Commit | Line | Data |
---|---|---|
66b43ecb | 1 | #!/bin/sh -u |
104c1213 JM |
2 | |
3 | # Architecture commands for GDB, the GNU debugger. | |
79d45cd4 | 4 | # |
b811d2c2 | 5 | # Copyright (C) 1998-2020 Free Software Foundation, Inc. |
104c1213 JM |
6 | # |
7 | # This file is part of GDB. | |
8 | # | |
9 | # This program is free software; you can redistribute it and/or modify | |
10 | # it under the terms of the GNU General Public License as published by | |
50efebf8 | 11 | # the Free Software Foundation; either version 3 of the License, or |
104c1213 JM |
12 | # (at your option) any later version. |
13 | # | |
14 | # This program is distributed in the hope that it will be useful, | |
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | # GNU General Public License for more details. | |
18 | # | |
19 | # You should have received a copy of the GNU General Public License | |
50efebf8 | 20 | # along with this program. If not, see <http://www.gnu.org/licenses/>. |
104c1213 | 21 | |
6e2c7fa1 | 22 | # Make certain that the script is not running in an internationalized |
d8864532 | 23 | # environment. |
0e05dfcb DJ |
24 | LANG=C ; export LANG |
25 | LC_ALL=C ; export LC_ALL | |
d8864532 AC |
26 | |
27 | ||
59233f88 AC |
28 | compare_new () |
29 | { | |
30 | file=$1 | |
66b43ecb | 31 | if test ! -r ${file} |
59233f88 AC |
32 | then |
33 | echo "${file} missing? cp new-${file} ${file}" 1>&2 | |
50248794 | 34 | elif diff -u ${file} new-${file} |
59233f88 AC |
35 | then |
36 | echo "${file} unchanged" 1>&2 | |
37 | else | |
38 | echo "${file} has changed? cp new-${file} ${file}" 1>&2 | |
39 | fi | |
40 | } | |
41 | ||
42 | ||
43 | # Format of the input table | |
97030eea | 44 | read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol" |
c0e8c252 AC |
45 | |
46 | do_read () | |
47 | { | |
34620563 AC |
48 | comment="" |
49 | class="" | |
c9023fb3 PA |
50 | # On some SH's, 'read' trims leading and trailing whitespace by |
51 | # default (e.g., bash), while on others (e.g., dash), it doesn't. | |
52 | # Set IFS to empty to disable the trimming everywhere. | |
53 | while IFS='' read line | |
34620563 AC |
54 | do |
55 | if test "${line}" = "" | |
56 | then | |
57 | continue | |
58 | elif test "${line}" = "#" -a "${comment}" = "" | |
f0d4cc9e | 59 | then |
34620563 AC |
60 | continue |
61 | elif expr "${line}" : "#" > /dev/null | |
f0d4cc9e | 62 | then |
34620563 AC |
63 | comment="${comment} |
64 | ${line}" | |
f0d4cc9e | 65 | else |
3d9a5942 AC |
66 | |
67 | # The semantics of IFS varies between different SH's. Some | |
ea480a30 SM |
68 | # treat ``;;' as three fields while some treat it as just two. |
69 | # Work around this by eliminating ``;;'' .... | |
70 | line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`" | |
3d9a5942 | 71 | |
ea480a30 | 72 | OFS="${IFS}" ; IFS="[;]" |
34620563 AC |
73 | eval read ${read} <<EOF |
74 | ${line} | |
75 | EOF | |
76 | IFS="${OFS}" | |
77 | ||
283354d8 AC |
78 | if test -n "${garbage_at_eol}" |
79 | then | |
80 | echo "Garbage at end-of-line in ${line}" 1>&2 | |
81 | kill $$ | |
82 | exit 1 | |
83 | fi | |
84 | ||
3d9a5942 AC |
85 | # .... and then going back through each field and strip out those |
86 | # that ended up with just that space character. | |
87 | for r in ${read} | |
88 | do | |
89 | if eval test \"\${${r}}\" = \"\ \" | |
90 | then | |
91 | eval ${r}="" | |
92 | fi | |
93 | done | |
94 | ||
a72293e2 AC |
95 | case "${class}" in |
96 | m ) staticdefault="${predefault}" ;; | |
97 | M ) staticdefault="0" ;; | |
98 | * ) test "${staticdefault}" || staticdefault=0 ;; | |
99 | esac | |
06b25f14 | 100 | |
ae45cd16 AC |
101 | case "${class}" in |
102 | F | V | M ) | |
103 | case "${invalid_p}" in | |
34620563 | 104 | "" ) |
f7968451 | 105 | if test -n "${predefault}" |
34620563 AC |
106 | then |
107 | #invalid_p="gdbarch->${function} == ${predefault}" | |
ae45cd16 | 108 | predicate="gdbarch->${function} != ${predefault}" |
f7968451 AC |
109 | elif class_is_variable_p |
110 | then | |
111 | predicate="gdbarch->${function} != 0" | |
112 | elif class_is_function_p | |
113 | then | |
114 | predicate="gdbarch->${function} != NULL" | |
34620563 AC |
115 | fi |
116 | ;; | |
ae45cd16 | 117 | * ) |
1e9f55d0 | 118 | echo "Predicate function ${function} with invalid_p." 1>&2 |
ae45cd16 AC |
119 | kill $$ |
120 | exit 1 | |
121 | ;; | |
122 | esac | |
34620563 AC |
123 | esac |
124 | ||
125 | # PREDEFAULT is a valid fallback definition of MEMBER when | |
126 | # multi-arch is not enabled. This ensures that the | |
127 | # default value, when multi-arch is the same as the | |
128 | # default value when not multi-arch. POSTDEFAULT is | |
129 | # always a valid definition of MEMBER as this again | |
130 | # ensures consistency. | |
131 | ||
72e74a21 | 132 | if [ -n "${postdefault}" ] |
34620563 AC |
133 | then |
134 | fallbackdefault="${postdefault}" | |
72e74a21 | 135 | elif [ -n "${predefault}" ] |
34620563 AC |
136 | then |
137 | fallbackdefault="${predefault}" | |
138 | else | |
73d3c16e | 139 | fallbackdefault="0" |
34620563 AC |
140 | fi |
141 | ||
142 | #NOT YET: See gdbarch.log for basic verification of | |
143 | # database | |
144 | ||
145 | break | |
f0d4cc9e | 146 | fi |
34620563 | 147 | done |
72e74a21 | 148 | if [ -n "${class}" ] |
34620563 AC |
149 | then |
150 | true | |
c0e8c252 AC |
151 | else |
152 | false | |
153 | fi | |
154 | } | |
155 | ||
104c1213 | 156 | |
f0d4cc9e AC |
157 | fallback_default_p () |
158 | { | |
72e74a21 JB |
159 | [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \ |
160 | || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ] | |
f0d4cc9e AC |
161 | } |
162 | ||
163 | class_is_variable_p () | |
164 | { | |
4a5c6a1d AC |
165 | case "${class}" in |
166 | *v* | *V* ) true ;; | |
167 | * ) false ;; | |
168 | esac | |
f0d4cc9e AC |
169 | } |
170 | ||
171 | class_is_function_p () | |
172 | { | |
4a5c6a1d AC |
173 | case "${class}" in |
174 | *f* | *F* | *m* | *M* ) true ;; | |
175 | * ) false ;; | |
176 | esac | |
177 | } | |
178 | ||
179 | class_is_multiarch_p () | |
180 | { | |
181 | case "${class}" in | |
182 | *m* | *M* ) true ;; | |
183 | * ) false ;; | |
184 | esac | |
f0d4cc9e AC |
185 | } |
186 | ||
187 | class_is_predicate_p () | |
188 | { | |
4a5c6a1d AC |
189 | case "${class}" in |
190 | *F* | *V* | *M* ) true ;; | |
191 | * ) false ;; | |
192 | esac | |
f0d4cc9e AC |
193 | } |
194 | ||
195 | class_is_info_p () | |
196 | { | |
4a5c6a1d AC |
197 | case "${class}" in |
198 | *i* ) true ;; | |
199 | * ) false ;; | |
200 | esac | |
f0d4cc9e AC |
201 | } |
202 | ||
203 | ||
cff3e48b JM |
204 | # dump out/verify the doco |
205 | for field in ${read} | |
206 | do | |
207 | case ${field} in | |
208 | ||
209 | class ) : ;; | |
c4093a6a | 210 | |
c0e8c252 AC |
211 | # # -> line disable |
212 | # f -> function | |
213 | # hiding a function | |
2ada493a AC |
214 | # F -> function + predicate |
215 | # hiding a function + predicate to test function validity | |
c0e8c252 AC |
216 | # v -> variable |
217 | # hiding a variable | |
2ada493a AC |
218 | # V -> variable + predicate |
219 | # hiding a variable + predicate to test variables validity | |
c0e8c252 AC |
220 | # i -> set from info |
221 | # hiding something from the ``struct info'' object | |
4a5c6a1d AC |
222 | # m -> multi-arch function |
223 | # hiding a multi-arch function (parameterised with the architecture) | |
224 | # M -> multi-arch function + predicate | |
225 | # hiding a multi-arch function + predicate to test function validity | |
cff3e48b | 226 | |
cff3e48b JM |
227 | returntype ) : ;; |
228 | ||
c0e8c252 | 229 | # For functions, the return type; for variables, the data type |
cff3e48b JM |
230 | |
231 | function ) : ;; | |
232 | ||
c0e8c252 AC |
233 | # For functions, the member function name; for variables, the |
234 | # variable name. Member function names are always prefixed with | |
235 | # ``gdbarch_'' for name-space purity. | |
cff3e48b JM |
236 | |
237 | formal ) : ;; | |
238 | ||
c0e8c252 AC |
239 | # The formal argument list. It is assumed that the formal |
240 | # argument list includes the actual name of each list element. | |
241 | # A function with no arguments shall have ``void'' as the | |
242 | # formal argument list. | |
cff3e48b JM |
243 | |
244 | actual ) : ;; | |
245 | ||
c0e8c252 AC |
246 | # The list of actual arguments. The arguments specified shall |
247 | # match the FORMAL list given above. Functions with out | |
248 | # arguments leave this blank. | |
cff3e48b | 249 | |
0b8f9e4d | 250 | staticdefault ) : ;; |
c0e8c252 AC |
251 | |
252 | # To help with the GDB startup a static gdbarch object is | |
0b8f9e4d AC |
253 | # created. STATICDEFAULT is the value to insert into that |
254 | # static gdbarch object. Since this a static object only | |
255 | # simple expressions can be used. | |
cff3e48b | 256 | |
0b8f9e4d | 257 | # If STATICDEFAULT is empty, zero is used. |
c0e8c252 | 258 | |
0b8f9e4d | 259 | predefault ) : ;; |
cff3e48b | 260 | |
10312cc4 AC |
261 | # An initial value to assign to MEMBER of the freshly |
262 | # malloc()ed gdbarch object. After initialization, the | |
263 | # freshly malloc()ed object is passed to the target | |
264 | # architecture code for further updates. | |
cff3e48b | 265 | |
0b8f9e4d AC |
266 | # If PREDEFAULT is empty, zero is used. |
267 | ||
10312cc4 AC |
268 | # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero |
269 | # INVALID_P are specified, PREDEFAULT will be used as the | |
270 | # default for the non- multi-arch target. | |
271 | ||
272 | # A zero PREDEFAULT function will force the fallback to call | |
273 | # internal_error(). | |
f0d4cc9e AC |
274 | |
275 | # Variable declarations can refer to ``gdbarch'' which will | |
276 | # contain the current architecture. Care should be taken. | |
0b8f9e4d AC |
277 | |
278 | postdefault ) : ;; | |
279 | ||
280 | # A value to assign to MEMBER of the new gdbarch object should | |
10312cc4 AC |
281 | # the target architecture code fail to change the PREDEFAULT |
282 | # value. | |
0b8f9e4d AC |
283 | |
284 | # If POSTDEFAULT is empty, no post update is performed. | |
285 | ||
286 | # If both INVALID_P and POSTDEFAULT are non-empty then | |
287 | # INVALID_P will be used to determine if MEMBER should be | |
288 | # changed to POSTDEFAULT. | |
289 | ||
10312cc4 AC |
290 | # If a non-empty POSTDEFAULT and a zero INVALID_P are |
291 | # specified, POSTDEFAULT will be used as the default for the | |
292 | # non- multi-arch target (regardless of the value of | |
293 | # PREDEFAULT). | |
294 | ||
f0d4cc9e AC |
295 | # You cannot specify both a zero INVALID_P and a POSTDEFAULT. |
296 | ||
be7811ad | 297 | # Variable declarations can refer to ``gdbarch'' which |
db446970 AC |
298 | # will contain the current architecture. Care should be |
299 | # taken. | |
cff3e48b | 300 | |
c4093a6a | 301 | invalid_p ) : ;; |
cff3e48b | 302 | |
0b8f9e4d | 303 | # A predicate equation that validates MEMBER. Non-zero is |
c0e8c252 | 304 | # returned if the code creating the new architecture failed to |
0b8f9e4d AC |
305 | # initialize MEMBER or the initialized the member is invalid. |
306 | # If POSTDEFAULT is non-empty then MEMBER will be updated to | |
307 | # that value. If POSTDEFAULT is empty then internal_error() | |
308 | # is called. | |
309 | ||
310 | # If INVALID_P is empty, a check that MEMBER is no longer | |
311 | # equal to PREDEFAULT is used. | |
312 | ||
f0d4cc9e AC |
313 | # The expression ``0'' disables the INVALID_P check making |
314 | # PREDEFAULT a legitimate value. | |
0b8f9e4d AC |
315 | |
316 | # See also PREDEFAULT and POSTDEFAULT. | |
cff3e48b | 317 | |
cff3e48b JM |
318 | print ) : ;; |
319 | ||
2f9b146e AC |
320 | # An optional expression that convers MEMBER to a value |
321 | # suitable for formatting using %s. | |
c0e8c252 | 322 | |
0b1553bc UW |
323 | # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR) |
324 | # or plongest (anything else) is used. | |
cff3e48b | 325 | |
283354d8 | 326 | garbage_at_eol ) : ;; |
0b8f9e4d | 327 | |
283354d8 | 328 | # Catches stray fields. |
cff3e48b | 329 | |
50248794 AC |
330 | *) |
331 | echo "Bad field ${field}" | |
332 | exit 1;; | |
cff3e48b JM |
333 | esac |
334 | done | |
335 | ||
cff3e48b | 336 | |
104c1213 JM |
337 | function_list () |
338 | { | |
cff3e48b | 339 | # See below (DOCO) for description of each field |
34620563 | 340 | cat <<EOF |
ea480a30 | 341 | i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name |
104c1213 | 342 | # |
ea480a30 SM |
343 | i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG |
344 | i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG | |
4be87837 | 345 | # |
ea480a30 | 346 | i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN |
424163ea | 347 | # |
ea480a30 | 348 | i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc) |
32c9a795 | 349 | |
66b43ecb | 350 | # Number of bits in a short or unsigned short for the target machine. |
ea480a30 | 351 | v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0 |
66b43ecb | 352 | # Number of bits in an int or unsigned int for the target machine. |
ea480a30 | 353 | v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0 |
66b43ecb | 354 | # Number of bits in a long or unsigned long for the target machine. |
ea480a30 | 355 | v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0 |
66b43ecb AC |
356 | # Number of bits in a long long or unsigned long long for the target |
357 | # machine. | |
ea480a30 | 358 | v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0 |
456fcf94 | 359 | |
f9e9243a UW |
360 | # The ABI default bit-size and format for "half", "float", "double", and |
361 | # "long double". These bit/format pairs should eventually be combined | |
362 | # into a single object. For the moment, just initialize them as a pair. | |
8da61cc4 DJ |
363 | # Each format describes both the big and little endian layouts (if |
364 | # useful). | |
456fcf94 | 365 | |
ea480a30 SM |
366 | v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0 |
367 | v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format) | |
368 | v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0 | |
369 | v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format) | |
370 | v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0 | |
371 | v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format) | |
372 | v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0 | |
373 | v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format) | |
456fcf94 | 374 | |
53375380 PA |
375 | # The ABI default bit-size for "wchar_t". wchar_t is a built-in type |
376 | # starting with C++11. | |
ea480a30 | 377 | v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0 |
53375380 | 378 | # One if \`wchar_t' is signed, zero if unsigned. |
ea480a30 | 379 | v;int;wchar_signed;;;1;-1;1 |
53375380 | 380 | |
9b790ce7 UW |
381 | # Returns the floating-point format to be used for values of length LENGTH. |
382 | # NAME, if non-NULL, is the type name, which may be used to distinguish | |
383 | # different target formats of the same length. | |
ea480a30 | 384 | m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0 |
9b790ce7 | 385 | |
52204a0b DT |
386 | # For most targets, a pointer on the target and its representation as an |
387 | # address in GDB have the same size and "look the same". For such a | |
17a912b6 | 388 | # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit |
52204a0b DT |
389 | # / addr_bit will be set from it. |
