
893 -e '3,$ s,#, ,' \
894 -e '$ s,$, */,'
895 fi
b77be6cf 896 if class_is_multiarch_p
2ada493a 897 then
b77be6cf
AC
898 if class_is_predicate_p
899 then
900 printf "\n"
901 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
902 fi
903 else
904 if class_is_predicate_p
905 then
906 printf "\n"
907 printf "#if defined (${macro})\n"
908 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
909 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 910 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
911 printf "#define ${macro}_P() (1)\n"
912 printf "#endif\n"
eee30e78 913 printf "#endif\n"
b77be6cf
AC
914 printf "\n"
915 printf "/* Default predicate for non- multi-arch targets. */\n"
916 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
917 printf "#define ${macro}_P() (0)\n"
918 printf "#endif\n"
919 printf "\n"
920 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 921 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
922 printf "#error \"Non multi-arch definition of ${macro}\"\n"
923 printf "#endif\n"
028c194b 924 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
925 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
926 printf "#endif\n"
927 fi
4a5c6a1d 928 fi
2ada493a
AC
929 if class_is_variable_p
930 then
f0d4cc9e 931 if fallback_default_p || class_is_predicate_p
33489c5b 932 then
3d9a5942
AC
933 printf "\n"
934 printf "/* Default (value) for non- multi-arch platforms. */\n"
935 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
f0d4cc9e
AC
936 echo "#define ${macro} (${fallbackdefault})" \
937 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
3d9a5942 938 printf "#endif\n"
33489c5b 939 fi
3d9a5942
AC
940 printf "\n"
941 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
942 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 943 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
944 printf "#error \"Non multi-arch definition of ${macro}\"\n"
945 printf "#endif\n"
c25083af
AC
946 printf "#if !defined (${macro})\n"
947 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
948 printf "#endif\n"
2ada493a
AC
949 fi
950 if class_is_function_p
951 then
b77be6cf
AC
952 if class_is_multiarch_p ; then :
953 elif fallback_default_p || class_is_predicate_p
33489c5b 954 then
3d9a5942
AC
955 printf "\n"
956 printf "/* Default (function) for non- multi-arch platforms. */\n"
957 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
72e74a21 958 if [ "x${fallbackdefault}" = "x0" ]
33489c5b 959 then
dedc2a2b
AC
960 if [ "x${actual}" = "x-" ]
961 then
962 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
dedc2a2b
AC
963 else
964 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
965 fi
33489c5b 966 else
f0d4cc9e
AC
967 # FIXME: Should be passing current_gdbarch through!
968 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
969 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
33489c5b 970 fi
3d9a5942 971 printf "#endif\n"
33489c5b 972 fi
3d9a5942 973 printf "\n"
72e74a21 974 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
975 then
976 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
977 elif class_is_multiarch_p
978 then
979 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
980 else
981 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
982 fi
72e74a21 983 if [ "x${formal}" = "xvoid" ]
104c1213 984 then
3d9a5942 985 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 986 else
3d9a5942 987 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 988 fi
3d9a5942 989 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
990 if class_is_multiarch_p ; then :
991 else
028c194b 992 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
993 printf "#error \"Non multi-arch definition of ${macro}\"\n"
994 printf "#endif\n"
c25083af
AC
995 if [ "x${actual}" = "x" ]
996 then
997 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
998 elif [ "x${actual}" = "x-" ]
999 then
1000 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1001 else
1002 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1003 fi
1004 printf "#if !defined (${macro})\n"
72e74a21 1005 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
1006 then
1007 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 1008 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
1009 then
1010 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1011 else
1012 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1013 fi
1014 printf "#endif\n"
104c1213 1015 fi
2ada493a 1016 fi
104c1213
JM
1017done
1018
1019# close it off
1020cat <<EOF
1021
1022extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1023
1024
1025/* Mechanism for co-ordinating the selection of a specific
1026 architecture.
1027
1028 GDB targets (*-tdep.c) can register an interest in a specific
1029 architecture. Other GDB components can register a need to maintain
1030 per-architecture data.
1031
1032 The mechanisms below ensures that there is only a loose connection
1033 between the set-architecture command and the various GDB
0fa6923a 1034 components. Each component can independently register their need
104c1213
JM
1035 to maintain architecture specific data with gdbarch.
1036
1037 Pragmatics:
1038
1039 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1040 didn't scale.
1041
1042 The more traditional mega-struct containing architecture specific
1043 data for all the various GDB components was also considered. Since
0fa6923a 1044 GDB is built from a variable number of (fairly independent)
104c1213
JM
1045 components it was determined that the global aproach was not
1046 applicable. */
1047
1048
1049/* Register a new architectural family with GDB.
1050
1051 Register support for the specified ARCHITECTURE with GDB. When
1052 gdbarch determines that the specified architecture has been
1053 selected, the corresponding INIT function is called.
1054
1055 --
1056
1057 The INIT function takes two parameters: INFO which contains the
1058 information available to gdbarch about the (possibly new)
1059 architecture; ARCHES which is a list of the previously created
1060 \`\`struct gdbarch'' for this architecture.
1061
0f79675b
AC
1062 The INFO parameter is, as far as possible, be pre-initialized with
1063 information obtained from INFO.ABFD or the previously selected
1064 architecture.
1065
1066 The ARCHES parameter is a linked list (sorted most recently used)
1067 of all the previously created architures for this architecture
1068 family. The (possibly NULL) ARCHES->gdbarch can used to access
1069 values from the previously selected architecture for this
1070 architecture family. The global \`\`current_gdbarch'' shall not be
1071 used.
104c1213
JM
1072
1073 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1074 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1075 gdbarch'' from the ARCHES list - indicating that the new
1076 architecture is just a synonym for an earlier architecture (see
1077 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1078 - that describes the selected architecture (see gdbarch_alloc()).
