* emultempl/elf32.em (gld${EMULATION_NAME}_get_script): Add combreloc
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
1e698235 4# Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
104c1213
JM
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
d8864532
AC
22# Make certain that the script is running in an internationalized
23# environment.
24LANG=c ; export LANG
1bd316f0 25LC_ALL=c ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
0b8f9e4d 44read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
3d9a5942
AC
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
50248794
AC
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
e669114a 88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
50248794
AC
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
34620563
AC
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
06b25f14
AC
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
34620563
AC
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
06b25f14 117
ae45cd16
AC
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
34620563 121 "" )
ae45cd16 122 if test -n "${predefault}" -a "${predefault}" != "0"
34620563
AC
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 125 predicate="gdbarch->${function} != ${predefault}"
34620563 126 else
ae45cd16
AC
127 # filled in later
128 predicate=""
34620563
AC
129 fi
130 ;;
ae45cd16 131 * )
1e9f55d0 132 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
133 kill $$
134 exit 1
135 ;;
136 esac
34620563
AC
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
72e74a21 146 if [ -n "${postdefault}" ]
34620563
AC
147 then
148 fallbackdefault="${postdefault}"
72e74a21 149 elif [ -n "${predefault}" ]
34620563
AC
150 then
151 fallbackdefault="${predefault}"
152 else
73d3c16e 153 fallbackdefault="0"
34620563
AC
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
f0d4cc9e 160 fi
34620563 161 done
72e74a21 162 if [ -n "${class}" ]
34620563
AC
163 then
164 true
c0e8c252
AC
165 else
166 false
167 fi
168}
169
104c1213 170
f0d4cc9e
AC
171fallback_default_p ()
172{
72e74a21
JB
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
175}
176
177class_is_variable_p ()
178{
4a5c6a1d
AC
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_function_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191}
192
193class_is_multiarch_p ()
194{
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201class_is_predicate_p ()
202{
4a5c6a1d
AC
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
f0d4cc9e
AC
207}
208
209class_is_info_p ()
210{
4a5c6a1d
AC
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
f0d4cc9e
AC
215}
216
217
cff3e48b
JM
218# dump out/verify the doco
219for field in ${read}
220do
221 case ${field} in
222
223 class ) : ;;
c4093a6a 224
c0e8c252
AC
225 # # -> line disable
226 # f -> function
227 # hiding a function
2ada493a
AC
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
c0e8c252
AC
230 # v -> variable
231 # hiding a variable
2ada493a
AC
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
c0e8c252
AC
234 # i -> set from info
235 # hiding something from the ``struct info'' object
4a5c6a1d
AC
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
240
241 level ) : ;;
242
c0e8c252
AC
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
cff3e48b
JM
246
247 macro ) : ;;
248
c0e8c252 249 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
250
251 returntype ) : ;;
252
c0e8c252 253 # For functions, the return type; for variables, the data type
cff3e48b
JM
254
255 function ) : ;;
256
c0e8c252
AC
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
260
261 formal ) : ;;
262
c0e8c252
AC
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
cff3e48b
JM
267
268 actual ) : ;;
269
c0e8c252
AC
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
cff3e48b
JM
273
274 attrib ) : ;;
275
c0e8c252
AC
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
cff3e48b 278
0b8f9e4d 279 staticdefault ) : ;;
c0e8c252
AC
280
281 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
cff3e48b 285
0b8f9e4d 286 # If STATICDEFAULT is empty, zero is used.
c0e8c252 287
0b8f9e4d 288 predefault ) : ;;
cff3e48b 289
10312cc4
AC
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
cff3e48b 294
0b8f9e4d
AC
295 # If PREDEFAULT is empty, zero is used.