390 | # | |
17a912b6 | 391 | # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably |
8da614df CV |
392 | # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and |
393 | # gdbarch_address_to_pointer as well. | |
52204a0b DT |
394 | # |
395 | # ptr_bit is the size of a pointer on the target | |
ea480a30 | 396 | v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0 |
52204a0b | 397 | # addr_bit is the size of a target address as represented in gdb |
ea480a30 | 398 | v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch); |
104c1213 | 399 | # |
8da614df CV |
400 | # dwarf2_addr_size is the target address size as used in the Dwarf debug |
401 | # info. For .debug_frame FDEs, this is supposed to be the target address | |
402 | # size from the associated CU header, and which is equivalent to the | |
403 | # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end. | |
404 | # Unfortunately there is no good way to determine this value. Therefore | |
405 | # dwarf2_addr_size simply defaults to the target pointer size. | |
406 | # | |
407 | # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally | |
408 | # defined using the target's pointer size so far. | |
409 | # | |
410 | # Note that dwarf2_addr_size only needs to be redefined by a target if the | |
411 | # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size, | |
412 | # and if Dwarf versions < 4 need to be supported. | |
ea480a30 | 413 | v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; |
8da614df | 414 | # |
4e409299 | 415 | # One if \`char' acts like \`signed char', zero if \`unsigned char'. |
ea480a30 | 416 | v;int;char_signed;;;1;-1;1 |
4e409299 | 417 | # |
c113ed0c | 418 | F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache |
ea480a30 | 419 | F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val |
39d4ef09 AC |
420 | # Function for getting target's idea of a frame pointer. FIXME: GDB's |
421 | # whole scheme for dealing with "frames" and "frame pointers" needs a | |
422 | # serious shakedown. | |
ea480a30 | 423 | m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0 |
66b43ecb | 424 | # |
849d0ba8 | 425 | M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf |
3543a589 TT |
426 | # Read a register into a new struct value. If the register is wholly |
427 | # or partly unavailable, this should call mark_value_bytes_unavailable | |
428 | # as appropriate. If this is defined, then pseudo_register_read will | |
429 | # never be called. | |
849d0ba8 | 430 | M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum |
ea480a30 | 431 | M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf |
61a0eb5b | 432 | # |
ea480a30 | 433 | v;int;num_regs;;;0;-1 |
0aba1244 EZ |
434 | # This macro gives the number of pseudo-registers that live in the |
435 | # register namespace but do not get fetched or stored on the target. | |
3d9a5942 AC |
436 | # These pseudo-registers may be aliases for other registers, |
437 | # combinations of other registers, or they may be computed by GDB. | |
ea480a30 | 438 | v;int;num_pseudo_regs;;;0;0;;0 |
c2169756 | 439 | |
175ff332 HZ |
440 | # Assemble agent expression bytecode to collect pseudo-register REG. |
441 | # Return -1 if something goes wrong, 0 otherwise. | |
ea480a30 | 442 | M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg |
175ff332 HZ |
443 | |
444 | # Assemble agent expression bytecode to push the value of pseudo-register | |
445 | # REG on the interpreter stack. | |
446 | # Return -1 if something goes wrong, 0 otherwise. | |
ea480a30 | 447 | M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg |
175ff332 | 448 | |
012b3a21 WT |
449 | # Some targets/architectures can do extra processing/display of |
450 | # segmentation faults. E.g., Intel MPX boundary faults. | |
451 | # Call the architecture dependent function to handle the fault. | |
452 | # UIOUT is the output stream where the handler will place information. | |
ea480a30 | 453 | M;void;handle_segmentation_fault;struct ui_out *uiout;uiout |
012b3a21 | 454 | |
c2169756 AC |
455 | # GDB's standard (or well known) register numbers. These can map onto |
456 | # a real register or a pseudo (computed) register or not be defined at | |
1200cd6e | 457 | # all (-1). |
3e8c568d | 458 | # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP. |
ea480a30 SM |
459 | v;int;sp_regnum;;;-1;-1;;0 |
460 | v;int;pc_regnum;;;-1;-1;;0 | |
461 | v;int;ps_regnum;;;-1;-1;;0 | |
462 | v;int;fp0_regnum;;;0;-1;;0 | |
88c72b7d | 463 | # Convert stab register number (from \`r\' declaration) to a gdb REGNUM. |
ea480a30 | 464 | m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0 |
88c72b7d | 465 | # Provide a default mapping from a ecoff register number to a gdb REGNUM. |
ea480a30 | 466 | m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0 |
88c72b7d | 467 | # Convert from an sdb register number to an internal gdb register number. |
ea480a30 | 468 | m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0 |
ba2b1c56 | 469 | # Provide a default mapping from a DWARF2 register number to a gdb REGNUM. |
0fde2c53 | 470 | # Return -1 for bad REGNUM. Note: Several targets get this wrong. |
ea480a30 SM |
471 | m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0 |
472 | m;const char *;register_name;int regnr;regnr;;0 | |
9c04cab7 | 473 | |
7b9ee6a8 DJ |
474 | # Return the type of a register specified by the architecture. Only |
475 | # the register cache should call this function directly; others should | |
476 | # use "register_type". | |
ea480a30 | 477 | M;struct type *;register_type;int reg_nr;reg_nr |
9c04cab7 | 478 | |
8bcb5208 AB |
479 | # Generate a dummy frame_id for THIS_FRAME assuming that the frame is |
480 | # a dummy frame. A dummy frame is created before an inferior call, | |
481 | # the frame_id returned here must match the frame_id that was built | |
482 | # for the inferior call. Usually this means the returned frame_id's | |
483 | # stack address should match the address returned by | |
484 | # gdbarch_push_dummy_call, and the returned frame_id's code address | |
485 | # should match the address at which the breakpoint was set in the dummy | |
486 | # frame. | |
487 | m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0 | |
669fac23 | 488 | # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete |
064f5156 | 489 | # deprecated_fp_regnum. |
ea480a30 | 490 | v;int;deprecated_fp_regnum;;;-1;-1;;0 |
f3be58bc | 491 | |
cf84fa6b | 492 | M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr |
ea480a30 SM |
493 | v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0 |
494 | M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache | |
57010b1c | 495 | |
7eb89530 | 496 | # Return true if the code of FRAME is writable. |
ea480a30 | 497 | m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0 |
7eb89530 | 498 | |
ea480a30 SM |
499 | m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0 |
500 | m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0 | |
501 | M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args | |
7c7651b2 AC |
502 | # MAP a GDB RAW register number onto a simulator register number. See |
503 | # also include/...-sim.h. | |
ea480a30 SM |
504 | m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0 |
505 | m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0 | |
506 | m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0 | |
eade6471 JB |
507 | |
508 | # Determine the address where a longjmp will land and save this address | |
509 | # in PC. Return nonzero on success. | |
510 | # | |
511 | # FRAME corresponds to the longjmp frame. | |
ea480a30 | 512 | F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc |
eade6471 | 513 | |
104c1213 | 514 | # |
ea480a30 | 515 | v;int;believe_pcc_promotion;;;;;;; |
104c1213 | 516 | # |
ea480a30 SM |
517 | m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0 |
518 | f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0 | |
519 | f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0 | |
9acbedc0 | 520 | # Construct a value representing the contents of register REGNUM in |
2ed3c037 | 521 | # frame FRAME_ID, interpreted as type TYPE. The routine needs to |
9acbedc0 UW |
522 | # allocate and return a struct value with all value attributes |
523 | # (but not the value contents) filled in. | |
ea480a30 | 524 | m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0 |
104c1213 | 525 | # |
ea480a30 SM |
526 | m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0 |
527 | m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0 | |
528 | M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf | |
92ad9cd9 | 529 | |
6a3a010b MR |
530 | # Return the return-value convention that will be used by FUNCTION |
531 | # to return a value of type VALTYPE. FUNCTION may be NULL in which | |
ea42b34a JB |
532 | # case the return convention is computed based only on VALTYPE. |
533 | # | |
534 | # If READBUF is not NULL, extract the return value and save it in this buffer. | |
535 | # | |
536 | # If WRITEBUF is not NULL, it contains a return value which will be | |
537 | # stored into the appropriate register. This can be used when we want | |
538 | # to force the value returned by a function (see the "return" command | |
539 | # for instance). | |
ea480a30 | 540 | M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf |
92ad9cd9 | 541 | |
18648a37 YQ |
542 | # Return true if the return value of function is stored in the first hidden |
543 | # parameter. In theory, this feature should be language-dependent, specified | |
544 | # by language and its ABI, such as C++. Unfortunately, compiler may | |
545 | # implement it to a target-dependent feature. So that we need such hook here | |
546 | # to be aware of this in GDB. | |
ea480a30 | 547 | m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0 |
18648a37 | 548 | |
ea480a30 SM |
549 | m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0 |
550 | M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip | |
591a12a1 UW |
551 | # On some platforms, a single function may provide multiple entry points, |
552 | # e.g. one that is used for function-pointer calls and a different one | |
553 | # that is used for direct function calls. | |
554 | # In order to ensure that breakpoints set on the function will trigger | |
555 | # no matter via which entry point the function is entered, a platform | |
556 | # may provide the skip_entrypoint callback. It is called with IP set | |
557 | # to the main entry point of a function (as determined by the symbol table), | |
558 | # and should return the address of the innermost entry point, where the | |
559 | # actual breakpoint needs to be set. Note that skip_entrypoint is used | |
560 | # by GDB common code even when debugging optimized code, where skip_prologue | |
561 | # is not used. | |
ea480a30 | 562 | M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip |
591a12a1 | 563 | |
ea480a30 SM |
564 | f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0 |
565 | m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0 | |
cd6c3b4f YQ |
566 | |
567 | # Return the breakpoint kind for this target based on *PCPTR. | |
ea480a30 | 568 | m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0; |
cd6c3b4f YQ |
569 | |
570 | # Return the software breakpoint from KIND. KIND can have target | |
571 | # specific meaning like the Z0 kind parameter. | |
572 | # SIZE is set to the software breakpoint's length in memory. | |
ea480a30 | 573 | m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0 |
cd6c3b4f | 574 | |
833b7ab5 YQ |
575 | # Return the breakpoint kind for this target based on the current |
576 | # processor state (e.g. the current instruction mode on ARM) and the | |
577 | # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc. | |
ea480a30 | 578 | m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0 |
833b7ab5 | 579 | |
ea480a30 SM |
580 | M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr |
581 | m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0 | |
582 | m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0 | |
583 | v;CORE_ADDR;decr_pc_after_break;;;0;;;0 | |
782263ab AC |
584 | |
585 | # A function can be addressed by either it's "pointer" (possibly a | |
586 | # descriptor address) or "entry point" (first executable instruction). | |
587 | # The method "convert_from_func_ptr_addr" converting the former to the | |
cbf3b44a | 588 | # latter. gdbarch_deprecated_function_start_offset is being used to implement |
782263ab AC |
589 | # a simplified subset of that functionality - the function's address |
590 | # corresponds to the "function pointer" and the function's start | |
591 | # corresponds to the "function entry point" - and hence is redundant. | |
592 | ||
ea480a30 | 593 | v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0 |
782263ab | 594 | |
123dc839 DJ |
595 | # Return the remote protocol register number associated with this |
596 | # register. Normally the identity mapping. | |
ea480a30 | 597 | m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0 |
123dc839 | 598 | |
b2756930 | 599 | # Fetch the target specific address used to represent a load module. |
ea480a30 | 600 | F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile |
6e056c81 JB |
601 | |
602 | # Return the thread-local address at OFFSET in the thread-local | |
603 | # storage for the thread PTID and the shared library or executable | |
604 | # file given by LM_ADDR. If that block of thread-local storage hasn't | |
605 | # been allocated yet, this function may throw an error. LM_ADDR may | |
606 | # be zero for statically linked multithreaded inferiors. | |
607 | ||
608 | M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset | |
104c1213 | 609 | # |
ea480a30 | 610 | v;CORE_ADDR;frame_args_skip;;;0;;;0 |
8bcb5208 AB |
611 | m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0 |
612 | m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0 | |
42efa47a AC |
613 | # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame |
614 | # frame-base. Enable frame-base before frame-unwind. | |
ea480a30 | 615 | F;int;frame_num_args;struct frame_info *frame;frame |
104c1213 | 616 | # |
ea480a30 SM |
617 | M;CORE_ADDR;frame_align;CORE_ADDR address;address |
618 | m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0 | |
619 | v;int;frame_red_zone_size | |
f0d4cc9e | 620 | # |
ea480a30 | 621 | m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0 |
875e1767 AC |
622 | # On some machines there are bits in addresses which are not really |
623 | # part of the address, but are used by the kernel, the hardware, etc. | |
bf6ae464 | 624 | # for special purposes. gdbarch_addr_bits_remove takes out any such bits so |
875e1767 AC |
625 | # we get a "real" address such as one would find in a symbol table. |
626 | # This is used only for addresses of instructions, and even then I'm | |
627 | # not sure it's used in all contexts. It exists to deal with there | |
628 | # being a few stray bits in the PC which would mislead us, not as some | |
629 | # sort of generic thing to handle alignment or segmentation (it's | |
630 | # possible it should be in TARGET_READ_PC instead). | |
ea480a30 | 631 | m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0 |
e6590a1b | 632 | |
a738ea1d YQ |
633 | # On some machines, not all bits of an address word are significant. |
634 | # For example, on AArch64, the top bits of an address known as the "tag" | |
635 | # are ignored by the kernel, the hardware, etc. and can be regarded as | |