1079
1080 The DUMP_TDEP function shall print out all target specific values.
1081 Care should be taken to ensure that the function works in both the
1082 multi-arch and non- multi-arch cases. */
104c1213
JM
1083
1084struct gdbarch_list
1085{
1086 struct gdbarch *gdbarch;
1087 struct gdbarch_list *next;
1088};
1089
1090struct gdbarch_info
1091{
104c1213
JM
1092 /* Use default: NULL (ZERO). */
1093 const struct bfd_arch_info *bfd_arch_info;
1094
428721aa 1095 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1096 int byte_order;
1097
1098 /* Use default: NULL (ZERO). */
1099 bfd *abfd;
1100
1101 /* Use default: NULL (ZERO). */
1102 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1103
1104 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1105 enum gdb_osabi osabi;
104c1213
JM
1106};
1107
1108typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1109typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1110
4b9b3959 1111/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1112extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1113
4b9b3959
AC
1114extern void gdbarch_register (enum bfd_architecture architecture,
1115 gdbarch_init_ftype *,
1116 gdbarch_dump_tdep_ftype *);
1117
104c1213 1118
b4a20239
AC
1119/* Return a freshly allocated, NULL terminated, array of the valid
1120 architecture names. Since architectures are registered during the
1121 _initialize phase this function only returns useful information
1122 once initialization has been completed. */
1123
1124extern const char **gdbarch_printable_names (void);
1125
1126
104c1213
JM
1127/* Helper function. Search the list of ARCHES for a GDBARCH that
1128 matches the information provided by INFO. */
1129
1130extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1131
1132
1133/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1134 basic initialization using values obtained from the INFO andTDEP
1135 parameters. set_gdbarch_*() functions are called to complete the
1136 initialization of the object. */
1137
1138extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1139
1140
4b9b3959
AC
1141/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1142 It is assumed that the caller freeds the \`\`struct
1143 gdbarch_tdep''. */
1144
058f20d5
JB
1145extern void gdbarch_free (struct gdbarch *);
1146
1147
aebd7893
AC
1148/* Helper function. Allocate memory from the \`\`struct gdbarch''
1149 obstack. The memory is freed when the corresponding architecture
1150 is also freed. */
1151
1152extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1153#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1154#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1155
1156
b732d07d 1157/* Helper function. Force an update of the current architecture.
104c1213 1158
b732d07d
AC
1159 The actual architecture selected is determined by INFO, \`\`(gdb) set
1160 architecture'' et.al., the existing architecture and BFD's default
1161 architecture. INFO should be initialized to zero and then selected
1162 fields should be updated.
104c1213 1163
16f33e29
AC
1164 Returns non-zero if the update succeeds */
1165
1166extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1167
1168
1169
1170/* Register per-architecture data-pointer.
1171
1172 Reserve space for a per-architecture data-pointer. An identifier
1173 for the reserved data-pointer is returned. That identifer should
95160752 1174 be saved in a local static variable.
104c1213 1175
76860b5f
AC
1176 The per-architecture data-pointer is either initialized explicitly
1177 (set_gdbarch_data()) or implicitly (by INIT() via a call to
fcc1c85c
AC
1178 gdbarch_data()).
1179
1180 Memory for the per-architecture data shall be allocated using
1181 gdbarch_obstack_zalloc. That memory will be deleted when the
1182 corresponding architecture object is deleted.
104c1213 1183
95160752
AC
1184 When a previously created architecture is re-selected, the
1185 per-architecture data-pointer for that previous architecture is
76860b5f 1186 restored. INIT() is not re-called.
104c1213
JM
1187
1188 Multiple registrarants for any architecture are allowed (and
1189 strongly encouraged). */
1190
95160752 1191struct gdbarch_data;
104c1213 1192
95160752 1193typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
fcc1c85c 1194extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
95160752
AC
1195extern void set_gdbarch_data (struct gdbarch *gdbarch,
1196 struct gdbarch_data *data,
1197 void *pointer);
104c1213 1198
451fbdda 1199extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1200
1201
104c1213
JM
1202/* Register per-architecture memory region.
1203
1204 Provide a memory-region swap mechanism. Per-architecture memory
1205 region are created. These memory regions are swapped whenever the
1206 architecture is changed. For a new architecture, the memory region
1207 is initialized with zero (0) and the INIT function is called.
1208
1209 Memory regions are swapped / initialized in the order that they are
1210 registered. NULL DATA and/or INIT values can be specified.
1211
1212 New code should use register_gdbarch_data(). */
1213
1214typedef void (gdbarch_swap_ftype) (void);
1215extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1216#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1217
1218
1219
0fa6923a 1220/* The target-system-dependent byte order is dynamic */
104c1213 1221
104c1213 1222extern int target_byte_order;
104c1213
JM
1223#ifndef TARGET_BYTE_ORDER
1224#define TARGET_BYTE_ORDER (target_byte_order + 0)
1225#endif
1226
1227extern int target_byte_order_auto;
1228#ifndef TARGET_BYTE_ORDER_AUTO
1229#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1230#endif
1231
1232
1233
0fa6923a 1234/* The target-system-dependent BFD architecture is dynamic */
104c1213
JM
1235
1236extern int target_architecture_auto;
1237#ifndef TARGET_ARCHITECTURE_AUTO
1238#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1239#endif
1240
1241extern const struct bfd_arch_info *target_architecture;
1242#ifndef TARGET_ARCHITECTURE
1243#define TARGET_ARCHITECTURE (target_architecture + 0)
1244#endif
1245
104c1213 1246
0fa6923a 1247/* The target-system-dependent disassembler is semi-dynamic */
104c1213 1248
810ecf9f 1249/* Use gdb_disassemble, and gdbarch_print_insn instead. */
d7a27068 1250extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
104c1213 1251
810ecf9f
AC
1252/* Use set_gdbarch_print_insn instead. */
1253extern disassemble_info deprecated_tm_print_insn_info;
104c1213 1254
0fa6923a 1255/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1256 byte-order, ...) using information found in the BFD */
1257
1258extern void set_gdbarch_from_file (bfd *);
1259
1260
e514a9d6
JM
1261/* Initialize the current architecture to the "first" one we find on
1262 our list. */
1263
1264extern void initialize_current_architecture (void);
1265
ceaa8edf
JB
1266/* For non-multiarched targets, do any initialization of the default
1267 gdbarch object necessary after the _initialize_MODULE functions
1268 have run. */
5ae5f592 1269extern void initialize_non_multiarch (void);
104c1213
JM
1270
1271/* gdbarch trace variable */
1272extern int gdbarch_debug;
1273
4b9b3959 1274extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1275
1276#endif
1277EOF
1278exec 1>&2
1279#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1280compare_new gdbarch.h
104c1213
JM
1281
1282
1283#
1284# C file
1285#
1286
1287exec > new-gdbarch.c
1288copyright
1289cat <<EOF
1290
1291#include "defs.h"
7355ddba 1292#include "arch-utils.h"
104c1213
JM
1293
1294#if GDB_MULTI_ARCH
1295#include "gdbcmd.h"
1296#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1297#else
1298/* Just include everything in sight so that the every old definition
1299 of macro is visible. */