296
10312cc4
AC
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
f0d4cc9e
AC
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
0b8f9e4d
AC
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
10312cc4
AC
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
f0d4cc9e
AC
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
cff3e48b 328
c4093a6a 329 invalid_p ) : ;;
cff3e48b 330
0b8f9e4d 331 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 332 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
f0d4cc9e
AC
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
343
344 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
345
346 fmt ) : ;;
347
c0e8c252
AC
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
0b8f9e4d 352 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
353
354 print ) : ;;
355
c0e8c252
AC
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
0b8f9e4d 359 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
360
361 print_p ) : ;;
362
c0e8c252
AC
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
4b9b3959 366 # () -> Call a custom function to do the dump.
c0e8c252
AC
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
cff3e48b 369
0b8f9e4d
AC
370 # If PRINT_P is empty, ``1'' is always used.
371
cff3e48b
JM
372 description ) : ;;
373
0b8f9e4d 374 # Currently unused.
cff3e48b 375
50248794
AC
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
cff3e48b
JM
379 esac
380done
381
cff3e48b 382
104c1213
JM
383function_list ()
384{
cff3e48b 385 # See below (DOCO) for description of each field
34620563 386 cat <<EOF
0b8f9e4d 387i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 388#
d7449b42 389i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
4be87837
DJ
390#
391i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
66b43ecb
AC
392# Number of bits in a char or unsigned char for the target machine.
393# Just like CHAR_BIT in <limits.h> but describes the target machine.
e669114a 394# v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
395#
396# Number of bits in a short or unsigned short for the target machine.
e669114a 397v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 398# Number of bits in an int or unsigned int for the target machine.
e669114a 399v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 400# Number of bits in a long or unsigned long for the target machine.
e669114a 401v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
402# Number of bits in a long long or unsigned long long for the target
403# machine.
e669114a 404v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
66b43ecb 405# Number of bits in a float for the target machine.
e669114a 406v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
66b43ecb 407# Number of bits in a double for the target machine.
e669114a 408v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
66b43ecb 409# Number of bits in a long double for the target machine.
e669114a 410v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
411# For most targets, a pointer on the target and its representation as an
412# address in GDB have the same size and "look the same". For such a
413# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414# / addr_bit will be set from it.
415#
416# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418#
419# ptr_bit is the size of a pointer on the target
e669114a 420v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b 421# addr_bit is the size of a target address as represented in gdb
e669114a 422v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb 423# Number of bits in a BFD_VMA for the target object file format.
e669114a 424v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 425#
4e409299 426# One if \`char' acts like \`signed char', zero if \`unsigned char'.
e669114a 427v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 428#
e669114a
AC
429f:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
430f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
431f:2:TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
432f:2:TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
433f:2:TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
39d4ef09
AC
434# Function for getting target's idea of a frame pointer. FIXME: GDB's
435# whole scheme for dealing with "frames" and "frame pointers" needs a
436# serious shakedown.
e669114a 437f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 438#
d8124050
AC
439M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
440M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
61a0eb5b 441#
104c1213 442v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
443# This macro gives the number of pseudo-registers that live in the
444# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
445# These pseudo-registers may be aliases for other registers,
446# combinations of other registers, or they may be computed by GDB.
0aba1244 447v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
448
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e
AC
451# all (-1).
452v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
453v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
454v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 455v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d
AC
456v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
457v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
88c72b7d
AC
458# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
459f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
460# Provide a default mapping from a ecoff register number to a gdb REGNUM.
461f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
462# Provide a default mapping from a DWARF register number to a gdb REGNUM.
463f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
464# Convert from an sdb register number to an internal gdb register number.
465# This should be defined in tm.h, if REGISTER_NAMES is not set up
466# to map one to one onto the sdb register numbers.
467f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
fa88f677 469f:2:REGISTER_NAME:const char *:register_name:int regnr:regnr:::legacy_register_name::0
104c1213
JM
470v:2:REGISTER_SIZE:int:register_size::::0:-1
471v:2:REGISTER_BYTES:int:register_bytes::::0:-1
a7e3c2ad 472f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte::0
b2e75d78 473f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
104c1213 474v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
b2e75d78 475f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size::0
104c1213
JM
476v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
477f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
0ab7a791 478#
903ad3a6 479F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
0ab7a791 480m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
23e3a7ac 481M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
e76f1f2e 482M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
483# MAP a GDB RAW register number onto a simulator register number. See
484# also include/...-sim.h.