636 | # additional data associated with the address. | |
5969f0db | 637 | v;int;significant_addr_bit;;;;;;0 |
a738ea1d | 638 | |
e6590a1b UW |
639 | # FIXME/cagney/2001-01-18: This should be split in two. A target method that |
640 | # indicates if the target needs software single step. An ISA method to | |
641 | # implement it. | |
642 | # | |
e6590a1b UW |
643 | # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the |
644 | # target can single step. If not, then implement single step using breakpoints. | |
64c4637f | 645 | # |
93f9a11f YQ |
646 | # Return a vector of addresses on which the software single step |
647 | # breakpoints should be inserted. NULL means software single step is | |
648 | # not used. | |
649 | # Multiple breakpoints may be inserted for some instructions such as | |
650 | # conditional branch. However, each implementation must always evaluate | |
651 | # the condition and only put the breakpoint at the branch destination if | |
652 | # the condition is true, so that we ensure forward progress when stepping | |
653 | # past a conditional branch to self. | |
a0ff9e1a | 654 | F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache |
e6590a1b | 655 | |
3352ef37 AC |
656 | # Return non-zero if the processor is executing a delay slot and a |
657 | # further single-step is needed before the instruction finishes. | |
ea480a30 | 658 | M;int;single_step_through_delay;struct frame_info *frame;frame |
f6c40618 | 659 | # FIXME: cagney/2003-08-28: Need to find a better way of selecting the |
b2fa5097 | 660 | # disassembler. Perhaps objdump can handle it? |
39503f82 | 661 | f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0 |
ea480a30 | 662 | f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0 |
d50355b6 MS |
663 | |
664 | ||
cfd8ab24 | 665 | # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER |
dea0c52f MK |
666 | # evaluates non-zero, this is the address where the debugger will place |
667 | # a step-resume breakpoint to get us past the dynamic linker. | |
ea480a30 | 668 | m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0 |
d50355b6 | 669 | # Some systems also have trampoline code for returning from shared libs. |
ea480a30 | 670 | m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0 |
d50355b6 | 671 | |
1d509aa6 MM |
672 | # Return true if PC lies inside an indirect branch thunk. |
673 | m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0 | |
674 | ||
c12260ac CV |
675 | # A target might have problems with watchpoints as soon as the stack |
676 | # frame of the current function has been destroyed. This mostly happens | |
c9cf6e20 | 677 | # as the first action in a function's epilogue. stack_frame_destroyed_p() |
c12260ac CV |
678 | # is defined to return a non-zero value if either the given addr is one |
679 | # instruction after the stack destroying instruction up to the trailing | |
680 | # return instruction or if we can figure out that the stack frame has | |
681 | # already been invalidated regardless of the value of addr. Targets | |
682 | # which don't suffer from that problem could just let this functionality | |
683 | # untouched. | |
ea480a30 | 684 | m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0 |
3e29f34a MR |
685 | # Process an ELF symbol in the minimal symbol table in a backend-specific |
686 | # way. Normally this hook is supposed to do nothing, however if required, | |
687 | # then this hook can be used to apply tranformations to symbols that are | |
688 | # considered special in some way. For example the MIPS backend uses it | |
689 | # to interpret \`st_other' information to mark compressed code symbols so | |
690 | # that they can be treated in the appropriate manner in the processing of | |
691 | # the main symbol table and DWARF-2 records. | |
ea480a30 SM |
692 | F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym |
693 | f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0 | |
3e29f34a MR |
694 | # Process a symbol in the main symbol table in a backend-specific way. |
695 | # Normally this hook is supposed to do nothing, however if required, | |
696 | # then this hook can be used to apply tranformations to symbols that | |
697 | # are considered special in some way. This is currently used by the | |
698 | # MIPS backend to make sure compressed code symbols have the ISA bit | |
699 | # set. This in turn is needed for symbol values seen in GDB to match | |
700 | # the values used at the runtime by the program itself, for function | |
701 | # and label references. | |
ea480a30 | 702 | f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0 |
3e29f34a MR |
703 | # Adjust the address retrieved from a DWARF-2 record other than a line |
704 | # entry in a backend-specific way. Normally this hook is supposed to | |
705 | # return the address passed unchanged, however if that is incorrect for | |
706 | # any reason, then this hook can be used to fix the address up in the | |
707 | # required manner. This is currently used by the MIPS backend to make | |
708 | # sure addresses in FDE, range records, etc. referring to compressed | |
709 | # code have the ISA bit set, matching line information and the symbol | |
710 | # table. | |
ea480a30 | 711 | f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0 |
3e29f34a MR |
712 | # Adjust the address updated by a line entry in a backend-specific way. |
713 | # Normally this hook is supposed to return the address passed unchanged, | |
714 | # however in the case of inconsistencies in these records, this hook can | |
715 | # be used to fix them up in the required manner. This is currently used | |
716 | # by the MIPS backend to make sure all line addresses in compressed code | |
717 | # are presented with the ISA bit set, which is not always the case. This | |
718 | # in turn ensures breakpoint addresses are correctly matched against the | |
719 | # stop PC. | |
ea480a30 SM |
720 | f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0 |
721 | v;int;cannot_step_breakpoint;;;0;0;;0 | |
7ea65f08 PA |
722 | # See comment in target.h about continuable, steppable and |
723 | # non-steppable watchpoints. | |
ea480a30 SM |
724 | v;int;have_nonsteppable_watchpoint;;;0;0;;0 |
725 | F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class | |
726 | M;const char *;address_class_type_flags_to_name;int type_flags;type_flags | |
b41c5a85 JW |
727 | # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction. |
728 | # FS are passed from the generic execute_cfa_program function. | |
ea480a30 | 729 | m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0 |
69f97648 SM |
730 | |
731 | # Return the appropriate type_flags for the supplied address class. | |
732 | # This function should return 1 if the address class was recognized and | |
733 | # type_flags was set, zero otherwise. | |
ea480a30 | 734 | M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr |
b59ff9d5 | 735 | # Is a register in a group |
ea480a30 | 736 | m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0 |
f6214256 | 737 | # Fetch the pointer to the ith function argument. |
ea480a30 | 738 | F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type |
6ce6d90f | 739 | |
5aa82d05 AA |
740 | # Iterate over all supported register notes in a core file. For each |
741 | # supported register note section, the iterator must call CB and pass | |
742 | # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit | |
743 | # the supported register note sections based on the current register | |
744 | # values. Otherwise it should enumerate all supported register note | |
745 | # sections. | |
ea480a30 | 746 | M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache |
17ea7499 | 747 | |
6432734d | 748 | # Create core file notes |
ea480a30 | 749 | M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size |
6432734d | 750 | |
35c2fab7 | 751 | # Find core file memory regions |
ea480a30 | 752 | M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data |
35c2fab7 | 753 | |
de584861 | 754 | # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from |
c09f20e4 YQ |
755 | # core file into buffer READBUF with length LEN. Return the number of bytes read |
756 | # (zero indicates failure). | |
757 | # failed, otherwise, return the red length of READBUF. | |
ea480a30 | 758 | M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len |
de584861 | 759 | |
356a5233 JB |
760 | # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared |
761 | # libraries list from core file into buffer READBUF with length LEN. | |
c09f20e4 | 762 | # Return the number of bytes read (zero indicates failure). |
ea480a30 | 763 | M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len |
356a5233 | 764 | |
c0edd9ed | 765 | # How the core target converts a PTID from a core file to a string. |
a068643d | 766 | M;std::string;core_pid_to_str;ptid_t ptid;ptid |
28439f5e | 767 | |
4dfc5dbc | 768 | # How the core target extracts the name of a thread from a core file. |
ea480a30 | 769 | M;const char *;core_thread_name;struct thread_info *thr;thr |
4dfc5dbc | 770 | |
382b69bb JB |
771 | # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information |
772 | # from core file into buffer READBUF with length LEN. Return the number | |
773 | # of bytes read (zero indicates EOF, a negative value indicates failure). | |
774 | M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len | |
775 | ||
a78c2d62 | 776 | # BFD target to use when generating a core file. |
ea480a30 | 777 | V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target) |
a78c2d62 | 778 | |
0d5de010 DJ |
779 | # If the elements of C++ vtables are in-place function descriptors rather |
780 | # than normal function pointers (which may point to code or a descriptor), | |
781 | # set this to one. | |
ea480a30 | 782 | v;int;vtable_function_descriptors;;;0;0;;0 |
0d5de010 DJ |
783 | |
784 | # Set if the least significant bit of the delta is used instead of the least | |
785 | # significant bit of the pfn for pointers to virtual member functions. | |
ea480a30 | 786 | v;int;vbit_in_delta;;;0;0;;0 |
6d350bb5 UW |
787 | |
788 | # Advance PC to next instruction in order to skip a permanent breakpoint. | |
ea480a30 | 789 | f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0 |
1c772458 | 790 | |
1668ae25 | 791 | # The maximum length of an instruction on this architecture in bytes. |
ea480a30 | 792 | V;ULONGEST;max_insn_length;;;0;0 |
237fc4c9 PA |
793 | |
794 | # Copy the instruction at FROM to TO, and make any adjustments | |
795 | # necessary to single-step it at that address. | |
796 | # | |
797 | # REGS holds the state the thread's registers will have before | |
798 | # executing the copied instruction; the PC in REGS will refer to FROM, | |
799 | # not the copy at TO. The caller should update it to point at TO later. | |
800 | # | |
801 | # Return a pointer to data of the architecture's choice to be passed | |
802 | # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that | |
803 | # the instruction's effects have been completely simulated, with the | |
804 | # resulting state written back to REGS. | |
805 | # | |
806 | # For a general explanation of displaced stepping and how GDB uses it, | |
807 | # see the comments in infrun.c. | |
808 | # | |
809 | # The TO area is only guaranteed to have space for | |
810 | # gdbarch_max_insn_length (arch) bytes, so this function must not | |
811 | # write more bytes than that to that area. | |
812 | # | |
813 | # If you do not provide this function, GDB assumes that the | |
814 | # architecture does not support displaced stepping. | |
815 | # | |
7f03bd92 PA |
816 | # If the instruction cannot execute out of line, return NULL. The |
817 | # core falls back to stepping past the instruction in-line instead in | |
818 | # that case. | |
ea480a30 | 819 | M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs |
237fc4c9 | 820 | |
99e40580 UW |
821 | # Return true if GDB should use hardware single-stepping to execute |
822 | # the displaced instruction identified by CLOSURE. If false, | |
823 | # GDB will simply restart execution at the displaced instruction | |
824 | # location, and it is up to the target to ensure GDB will receive | |
825 | # control again (e.g. by placing a software breakpoint instruction | |
826 | # into the displaced instruction buffer). | |
827 | # | |
828 | # The default implementation returns false on all targets that | |
829 | # provide a gdbarch_software_single_step routine, and true otherwise. | |
ea480a30 | 830 | m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0 |
99e40580 | 831 | |
237fc4c9 PA |
832 | # Fix up the state resulting from successfully single-stepping a |
833 | # displaced instruction, to give the result we would have gotten from | |
834 | # stepping the instruction in its original location. | |
835 | # | |
836 | # REGS is the register state resulting from single-stepping the | |
837 | # displaced instruction. | |
838 | # | |
839 | # CLOSURE is the result from the matching call to | |
840 | # gdbarch_displaced_step_copy_insn. | |
841 | # | |
842 | # If you provide gdbarch_displaced_step_copy_insn.but not this | |
843 | # function, then GDB assumes that no fixup is needed after | |
844 | # single-stepping the instruction. | |
845 | # | |
846 | # For a general explanation of displaced stepping and how GDB uses it, | |
847 | # see the comments in infrun.c. | |
ea480a30 | 848 | M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL |
237fc4c9 | 849 | |
237fc4c9 PA |
850 | # Return the address of an appropriate place to put displaced |
851 | # instructions while we step over them. There need only be one such | |
852 | # place, since we're only stepping one thread over a breakpoint at a | |
853 | # time. | |
854 | # | |
855 | # For a general explanation of displaced stepping and how GDB uses it, | |
856 | # see the comments in infrun.c. | |
ea480a30 | 857 | m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn) |
237fc4c9 | 858 | |
dde08ee1 PA |
859 | # Relocate an instruction to execute at a different address. OLDLOC |
860 | # is the address in the inferior memory where the instruction to | |
861 | # relocate is currently at. On input, TO points to the destination | |
862 | # where we want the instruction to be copied (and possibly adjusted) | |
863 | # to. On output, it points to one past the end of the resulting | |
864 | # instruction(s). The effect of executing the instruction at TO shall | |
865 | # be the same as if executing it at FROM. For example, call | |
866 | # instructions that implicitly push the return address on the stack | |
867 | # should be adjusted to return to the instruction after OLDLOC; | |
868 | # relative branches, and other PC-relative instructions need the | |
869 | # offset adjusted; etc. | |
ea480a30 | 870 | M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL |
dde08ee1 | 871 | |
1c772458 | 872 | # Refresh overlay mapped state for section OSECT. |
ea480a30 | 873 | F;void;overlay_update;struct obj_section *osect;osect |
4eb0ad19 | 874 | |
ea480a30 | 875 | M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd |
149ad273 UW |
876 | |
877 | # Handle special encoding of static variables in stabs debug info. | |
ea480a30 | 878 | F;const char *;static_transform_name;const char *name;name |
203c3895 | 879 | # Set if the address in N_SO or N_FUN stabs may be zero. |
ea480a30 | 880 | v;int;sofun_address_maybe_missing;;;0;0;;0 |
1cded358 | 881 | |
0508c3ec HZ |