1300#include "gdb_string.h"
1301#include <ctype.h>
1302#include "symtab.h"
1303#include "frame.h"
1304#include "inferior.h"
1305#include "breakpoint.h"
0596389c 1306#include "gdb_wait.h"
104c1213
JM
1307#include "gdbcore.h"
1308#include "gdbcmd.h"
1309#include "target.h"
1310#include "gdbthread.h"
1311#include "annotate.h"
1312#include "symfile.h" /* for overlay functions */
fd0407d6 1313#include "value.h" /* For old tm.h/nm.h macros. */
104c1213
JM
1314#endif
1315#include "symcat.h"
1316
f0d4cc9e 1317#include "floatformat.h"
104c1213 1318
95160752 1319#include "gdb_assert.h"
b66d6d2e 1320#include "gdb_string.h"
67c2c32c 1321#include "gdb-events.h"
b59ff9d5 1322#include "reggroups.h"
4be87837 1323#include "osabi.h"
e9a2674e 1324#include "symfile.h" /* For entry_point_address. */
aebd7893 1325#include "gdb_obstack.h"
95160752 1326
104c1213
JM
1327/* Static function declarations */
1328
1329static void verify_gdbarch (struct gdbarch *gdbarch);
b3cc3077 1330static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1331static void init_gdbarch_swap (struct gdbarch *);
40af4b0c 1332static void clear_gdbarch_swap (struct gdbarch *);
104c1213
JM
1333static void swapout_gdbarch_swap (struct gdbarch *);
1334static void swapin_gdbarch_swap (struct gdbarch *);
1335
104c1213
JM
1336/* Non-zero if we want to trace architecture code. */
1337
1338#ifndef GDBARCH_DEBUG
1339#define GDBARCH_DEBUG 0
1340#endif
1341int gdbarch_debug = GDBARCH_DEBUG;
1342
1343EOF
1344
1345# gdbarch open the gdbarch object
3d9a5942
AC
1346printf "\n"
1347printf "/* Maintain the struct gdbarch object */\n"
1348printf "\n"
1349printf "struct gdbarch\n"
1350printf "{\n"
76860b5f
AC
1351printf " /* Has this architecture been fully initialized? */\n"
1352printf " int initialized_p;\n"
aebd7893
AC
1353printf "\n"
1354printf " /* An obstack bound to the lifetime of the architecture. */\n"
1355printf " struct obstack *obstack;\n"
1356printf "\n"
3d9a5942 1357printf " /* basic architectural information */\n"
34620563 1358function_list | while do_read
104c1213 1359do
2ada493a
AC
1360 if class_is_info_p
1361 then
3d9a5942 1362 printf " ${returntype} ${function};\n"
2ada493a 1363 fi
104c1213 1364done
3d9a5942
AC
1365printf "\n"
1366printf " /* target specific vector. */\n"
1367printf " struct gdbarch_tdep *tdep;\n"
1368printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1369printf "\n"
1370printf " /* per-architecture data-pointers */\n"
95160752 1371printf " unsigned nr_data;\n"
3d9a5942
AC
1372printf " void **data;\n"
1373printf "\n"
1374printf " /* per-architecture swap-regions */\n"
1375printf " struct gdbarch_swap *swap;\n"
1376printf "\n"
104c1213
JM
1377cat <<EOF
1378 /* Multi-arch values.
1379
1380 When extending this structure you must:
1381
1382 Add the field below.
1383
1384 Declare set/get functions and define the corresponding
1385 macro in gdbarch.h.
1386
1387 gdbarch_alloc(): If zero/NULL is not a suitable default,
1388 initialize the new field.
1389
1390 verify_gdbarch(): Confirm that the target updated the field
1391 correctly.
1392
7e73cedf 1393 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1394 field is dumped out
1395
c0e8c252 1396 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1397 variable (base values on the host's c-type system).
1398
1399 get_gdbarch(): Implement the set/get functions (probably using
1400 the macro's as shortcuts).
1401
1402 */
1403
1404EOF
34620563 1405function_list | while do_read
104c1213 1406do
2ada493a
AC
1407 if class_is_variable_p
1408 then
3d9a5942 1409 printf " ${returntype} ${function};\n"
2ada493a
AC
1410 elif class_is_function_p
1411 then
3d9a5942 1412 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1413 fi
104c1213 1414done
3d9a5942 1415printf "};\n"
104c1213
JM
1416
1417# A pre-initialized vector
3d9a5942
AC
1418printf "\n"
1419printf "\n"
104c1213
JM
1420cat <<EOF
1421/* The default architecture uses host values (for want of a better
1422 choice). */
1423EOF
3d9a5942
AC
1424printf "\n"
1425printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1426printf "\n"
1427printf "struct gdbarch startup_gdbarch =\n"
1428printf "{\n"
76860b5f 1429printf " 1, /* Always initialized. */\n"
aebd7893 1430printf " NULL, /* The obstack. */\n"
3d9a5942 1431printf " /* basic architecture information */\n"
4b9b3959 1432function_list | while do_read
104c1213 1433do
2ada493a
AC
1434 if class_is_info_p
1435 then
ec5cbaec 1436 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1437 fi
104c1213
JM
1438done
1439cat <<EOF
4b9b3959
AC
1440 /* target specific vector and its dump routine */
1441 NULL, NULL,
104c1213
JM
1442 /*per-architecture data-pointers and swap regions */
1443 0, NULL, NULL,
1444 /* Multi-arch values */
1445EOF
34620563 1446function_list | while do_read
104c1213 1447do
2ada493a
AC
1448 if class_is_function_p || class_is_variable_p
1449 then
ec5cbaec 1450 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1451 fi
104c1213
JM
1452done
1453cat <<EOF
c0e8c252 1454 /* startup_gdbarch() */
104c1213 1455};
4b9b3959 1456
c0e8c252 1457struct gdbarch *current_gdbarch = &startup_gdbarch;
ceaa8edf
JB
1458
1459/* Do any initialization needed for a non-multiarch configuration
1460 after the _initialize_MODULE functions have been run. */
1461void
5ae5f592 1462initialize_non_multiarch (void)
ceaa8edf
JB
1463{
1464 alloc_gdbarch_data (&startup_gdbarch);
40af4b0c
AC
1465 /* Ensure that all swap areas are zeroed so that they again think
1466 they are starting from scratch. */
1467 clear_gdbarch_swap (&startup_gdbarch);
6c1e5d11 1468 init_gdbarch_swap (&startup_gdbarch);
ceaa8edf 1469}
104c1213
JM
1470EOF
1471
1472# Create a new gdbarch struct
3d9a5942
AC
1473printf "\n"
1474printf "\n"
104c1213 1475cat <<EOF
66b43ecb 1476/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1477 \`\`struct gdbarch_info''. */
1478EOF
3d9a5942 1479printf "\n"
104c1213
JM
1480cat <<EOF
1481struct gdbarch *
1482gdbarch_alloc (const struct gdbarch_info *info,
1483 struct gdbarch_tdep *tdep)
1484{
85de9627
AC
1485 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1486 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1487 the current local architecture and not the previous global
1488 architecture. This ensures that the new architectures initial
1489 values are not influenced by the previous architecture. Once
1490 everything is parameterised with gdbarch, this will go away. */
aebd7893
AC
1491 struct gdbarch *current_gdbarch;
1492
1493 /* Create an obstack for allocating all the per-architecture memory,
1494 then use that to allocate the architecture vector. */
1495 struct obstack *obstack = XMALLOC (struct obstack);
1496 obstack_init (obstack);
1497 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
85de9627 1498 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
aebd7893 1499 current_gdbarch->obstack = obstack;
85de9627
AC
1500
1501 alloc_gdbarch_data (current_gdbarch);
1502
1503 current_gdbarch->tdep = tdep;
104c1213 1504EOF
3d9a5942 1505printf "\n"
34620563 1506function_list | while do_read
104c1213 1507do
2ada493a
AC
1508 if class_is_info_p
1509 then
85de9627 1510 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1511 fi
104c1213 1512done
3d9a5942
AC
1513printf "\n"
1514printf " /* Force the explicit initialization of these. */\n"
34620563 1515function_list | while do_read
104c1213 1516do
2ada493a
AC
1517 if class_is_function_p || class_is_variable_p
1518 then
72e74a21 1519 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1520 then
85de9627 1521 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1522 fi
2ada493a 1523 fi
104c1213
JM
1524done
1525cat <<EOF
1526 /* gdbarch_alloc() */
1527
85de9627 1528 return current_gdbarch;
104c1213
JM
1529}
1530EOF
1531
058f20d5 1532# Free a gdbarch struct.