8238d0bf 485f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
2649061d 486F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
01fb7433
AC
487f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
488f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0
RE
489# setjmp/longjmp support.
490F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
104c1213 491#
028c194b
AC
492# Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
493# much better but at least they are vaguely consistent). The headers
494# and body contain convoluted #if/#else sequences for determine how
495# things should be compiled. Instead of trying to mimic that
496# behaviour here (and hence entrench it further) gdbarch simply
497# reqires that these methods be set up from the word go. This also
498# avoids any potential problems with moving beyond multi-arch partial.
07555a72 499v:1:DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
b99fa2d2 500v:1:CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
0b8f9e4d
AC
501f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
502v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
83e6b173 503v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
104c1213 504v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
73c1f219 505v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::gdbarch->call_dummy_length >= 0
ae45cd16
AC
506# NOTE: cagney/2002-11-24: This function with predicate has a valid
507# (callable) initial value. As a consequence, even when the predicate
508# is false, the corresponding function works. This simplifies the
509# migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
510# doesn't need to be modified.
511F:1:DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
104c1213 512v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
0b8f9e4d
AC
513v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
514v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
515v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
516v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
517f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
97f46953 518F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
e669114a 519F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
104c1213 520#
f0d4cc9e 521v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
e669114a 522v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
a216a322 523F:2:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
104c1213 524#
6e6d6484 525f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
0b8f9e4d
AC
526f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
527f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
13d01224
AC
528#
529f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum:regnum::0:legacy_convert_register_p::0
530f:1:REGISTER_TO_VALUE:void:register_to_value:int regnum, struct type *type, char *from, char *to:regnum, type, from, to::0:legacy_register_to_value::0
531f:1:VALUE_TO_REGISTER:void:value_to_register:struct type *type, int regnum, char *from, char *to:type, regnum, from, to::0:legacy_value_to_register::0
104c1213 532#
66140c26 533f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
ac2e2ef7 534f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 535F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 536#
0b8f9e4d 537f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
6e6d6484 538f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
f3824013 539F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
c30e0066 540F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
dedc2a2b 541F:2:POP_FRAME:void:pop_frame:void:-:::0
104c1213 542#
c0e8c252 543f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
ebba8386 544#
e669114a
AC
545f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
546f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
547f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
548f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
ebba8386 549#
049ee0e4 550F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
26e9b323 551F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
56f12751 552f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
104c1213 553#
8f871025 554F:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame:::0
5fdff426 555F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
104c1213
JM
556#
557f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
0b8f9e4d 558f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
104c1213 559f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
f4f9705a 560f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
0b8f9e4d
AC
561f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
562f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
104c1213 563v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
e669114a 564f:2:PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
104c1213
JM
565v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
566#
0b8f9e4d 567f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213
JM
568#
569v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
0b8f9e4d 570f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
d62d1979 571F:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
51603483 572F:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
d62d1979 573F:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
7d6a26a7
AC
574f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:get_frame_base::0
575f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:get_frame_base::0
104c1213
JM
576f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
577f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
578#
2ada493a 579F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
dc604539 580M:::CORE_ADDR:frame_align:CORE_ADDR address:address
6acf50cd 581v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
d03e67c9 582F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
d1e3cf49 583F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
58d5518e 584v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e 585#
52f87c51
AC
586v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
587v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
588v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
875e1767
AC
589f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
590# On some machines there are bits in addresses which are not really
591# part of the address, but are used by the kernel, the hardware, etc.
592# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
593# we get a "real" address such as one would find in a symbol table.
594# This is used only for addresses of instructions, and even then I'm
595# not sure it's used in all contexts. It exists to deal with there
596# being a few stray bits in the PC which would mislead us, not as some
597# sort of generic thing to handle alignment or segmentation (it's
598# possible it should be in TARGET_READ_PC instead).
599f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
181c1381
RE
600# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
601# ADDR_BITS_REMOVE.