882 | # Parse the instruction at ADDR storing in the record execution log |
883 | # the registers REGCACHE and memory ranges that will be affected when | |
884 | # the instruction executes, along with their current values. | |
885 | # Return -1 if something goes wrong, 0 otherwise. | |
ea480a30 | 886 | M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr |
0508c3ec | 887 | |
3846b520 HZ |
888 | # Save process state after a signal. |
889 | # Return -1 if something goes wrong, 0 otherwise. | |
ea480a30 | 890 | M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal |
3846b520 | 891 | |
22203bbf | 892 | # Signal translation: translate inferior's signal (target's) number |
86b49880 PA |
893 | # into GDB's representation. The implementation of this method must |
894 | # be host independent. IOW, don't rely on symbols of the NAT_FILE | |
895 | # header (the nm-*.h files), the host <signal.h> header, or similar | |
896 | # headers. This is mainly used when cross-debugging core files --- | |
897 | # "Live" targets hide the translation behind the target interface | |
1f8cf220 | 898 | # (target_wait, target_resume, etc.). |
ea480a30 | 899 | M;enum gdb_signal;gdb_signal_from_target;int signo;signo |
60c5725c | 900 | |
eb14d406 SDJ |
901 | # Signal translation: translate the GDB's internal signal number into |
902 | # the inferior's signal (target's) representation. The implementation | |
903 | # of this method must be host independent. IOW, don't rely on symbols | |
904 | # of the NAT_FILE header (the nm-*.h files), the host <signal.h> | |
905 | # header, or similar headers. | |
906 | # Return the target signal number if found, or -1 if the GDB internal | |
907 | # signal number is invalid. | |
ea480a30 | 908 | M;int;gdb_signal_to_target;enum gdb_signal signal;signal |
eb14d406 | 909 | |
4aa995e1 PA |
910 | # Extra signal info inspection. |
911 | # | |
912 | # Return a type suitable to inspect extra signal information. | |
ea480a30 | 913 | M;struct type *;get_siginfo_type;void; |
4aa995e1 | 914 | |
60c5725c | 915 | # Record architecture-specific information from the symbol table. |
ea480a30 | 916 | M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym |
50c71eaf | 917 | |
a96d9b2e SDJ |
918 | # Function for the 'catch syscall' feature. |
919 | ||
920 | # Get architecture-specific system calls information from registers. | |
00431a78 | 921 | M;LONGEST;get_syscall_number;thread_info *thread;thread |
a96d9b2e | 922 | |
458c8db8 | 923 | # The filename of the XML syscall for this architecture. |
ea480a30 | 924 | v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file) |
458c8db8 SDJ |
925 | |
926 | # Information about system calls from this architecture | |
ea480a30 | 927 | v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info) |
458c8db8 | 928 | |
55aa24fb SDJ |
929 | # SystemTap related fields and functions. |
930 | ||
05c0465e SDJ |
931 | # A NULL-terminated array of prefixes used to mark an integer constant |
932 | # on the architecture's assembly. | |
55aa24fb SDJ |
933 | # For example, on x86 integer constants are written as: |
934 | # | |
935 | # \$10 ;; integer constant 10 | |
936 | # | |
937 | # in this case, this prefix would be the character \`\$\'. | |
ea480a30 | 938 | v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes) |
55aa24fb | 939 | |
05c0465e SDJ |
940 | # A NULL-terminated array of suffixes used to mark an integer constant |
941 | # on the architecture's assembly. | |
ea480a30 | 942 | v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes) |
55aa24fb | 943 | |
05c0465e SDJ |
944 | # A NULL-terminated array of prefixes used to mark a register name on |
945 | # the architecture's assembly. | |
55aa24fb SDJ |
946 | # For example, on x86 the register name is written as: |
947 | # | |
948 | # \%eax ;; register eax | |
949 | # | |
950 | # in this case, this prefix would be the character \`\%\'. | |
ea480a30 | 951 | v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes) |
55aa24fb | 952 | |
05c0465e SDJ |
953 | # A NULL-terminated array of suffixes used to mark a register name on |
954 | # the architecture's assembly. | |
ea480a30 | 955 | v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes) |
55aa24fb | 956 | |
05c0465e SDJ |
957 | # A NULL-terminated array of prefixes used to mark a register |
958 | # indirection on the architecture's assembly. | |
55aa24fb SDJ |
959 | # For example, on x86 the register indirection is written as: |
960 | # | |
961 | # \(\%eax\) ;; indirecting eax | |
962 | # | |
963 | # in this case, this prefix would be the charater \`\(\'. | |
964 | # | |
965 | # Please note that we use the indirection prefix also for register | |
966 | # displacement, e.g., \`4\(\%eax\)\' on x86. | |
ea480a30 | 967 | v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes) |
55aa24fb | 968 | |
05c0465e SDJ |
969 | # A NULL-terminated array of suffixes used to mark a register |
970 | # indirection on the architecture's assembly. | |
55aa24fb SDJ |
971 | # For example, on x86 the register indirection is written as: |
972 | # | |
973 | # \(\%eax\) ;; indirecting eax | |
974 | # | |
975 | # in this case, this prefix would be the charater \`\)\'. | |
976 | # | |
977 | # Please note that we use the indirection suffix also for register | |
978 | # displacement, e.g., \`4\(\%eax\)\' on x86. | |
ea480a30 | 979 | v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes) |
55aa24fb | 980 | |
05c0465e | 981 | # Prefix(es) used to name a register using GDB's nomenclature. |
55aa24fb SDJ |
982 | # |
983 | # For example, on PPC a register is represented by a number in the assembly | |
984 | # language (e.g., \`10\' is the 10th general-purpose register). However, | |
985 | # inside GDB this same register has an \`r\' appended to its name, so the 10th | |
986 | # register would be represented as \`r10\' internally. | |
ea480a30 | 987 | v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix) |
55aa24fb SDJ |
988 | |
989 | # Suffix used to name a register using GDB's nomenclature. | |
ea480a30 | 990 | v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix) |
55aa24fb SDJ |
991 | |
992 | # Check if S is a single operand. | |
993 | # | |
994 | # Single operands can be: | |
995 | # \- Literal integers, e.g. \`\$10\' on x86 | |
996 | # \- Register access, e.g. \`\%eax\' on x86 | |
997 | # \- Register indirection, e.g. \`\(\%eax\)\' on x86 | |
998 | # \- Register displacement, e.g. \`4\(\%eax\)\' on x86 | |
999 | # | |
1000 | # This function should check for these patterns on the string | |
1001 | # and return 1 if some were found, or zero otherwise. Please try to match | |
1002 | # as much info as you can from the string, i.e., if you have to match | |
1003 | # something like \`\(\%\', do not match just the \`\(\'. | |
ea480a30 | 1004 | M;int;stap_is_single_operand;const char *s;s |
55aa24fb SDJ |
1005 | |
1006 | # Function used to handle a "special case" in the parser. | |
1007 | # | |
1008 | # A "special case" is considered to be an unknown token, i.e., a token | |
1009 | # that the parser does not know how to parse. A good example of special | |
1010 | # case would be ARM's register displacement syntax: | |
1011 | # | |
1012 | # [R0, #4] ;; displacing R0 by 4 | |
1013 | # | |
1014 | # Since the parser assumes that a register displacement is of the form: | |
1015 | # | |
1016 | # <number> <indirection_prefix> <register_name> <indirection_suffix> | |
1017 | # | |
1018 | # it means that it will not be able to recognize and parse this odd syntax. | |
1019 | # Therefore, we should add a special case function that will handle this token. | |
1020 | # | |
1021 | # This function should generate the proper expression form of the expression | |
1022 | # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\' | |
1023 | # and so on). It should also return 1 if the parsing was successful, or zero | |
1024 | # if the token was not recognized as a special token (in this case, returning | |
1025 | # zero means that the special parser is deferring the parsing to the generic | |
1026 | # parser), and should advance the buffer pointer (p->arg). | |
ea480a30 | 1027 | M;int;stap_parse_special_token;struct stap_parse_info *p;p |
55aa24fb | 1028 | |
7d7571f0 SDJ |
1029 | # Perform arch-dependent adjustments to a register name. |
1030 | # | |
1031 | # In very specific situations, it may be necessary for the register | |
1032 | # name present in a SystemTap probe's argument to be handled in a | |
1033 | # special way. For example, on i386, GCC may over-optimize the | |
1034 | # register allocation and use smaller registers than necessary. In | |
1035 | # such cases, the client that is reading and evaluating the SystemTap | |
1036 | # probe (ourselves) will need to actually fetch values from the wider | |
1037 | # version of the register in question. | |
1038 | # | |
1039 | # To illustrate the example, consider the following probe argument | |
1040 | # (i386): | |
1041 | # | |
1042 | # 4@%ax | |
1043 | # | |
1044 | # This argument says that its value can be found at the %ax register, | |
1045 | # which is a 16-bit register. However, the argument's prefix says | |
1046 | # that its type is "uint32_t", which is 32-bit in size. Therefore, in | |
1047 | # this case, GDB should actually fetch the probe's value from register | |
1048 | # %eax, not %ax. In this scenario, this function would actually | |
1049 | # replace the register name from %ax to %eax. | |
1050 | # | |
1051 | # The rationale for this can be found at PR breakpoints/24541. | |
6b78c3f8 | 1052 | M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \®name, int regnum;p, regname, regnum |
7d7571f0 | 1053 | |
8b367e17 JM |
1054 | # DTrace related functions. |
1055 | ||
1056 | # The expression to compute the NARTGth+1 argument to a DTrace USDT probe. | |
1057 | # NARG must be >= 0. | |
37eedb39 | 1058 | M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg |
8b367e17 JM |
1059 | |
1060 | # True if the given ADDR does not contain the instruction sequence | |
1061 | # corresponding to a disabled DTrace is-enabled probe. | |
ea480a30 | 1062 | M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr |
8b367e17 JM |
1063 | |
1064 | # Enable a DTrace is-enabled probe at ADDR. | |
ea480a30 | 1065 | M;void;dtrace_enable_probe;CORE_ADDR addr;addr |
8b367e17 JM |
1066 | |
1067 | # Disable a DTrace is-enabled probe at ADDR. | |
ea480a30 | 1068 | M;void;dtrace_disable_probe;CORE_ADDR addr;addr |
55aa24fb | 1069 | |
50c71eaf PA |
1070 | # True if the list of shared libraries is one and only for all |
1071 | # processes, as opposed to a list of shared libraries per inferior. | |
2567c7d9 PA |
1072 | # This usually means that all processes, although may or may not share |
1073 | # an address space, will see the same set of symbols at the same | |
1074 | # addresses. | |
ea480a30 | 1075 | v;int;has_global_solist;;;0;0;;0 |
2567c7d9 PA |
1076 | |
1077 | # On some targets, even though each inferior has its own private | |
1078 | # address space, the debug interface takes care of making breakpoints | |
1079 | # visible to all address spaces automatically. For such cases, | |
1080 | # this property should be set to true. | |
ea480a30 | 1081 | v;int;has_global_breakpoints;;;0;0;;0 |
6c95b8df PA |
1082 | |
1083 | # True if inferiors share an address space (e.g., uClinux). | |
ea480a30 | 1084 | m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0 |
7a697b8d SS |
1085 | |
1086 | # True if a fast tracepoint can be set at an address. | |
281d762b | 1087 | m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0 |
75cebea9 | 1088 | |
5f034a78 MK |
1089 | # Guess register state based on tracepoint location. Used for tracepoints |
1090 | # where no registers have been collected, but there's only one location, | |
1091 | # allowing us to guess the PC value, and perhaps some other registers. | |
1092 | # On entry, regcache has all registers marked as unavailable. | |
ea480a30 | 1093 | m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0 |
5f034a78 | 1094 | |
f870a310 | 1095 | # Return the "auto" target charset. |
ea480a30 | 1096 | f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0 |
f870a310 | 1097 | # Return the "auto" target wide charset. |
ea480a30 | 1098 | f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0 |
08105857 PA |
1099 | |
1100 | # If non-empty, this is a file extension that will be opened in place | |
1101 | # of the file extension reported by the shared library list. | |
1102 | # | |
1103 | # This is most useful for toolchains that use a post-linker tool, | |
1104 | # where the names of the files run on the target differ in extension | |
1105 | # compared to the names of the files GDB should load for debug info. | |
ea480a30 | 1106 | v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension) |
ab38a727 PA |
1107 | |
1108 | # If true, the target OS has DOS-based file system semantics. That | |
1109 | # is, absolute paths include a drive name, and the backslash is | |
1110 | # considered a directory separator. | |
ea480a30 | 1111 | v;int;has_dos_based_file_system;;;0;0;;0 |
6710bf39 SS |
1112 | |
1113 | # Generate bytecodes to collect the return address in a frame. | |
1114 | # Since the bytecodes run on the target, possibly with GDB not even | |
1115 | # connected, the full unwinding machinery is not available, and | |
1116 | # typically this function will issue bytecodes for one or more likely | |
1117 | # places that the return address may be found. | |
ea480a30 | 1118 | m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0 |
6710bf39 | 1119 | |
3030c96e | 1120 | # Implement the "info proc" command. |
ea480a30 | 1121 | M;void;info_proc;const char *args, enum info_proc_what what;args, what |
3030c96e | 1122 | |
451b7c33 TT |
1123 | # Implement the "info proc" command for core files. Noe that there |
1124 | # are two "info_proc"-like methods on gdbarch -- one for core files, | |
1125 | # one for live targets. | |
ea480a30 | 1126 | M;void;core_info_proc;const char *args, enum info_proc_what what;args, what |
451b7c33 | 1127 | |
19630284 JB |
1128 | # Iterate over all objfiles in the order that makes the most sense |
1129 | # for the architecture to make global symbol searches. | |
1130 | # | |
1131 | # CB is a callback function where OBJFILE is the objfile to be searched, | |
1132 | # and CB_DATA a pointer to user-defined data (the same data that is passed | |
1133 | # when calling this gdbarch method). The iteration stops if this function | |
1134 | # returns nonzero. | |
1135 | # | |
1136 | # CB_DATA is a pointer to some user-defined data to be passed to | |
1137 | # the callback. | |
1138 | # | |
1139 | # If not NULL, CURRENT_OBJFILE corresponds to the objfile being | |
1140 | # inspected when the symbol search was requested. | |
ea480a30 | 1141 | m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0 |
19630284 | 1142 | |
7e35103a | 1143 | # Ravenscar arch-dependent ops. |
ea480a30 | 1144 | v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops) |
c2170eef MM |
1145 | |
1146 | # Return non-zero if the instruction at ADDR is a call; zero otherwise. | |
ea480a30 | 1147 | m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0 |
c2170eef MM |
1148 | |
1149 | # Return non-zero if the instruction at ADDR is a return; zero otherwise. | |
ea480a30 | 1150 | m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0 |
c2170eef MM |
1151 | |
1152 | # Return non-zero if the instruction at ADDR is a jump; zero otherwise. | |