3d9a5942
AC
1533printf "\n"
1534printf "\n"
058f20d5 1535cat <<EOF
aebd7893
AC
1536/* Allocate extra space using the per-architecture obstack. */
1537
1538void *
1539gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1540{
1541 void *data = obstack_alloc (arch->obstack, size);
1542 memset (data, 0, size);
1543 return data;
1544}
1545
1546
058f20d5
JB
1547/* Free a gdbarch struct. This should never happen in normal
1548 operation --- once you've created a gdbarch, you keep it around.
1549 However, if an architecture's init function encounters an error
1550 building the structure, it may need to clean up a partially
1551 constructed gdbarch. */
4b9b3959 1552
058f20d5
JB
1553void
1554gdbarch_free (struct gdbarch *arch)
1555{
aebd7893 1556 struct obstack *obstack;
95160752 1557 gdb_assert (arch != NULL);
aebd7893
AC
1558 gdb_assert (!arch->initialized_p);
1559 obstack = arch->obstack;
1560 obstack_free (obstack, 0); /* Includes the ARCH. */
1561 xfree (obstack);
058f20d5
JB
1562}
1563EOF
1564
104c1213 1565# verify a new architecture
3d9a5942
AC
1566printf "\n"
1567printf "\n"
1568printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1569printf "\n"
104c1213
JM
1570cat <<EOF
1571static void
1572verify_gdbarch (struct gdbarch *gdbarch)
1573{
f16a1923
AC
1574 struct ui_file *log;
1575 struct cleanup *cleanups;
1576 long dummy;
1577 char *buf;
104c1213 1578 /* Only perform sanity checks on a multi-arch target. */
6166d547 1579 if (!GDB_MULTI_ARCH)
104c1213 1580 return;
f16a1923
AC
1581 log = mem_fileopen ();
1582 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1583 /* fundamental */
428721aa 1584 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1585 fprintf_unfiltered (log, "\n\tbyte-order");
104c1213 1586 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1587 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1588 /* Check those that need to be defined for the given multi-arch level. */
1589EOF
34620563 1590function_list | while do_read
104c1213 1591do
2ada493a
AC
1592 if class_is_function_p || class_is_variable_p
1593 then
72e74a21 1594 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1595 then
3d9a5942 1596 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1597 elif class_is_predicate_p
1598 then
3d9a5942 1599 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1600 # FIXME: See do_read for potential simplification
72e74a21 1601 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1602 then
3d9a5942
AC
1603 printf " if (${invalid_p})\n"
1604 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1605 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1606 then
3d9a5942
AC
1607 printf " if (gdbarch->${function} == ${predefault})\n"
1608 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1609 elif [ -n "${postdefault}" ]
f0d4cc9e 1610 then
3d9a5942
AC
1611 printf " if (gdbarch->${function} == 0)\n"
1612 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1613 elif [ -n "${invalid_p}" ]
104c1213 1614 then
50248794 1615 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1616 printf " && (${invalid_p}))\n"
f16a1923 1617 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1618 elif [ -n "${predefault}" ]
104c1213 1619 then
50248794 1620 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1621 printf " && (gdbarch->${function} == ${predefault}))\n"
f16a1923 1622 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1623 fi
2ada493a 1624 fi
104c1213
JM
1625done
1626cat <<EOF
f16a1923
AC
1627 buf = ui_file_xstrdup (log, &dummy);
1628 make_cleanup (xfree, buf);
1629 if (strlen (buf) > 0)
1630 internal_error (__FILE__, __LINE__,
1631 "verify_gdbarch: the following are invalid ...%s",
1632 buf);
1633 do_cleanups (cleanups);
104c1213
JM
1634}
1635EOF
1636
1637# dump the structure
3d9a5942
AC
1638printf "\n"
1639printf "\n"
104c1213 1640cat <<EOF
4b9b3959
AC
1641/* Print out the details of the current architecture. */
1642
1643/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1644 just happens to match the global variable \`\`current_gdbarch''. That
1645 way macros refering to that variable get the local and not the global
1646 version - ulgh. Once everything is parameterised with gdbarch, this
1647 will go away. */
1648
104c1213 1649void
4b9b3959 1650gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1651{
4b9b3959
AC
1652 fprintf_unfiltered (file,
1653 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1654 GDB_MULTI_ARCH);
104c1213 1655EOF
9ba8d803 1656function_list | sort -t: -k 3 | while do_read
104c1213 1657do
1e9f55d0
AC
1658 # First the predicate
1659 if class_is_predicate_p
1660 then
1661 if class_is_multiarch_p
1662 then
1663 printf " if (GDB_MULTI_ARCH)\n"
1664 printf " fprintf_unfiltered (file,\n"
1665 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1666 printf " gdbarch_${function}_p (current_gdbarch));\n"
1667 else
1668 printf "#ifdef ${macro}_P\n"
1669 printf " fprintf_unfiltered (file,\n"
1670 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1671 printf " \"${macro}_P()\",\n"
1672 printf " XSTRING (${macro}_P ()));\n"
1673 printf " fprintf_unfiltered (file,\n"
1674 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1675 printf " ${macro}_P ());\n"
1676 printf "#endif\n"
1677 fi
1678 fi
4a5c6a1d 1679 # multiarch functions don't have macros.