602f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
603# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
604# the target needs software single step. An ISA method to implement it.
605#
606# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
607# using the breakpoint system instead of blatting memory directly (as with rs6000).
608#
609# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
610# single step. If not, then implement single step using breakpoints.
611F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
2bf0cb65 612f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
bdcd319a 613f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
614
615
68e9cc94
CV
616# For SVR4 shared libraries, each call goes through a small piece of
617# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 618# to nonzero if we are currently stopped in one of these.
68e9cc94 619f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
620
621# Some systems also have trampoline code for returning from shared libs.
622f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
623
d7bd68ca
AC
624# Sigtramp is a routine that the kernel calls (which then calls the
625# signal handler). On most machines it is a library routine that is
626# linked into the executable.
627#
628# This macro, given a program counter value and the name of the
629# function in which that PC resides (which can be null if the name is
630# not known), returns nonzero if the PC and name show that we are in
631# sigtramp.
632#
633# On most machines just see if the name is sigtramp (and if we have
634# no name, assume we are not in sigtramp).
635#
636# FIXME: cagney/2002-04-21: The function find_pc_partial_function
637# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
638# This means PC_IN_SIGTRAMP function can't be implemented by doing its
639# own local NAME lookup.
640#
641# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
642# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
643# does not.
644f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
43156d82 645F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
e669114a 646F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
c12260ac
CV
647# A target might have problems with watchpoints as soon as the stack
648# frame of the current function has been destroyed. This mostly happens
649# as the first action in a funtion's epilogue. in_function_epilogue_p()
650# is defined to return a non-zero value if either the given addr is one
651# instruction after the stack destroying instruction up to the trailing
652# return instruction or if we can figure out that the stack frame has
653# already been invalidated regardless of the value of addr. Targets
654# which don't suffer from that problem could just let this functionality
655# untouched.
656m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
657# Given a vector of command-line arguments, return a newly allocated
658# string which, when passed to the create_inferior function, will be
659# parsed (on Unix systems, by the shell) to yield the same vector.
660# This function should call error() if the argument vector is not
661# representable for this target or if this target does not support
662# command-line arguments.
663# ARGC is the number of elements in the vector.
664# ARGV is an array of strings, one per argument.
665m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
b6af0555 666F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
a2cf933a
EZ
667f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
668f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
e669114a
AC
669v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
670v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
671v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
8b2dbe47 672F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
321432c0
KB
673M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
674M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 675# Is a register in a group
7e20f3fb 676m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
104c1213 677EOF
104c1213
JM
678}
679
0b8f9e4d
AC
680#
681# The .log file
682#
683exec > new-gdbarch.log
34620563 684function_list | while do_read
0b8f9e4d
AC
685do
686 cat <<EOF
104c1213
JM
687${class} ${macro}(${actual})
688 ${returntype} ${function} ($formal)${attrib}
104c1213 689EOF
3d9a5942
AC
690 for r in ${read}
691 do
692 eval echo \"\ \ \ \ ${r}=\${${r}}\"
693 done
f0d4cc9e 694 if class_is_predicate_p && fallback_default_p
0b8f9e4d 695 then
66b43ecb 696 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
697 kill $$
698 exit 1
699 fi
72e74a21 700 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
701 then
702 echo "Error: postdefault is useless when invalid_p=0" 1>&2
703 kill $$
704 exit 1
705 fi
a72293e2
AC
706 if class_is_multiarch_p
707 then
708 if class_is_predicate_p ; then :
709 elif test "x${predefault}" = "x"
710 then
711 echo "Error: pure multi-arch function must have a predefault" 1>&2
712 kill $$
713 exit 1
714 fi
715 fi
3d9a5942 716 echo ""
0b8f9e4d
AC
717done
718
719exec 1>&2
720compare_new gdbarch.log
721
104c1213
JM
722
723copyright ()
724{
725cat <<EOF
59233f88
AC
726/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
727
104c1213 728/* Dynamic architecture support for GDB, the GNU debugger.