ea480a30 | 1153 | m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0 |
27a48a92 | 1154 | |
5133a315 LM |
1155 | # Return true if there's a program/permanent breakpoint planted in |
1156 | # memory at ADDRESS, return false otherwise. | |
1157 | m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0 | |
1158 | ||
27a48a92 MK |
1159 | # Read one auxv entry from *READPTR, not reading locations >= ENDPTR. |
1160 | # Return 0 if *READPTR is already at the end of the buffer. | |
1161 | # Return -1 if there is insufficient buffer for a whole entry. | |
1162 | # Return 1 if an entry was read into *TYPEP and *VALP. | |
ea480a30 | 1163 | M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp |
3437254d | 1164 | |
2faa3447 JB |
1165 | # Print the description of a single auxv entry described by TYPE and VAL |
1166 | # to FILE. | |
ea480a30 | 1167 | m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0 |
2faa3447 | 1168 | |
3437254d PA |
1169 | # Find the address range of the current inferior's vsyscall/vDSO, and |
1170 | # write it to *RANGE. If the vsyscall's length can't be determined, a | |
1171 | # range with zero length is returned. Returns true if the vsyscall is | |
1172 | # found, false otherwise. | |
ea480a30 | 1173 | m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0 |
f208eee0 JK |
1174 | |
1175 | # Allocate SIZE bytes of PROT protected page aligned memory in inferior. | |
1176 | # PROT has GDB_MMAP_PROT_* bitmask format. | |
1177 | # Throw an error if it is not possible. Returned address is always valid. | |
ea480a30 | 1178 | f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0 |
f208eee0 | 1179 | |
7f361056 JK |
1180 | # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap. |
1181 | # Print a warning if it is not possible. | |
ea480a30 | 1182 | f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0 |
7f361056 | 1183 | |
f208eee0 JK |
1184 | # Return string (caller has to use xfree for it) with options for GCC |
1185 | # to produce code for this target, typically "-m64", "-m32" or "-m31". | |
1186 | # These options are put before CU's DW_AT_producer compilation options so that | |
953cff56 TT |
1187 | # they can override it. |
1188 | m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0 | |
ac04f72b TT |
1189 | |
1190 | # Return a regular expression that matches names used by this | |
1191 | # architecture in GNU configury triplets. The result is statically | |
1192 | # allocated and must not be freed. The default implementation simply | |
1193 | # returns the BFD architecture name, which is correct in nearly every | |
1194 | # case. | |
ea480a30 | 1195 | m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0 |
3374165f SM |
1196 | |
1197 | # Return the size in 8-bit bytes of an addressable memory unit on this | |
1198 | # architecture. This corresponds to the number of 8-bit bytes associated to | |
1199 | # each address in memory. | |
ea480a30 | 1200 | m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0 |
3374165f | 1201 | |
65b48a81 | 1202 | # Functions for allowing a target to modify its disassembler options. |
471b9d15 | 1203 | v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit) |
ea480a30 | 1204 | v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options) |
471b9d15 | 1205 | v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options) |
65b48a81 | 1206 | |
5561fc30 AB |
1207 | # Type alignment override method. Return the architecture specific |
1208 | # alignment required for TYPE. If there is no special handling | |
1209 | # required for TYPE then return the value 0, GDB will then apply the | |
1210 | # default rules as laid out in gdbtypes.c:type_align. | |
2b4424c3 TT |
1211 | m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0 |
1212 | ||
aa7ca1bb AH |
1213 | # Return a string containing any flags for the given PC in the given FRAME. |
1214 | f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0 | |
1215 | ||
104c1213 | 1216 | EOF |
104c1213 JM |
1217 | } |
1218 | ||
0b8f9e4d AC |
1219 | # |
1220 | # The .log file | |
1221 | # | |
1222 | exec > new-gdbarch.log | |
34620563 | 1223 | function_list | while do_read |
0b8f9e4d AC |
1224 | do |
1225 | cat <<EOF | |
2f9b146e | 1226 | ${class} ${returntype} ${function} ($formal) |
104c1213 | 1227 | EOF |
3d9a5942 AC |
1228 | for r in ${read} |
1229 | do | |
1230 | eval echo \"\ \ \ \ ${r}=\${${r}}\" | |
1231 | done | |
f0d4cc9e | 1232 | if class_is_predicate_p && fallback_default_p |
0b8f9e4d | 1233 | then |
66d659b1 | 1234 | echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2 |
0b8f9e4d AC |
1235 | kill $$ |
1236 | exit 1 | |
1237 | fi | |
72e74a21 | 1238 | if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ] |
f0d4cc9e AC |
1239 | then |
1240 | echo "Error: postdefault is useless when invalid_p=0" 1>&2 | |
1241 | kill $$ | |
1242 | exit 1 | |
1243 | fi | |
a72293e2 AC |
1244 | if class_is_multiarch_p |
1245 | then | |
1246 | if class_is_predicate_p ; then : | |
1247 | elif test "x${predefault}" = "x" | |
1248 | then | |
2f9b146e | 1249 | echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2 |
a72293e2 AC |
1250 | kill $$ |
1251 | exit 1 | |
1252 | fi | |
1253 | fi | |
3d9a5942 | 1254 | echo "" |
0b8f9e4d AC |
1255 | done |
1256 | ||
1257 | exec 1>&2 | |
1258 | compare_new gdbarch.log | |
1259 | ||
104c1213 JM |
1260 | |
1261 | copyright () | |
1262 | { | |
1263 | cat <<EOF | |
c4bfde41 JK |
1264 | /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */ |
1265 | /* vi:set ro: */ | |
59233f88 | 1266 | |
104c1213 | 1267 | /* Dynamic architecture support for GDB, the GNU debugger. |
79d45cd4 | 1268 | |
e5d78223 | 1269 | Copyright (C) 1998-2020 Free Software Foundation, Inc. |
104c1213 JM |
1270 | |
1271 | This file is part of GDB. | |
1272 | ||
1273 | This program is free software; you can redistribute it and/or modify | |
1274 | it under the terms of the GNU General Public License as published by | |
50efebf8 | 1275 | the Free Software Foundation; either version 3 of the License, or |
104c1213 | 1276 | (at your option) any later version. |
618f726f | 1277 | |
104c1213 JM |
1278 | This program is distributed in the hope that it will be useful, |
1279 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
1280 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
1281 | GNU General Public License for more details. | |
618f726f | 1282 | |
104c1213 | 1283 | You should have received a copy of the GNU General Public License |
50efebf8 | 1284 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
104c1213 | 1285 | |
104c1213 JM |
1286 | /* This file was created with the aid of \`\`gdbarch.sh''. |
1287 | ||
52204a0b | 1288 | The Bourne shell script \`\`gdbarch.sh'' creates the files |
104c1213 JM |
1289 | \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them |
1290 | against the existing \`\`gdbarch.[hc]''. Any differences found | |
1291 | being reported. | |
1292 | ||
1293 | If editing this file, please also run gdbarch.sh and merge any | |
52204a0b | 1294 | changes into that script. Conversely, when making sweeping changes |
104c1213 | 1295 | to this file, modifying gdbarch.sh and using its output may prove |
0963b4bd | 1296 | easier. */ |
104c1213 JM |
1297 | |
1298 | EOF | |
1299 | } | |
1300 | ||
1301 | # | |
1302 | # The .h file | |
1303 | # | |
1304 | ||
1305 | exec > new-gdbarch.h | |
1306 | copyright | |
1307 | cat <<EOF | |
1308 | #ifndef GDBARCH_H | |
1309 | #define GDBARCH_H | |
1310 | ||
a0ff9e1a | 1311 | #include <vector> |
eb7a547a | 1312 | #include "frame.h" |
65b48a81 | 1313 | #include "dis-asm.h" |
284a0e3c | 1314 | #include "gdb_obstack.h" |
eb7a547a | 1315 | |
da3331ec AC |
1316 | struct floatformat; |
1317 | struct ui_file; | |
104c1213 | 1318 | struct value; |
b6af0555 | 1319 | struct objfile; |
1c772458 | 1320 | struct obj_section; |
a2cf933a | 1321 | struct minimal_symbol; |
049ee0e4 | 1322 | struct regcache; |
b59ff9d5 | 1323 | struct reggroup; |
6ce6d90f | 1324 | struct regset; |
a89aa300 | 1325 | struct disassemble_info; |
e2d0e7eb | 1326 | struct target_ops; |
030f20e1 | 1327 | struct obstack; |
8181d85f | 1328 | struct bp_target_info; |
424163ea | 1329 | struct target_desc; |
3e29f34a | 1330 | struct symbol; |
237fc4c9 | 1331 | struct displaced_step_closure; |
a96d9b2e | 1332 | struct syscall; |
175ff332 | 1333 | struct agent_expr; |
6710bf39 | 1334 | struct axs_value; |
55aa24fb | 1335 | struct stap_parse_info; |
37eedb39 | 1336 | struct expr_builder; |
7e35103a | 1337 | struct ravenscar_arch_ops; |
3437254d | 1338 | struct mem_range; |
458c8db8 | 1339 | struct syscalls_info; |
4dfc5dbc | 1340 | struct thread_info; |
012b3a21 | 1341 | struct ui_out; |
104c1213 | 1342 | |
8a526fa6 PA |
1343 | #include "regcache.h" |
1344 | ||
6ecd4729 PA |
1345 | /* The architecture associated with the inferior through the |
1346 | connection to the target. | |
1347 | ||
1348 | The architecture vector provides some information that is really a | |
1349 | property of the inferior, accessed through a particular target: | |
1350 | ptrace operations; the layout of certain RSP packets; the solib_ops | |
1351 | vector; etc. To differentiate architecture accesses to | |
1352 | per-inferior/target properties from | |
1353 | per-thread/per-frame/per-objfile properties, accesses to | |
1354 | per-inferior/target properties should be made through this | |
1355 | gdbarch. */ | |
1356 | ||
1357 | /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */ | |
f5656ead | 1358 | extern struct gdbarch *target_gdbarch (void); |
6ecd4729 | 1359 | |
19630284 JB |
1360 | /* Callback type for the 'iterate_over_objfiles_in_search_order' |
1361 | gdbarch method. */ | |
1362 | ||
1363 | typedef int (iterate_over_objfiles_in_search_order_cb_ftype) | |
1364 | (struct objfile *objfile, void *cb_data); | |
5aa82d05 | 1365 | |
1528345d AA |
1366 | /* Callback type for regset section iterators. The callback usually |
1367 | invokes the REGSET's supply or collect method, to which it must | |
a616bb94 AH |
1368 | pass a buffer - for collects this buffer will need to be created using |
1369 | COLLECT_SIZE, for supply the existing buffer being read from should | |
1370 | be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME | |
1371 | is used for diagnostic messages. CB_DATA should have been passed | |
1372 | unchanged through the iterator. */ | |
1528345d | 1373 | |
5aa82d05 | 1374 | typedef void (iterate_over_regset_sections_cb) |
a616bb94 AH |
1375 | (const char *sect_name, int supply_size, int collect_size, |
1376 | const struct regset *regset, const char *human_name, void *cb_data); | |
c5ac5cbb AH |
1377 | |
1378 | /* For a function call, does the function return a value using a | |
1379 | normal value return or a structure return - passing a hidden | |
1380 | argument pointing to storage. For the latter, there are two | |
1381 | cases: language-mandated structure return and target ABI | |
1382 | structure return. */ | |
1383 | ||
1384 | enum function_call_return_method | |
1385 | { | |
1386 | /* Standard value return. */ | |
1387 | return_method_normal = 0, | |
1388 | ||
1389 | /* Language ABI structure return. This is handled | |
1390 | by passing the return location as the first parameter to | |
1391 | the function, even preceding "this". */ | |
1392 | return_method_hidden_param, | |
1393 | ||
1394 | /* Target ABI struct return. This is target-specific; for instance, | |
1395 | on ia64 the first argument is passed in out0 but the hidden | |
1396 | structure return pointer would normally be passed in r8. */ | |
1397 | return_method_struct, | |
1398 | }; | |
1399 | ||
104c1213 JM |
1400 | EOF |
1401 | ||
1402 | # function typedef's | |
3d9a5942 AC |
1403 | printf "\n" |
1404 | printf "\n" | |
0963b4bd | 1405 | printf "/* The following are pre-initialized by GDBARCH. */\n" |
34620563 | 1406 | function_list | while do_read |
104c1213 | 1407 | do |
2ada493a AC |
1408 | if class_is_info_p |
1409 | then | |
3d9a5942 AC |
1410 | printf "\n" |
1411 | printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" | |
0963b4bd | 1412 | printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n" |
2ada493a | 1413 | fi |
104c1213 JM |
1414 | done |
1415 | ||
1416 | # function typedef's | |
3d9a5942 AC |
1417 | printf "\n" |
1418 | printf "\n" | |
0963b4bd | 1419 | printf "/* The following are initialized by the target dependent code. */\n" |
34620563 | 1420 | function_list | while do_read |
104c1213 | 1421 | do |
72e74a21 | 1422 | if [ -n "${comment}" ] |
34620563 AC |
1423 | then |
1424 | echo "${comment}" | sed \ | |
1425 | -e '2 s,#,/*,' \ | |
1426 | -e '3,$ s,#, ,' \ | |
1427 | -e '$ s,$, */,' | |
1428 | fi | |
412d5987 AC |
1429 | |
1430 | if class_is_predicate_p | |
2ada493a | 1431 | then |
412d5987 AC |
1432 | printf "\n" |
1433 | printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n" | |
4a5c6a1d | 1434 | fi |
2ada493a AC |
1435 | if class_is_variable_p |
1436 | then | |
3d9a5942 AC |
1437 | printf "\n" |
1438 | printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" | |
1439 | printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n" | |
2ada493a AC |
1440 | fi |
1441 | if class_is_function_p | |
1442 | then | |
3d9a5942 | 1443 | printf "\n" |
72e74a21 | 1444 | if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p |
4a5c6a1d AC |
1445 | then |
1446 | printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n" | |
1447 | elif class_is_multiarch_p | |
1448 | then | |
1449 | printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n" | |
1450 | else | |
1451 | printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n" | |
1452 | fi | |
72e74a21 | 1453 | if [ "x${formal}" = "xvoid" ] |
104c1213 | 1454 | then |
3d9a5942 | 1455 | printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n" |
104c1213 | 1456 | else |
3d9a5942 | 1457 | printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n" |
104c1213 | 1458 | fi |
3d9a5942 | 1459 | printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n" |
2ada493a | 1460 | fi |
104c1213 JM |
1461 | done |
1462 | ||
1463 | # close it off | |
1464 | cat <<EOF | |
1465 | ||
1466 | extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch); | |
1467 | ||
1468 | ||
1469 | /* Mechanism for co-ordinating the selection of a specific | |
1470 | architecture. | |
1471 | ||
1472 | GDB targets (*-tdep.c) can register an interest in a specific | |
1473 | architecture. Other GDB components can register a need to maintain | |
1474 | per-architecture data. | |
1475 | ||
1476 | The mechanisms below ensures that there is only a loose connection | |
1477 | between the set-architecture command and the various GDB | |
0fa6923a | 1478 | components. Each component can independently register their need |
104c1213 JM |
1479 | to maintain architecture specific data with gdbarch. |
1480 | ||
1481 | Pragmatics: | |
1482 | ||
1483 | Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It | |
1484 | didn't scale. | |
1485 | ||
1486 | The more traditional mega-struct containing architecture specific | |
1487 | data for all the various GDB components was also considered. Since | |
0fa6923a | 1488 | GDB is built from a variable number of (fairly independent) |
104c1213 | 1489 | components it was determined that the global aproach was not |
0963b4bd | 1490 | applicable. */ |
104c1213 JM |
1491 | |
1492 | ||
1493 | /* Register a new architectural family with GDB. | |
1494 | ||
1495 | Register support for the specified ARCHITECTURE with GDB. When | |