08e45a40
AC
1680 if class_is_multiarch_p
1681 then
1682 printf " if (GDB_MULTI_ARCH)\n"
1683 printf " fprintf_unfiltered (file,\n"
1684 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1685 printf " (long) current_gdbarch->${function});\n"
1686 continue
1687 fi
06b25f14 1688 # Print the macro definition.
08e45a40 1689 printf "#ifdef ${macro}\n"
72e74a21 1690 if [ "x${returntype}" = "xvoid" ]
63e69063 1691 then
08e45a40 1692 printf "#if GDB_MULTI_ARCH\n"
3d9a5942 1693 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
63e69063 1694 fi
2ada493a
AC
1695 if class_is_function_p
1696 then
3d9a5942
AC
1697 printf " fprintf_unfiltered (file,\n"
1698 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1699 printf " \"${macro}(${actual})\",\n"
1700 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1701 else
3d9a5942
AC
1702 printf " fprintf_unfiltered (file,\n"
1703 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1704 printf " XSTRING (${macro}));\n"
4b9b3959 1705 fi
06b25f14 1706 # Print the architecture vector value
08e45a40 1707 if [ "x${returntype}" = "xvoid" ]
4a5c6a1d 1708 then
08e45a40 1709 printf "#endif\n"
4a5c6a1d 1710 fi
72e74a21 1711 if [ "x${print_p}" = "x()" ]
4b9b3959 1712 then
4a5c6a1d 1713 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1714 elif [ "x${print_p}" = "x0" ]
4b9b3959 1715 then
4a5c6a1d 1716 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1717 elif [ -n "${print_p}" ]
4b9b3959 1718 then
4a5c6a1d 1719 printf " if (${print_p})\n"
3d9a5942
AC
1720 printf " fprintf_unfiltered (file,\n"
1721 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1722 printf " ${print});\n"
4b9b3959
AC
1723 elif class_is_function_p
1724 then
3d9a5942
AC
1725 printf " if (GDB_MULTI_ARCH)\n"
1726 printf " fprintf_unfiltered (file,\n"
6cbda714 1727 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
3d9a5942
AC
1728 printf " (long) current_gdbarch->${function}\n"
1729 printf " /*${macro} ()*/);\n"
4b9b3959 1730 else
3d9a5942
AC
1731 printf " fprintf_unfiltered (file,\n"
1732 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1733 printf " ${print});\n"
2ada493a 1734 fi
3d9a5942 1735 printf "#endif\n"
104c1213 1736done
381323f4 1737cat <<EOF
4b9b3959
AC
1738 if (current_gdbarch->dump_tdep != NULL)
1739 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1740}
1741EOF
104c1213
JM
1742
1743
1744# GET/SET
3d9a5942 1745printf "\n"
104c1213
JM
1746cat <<EOF
1747struct gdbarch_tdep *
1748gdbarch_tdep (struct gdbarch *gdbarch)
1749{
1750 if (gdbarch_debug >= 2)
3d9a5942 1751 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1752 return gdbarch->tdep;
1753}
1754EOF
3d9a5942 1755printf "\n"
34620563 1756function_list | while do_read
104c1213 1757do
2ada493a
AC
1758 if class_is_predicate_p
1759 then
3d9a5942
AC
1760 printf "\n"
1761 printf "int\n"
1762 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1763 printf "{\n"
8de9bdc4 1764 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1765 printf " return ${predicate};\n"
3d9a5942 1766 printf "}\n"
2ada493a
AC
1767 fi
1768 if class_is_function_p
1769 then
3d9a5942
AC
1770 printf "\n"
1771 printf "${returntype}\n"
72e74a21 1772 if [ "x${formal}" = "xvoid" ]
104c1213 1773 then
3d9a5942 1774 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1775 else
3d9a5942 1776 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1777 fi
3d9a5942 1778 printf "{\n"
8de9bdc4 1779 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1780 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1781 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1782 then
1783 # Allow a call to a function with a predicate.
956ac328 1784 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1785 fi
3d9a5942
AC
1786 printf " if (gdbarch_debug >= 2)\n"
1787 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1788 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1789 then
1790 if class_is_multiarch_p
1791 then
1792 params="gdbarch"
1793 else
1794 params=""
1795 fi
1796 else
1797 if class_is_multiarch_p
1798 then
1799 params="gdbarch, ${actual}"
1800 else
1801 params="${actual}"
1802 fi
1803 fi
72e74a21 1804 if [ "x${returntype}" = "xvoid" ]
104c1213 1805 then
4a5c6a1d 1806 printf " gdbarch->${function} (${params});\n"
104c1213 1807 else
4a5c6a1d 1808 printf " return gdbarch->${function} (${params});\n"
104c1213 1809 fi
3d9a5942
AC
1810 printf "}\n"
1811 printf "\n"
1812 printf "void\n"
1813 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1814 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1815 printf "{\n"
1816 printf " gdbarch->${function} = ${function};\n"
1817 printf "}\n"
2ada493a
AC
1818 elif class_is_variable_p
1819 then
3d9a5942
AC
1820 printf "\n"
1821 printf "${returntype}\n"
1822 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1823 printf "{\n"
8de9bdc4 1824 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1825 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1826 then
3d9a5942 1827 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1828 elif [ -n "${invalid_p}" ]
104c1213 1829 then
956ac328
AC
1830 printf " /* Check variable is valid. */\n"
1831 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1832 elif [ -n "${predefault}" ]
104c1213 1833 then
956ac328
AC
1834 printf " /* Check variable changed from pre-default. */\n"
1835 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1836 fi
3d9a5942
AC
1837 printf " if (gdbarch_debug >= 2)\n"
1838 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1839 printf " return gdbarch->${function};\n"
1840 printf "}\n"
1841 printf "\n"
1842 printf "void\n"
1843 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1844 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1845 printf "{\n"
1846 printf " gdbarch->${function} = ${function};\n"
1847 printf "}\n"
2ada493a
AC
1848 elif class_is_info_p
1849 then
3d9a5942
AC
1850 printf "\n"
1851 printf "${returntype}\n"
1852 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1853 printf "{\n"
8de9bdc4 1854 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1855 printf " if (gdbarch_debug >= 2)\n"
1856 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1857 printf " return gdbarch->${function};\n"
1858 printf "}\n"
2ada493a 1859 fi
104c1213