1e698235 729 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
104c1213
JM
730
731 This file is part of GDB.
732
733 This program is free software; you can redistribute it and/or modify
734 it under the terms of the GNU General Public License as published by
735 the Free Software Foundation; either version 2 of the License, or
736 (at your option) any later version.
737
738 This program is distributed in the hope that it will be useful,
739 but WITHOUT ANY WARRANTY; without even the implied warranty of
740 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
741 GNU General Public License for more details.
742
743 You should have received a copy of the GNU General Public License
744 along with this program; if not, write to the Free Software
745 Foundation, Inc., 59 Temple Place - Suite 330,
746 Boston, MA 02111-1307, USA. */
747
104c1213
JM
748/* This file was created with the aid of \`\`gdbarch.sh''.
749
52204a0b 750 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
751 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
752 against the existing \`\`gdbarch.[hc]''. Any differences found
753 being reported.
754
755 If editing this file, please also run gdbarch.sh and merge any
52204a0b 756 changes into that script. Conversely, when making sweeping changes
104c1213
JM
757 to this file, modifying gdbarch.sh and using its output may prove
758 easier. */
759
760EOF
761}
762
763#
764# The .h file
765#
766
767exec > new-gdbarch.h
768copyright
769cat <<EOF
770#ifndef GDBARCH_H
771#define GDBARCH_H
772
2bf0cb65 773#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
fd0407d6 774#if !GDB_MULTI_ARCH
67a2b77e 775/* Pull in function declarations refered to, indirectly, via macros. */
67a2b77e 776#include "inferior.h" /* For unsigned_address_to_pointer(). */
fd0407d6 777#endif
2bf0cb65 778
104c1213
JM
779struct frame_info;
780struct value;
b6af0555 781struct objfile;
a2cf933a 782struct minimal_symbol;
049ee0e4 783struct regcache;
b59ff9d5 784struct reggroup;
104c1213 785
104c1213
JM
786extern struct gdbarch *current_gdbarch;
787
788
104c1213
JM
789/* If any of the following are defined, the target wasn't correctly
790 converted. */
791
104c1213
JM
792#if GDB_MULTI_ARCH
793#if defined (EXTRA_FRAME_INFO)
794#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
795#endif
796#endif
797
798#if GDB_MULTI_ARCH
799#if defined (FRAME_FIND_SAVED_REGS)
800#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
801#endif
802#endif
83905903
AC
803
804#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
805#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
806#endif
104c1213
JM
807EOF
808
809# function typedef's
3d9a5942
AC
810printf "\n"
811printf "\n"
812printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 813function_list | while do_read
104c1213 814do
2ada493a
AC
815 if class_is_info_p
816 then
3d9a5942
AC
817 printf "\n"
818 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
819 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 820 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
821 printf "#error \"Non multi-arch definition of ${macro}\"\n"
822 printf "#endif\n"
3d9a5942 823 printf "#if GDB_MULTI_ARCH\n"
028c194b 824 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
3d9a5942
AC
825 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
826 printf "#endif\n"
827 printf "#endif\n"
2ada493a 828 fi
104c1213
JM
829done
830
831# function typedef's
3d9a5942
AC
832printf "\n"
833printf "\n"
834printf "/* The following are initialized by the target dependent code. */\n"
34620563 835function_list | while do_read
104c1213 836do
72e74a21 837 if [ -n "${comment}" ]
34620563
AC
838 then
839 echo "${comment}" | sed \
840 -e '2 s,#,/*,' \
841 -e '3,$ s,#, ,' \
842 -e '$ s,$, */,'
843 fi
b77be6cf 844 if class_is_multiarch_p
2ada493a 845 then
b77be6cf
AC
846 if class_is_predicate_p
847 then
848 printf "\n"
849 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
850 fi
851 else
852 if class_is_predicate_p
853 then
854 printf "\n"
855 printf "#if defined (${macro})\n"
856 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
857 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 858 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
859 printf "#define ${macro}_P() (1)\n"
860 printf "#endif\n"
eee30e78 861 printf "#endif\n"
b77be6cf
AC
862 printf "\n"
863 printf "/* Default predicate for non- multi-arch targets. */\n"
864 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
865 printf "#define ${macro}_P() (0)\n"
866 printf "#endif\n"
867 printf "\n"
868 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 869 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