1496 | gdbarch determines that the specified architecture has been | |
1497 | selected, the corresponding INIT function is called. | |
1498 | ||
1499 | -- | |
1500 | ||
1501 | The INIT function takes two parameters: INFO which contains the | |
1502 | information available to gdbarch about the (possibly new) | |
1503 | architecture; ARCHES which is a list of the previously created | |
1504 | \`\`struct gdbarch'' for this architecture. | |
1505 | ||
0f79675b | 1506 | The INFO parameter is, as far as possible, be pre-initialized with |
7a107747 | 1507 | information obtained from INFO.ABFD or the global defaults. |
0f79675b AC |
1508 | |
1509 | The ARCHES parameter is a linked list (sorted most recently used) | |
1510 | of all the previously created architures for this architecture | |
1511 | family. The (possibly NULL) ARCHES->gdbarch can used to access | |
1512 | values from the previously selected architecture for this | |
59837fe0 | 1513 | architecture family. |
104c1213 JM |
1514 | |
1515 | The INIT function shall return any of: NULL - indicating that it | |
ec3d358c | 1516 | doesn't recognize the selected architecture; an existing \`\`struct |
104c1213 JM |
1517 | gdbarch'' from the ARCHES list - indicating that the new |
1518 | architecture is just a synonym for an earlier architecture (see | |
1519 | gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch'' | |
4b9b3959 AC |
1520 | - that describes the selected architecture (see gdbarch_alloc()). |
1521 | ||
1522 | The DUMP_TDEP function shall print out all target specific values. | |
1523 | Care should be taken to ensure that the function works in both the | |
0963b4bd | 1524 | multi-arch and non- multi-arch cases. */ |
104c1213 JM |
1525 | |
1526 | struct gdbarch_list | |
1527 | { | |
1528 | struct gdbarch *gdbarch; | |
1529 | struct gdbarch_list *next; | |
1530 | }; | |
1531 | ||
1532 | struct gdbarch_info | |
1533 | { | |
0963b4bd | 1534 | /* Use default: NULL (ZERO). */ |
104c1213 JM |
1535 | const struct bfd_arch_info *bfd_arch_info; |
1536 | ||
428721aa | 1537 | /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */ |
94123b4f | 1538 | enum bfd_endian byte_order; |
104c1213 | 1539 | |
94123b4f | 1540 | enum bfd_endian byte_order_for_code; |
9d4fde75 | 1541 | |
0963b4bd | 1542 | /* Use default: NULL (ZERO). */ |
104c1213 JM |
1543 | bfd *abfd; |
1544 | ||
0963b4bd | 1545 | /* Use default: NULL (ZERO). */ |
0dba2a6c MR |
1546 | union |
1547 | { | |
1548 | /* Architecture-specific information. The generic form for targets | |
1549 | that have extra requirements. */ | |
1550 | struct gdbarch_tdep_info *tdep_info; | |
1551 | ||
1552 | /* Architecture-specific target description data. Numerous targets | |
1553 | need only this, so give them an easy way to hold it. */ | |
1554 | struct tdesc_arch_data *tdesc_data; | |
1555 | ||
1556 | /* SPU file system ID. This is a single integer, so using the | |
1557 | generic form would only complicate code. Other targets may | |
1558 | reuse this member if suitable. */ | |
1559 | int *id; | |
1560 | }; | |
4be87837 DJ |
1561 | |
1562 | /* Use default: GDB_OSABI_UNINITIALIZED (-1). */ | |
1563 | enum gdb_osabi osabi; | |
424163ea DJ |
1564 | |
1565 | /* Use default: NULL (ZERO). */ | |
1566 | const struct target_desc *target_desc; | |
104c1213 JM |
1567 | }; |
1568 | ||
1569 | typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches); | |
4b9b3959 | 1570 | typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file); |
104c1213 | 1571 | |
4b9b3959 | 1572 | /* DEPRECATED - use gdbarch_register() */ |
104c1213 JM |
1573 | extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *); |
1574 | ||
4b9b3959 AC |
1575 | extern void gdbarch_register (enum bfd_architecture architecture, |
1576 | gdbarch_init_ftype *, | |
1577 | gdbarch_dump_tdep_ftype *); | |
1578 | ||
104c1213 | 1579 | |
b4a20239 AC |
1580 | /* Return a freshly allocated, NULL terminated, array of the valid |
1581 | architecture names. Since architectures are registered during the | |
1582 | _initialize phase this function only returns useful information | |
0963b4bd | 1583 | once initialization has been completed. */ |
b4a20239 AC |
1584 | |
1585 | extern const char **gdbarch_printable_names (void); | |
1586 | ||
1587 | ||
104c1213 | 1588 | /* Helper function. Search the list of ARCHES for a GDBARCH that |
0963b4bd | 1589 | matches the information provided by INFO. */ |
104c1213 | 1590 | |
424163ea | 1591 | extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info); |
104c1213 JM |
1592 | |
1593 | ||
1594 | /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform | |
424163ea | 1595 | basic initialization using values obtained from the INFO and TDEP |
104c1213 | 1596 | parameters. set_gdbarch_*() functions are called to complete the |
0963b4bd | 1597 | initialization of the object. */ |
104c1213 JM |
1598 | |
1599 | extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep); | |
1600 | ||
1601 | ||
4b9b3959 AC |
1602 | /* Helper function. Free a partially-constructed \`\`struct gdbarch''. |
1603 | It is assumed that the caller freeds the \`\`struct | |
0963b4bd | 1604 | gdbarch_tdep''. */ |
4b9b3959 | 1605 | |
058f20d5 JB |
1606 | extern void gdbarch_free (struct gdbarch *); |
1607 | ||
284a0e3c SM |
1608 | /* Get the obstack owned by ARCH. */ |
1609 | ||
1610 | extern obstack *gdbarch_obstack (gdbarch *arch); | |
058f20d5 | 1611 | |
aebd7893 AC |
1612 | /* Helper function. Allocate memory from the \`\`struct gdbarch'' |
1613 | obstack. The memory is freed when the corresponding architecture | |
1614 | is also freed. */ | |
1615 | ||
284a0e3c SM |
1616 | #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \ |
1617 | obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR)) | |
1618 | ||
1619 | #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \ | |
1620 | obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH))) | |
aebd7893 | 1621 | |
6c214e7c PP |
1622 | /* Duplicate STRING, returning an equivalent string that's allocated on the |
1623 | obstack associated with GDBARCH. The string is freed when the corresponding | |
1624 | architecture is also freed. */ | |
1625 | ||
1626 | extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string); | |
aebd7893 | 1627 | |
0963b4bd | 1628 | /* Helper function. Force an update of the current architecture. |
104c1213 | 1629 | |
b732d07d AC |
1630 | The actual architecture selected is determined by INFO, \`\`(gdb) set |
1631 | architecture'' et.al., the existing architecture and BFD's default | |
1632 | architecture. INFO should be initialized to zero and then selected | |
1633 | fields should be updated. | |
104c1213 | 1634 | |
0963b4bd | 1635 | Returns non-zero if the update succeeds. */ |
16f33e29 AC |
1636 | |
1637 | extern int gdbarch_update_p (struct gdbarch_info info); | |
104c1213 JM |
1638 | |
1639 | ||
ebdba546 AC |
1640 | /* Helper function. Find an architecture matching info. |
1641 | ||
1642 | INFO should be initialized using gdbarch_info_init, relevant fields | |
1643 | set, and then finished using gdbarch_info_fill. | |
1644 | ||
1645 | Returns the corresponding architecture, or NULL if no matching | |
59837fe0 | 1646 | architecture was found. */ |
ebdba546 AC |
1647 | |
1648 | extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info); | |
1649 | ||
1650 | ||
aff68abb | 1651 | /* Helper function. Set the target gdbarch to "gdbarch". */ |
ebdba546 | 1652 | |
aff68abb | 1653 | extern void set_target_gdbarch (struct gdbarch *gdbarch); |
ebdba546 | 1654 | |
104c1213 JM |
1655 | |
1656 | /* Register per-architecture data-pointer. | |
1657 | ||
1658 | Reserve space for a per-architecture data-pointer. An identifier | |
1659 | for the reserved data-pointer is returned. That identifer should | |
95160752 | 1660 | be saved in a local static variable. |
104c1213 | 1661 | |
fcc1c85c AC |
1662 | Memory for the per-architecture data shall be allocated using |
1663 | gdbarch_obstack_zalloc. That memory will be deleted when the | |
1664 | corresponding architecture object is deleted. | |
104c1213 | 1665 | |
95160752 AC |
1666 | When a previously created architecture is re-selected, the |
1667 | per-architecture data-pointer for that previous architecture is | |
76860b5f | 1668 | restored. INIT() is not re-called. |
104c1213 JM |
1669 | |
1670 | Multiple registrarants for any architecture are allowed (and | |
1671 | strongly encouraged). */ | |
1672 | ||
95160752 | 1673 | struct gdbarch_data; |
104c1213 | 1674 | |
030f20e1 AC |
1675 | typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack); |
1676 | extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init); | |
1677 | typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch); | |
1678 | extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init); | |
1679 | extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch, | |
1680 | struct gdbarch_data *data, | |
1681 | void *pointer); | |
104c1213 | 1682 | |
451fbdda | 1683 | extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *); |
104c1213 JM |
1684 | |
1685 | ||
0fa6923a | 1686 | /* Set the dynamic target-system-dependent parameters (architecture, |
0963b4bd | 1687 | byte-order, ...) using information found in the BFD. */ |
104c1213 JM |
1688 | |
1689 | extern void set_gdbarch_from_file (bfd *); | |
1690 | ||
1691 | ||
e514a9d6 JM |
1692 | /* Initialize the current architecture to the "first" one we find on |
1693 | our list. */ | |
1694 | ||
1695 | extern void initialize_current_architecture (void); | |
1696 | ||
104c1213 | 1697 | /* gdbarch trace variable */ |
ccce17b0 | 1698 | extern unsigned int gdbarch_debug; |
104c1213 | 1699 | |
4b9b3959 | 1700 | extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file); |
104c1213 | 1701 | |
f6efe3f8 SM |
1702 | /* Return the number of cooked registers (raw + pseudo) for ARCH. */ |
1703 | ||
1704 | static inline int | |
1705 | gdbarch_num_cooked_regs (gdbarch *arch) | |
1706 | { | |
1707 | return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch); | |
1708 | } | |
1709 | ||
104c1213 JM |
1710 | #endif |
1711 | EOF | |
1712 | exec 1>&2 | |
1713 | #../move-if-change new-gdbarch.h gdbarch.h | |
59233f88 | 1714 | compare_new gdbarch.h |
104c1213 JM |
1715 | |
1716 | ||
1717 | # | |
1718 | # C file | |
1719 | # | |
1720 | ||
1721 | exec > new-gdbarch.c | |
1722 | copyright | |
1723 | cat <<EOF | |
1724 | ||
1725 | #include "defs.h" | |
7355ddba | 1726 | #include "arch-utils.h" |
104c1213 | 1727 | |
104c1213 | 1728 | #include "gdbcmd.h" |
faaf634c | 1729 | #include "inferior.h" |
104c1213 JM |
1730 | #include "symcat.h" |
1731 | ||
f0d4cc9e | 1732 | #include "floatformat.h" |
b59ff9d5 | 1733 | #include "reggroups.h" |
4be87837 | 1734 | #include "osabi.h" |
aebd7893 | 1735 | #include "gdb_obstack.h" |
0bee6dd4 | 1736 | #include "observable.h" |
a3ecef73 | 1737 | #include "regcache.h" |
19630284 | 1738 | #include "objfiles.h" |
2faa3447 | 1739 | #include "auxv.h" |
8bcb5208 AB |
1740 | #include "frame-unwind.h" |
1741 | #include "dummy-frame.h" | |
95160752 | 1742 | |
104c1213 JM |
1743 | /* Static function declarations */ |
1744 | ||
b3cc3077 | 1745 | static void alloc_gdbarch_data (struct gdbarch *); |
104c1213 | 1746 | |
104c1213 JM |
1747 | /* Non-zero if we want to trace architecture code. */ |
1748 | ||
1749 | #ifndef GDBARCH_DEBUG | |
1750 | #define GDBARCH_DEBUG 0 | |
1751 | #endif | |
ccce17b0 | 1752 | unsigned int gdbarch_debug = GDBARCH_DEBUG; |
920d2a44 AC |
1753 | static void |
1754 | show_gdbarch_debug (struct ui_file *file, int from_tty, | |
1755 | struct cmd_list_element *c, const char *value) | |
1756 | { | |
1757 | fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value); | |
1758 | } | |
104c1213 | 1759 | |
456fcf94 | 1760 | static const char * |
8da61cc4 | 1761 | pformat (const struct floatformat **format) |
456fcf94 AC |
1762 | { |
1763 | if (format == NULL) | |
1764 | return "(null)"; | |
1765 | else | |
8da61cc4 DJ |
1766 | /* Just print out one of them - this is only for diagnostics. */ |
1767 | return format[0]->name; | |
456fcf94 AC |
1768 | } |
1769 | ||
08105857 PA |
1770 | static const char * |
1771 | pstring (const char *string) | |
1772 | { | |
1773 | if (string == NULL) | |
1774 | return "(null)"; | |
1775 | return string; | |
05c0465e SDJ |
1776 | } |
1777 | ||
a121b7c1 | 1778 | static const char * |
f7bb4e3a PB |
1779 | pstring_ptr (char **string) |
1780 | { | |
1781 | if (string == NULL || *string == NULL) | |
1782 | return "(null)"; | |
1783 | return *string; | |
1784 | } | |
1785 | ||
05c0465e SDJ |
1786 | /* Helper function to print a list of strings, represented as "const |
1787 | char *const *". The list is printed comma-separated. */ | |
1788 | ||
a121b7c1 | 1789 | static const char * |
05c0465e SDJ |
1790 | pstring_list (const char *const *list) |
1791 | { | |
1792 | static char ret[100]; | |
1793 | const char *const *p; | |
1794 | size_t offset = 0; | |
1795 | ||
1796 | if (list == NULL) | |
1797 | return "(null)"; | |
1798 | ||
1799 | ret[0] = '\0'; | |
1800 | for (p = list; *p != NULL && offset < sizeof (ret); ++p) | |
1801 | { | |
1802 | size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p); | |
1803 | offset += 2 + s; | |
1804 | } | |
1805 | ||
1806 | if (offset > 0) | |
1807 | { | |
1808 | gdb_assert (offset - 2 < sizeof (ret)); | |
1809 | ret[offset - 2] = '\0'; | |
1810 | } | |
1811 | ||
1812 | return ret; | |
08105857 PA |
1813 | } |
1814 | ||
104c1213 JM |
1815 | EOF |
1816 | ||
1817 | # gdbarch open the gdbarch object | |
3d9a5942 | 1818 | printf "\n" |
0963b4bd | 1819 | printf "/* Maintain the struct gdbarch object. */\n" |
3d9a5942 AC |
1820 | printf "\n" |
1821 | printf "struct gdbarch\n" | |
1822 | printf "{\n" | |
76860b5f AC |
1823 | printf " /* Has this architecture been fully initialized? */\n" |
1824 | printf " int initialized_p;\n" | |
aebd7893 AC |
1825 | printf "\n" |
1826 | printf " /* An obstack bound to the lifetime of the architecture. */\n" | |
1827 | printf " struct obstack *obstack;\n" | |
1828 | printf "\n" | |
0963b4bd | 1829 | printf " /* basic architectural information. */\n" |
34620563 | 1830 | function_list | while do_read |
104c1213 | 1831 | do |
2ada493a AC |
1832 | if class_is_info_p |
1833 | then | |
3d9a5942 | 1834 | printf " ${returntype} ${function};\n" |
2ada493a | 1835 | fi |
104c1213 | 1836 | done |
3d9a5942 | 1837 | printf "\n" |
0963b4bd | 1838 | printf " /* target specific vector. */\n" |
3d9a5942 AC |
1839 | printf " struct gdbarch_tdep *tdep;\n" |
1840 | printf " gdbarch_dump_tdep_ftype *dump_tdep;\n" | |
1841 | printf "\n" | |
0963b4bd | 1842 | printf " /* per-architecture data-pointers. */\n" |
95160752 | 1843 | printf " unsigned nr_data;\n" |
3d9a5942 AC |
1844 | printf " void **data;\n" |
1845 | printf "\n" | |
104c1213 JM |
1846 | cat <<EOF |
1847 | /* Multi-arch values. | |
1848 | ||
1849 | When extending this structure you must: | |
1850 | ||
1851 | Add the field below. | |
1852 | ||
1853 | Declare set/get functions and define the corresponding | |
1854 | macro in gdbarch.h. | |
1855 | ||
1856 | gdbarch_alloc(): If zero/NULL is not a suitable default, | |
1857 | initialize the new field. | |
1858 | ||
1859 | verify_gdbarch(): Confirm that the target updated the field | |
1860 | correctly. | |
1861 | ||
7e73cedf | 1862 | gdbarch_dump(): Add a fprintf_unfiltered call so that the new |
104c1213 JM |
1863 | field is dumped out |
1864 | ||
104c1213 JM |
1865 | get_gdbarch(): Implement the set/get functions (probably using |