JM
1860done
1861
1862# All the trailing guff
1863cat <<EOF
1864
1865
f44c642f 1866/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1867 modules. */
1868
1869struct gdbarch_data
1870{
95160752 1871 unsigned index;
76860b5f 1872 int init_p;
95160752 1873 gdbarch_data_init_ftype *init;
104c1213
JM
1874};
1875
1876struct gdbarch_data_registration
1877{
104c1213
JM
1878 struct gdbarch_data *data;
1879 struct gdbarch_data_registration *next;
1880};
1881
f44c642f 1882struct gdbarch_data_registry
104c1213 1883{
95160752 1884 unsigned nr;
104c1213
JM
1885 struct gdbarch_data_registration *registrations;
1886};
1887
f44c642f 1888struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1889{
1890 0, NULL,
1891};
1892
1893struct gdbarch_data *
fcc1c85c 1894register_gdbarch_data (gdbarch_data_init_ftype *init)
104c1213
JM
1895{
1896 struct gdbarch_data_registration **curr;
76860b5f 1897 /* Append the new registraration. */
f44c642f 1898 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1899 (*curr) != NULL;
1900 curr = &(*curr)->next);
1901 (*curr) = XMALLOC (struct gdbarch_data_registration);
1902 (*curr)->next = NULL;
104c1213 1903 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1904 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752 1905 (*curr)->data->init = init;
76860b5f 1906 (*curr)->data->init_p = 1;
104c1213
JM
1907 return (*curr)->data;
1908}
1909
1910
b3cc3077 1911/* Create/delete the gdbarch data vector. */
95160752
AC
1912
1913static void
b3cc3077 1914alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1915{
b3cc3077
JB
1916 gdb_assert (gdbarch->data == NULL);
1917 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1918 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1919}
3c875b6f 1920
76860b5f 1921/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1922 data-pointer. */
1923
95160752
AC
1924void
1925set_gdbarch_data (struct gdbarch *gdbarch,
1926 struct gdbarch_data *data,
1927 void *pointer)
1928{
1929 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1930 gdb_assert (gdbarch->data[data->index] == NULL);
95160752
AC
1931 gdbarch->data[data->index] = pointer;
1932}
1933
104c1213
JM
1934/* Return the current value of the specified per-architecture
1935 data-pointer. */
1936
1937void *
451fbdda 1938gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1939{
451fbdda 1940 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1941 /* The data-pointer isn't initialized, call init() to get a value but
1942 only if the architecture initializaiton has completed. Otherwise
1943 punt - hope that the caller knows what they are doing. */
1944 if (gdbarch->data[data->index] == NULL
1945 && gdbarch->initialized_p)
1946 {
1947 /* Be careful to detect an initialization cycle. */
1948 gdb_assert (data->init_p);
1949 data->init_p = 0;
1950 gdb_assert (data->init != NULL);
1951 gdbarch->data[data->index] = data->init (gdbarch);
1952 data->init_p = 1;
1953 gdb_assert (gdbarch->data[data->index] != NULL);
1954 }
451fbdda 1955 return gdbarch->data[data->index];
104c1213
JM
1956}
1957
1958
1959
f44c642f 1960/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1961
1962struct gdbarch_swap
1963{
1964 void *swap;
1965 struct gdbarch_swap_registration *source;
1966 struct gdbarch_swap *next;
1967};
1968
1969struct gdbarch_swap_registration
1970{
1971 void *data;
1972 unsigned long sizeof_data;
1973 gdbarch_swap_ftype *init;
1974 struct gdbarch_swap_registration *next;
1975};
1976
f44c642f 1977struct gdbarch_swap_registry
104c1213
JM
1978{
1979 int nr;
1980 struct gdbarch_swap_registration *registrations;
1981};
1982
f44c642f 1983struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1984{
1985 0, NULL,
1986};
1987
1988void
1989register_gdbarch_swap (void *data,
1990 unsigned long sizeof_data,
1991 gdbarch_swap_ftype *init)
1992{
1993 struct gdbarch_swap_registration **rego;
f44c642f 1994 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1995 (*rego) != NULL;
1996 rego = &(*rego)->next);
1997 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1998 (*rego)->next = NULL;
1999 (*rego)->init = init;
2000 (*rego)->data = data;
2001 (*rego)->sizeof_data = sizeof_data;
2002}
2003
40af4b0c
AC
2004static void
2005clear_gdbarch_swap (struct gdbarch *gdbarch)
2006{
2007 struct gdbarch_swap *curr;
2008 for (curr = gdbarch->swap;
2009 curr != NULL;
2010 curr = curr->next)
2011 {
2012 memset (curr->source->data, 0, curr->source->sizeof_data);
2013 }
2014}
104c1213
JM
2015
2016static void
2017init_gdbarch_swap (struct gdbarch *gdbarch)
2018{
2019 struct gdbarch_swap_registration *rego;
2020 struct gdbarch_swap **curr = &gdbarch->swap;
f44c642f 2021 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
2022 rego != NULL;
2023 rego = rego->next)
2024 {
2025 if (rego->data != NULL)
2026 {
aebd7893 2027 (*curr) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct gdbarch_swap);
104c1213 2028 (*curr)->source = rego;
aebd7893 2029 (*curr)->swap = gdbarch_obstack_zalloc (gdbarch, rego->sizeof_data);
104c1213 2030 (*curr)->next = NULL;
104c1213
JM
2031 curr = &(*curr)->next;
2032 }
2033 if (rego->init != NULL)
2034 rego->init ();
2035 }
2036}
2037
2038static void
2039swapout_gdbarch_swap (struct gdbarch *gdbarch)
2040{
2041 struct gdbarch_swap *curr;
2042 for (curr = gdbarch->swap;
2043 curr != NULL;
2044 curr = curr->next)
2045 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2046}
2047
2048static void
2049swapin_gdbarch_swap (struct gdbarch *gdbarch)
2050{
2051 struct gdbarch_swap *curr;
2052 for (curr = gdbarch->swap;
2053 curr != NULL;
2054 curr = curr->next)
2055 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2056}
2057
2058
f44c642f 2059/* Keep a registry of the architectures known by GDB. */
104c1213 2060
4b9b3959 2061struct gdbarch_registration
104c1213
JM
2062{
2063 enum bfd_architecture bfd_architecture;
2064 gdbarch_init_ftype *init;
4b9b3959 2065 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2066 struct gdbarch_list *arches;
4b9b3959 2067 struct gdbarch_registration *next;
104c1213
JM
2068};
2069
f44c642f 2070static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2071
b4a20239
AC
2072static void
2073append_name (const char ***buf, int *nr, const char *name)
2074{
2075 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2076 (*buf)[*nr] = name;
2077 *nr += 1;
2078}
2079
2080const char **
2081gdbarch_printable_names (void)
2082{
2083 if (GDB_MULTI_ARCH)
2084 {
2085 /* Accumulate a list of names based on the registed list of
2086 architectures. */
2087 enum bfd_architecture a;
2088 int nr_arches = 0;
2089 const char **arches = NULL;
4b9b3959 2090 struct gdbarch_registration *rego;
f44c642f 2091 for (rego = gdbarch_registry;
b4a20239
AC
2092 rego != NULL;
2093 rego = rego->next)
2094 {
2095 const struct bfd_arch_info *ap;
2096 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2097 if (ap == NULL)
8e65ff28
AC
2098 internal_error (__FILE__, __LINE__,
2099 "gdbarch_architecture_names: multi-arch unknown");
b4a20239
AC
2100 do
2101 {
2102 append_name (&arches, &nr_arches, ap->printable_name);
2103 ap = ap->next;
2104 }
2105 while (ap != NULL);
2106 }
2107 append_name (&arches, &nr_arches, NULL);
2108 return arches;
2109 }
2110 else
2111 /* Just return all the architectures that BFD knows. Assume that
2112 the legacy architecture framework supports them. */
2113 return bfd_arch_list ();
2114}
2115
2116
104c1213 2117void
4b9b3959
AC
2118gdbarch_register (enum bfd_architecture bfd_architecture,
2119 gdbarch_init_ftype *init,
2120 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2121{
4b9b3959 2122 struct gdbarch_registration **curr;
104c1213 2123 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2124 /* Check that BFD recognizes this architecture */
104c1213
JM
2125 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2126 if (bfd_arch_info == NULL)
2127 {
8e65ff28
AC
2128 internal_error (__FILE__, __LINE__,
2129 "gdbarch: Attempt to register unknown architecture (%d)",
2130 bfd_architecture);
104c1213
JM
2131 }
2132 /* Check that we haven't seen this architecture before */
f44c642f 2133 for (curr = &gdbarch_registry;
104c1213
JM
2134 (*curr) != NULL;
2135 curr = &(*curr)->next)
2136 {
2137 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2138 internal_error (__FILE__, __LINE__,
2139 "gdbarch: Duplicate registraration of architecture (%s)",
2140 bfd_arch_info->printable_name);
104c1213
JM
2141 }
2142 /* log it */
2143 if (gdbarch_debug)
2144 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2145 bfd_arch_info->printable_name,
2146 (long) init);
2147 /* Append it */
4b9b3959 2148 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2149 (*curr)->bfd_architecture = bfd_architecture;
2150 (*curr)->init = init;
4b9b3959 2151 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2152 (*curr)->arches = NULL;
2153 (*curr)->next = NULL;
8e1a459b
C
2154 /* When non- multi-arch, install whatever target dump routine we've
2155 been provided - hopefully that routine has been written correctly
4b9b3959
AC
2156 and works regardless of multi-arch. */
2157 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2158 && startup_gdbarch.dump_tdep == NULL)
2159 startup_gdbarch.dump_tdep = dump_tdep;
2160}
2161
2162void
2163register_gdbarch_init (enum bfd_architecture bfd_architecture,
2164 gdbarch_init_ftype *init)
2165{
2166 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2167}
104c1213
JM
2168
2169
2170/* Look for an architecture using gdbarch_info. Base search on only
2171 BFD_ARCH_INFO and BYTE_ORDER. */
2172
2173struct gdbarch_list *
2174gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2175 const struct gdbarch_info *info)
2176{
2177 for (; arches != NULL; arches = arches->next)
2178 {
2179 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2180 continue;
2181 if (info->byte_order != arches->gdbarch->byte_order)
2182 continue;
4be87837
DJ
2183 if (info->osabi != arches->gdbarch->osabi)
2184 continue;
104c1213
JM
2185 return arches;
2186 }
2187 return NULL;
2188}
2189
2190
2191/* Update the current architecture. Return ZERO if the update request
2192 failed. */
2193
2194int
16f33e29 2195gdbarch_update_p (struct gdbarch_info info)
104c1213
JM
2196{
2197 struct gdbarch *new_gdbarch;
40af4b0c 2198 struct gdbarch *old_gdbarch;
4b9b3959 2199 struct gdbarch_registration *rego;
104c1213 2200
b732d07d
AC
2201 /* Fill in missing parts of the INFO struct using a number of
2202 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2203
2204 /* \`\`(gdb) set architecture ...'' */
2205 if (info.bfd_arch_info == NULL
2206 && !TARGET_ARCHITECTURE_AUTO)
2207 info.bfd_arch_info = TARGET_ARCHITECTURE;
2208 if (info.bfd_arch_info == NULL
2209 && info.abfd != NULL
2210 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2211 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2212 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
104c1213 2213 if (info.bfd_arch_info == NULL)
b732d07d
AC
2214 info.bfd_arch_info = TARGET_ARCHITECTURE;
2215
2216 /* \`\`(gdb) set byte-order ...'' */
428721aa 2217 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d
AC
2218 && !TARGET_BYTE_ORDER_AUTO)
2219 info.byte_order = TARGET_BYTE_ORDER;
2220 /* From the INFO struct. */
428721aa 2221 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d 2222 && info.abfd != NULL)
d7449b42 2223 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
778eb05e 2224 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
428721aa 2225 : BFD_ENDIAN_UNKNOWN);
b732d07d 2226 /* From the current target. */
428721aa 2227 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
b732d07d 2228 info.byte_order = TARGET_BYTE_ORDER;
104c1213 2229
4be87837
DJ
2230 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2231 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2232 info.osabi = gdbarch_lookup_osabi (info.abfd);
2233 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2234 info.osabi = current_gdbarch->osabi;
2235
b732d07d
AC
2236 /* Must have found some sort of architecture. */
2237 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2238
2239 if (gdbarch_debug)
2240 {
2241 fprintf_unfiltered (gdb_stdlog,
b732d07d 2242 "gdbarch_update: info.bfd_arch_info %s\n",
104c1213
JM
2243 (info.bfd_arch_info != NULL
2244 ? info.bfd_arch_info->printable_name
2245 : "(null)"));
2246 fprintf_unfiltered (gdb_stdlog,
b732d07d 2247 "gdbarch_update: info.byte_order %d (%s)\n",
104c1213 2248 info.byte_order,