1866 | the macro's as shortcuts). | |
1867 | ||
1868 | */ | |
1869 | ||
1870 | EOF | |
34620563 | 1871 | function_list | while do_read |
104c1213 | 1872 | do |
2ada493a AC |
1873 | if class_is_variable_p |
1874 | then | |
3d9a5942 | 1875 | printf " ${returntype} ${function};\n" |
2ada493a AC |
1876 | elif class_is_function_p |
1877 | then | |
2f9b146e | 1878 | printf " gdbarch_${function}_ftype *${function};\n" |
2ada493a | 1879 | fi |
104c1213 | 1880 | done |
3d9a5942 | 1881 | printf "};\n" |
104c1213 | 1882 | |
104c1213 | 1883 | # Create a new gdbarch struct |
104c1213 | 1884 | cat <<EOF |
7de2341d | 1885 | |
66b43ecb | 1886 | /* Create a new \`\`struct gdbarch'' based on information provided by |
0963b4bd | 1887 | \`\`struct gdbarch_info''. */ |
104c1213 | 1888 | EOF |
3d9a5942 | 1889 | printf "\n" |
104c1213 JM |
1890 | cat <<EOF |
1891 | struct gdbarch * | |
1892 | gdbarch_alloc (const struct gdbarch_info *info, | |
1893 | struct gdbarch_tdep *tdep) | |
1894 | { | |
be7811ad | 1895 | struct gdbarch *gdbarch; |
aebd7893 AC |
1896 | |
1897 | /* Create an obstack for allocating all the per-architecture memory, | |
1898 | then use that to allocate the architecture vector. */ | |
70ba0933 | 1899 | struct obstack *obstack = XNEW (struct obstack); |
aebd7893 | 1900 | obstack_init (obstack); |
8d749320 | 1901 | gdbarch = XOBNEW (obstack, struct gdbarch); |
be7811ad MD |
1902 | memset (gdbarch, 0, sizeof (*gdbarch)); |
1903 | gdbarch->obstack = obstack; | |
85de9627 | 1904 | |
be7811ad | 1905 | alloc_gdbarch_data (gdbarch); |
85de9627 | 1906 | |
be7811ad | 1907 | gdbarch->tdep = tdep; |
104c1213 | 1908 | EOF |
3d9a5942 | 1909 | printf "\n" |
34620563 | 1910 | function_list | while do_read |
104c1213 | 1911 | do |
2ada493a AC |
1912 | if class_is_info_p |
1913 | then | |
be7811ad | 1914 | printf " gdbarch->${function} = info->${function};\n" |
2ada493a | 1915 | fi |
104c1213 | 1916 | done |
3d9a5942 | 1917 | printf "\n" |
0963b4bd | 1918 | printf " /* Force the explicit initialization of these. */\n" |
34620563 | 1919 | function_list | while do_read |
104c1213 | 1920 | do |
2ada493a AC |
1921 | if class_is_function_p || class_is_variable_p |
1922 | then | |
72e74a21 | 1923 | if [ -n "${predefault}" -a "x${predefault}" != "x0" ] |
104c1213 | 1924 | then |
be7811ad | 1925 | printf " gdbarch->${function} = ${predefault};\n" |
104c1213 | 1926 | fi |
2ada493a | 1927 | fi |
104c1213 JM |
1928 | done |
1929 | cat <<EOF | |
1930 | /* gdbarch_alloc() */ | |
1931 | ||
be7811ad | 1932 | return gdbarch; |
104c1213 JM |
1933 | } |
1934 | EOF | |
1935 | ||
058f20d5 | 1936 | # Free a gdbarch struct. |
3d9a5942 AC |
1937 | printf "\n" |
1938 | printf "\n" | |
058f20d5 | 1939 | cat <<EOF |
aebd7893 | 1940 | |
284a0e3c | 1941 | obstack *gdbarch_obstack (gdbarch *arch) |
aebd7893 | 1942 | { |
284a0e3c | 1943 | return arch->obstack; |
aebd7893 AC |
1944 | } |
1945 | ||
6c214e7c PP |
1946 | /* See gdbarch.h. */ |
1947 | ||
1948 | char * | |
1949 | gdbarch_obstack_strdup (struct gdbarch *arch, const char *string) | |
1950 | { | |
1951 | return obstack_strdup (arch->obstack, string); | |
1952 | } | |
1953 | ||
aebd7893 | 1954 | |
058f20d5 JB |
1955 | /* Free a gdbarch struct. This should never happen in normal |
1956 | operation --- once you've created a gdbarch, you keep it around. | |
1957 | However, if an architecture's init function encounters an error | |
1958 | building the structure, it may need to clean up a partially | |
1959 | constructed gdbarch. */ | |
4b9b3959 | 1960 | |
058f20d5 JB |
1961 | void |
1962 | gdbarch_free (struct gdbarch *arch) | |
1963 | { | |
aebd7893 | 1964 | struct obstack *obstack; |
05c547f6 | 1965 | |
95160752 | 1966 | gdb_assert (arch != NULL); |
aebd7893 AC |
1967 | gdb_assert (!arch->initialized_p); |
1968 | obstack = arch->obstack; | |
1969 | obstack_free (obstack, 0); /* Includes the ARCH. */ | |
1970 | xfree (obstack); | |
058f20d5 JB |
1971 | } |
1972 | EOF | |
1973 | ||
104c1213 | 1974 | # verify a new architecture |
104c1213 | 1975 | cat <<EOF |
db446970 AC |
1976 | |
1977 | ||
1978 | /* Ensure that all values in a GDBARCH are reasonable. */ | |
1979 | ||
104c1213 | 1980 | static void |
be7811ad | 1981 | verify_gdbarch (struct gdbarch *gdbarch) |
104c1213 | 1982 | { |
d7e74731 | 1983 | string_file log; |
05c547f6 | 1984 | |
104c1213 | 1985 | /* fundamental */ |
be7811ad | 1986 | if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN) |
d7e74731 | 1987 | log.puts ("\n\tbyte-order"); |
be7811ad | 1988 | if (gdbarch->bfd_arch_info == NULL) |
d7e74731 | 1989 | log.puts ("\n\tbfd_arch_info"); |
0963b4bd | 1990 | /* Check those that need to be defined for the given multi-arch level. */ |
104c1213 | 1991 | EOF |
34620563 | 1992 | function_list | while do_read |
104c1213 | 1993 | do |
2ada493a AC |
1994 | if class_is_function_p || class_is_variable_p |
1995 | then | |
72e74a21 | 1996 | if [ "x${invalid_p}" = "x0" ] |
c0e8c252 | 1997 | then |
3d9a5942 | 1998 | printf " /* Skip verify of ${function}, invalid_p == 0 */\n" |
2ada493a AC |
1999 | elif class_is_predicate_p |
2000 | then | |
0963b4bd | 2001 | printf " /* Skip verify of ${function}, has predicate. */\n" |
f0d4cc9e | 2002 | # FIXME: See do_read for potential simplification |
72e74a21 | 2003 | elif [ -n "${invalid_p}" -a -n "${postdefault}" ] |
f0d4cc9e | 2004 | then |
3d9a5942 | 2005 | printf " if (${invalid_p})\n" |
be7811ad | 2006 | printf " gdbarch->${function} = ${postdefault};\n" |
72e74a21 | 2007 | elif [ -n "${predefault}" -a -n "${postdefault}" ] |
f0d4cc9e | 2008 | then |
be7811ad MD |
2009 | printf " if (gdbarch->${function} == ${predefault})\n" |
2010 | printf " gdbarch->${function} = ${postdefault};\n" | |
72e74a21 | 2011 | elif [ -n "${postdefault}" ] |
f0d4cc9e | 2012 | then |
be7811ad MD |
2013 | printf " if (gdbarch->${function} == 0)\n" |
2014 | printf " gdbarch->${function} = ${postdefault};\n" | |
72e74a21 | 2015 | elif [ -n "${invalid_p}" ] |
104c1213 | 2016 | then |
4d60522e | 2017 | printf " if (${invalid_p})\n" |
d7e74731 | 2018 | printf " log.puts (\"\\\\n\\\\t${function}\");\n" |
72e74a21 | 2019 | elif [ -n "${predefault}" ] |
104c1213 | 2020 | then |
be7811ad | 2021 | printf " if (gdbarch->${function} == ${predefault})\n" |
d7e74731 | 2022 | printf " log.puts (\"\\\\n\\\\t${function}\");\n" |
104c1213 | 2023 | fi |
2ada493a | 2024 | fi |
104c1213 JM |
2025 | done |
2026 | cat <<EOF | |
d7e74731 | 2027 | if (!log.empty ()) |
f16a1923 | 2028 | internal_error (__FILE__, __LINE__, |
85c07804 | 2029 | _("verify_gdbarch: the following are invalid ...%s"), |
d7e74731 | 2030 | log.c_str ()); |
104c1213 JM |
2031 | } |
2032 | EOF | |
2033 | ||
2034 | # dump the structure | |
3d9a5942 AC |
2035 | printf "\n" |
2036 | printf "\n" | |
104c1213 | 2037 | cat <<EOF |
0963b4bd | 2038 | /* Print out the details of the current architecture. */ |
4b9b3959 | 2039 | |
104c1213 | 2040 | void |
be7811ad | 2041 | gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file) |
104c1213 | 2042 | { |
b78960be | 2043 | const char *gdb_nm_file = "<not-defined>"; |
05c547f6 | 2044 | |
b78960be AC |
2045 | #if defined (GDB_NM_FILE) |
2046 | gdb_nm_file = GDB_NM_FILE; | |
2047 | #endif | |
2048 | fprintf_unfiltered (file, | |
2049 | "gdbarch_dump: GDB_NM_FILE = %s\\n", | |
2050 | gdb_nm_file); | |
104c1213 | 2051 | EOF |
ea480a30 | 2052 | function_list | sort '-t;' -k 3 | while do_read |
104c1213 | 2053 | do |
1e9f55d0 AC |
2054 | # First the predicate |
2055 | if class_is_predicate_p | |
2056 | then | |
7996bcec | 2057 | printf " fprintf_unfiltered (file,\n" |
48f7351b | 2058 | printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n" |
be7811ad | 2059 | printf " gdbarch_${function}_p (gdbarch));\n" |
08e45a40 | 2060 | fi |
48f7351b | 2061 | # Print the corresponding value. |
283354d8 | 2062 | if class_is_function_p |
4b9b3959 | 2063 | then |
7996bcec | 2064 | printf " fprintf_unfiltered (file,\n" |
30737ed9 JB |
2065 | printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n" |
2066 | printf " host_address_to_string (gdbarch->${function}));\n" | |
4b9b3959 | 2067 | else |
48f7351b | 2068 | # It is a variable |
2f9b146e AC |
2069 | case "${print}:${returntype}" in |
2070 | :CORE_ADDR ) | |
0b1553bc UW |
2071 | fmt="%s" |
2072 | print="core_addr_to_string_nz (gdbarch->${function})" | |
48f7351b | 2073 | ;; |
2f9b146e | 2074 | :* ) |
48f7351b | 2075 | fmt="%s" |
623d3eb1 | 2076 | print="plongest (gdbarch->${function})" |
48f7351b AC |
2077 | ;; |
2078 | * ) | |
2f9b146e | 2079 | fmt="%s" |
48f7351b AC |
2080 | ;; |
2081 | esac | |
3d9a5942 | 2082 | printf " fprintf_unfiltered (file,\n" |
48f7351b | 2083 | printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}" |
3d9a5942 | 2084 | printf " ${print});\n" |
2ada493a | 2085 | fi |
104c1213 | 2086 | done |
381323f4 | 2087 | cat <<EOF |
be7811ad MD |
2088 | if (gdbarch->dump_tdep != NULL) |
2089 | gdbarch->dump_tdep (gdbarch, file); | |
381323f4 AC |
2090 | } |
2091 | EOF | |
104c1213 JM |
2092 | |
2093 | ||
2094 | # GET/SET | |
3d9a5942 | 2095 | printf "\n" |
104c1213 JM |
2096 | cat <<EOF |
2097 | struct gdbarch_tdep * | |
2098 | gdbarch_tdep (struct gdbarch *gdbarch) | |
2099 | { | |
2100 | if (gdbarch_debug >= 2) | |
3d9a5942 | 2101 | fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n"); |
104c1213 JM |
2102 | return gdbarch->tdep; |
2103 | } | |
2104 | EOF | |
3d9a5942 | 2105 | printf "\n" |
34620563 | 2106 | function_list | while do_read |
104c1213 | 2107 | do |
2ada493a AC |
2108 | if class_is_predicate_p |
2109 | then | |
3d9a5942 AC |
2110 | printf "\n" |
2111 | printf "int\n" | |
2112 | printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n" | |
2113 | printf "{\n" | |
8de9bdc4 | 2114 | printf " gdb_assert (gdbarch != NULL);\n" |
f7968451 | 2115 | printf " return ${predicate};\n" |
3d9a5942 | 2116 | printf "}\n" |
2ada493a AC |
2117 | fi |
2118 | if class_is_function_p | |
2119 | then | |
3d9a5942 AC |
2120 | printf "\n" |
2121 | printf "${returntype}\n" | |
72e74a21 | 2122 | if [ "x${formal}" = "xvoid" ] |
104c1213 | 2123 | then |
3d9a5942 | 2124 | printf "gdbarch_${function} (struct gdbarch *gdbarch)\n" |
104c1213 | 2125 | else |
3d9a5942 | 2126 | printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n" |
104c1213 | 2127 | fi |
3d9a5942 | 2128 | printf "{\n" |
8de9bdc4 | 2129 | printf " gdb_assert (gdbarch != NULL);\n" |
956ac328 | 2130 | printf " gdb_assert (gdbarch->${function} != NULL);\n" |
f7968451 | 2131 | if class_is_predicate_p && test -n "${predefault}" |
ae45cd16 AC |
2132 | then |
2133 | # Allow a call to a function with a predicate. | |
956ac328 | 2134 | printf " /* Do not check predicate: ${predicate}, allow call. */\n" |
ae45cd16 | 2135 | fi |
3d9a5942 AC |
2136 | printf " if (gdbarch_debug >= 2)\n" |
2137 | printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n" | |
72e74a21 | 2138 | if [ "x${actual}" = "x-" -o "x${actual}" = "x" ] |
4a5c6a1d AC |
2139 | then |
2140 | if class_is_multiarch_p | |
2141 | then | |
2142 | params="gdbarch" | |
2143 | else | |
2144 | params="" | |
2145 | fi | |
2146 | else | |
2147 | if class_is_multiarch_p | |
2148 | then | |
2149 | params="gdbarch, ${actual}" | |
2150 | else | |
2151 | params="${actual}" | |
2152 | fi | |
2153 | fi | |
72e74a21 | 2154 | if [ "x${returntype}" = "xvoid" ] |
104c1213 | 2155 | then |
4a5c6a1d | 2156 | printf " gdbarch->${function} (${params});\n" |
104c1213 | 2157 | else |
4a5c6a1d | 2158 | printf " return gdbarch->${function} (${params});\n" |
104c1213 | 2159 | fi |
3d9a5942 AC |
2160 | printf "}\n" |
2161 | printf "\n" | |
2162 | printf "void\n" | |
2163 | printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n" | |
2164 | printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n" | |
2165 | printf "{\n" | |
2166 | printf " gdbarch->${function} = ${function};\n" | |
2167 | printf "}\n" | |
2ada493a AC |
2168 | elif class_is_variable_p |
2169 | then | |
3d9a5942 AC |
2170 | printf "\n" |
2171 | printf "${returntype}\n" | |
2172 | printf "gdbarch_${function} (struct gdbarch *gdbarch)\n" | |
2173 | printf "{\n" | |
8de9bdc4 | 2174 | printf " gdb_assert (gdbarch != NULL);\n" |
72e74a21 | 2175 | if [ "x${invalid_p}" = "x0" ] |
c0e8c252 | 2176 | then |
3d9a5942 | 2177 | printf " /* Skip verify of ${function}, invalid_p == 0 */\n" |
72e74a21 | 2178 | elif [ -n "${invalid_p}" ] |
104c1213 | 2179 | then |
956ac328 AC |
2180 | printf " /* Check variable is valid. */\n" |
2181 | printf " gdb_assert (!(${invalid_p}));\n" | |
72e74a21 | 2182 | elif [ -n "${predefault}" ] |
104c1213 | 2183 | then |
956ac328 AC |
2184 | printf " /* Check variable changed from pre-default. */\n" |
2185 | printf " gdb_assert (gdbarch->${function} != ${predefault});\n" | |
104c1213 | 2186 | fi |
3d9a5942 AC |
2187 | printf " if (gdbarch_debug >= 2)\n" |
2188 | printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n" | |
2189 | printf " return gdbarch->${function};\n" | |
2190 | printf "}\n" | |
2191 | printf "\n" | |
2192 | printf "void\n" | |
2193 | printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n" | |
2194 | printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n" | |
2195 | printf "{\n" | |
2196 | printf " gdbarch->${function} = ${function};\n" | |
2197 | printf "}\n" | |
2ada493a AC |
2198 | elif class_is_info_p |
2199 | then | |
3d9a5942 AC |
2200 | printf "\n" |
2201 | printf "${returntype}\n" | |
2202 | printf "gdbarch_${function} (struct gdbarch *gdbarch)\n" | |
2203 | printf "{\n" | |
8de9bdc4 | 2204 | printf " gdb_assert (gdbarch != NULL);\n" |
3d9a5942 AC |
2205 | printf " if (gdbarch_debug >= 2)\n" |
2206 | printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n" | |
2207 | printf " return gdbarch->${function};\n" | |
2208 | printf "}\n" | |
2ada493a | 2209 | fi |
104c1213 JM |
2210 | done |
2211 | ||
2212 | # All the trailing guff | |
2213 | cat <<EOF | |
2214 | ||
2215 | ||
f44c642f | 2216 | /* Keep a registry of per-architecture data-pointers required by GDB |
0963b4bd | 2217 | modules. */ |
104c1213 JM |
2218 | |
2219 | struct gdbarch_data | |
2220 | { | |
95160752 | 2221 | unsigned index; |
76860b5f | 2222 | int init_p; |
030f20e1 AC |
2223 | gdbarch_data_pre_init_ftype *pre_init; |
2224 | gdbarch_data_post_init_ftype *post_init; | |
104c1213 JM |
2225 | }; |
2226 | ||
2227 | struct gdbarch_data_registration | |
2228 | { | |
104c1213 JM |
2229 | struct gdbarch_data *data; |
2230 | struct gdbarch_data_registration *next; | |
2231 | }; | |
2232 | ||
f44c642f | 2233 | struct gdbarch_data_registry |
104c1213 | 2234 | { |
95160752 | 2235 | unsigned nr; |
104c1213 JM |
2236 | struct gdbarch_data_registration *registrations; |
2237 | }; | |
2238 | ||
f44c642f | 2239 | struct gdbarch_data_registry gdbarch_data_registry = |
104c1213 JM |
2240 | { |
2241 | 0, NULL, | |
2242 | }; | |
2243 | ||
030f20e1 AC |
2244 | static struct gdbarch_data * |
2245 | gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init, | |
2246 | gdbarch_data_post_init_ftype *post_init) | |
104c1213 JM |
2247 | { |
2248 | struct gdbarch_data_registration **curr; | |
05c547f6 MS |
2249 | |
2250 | /* Append the new registration. */ | |
f44c642f | 2251 | for (curr = &gdbarch_data_registry.registrations; |
104c1213 JM |
2252 | (*curr) != NULL; |
2253 | curr = &(*curr)->next); | |
70ba0933 | 2254 | (*curr) = XNEW (struct gdbarch_data_registration); |
104c1213 | 2255 | (*curr)->next = NULL; |
70ba0933 | 2256 | (*curr)->data = XNEW (struct gdbarch_data); |