d7449b42 2249 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2250 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2251 : "default"));
4be87837
DJ
2252 fprintf_unfiltered (gdb_stdlog,
2253 "gdbarch_update: info.osabi %d (%s)\n",
2254 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2255 fprintf_unfiltered (gdb_stdlog,
b732d07d 2256 "gdbarch_update: info.abfd 0x%lx\n",
104c1213
JM
2257 (long) info.abfd);
2258 fprintf_unfiltered (gdb_stdlog,
b732d07d 2259 "gdbarch_update: info.tdep_info 0x%lx\n",
104c1213
JM
2260 (long) info.tdep_info);
2261 }
2262
b732d07d
AC
2263 /* Find the target that knows about this architecture. */
2264 for (rego = gdbarch_registry;
2265 rego != NULL;
2266 rego = rego->next)
2267 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2268 break;
2269 if (rego == NULL)
2270 {
2271 if (gdbarch_debug)
2272 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2273 return 0;
2274 }
2275
40af4b0c
AC
2276 /* Swap the data belonging to the old target out setting the
2277 installed data to zero. This stops the ->init() function trying
2278 to refer to the previous architecture's global data structures. */
2279 swapout_gdbarch_swap (current_gdbarch);
2280 clear_gdbarch_swap (current_gdbarch);
2281
2282 /* Save the previously selected architecture, setting the global to
2283 NULL. This stops ->init() trying to use the previous
2284 architecture's configuration. The previous architecture may not
2285 even be of the same architecture family. The most recent
2286 architecture of the same family is found at the head of the
2287 rego->arches list. */
2288 old_gdbarch = current_gdbarch;
2289 current_gdbarch = NULL;
2290
104c1213
JM
2291 /* Ask the target for a replacement architecture. */
2292 new_gdbarch = rego->init (info, rego->arches);
2293
40af4b0c
AC
2294 /* Did the target like it? No. Reject the change and revert to the
2295 old architecture. */
104c1213
JM
2296 if (new_gdbarch == NULL)
2297 {
2298 if (gdbarch_debug)
3d9a5942 2299 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
40af4b0c
AC
2300 swapin_gdbarch_swap (old_gdbarch);
2301 current_gdbarch = old_gdbarch;
104c1213
JM
2302 return 0;
2303 }
2304
40af4b0c
AC
2305 /* Did the architecture change? No. Oops, put the old architecture
2306 back. */
2307 if (old_gdbarch == new_gdbarch)
104c1213
JM
2308 {
2309 if (gdbarch_debug)
3d9a5942 2310 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
104c1213
JM
2311 (long) new_gdbarch,
2312 new_gdbarch->bfd_arch_info->printable_name);
40af4b0c
AC
2313 swapin_gdbarch_swap (old_gdbarch);
2314 current_gdbarch = old_gdbarch;
104c1213
JM
2315 return 1;
2316 }
2317
0f79675b
AC
2318 /* Is this a pre-existing architecture? Yes. Move it to the front
2319 of the list of architectures (keeping the list sorted Most
2320 Recently Used) and then copy it in. */
2321 {
2322 struct gdbarch_list **list;
2323 for (list = &rego->arches;
2324 (*list) != NULL;
2325 list = &(*list)->next)
2326 {
2327 if ((*list)->gdbarch == new_gdbarch)
2328 {
2329 struct gdbarch_list *this;
2330 if (gdbarch_debug)
2331 fprintf_unfiltered (gdb_stdlog,
2332 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2333 (long) new_gdbarch,
2334 new_gdbarch->bfd_arch_info->printable_name);
2335 /* Unlink this. */
2336 this = (*list);
2337 (*list) = this->next;
2338 /* Insert in the front. */
2339 this->next = rego->arches;
2340 rego->arches = this;
2341 /* Copy the new architecture in. */
2342 current_gdbarch = new_gdbarch;
2343 swapin_gdbarch_swap (new_gdbarch);
2344 architecture_changed_event ();
2345 return 1;
2346 }
2347 }
2348 }
2349
2350 /* Prepend this new architecture to the architecture list (keep the
2351 list sorted Most Recently Used). */
2352 {
2353 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2354 this->next = rego->arches;
2355 this->gdbarch = new_gdbarch;
2356 rego->arches = this;
2357 }
104c1213 2358
76860b5f 2359 /* Switch to this new architecture marking it initialized. */
104c1213 2360 current_gdbarch = new_gdbarch;
76860b5f 2361 current_gdbarch->initialized_p = 1;
104c1213
JM
2362 if (gdbarch_debug)
2363 {
2364 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2365 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2366 (long) new_gdbarch,
2367 new_gdbarch->bfd_arch_info->printable_name);
104c1213
JM
2368 }
2369
4b9b3959
AC
2370 /* Check that the newly installed architecture is valid. Plug in
2371 any post init values. */
2372 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213
JM
2373 verify_gdbarch (new_gdbarch);
2374
cf17c188
AC
2375 /* Initialize the per-architecture memory (swap) areas.
2376 CURRENT_GDBARCH must be update before these modules are
2377 called. */
2378 init_gdbarch_swap (new_gdbarch);
2379
76860b5f 2380 /* Initialize the per-architecture data. CURRENT_GDBARCH
cf17c188 2381 must be updated before these modules are called. */
67c2c32c
KS
2382 architecture_changed_event ();
2383
4b9b3959
AC
2384 if (gdbarch_debug)
2385 gdbarch_dump (current_gdbarch, gdb_stdlog);
2386
104c1213
JM
2387 return 1;
2388}
2389
2390
104c1213
JM
2391/* Disassembler */
2392
2393/* Pointer to the target-dependent disassembly function. */
d7a27068 2394int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
104c1213 2395
104c1213 2396extern void _initialize_gdbarch (void);
b4a20239 2397
104c1213 2398void
34620563 2399_initialize_gdbarch (void)
104c1213 2400{
59233f88
AC
2401 struct cmd_list_element *c;
2402
59233f88 2403 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2404 class_maintenance,
2405 var_zinteger,
2406 (char *)&gdbarch_debug,
3d9a5942 2407 "Set architecture debugging.\\n\\
59233f88
AC
2408When non-zero, architecture debugging is enabled.", &setdebuglist),
2409 &showdebuglist);
2410 c = add_set_cmd ("archdebug",
2411 class_maintenance,
2412 var_zinteger,
2413 (char *)&gdbarch_debug,
3d9a5942 2414 "Set architecture debugging.\\n\\
59233f88
AC
2415When non-zero, architecture debugging is enabled.", &setlist);
2416
2417 deprecate_cmd (c, "set debug arch");
2418 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2419}
2420EOF
2421
2422# close things off
2423exec 1>&2
2424#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2425compare_new gdbarch.c
This page took 0.671331 seconds and 4 git commands to generate.