f44c642f | 2257 | (*curr)->data->index = gdbarch_data_registry.nr++; |
030f20e1 AC |
2258 | (*curr)->data->pre_init = pre_init; |
2259 | (*curr)->data->post_init = post_init; | |
76860b5f | 2260 | (*curr)->data->init_p = 1; |
104c1213 JM |
2261 | return (*curr)->data; |
2262 | } | |
2263 | ||
030f20e1 AC |
2264 | struct gdbarch_data * |
2265 | gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init) | |
2266 | { | |
2267 | return gdbarch_data_register (pre_init, NULL); | |
2268 | } | |
2269 | ||
2270 | struct gdbarch_data * | |
2271 | gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init) | |
2272 | { | |
2273 | return gdbarch_data_register (NULL, post_init); | |
2274 | } | |
104c1213 | 2275 | |
0963b4bd | 2276 | /* Create/delete the gdbarch data vector. */ |
95160752 AC |
2277 | |
2278 | static void | |
b3cc3077 | 2279 | alloc_gdbarch_data (struct gdbarch *gdbarch) |
95160752 | 2280 | { |
b3cc3077 JB |
2281 | gdb_assert (gdbarch->data == NULL); |
2282 | gdbarch->nr_data = gdbarch_data_registry.nr; | |
aebd7893 | 2283 | gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *); |
b3cc3077 | 2284 | } |
3c875b6f | 2285 | |
76860b5f | 2286 | /* Initialize the current value of the specified per-architecture |
0963b4bd | 2287 | data-pointer. */ |
b3cc3077 | 2288 | |
95160752 | 2289 | void |
030f20e1 AC |
2290 | deprecated_set_gdbarch_data (struct gdbarch *gdbarch, |
2291 | struct gdbarch_data *data, | |
2292 | void *pointer) | |
95160752 AC |
2293 | { |
2294 | gdb_assert (data->index < gdbarch->nr_data); | |
aebd7893 | 2295 | gdb_assert (gdbarch->data[data->index] == NULL); |
030f20e1 | 2296 | gdb_assert (data->pre_init == NULL); |
95160752 AC |
2297 | gdbarch->data[data->index] = pointer; |
2298 | } | |
2299 | ||
104c1213 | 2300 | /* Return the current value of the specified per-architecture |
0963b4bd | 2301 | data-pointer. */ |
104c1213 JM |
2302 | |
2303 | void * | |
451fbdda | 2304 | gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data) |
104c1213 | 2305 | { |
451fbdda | 2306 | gdb_assert (data->index < gdbarch->nr_data); |
030f20e1 | 2307 | if (gdbarch->data[data->index] == NULL) |
76860b5f | 2308 | { |
030f20e1 AC |
2309 | /* The data-pointer isn't initialized, call init() to get a |
2310 | value. */ | |
2311 | if (data->pre_init != NULL) | |
2312 | /* Mid architecture creation: pass just the obstack, and not | |
2313 | the entire architecture, as that way it isn't possible for | |
2314 | pre-init code to refer to undefined architecture | |
2315 | fields. */ | |
2316 | gdbarch->data[data->index] = data->pre_init (gdbarch->obstack); | |
2317 | else if (gdbarch->initialized_p | |
2318 | && data->post_init != NULL) | |
2319 | /* Post architecture creation: pass the entire architecture | |
2320 | (as all fields are valid), but be careful to also detect | |
2321 | recursive references. */ | |
2322 | { | |
2323 | gdb_assert (data->init_p); | |
2324 | data->init_p = 0; | |
2325 | gdbarch->data[data->index] = data->post_init (gdbarch); | |
2326 | data->init_p = 1; | |
2327 | } | |
2328 | else | |
2329 | /* The architecture initialization hasn't completed - punt - | |
2330 | hope that the caller knows what they are doing. Once | |
2331 | deprecated_set_gdbarch_data has been initialized, this can be | |
2332 | changed to an internal error. */ | |
2333 | return NULL; | |
76860b5f AC |
2334 | gdb_assert (gdbarch->data[data->index] != NULL); |
2335 | } | |
451fbdda | 2336 | return gdbarch->data[data->index]; |
104c1213 JM |
2337 | } |
2338 | ||
2339 | ||
0963b4bd | 2340 | /* Keep a registry of the architectures known by GDB. */ |
104c1213 | 2341 | |
4b9b3959 | 2342 | struct gdbarch_registration |
104c1213 JM |
2343 | { |
2344 | enum bfd_architecture bfd_architecture; | |
2345 | gdbarch_init_ftype *init; | |
4b9b3959 | 2346 | gdbarch_dump_tdep_ftype *dump_tdep; |
104c1213 | 2347 | struct gdbarch_list *arches; |
4b9b3959 | 2348 | struct gdbarch_registration *next; |
104c1213 JM |
2349 | }; |
2350 | ||
f44c642f | 2351 | static struct gdbarch_registration *gdbarch_registry = NULL; |
104c1213 | 2352 | |
b4a20239 AC |
2353 | static void |
2354 | append_name (const char ***buf, int *nr, const char *name) | |
2355 | { | |
1dc7a623 | 2356 | *buf = XRESIZEVEC (const char *, *buf, *nr + 1); |
b4a20239 AC |
2357 | (*buf)[*nr] = name; |
2358 | *nr += 1; | |
2359 | } | |
2360 | ||
2361 | const char ** | |
2362 | gdbarch_printable_names (void) | |
2363 | { | |
7996bcec | 2364 | /* Accumulate a list of names based on the registed list of |
0963b4bd | 2365 | architectures. */ |
7996bcec AC |
2366 | int nr_arches = 0; |
2367 | const char **arches = NULL; | |
2368 | struct gdbarch_registration *rego; | |
05c547f6 | 2369 | |
7996bcec AC |
2370 | for (rego = gdbarch_registry; |
2371 | rego != NULL; | |
2372 | rego = rego->next) | |
b4a20239 | 2373 | { |
7996bcec AC |
2374 | const struct bfd_arch_info *ap; |
2375 | ap = bfd_lookup_arch (rego->bfd_architecture, 0); | |
2376 | if (ap == NULL) | |
2377 | internal_error (__FILE__, __LINE__, | |
85c07804 | 2378 | _("gdbarch_architecture_names: multi-arch unknown")); |
7996bcec AC |
2379 | do |
2380 | { | |
2381 | append_name (&arches, &nr_arches, ap->printable_name); | |
2382 | ap = ap->next; | |
2383 | } | |
2384 | while (ap != NULL); | |
b4a20239 | 2385 | } |
7996bcec AC |
2386 | append_name (&arches, &nr_arches, NULL); |
2387 | return arches; | |
b4a20239 AC |
2388 | } |
2389 | ||
2390 | ||
104c1213 | 2391 | void |
4b9b3959 AC |
2392 | gdbarch_register (enum bfd_architecture bfd_architecture, |
2393 | gdbarch_init_ftype *init, | |
2394 | gdbarch_dump_tdep_ftype *dump_tdep) | |
104c1213 | 2395 | { |
4b9b3959 | 2396 | struct gdbarch_registration **curr; |
104c1213 | 2397 | const struct bfd_arch_info *bfd_arch_info; |
05c547f6 | 2398 | |
ec3d358c | 2399 | /* Check that BFD recognizes this architecture */ |
104c1213 JM |
2400 | bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0); |
2401 | if (bfd_arch_info == NULL) | |
2402 | { | |
8e65ff28 | 2403 | internal_error (__FILE__, __LINE__, |
0963b4bd MS |
2404 | _("gdbarch: Attempt to register " |
2405 | "unknown architecture (%d)"), | |
8e65ff28 | 2406 | bfd_architecture); |
104c1213 | 2407 | } |
0963b4bd | 2408 | /* Check that we haven't seen this architecture before. */ |
f44c642f | 2409 | for (curr = &gdbarch_registry; |
104c1213 JM |
2410 | (*curr) != NULL; |
2411 | curr = &(*curr)->next) | |
2412 | { | |
2413 | if (bfd_architecture == (*curr)->bfd_architecture) | |
8e65ff28 | 2414 | internal_error (__FILE__, __LINE__, |
64b9b334 | 2415 | _("gdbarch: Duplicate registration " |
0963b4bd | 2416 | "of architecture (%s)"), |
8e65ff28 | 2417 | bfd_arch_info->printable_name); |
104c1213 JM |
2418 | } |
2419 | /* log it */ | |
2420 | if (gdbarch_debug) | |
30737ed9 | 2421 | fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n", |
104c1213 | 2422 | bfd_arch_info->printable_name, |
30737ed9 | 2423 | host_address_to_string (init)); |
104c1213 | 2424 | /* Append it */ |
70ba0933 | 2425 | (*curr) = XNEW (struct gdbarch_registration); |
104c1213 JM |
2426 | (*curr)->bfd_architecture = bfd_architecture; |
2427 | (*curr)->init = init; | |
4b9b3959 | 2428 | (*curr)->dump_tdep = dump_tdep; |
104c1213 JM |
2429 | (*curr)->arches = NULL; |
2430 | (*curr)->next = NULL; | |
4b9b3959 AC |
2431 | } |
2432 | ||
2433 | void | |
2434 | register_gdbarch_init (enum bfd_architecture bfd_architecture, | |
2435 | gdbarch_init_ftype *init) | |
2436 | { | |
2437 | gdbarch_register (bfd_architecture, init, NULL); | |
104c1213 | 2438 | } |
104c1213 JM |
2439 | |
2440 | ||
424163ea | 2441 | /* Look for an architecture using gdbarch_info. */ |
104c1213 JM |
2442 | |
2443 | struct gdbarch_list * | |
2444 | gdbarch_list_lookup_by_info (struct gdbarch_list *arches, | |
2445 | const struct gdbarch_info *info) | |
2446 | { | |
2447 | for (; arches != NULL; arches = arches->next) | |
2448 | { | |
2449 | if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info) | |
2450 | continue; | |
2451 | if (info->byte_order != arches->gdbarch->byte_order) | |
2452 | continue; | |
4be87837 DJ |
2453 | if (info->osabi != arches->gdbarch->osabi) |
2454 | continue; | |
424163ea DJ |
2455 | if (info->target_desc != arches->gdbarch->target_desc) |
2456 | continue; | |
104c1213 JM |
2457 | return arches; |
2458 | } | |
2459 | return NULL; | |
2460 | } | |
2461 | ||
2462 | ||
ebdba546 | 2463 | /* Find an architecture that matches the specified INFO. Create a new |
59837fe0 | 2464 | architecture if needed. Return that new architecture. */ |
104c1213 | 2465 | |
59837fe0 UW |
2466 | struct gdbarch * |
2467 | gdbarch_find_by_info (struct gdbarch_info info) | |
104c1213 JM |
2468 | { |
2469 | struct gdbarch *new_gdbarch; | |
4b9b3959 | 2470 | struct gdbarch_registration *rego; |
104c1213 | 2471 | |
b732d07d | 2472 | /* Fill in missing parts of the INFO struct using a number of |
7a107747 DJ |
2473 | sources: "set ..."; INFOabfd supplied; and the global |
2474 | defaults. */ | |
2475 | gdbarch_info_fill (&info); | |
4be87837 | 2476 | |
0963b4bd | 2477 | /* Must have found some sort of architecture. */ |
b732d07d | 2478 | gdb_assert (info.bfd_arch_info != NULL); |
104c1213 JM |
2479 | |
2480 | if (gdbarch_debug) | |
2481 | { | |
2482 | fprintf_unfiltered (gdb_stdlog, | |
59837fe0 | 2483 | "gdbarch_find_by_info: info.bfd_arch_info %s\n", |
104c1213 JM |
2484 | (info.bfd_arch_info != NULL |
2485 | ? info.bfd_arch_info->printable_name | |
2486 | : "(null)")); | |
2487 | fprintf_unfiltered (gdb_stdlog, | |
59837fe0 | 2488 | "gdbarch_find_by_info: info.byte_order %d (%s)\n", |
104c1213 | 2489 | info.byte_order, |
d7449b42 | 2490 | (info.byte_order == BFD_ENDIAN_BIG ? "big" |
778eb05e | 2491 | : info.byte_order == BFD_ENDIAN_LITTLE ? "little" |
104c1213 | 2492 | : "default")); |
4be87837 | 2493 | fprintf_unfiltered (gdb_stdlog, |
59837fe0 | 2494 | "gdbarch_find_by_info: info.osabi %d (%s)\n", |
4be87837 | 2495 | info.osabi, gdbarch_osabi_name (info.osabi)); |
104c1213 | 2496 | fprintf_unfiltered (gdb_stdlog, |
59837fe0 | 2497 | "gdbarch_find_by_info: info.abfd %s\n", |
30737ed9 | 2498 | host_address_to_string (info.abfd)); |
104c1213 | 2499 | fprintf_unfiltered (gdb_stdlog, |
59837fe0 | 2500 | "gdbarch_find_by_info: info.tdep_info %s\n", |
30737ed9 | 2501 | host_address_to_string (info.tdep_info)); |
104c1213 JM |
2502 | } |
2503 | ||
ebdba546 | 2504 | /* Find the tdep code that knows about this architecture. */ |
b732d07d AC |
2505 | for (rego = gdbarch_registry; |
2506 | rego != NULL; | |
2507 | rego = rego->next) | |
2508 | if (rego->bfd_architecture == info.bfd_arch_info->arch) | |
2509 | break; | |
2510 | if (rego == NULL) | |
2511 | { | |
2512 | if (gdbarch_debug) | |
59837fe0 | 2513 | fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: " |
ebdba546 | 2514 | "No matching architecture\n"); |
b732d07d AC |
2515 | return 0; |
2516 | } | |
2517 | ||
ebdba546 | 2518 | /* Ask the tdep code for an architecture that matches "info". */ |
104c1213 JM |
2519 | new_gdbarch = rego->init (info, rego->arches); |
2520 | ||
ebdba546 AC |
2521 | /* Did the tdep code like it? No. Reject the change and revert to |
2522 | the old architecture. */ | |
104c1213 JM |
2523 | if (new_gdbarch == NULL) |
2524 | { | |
2525 | if (gdbarch_debug) | |
59837fe0 | 2526 | fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: " |
ebdba546 AC |
2527 | "Target rejected architecture\n"); |
2528 | return NULL; | |
104c1213 JM |
2529 | } |
2530 | ||
ebdba546 AC |
2531 | /* Is this a pre-existing architecture (as determined by already |
2532 | being initialized)? Move it to the front of the architecture | |
2533 | list (keeping the list sorted Most Recently Used). */ | |
2534 | if (new_gdbarch->initialized_p) | |
104c1213 | 2535 | { |
ebdba546 | 2536 | struct gdbarch_list **list; |
fe978cb0 | 2537 | struct gdbarch_list *self; |
104c1213 | 2538 | if (gdbarch_debug) |
59837fe0 | 2539 | fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: " |
30737ed9 JB |
2540 | "Previous architecture %s (%s) selected\n", |
2541 | host_address_to_string (new_gdbarch), | |
104c1213 | 2542 | new_gdbarch->bfd_arch_info->printable_name); |
ebdba546 AC |
2543 | /* Find the existing arch in the list. */ |
2544 | for (list = ®o->arches; | |
2545 | (*list) != NULL && (*list)->gdbarch != new_gdbarch; | |
2546 | list = &(*list)->next); | |
2547 | /* It had better be in the list of architectures. */ | |
2548 | gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch); | |
fe978cb0 PA |
2549 | /* Unlink SELF. */ |
2550 | self = (*list); | |
2551 | (*list) = self->next; | |
2552 | /* Insert SELF at the front. */ | |
2553 | self->next = rego->arches; | |
2554 | rego->arches = self; | |
ebdba546 AC |
2555 | /* Return it. */ |
2556 | return new_gdbarch; | |
104c1213 JM |
2557 | } |
2558 | ||
ebdba546 AC |
2559 | /* It's a new architecture. */ |
2560 | if (gdbarch_debug) | |
59837fe0 | 2561 | fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: " |
30737ed9 JB |
2562 | "New architecture %s (%s) selected\n", |
2563 | host_address_to_string (new_gdbarch), | |
ebdba546 AC |
2564 | new_gdbarch->bfd_arch_info->printable_name); |
2565 | ||
2566 | /* Insert the new architecture into the front of the architecture | |
2567 | list (keep the list sorted Most Recently Used). */ | |
0f79675b | 2568 | { |
fe978cb0 PA |
2569 | struct gdbarch_list *self = XNEW (struct gdbarch_list); |
2570 | self->next = rego->arches; | |
2571 | self->gdbarch = new_gdbarch; | |
2572 | rego->arches = self; | |
0f79675b | 2573 | } |
104c1213 | 2574 | |
4b9b3959 AC |
2575 | /* Check that the newly installed architecture is valid. Plug in |
2576 | any post init values. */ | |
2577 | new_gdbarch->dump_tdep = rego->dump_tdep; | |
104c1213 | 2578 | verify_gdbarch (new_gdbarch); |
ebdba546 | 2579 | new_gdbarch->initialized_p = 1; |
104c1213 | 2580 | |
4b9b3959 | 2581 | if (gdbarch_debug) |
ebdba546 AC |
2582 | gdbarch_dump (new_gdbarch, gdb_stdlog); |
2583 | ||
2584 | return new_gdbarch; | |
2585 | } | |
2586 | ||
e487cc15 | 2587 | /* Make the specified architecture current. */ |
ebdba546 AC |
2588 | |
2589 | void | |
aff68abb | 2590 | set_target_gdbarch (struct gdbarch *new_gdbarch) |
ebdba546 AC |
2591 | { |
2592 | gdb_assert (new_gdbarch != NULL); | |
ebdba546 | 2593 | gdb_assert (new_gdbarch->initialized_p); |
6ecd4729 | 2594 | current_inferior ()->gdbarch = new_gdbarch; |
0bee6dd4 | 2595 | gdb::observers::architecture_changed.notify (new_gdbarch); |
a3ecef73 | 2596 | registers_changed (); |
ebdba546 | 2597 | } |
104c1213 | 2598 | |
f5656ead | 2599 | /* Return the current inferior's arch. */ |
6ecd4729 PA |
2600 | |
2601 | struct gdbarch * | |
f5656ead | 2602 | target_gdbarch (void) |
6ecd4729 PA |
2603 | { |
2604 | return current_inferior ()->gdbarch; | |
2605 | } | |
2606 | ||
a1237872 | 2607 | void _initialize_gdbarch (); |
104c1213 | 2608 | void |
a1237872 | 2609 | _initialize_gdbarch () |
104c1213 | 2610 | { |
ccce17b0 | 2611 | add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\ |
85c07804 AC |
2612 | Set architecture debugging."), _("\\ |
2613 | Show architecture debugging."), _("\\ | |
2614 | When non-zero, architecture debugging is enabled."), | |
2615 | NULL, | |
920d2a44 | 2616 | show_gdbarch_debug, |
85c07804 | 2617 | &setdebuglist, &showdebuglist); |
104c1213 JM |
2618 | } |
2619 | EOF | |
2620 | ||
2621 | # close things off | |
2622 | exec 1>&2 | |
2623 | #../move-if-change new-gdbarch.c gdbarch.c | |
59233f88 | 2624 | compare_new gdbarch.c |