870 printf "#error \"Non multi-arch definition of ${macro}\"\n"
871 printf "#endif\n"
028c194b 872 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
873 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
874 printf "#endif\n"
875 fi
4a5c6a1d 876 fi
2ada493a
AC
877 if class_is_variable_p
878 then
f0d4cc9e 879 if fallback_default_p || class_is_predicate_p
33489c5b 880 then
3d9a5942
AC
881 printf "\n"
882 printf "/* Default (value) for non- multi-arch platforms. */\n"
883 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
f0d4cc9e
AC
884 echo "#define ${macro} (${fallbackdefault})" \
885 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
3d9a5942 886 printf "#endif\n"
33489c5b 887 fi
3d9a5942
AC
888 printf "\n"
889 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
890 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 891 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
892 printf "#error \"Non multi-arch definition of ${macro}\"\n"
893 printf "#endif\n"
e669114a
AC
894 if test "${level}" = ""
895 then
896 printf "#if !defined (${macro})\n"
897 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
898 printf "#endif\n"
899 else
900 printf "#if GDB_MULTI_ARCH\n"
901 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
902 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
903 printf "#endif\n"
904 printf "#endif\n"
905 fi
2ada493a
AC
906 fi
907 if class_is_function_p
908 then
b77be6cf
AC
909 if class_is_multiarch_p ; then :
910 elif fallback_default_p || class_is_predicate_p
33489c5b 911 then
3d9a5942
AC
912 printf "\n"
913 printf "/* Default (function) for non- multi-arch platforms. */\n"
914 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
72e74a21 915 if [ "x${fallbackdefault}" = "x0" ]
33489c5b 916 then
dedc2a2b
AC
917 if [ "x${actual}" = "x-" ]
918 then
919 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
920 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
921 else
922 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
923 fi
33489c5b 924 else
f0d4cc9e
AC
925 # FIXME: Should be passing current_gdbarch through!
926 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
927 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
33489c5b 928 fi
3d9a5942 929 printf "#endif\n"
33489c5b 930 fi
3d9a5942 931 printf "\n"
72e74a21 932 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
933 then
934 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
935 elif class_is_multiarch_p
936 then
937 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
938 else
939 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
940 fi
72e74a21 941 if [ "x${formal}" = "xvoid" ]
104c1213 942 then
3d9a5942 943 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 944 else
3d9a5942 945 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 946 fi
3d9a5942 947 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
948 if class_is_multiarch_p ; then :
949 else
028c194b 950 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
951 printf "#error \"Non multi-arch definition of ${macro}\"\n"
952 printf "#endif\n"
4a5c6a1d 953 printf "#if GDB_MULTI_ARCH\n"
028c194b 954 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
72e74a21 955 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
956 then
957 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 958 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
959 then
960 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
961 else
962 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
963 fi
964 printf "#endif\n"
965 printf "#endif\n"
104c1213 966 fi
2ada493a 967 fi
104c1213
JM
968done
969
970# close it off
971cat <<EOF
972
973extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
974
975
976/* Mechanism for co-ordinating the selection of a specific
977 architecture.
978
979 GDB targets (*-tdep.c) can register an interest in a specific
980 architecture. Other GDB components can register a need to maintain
981 per-architecture data.
982
983 The mechanisms below ensures that there is only a loose connection
984 between the set-architecture command and the various GDB
0fa6923a 985 components. Each component can independently register their need
104c1213
JM
986 to maintain architecture specific data with gdbarch.
987
988 Pragmatics:
989
990 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
991 didn't scale.
992
993 The more traditional mega-struct containing architecture specific
994 data for all the various GDB components was also considered. Since
0fa6923a 995 GDB is built from a variable number of (fairly independent)
104c1213
JM
996 components it was determined that the global aproach was not
997 applicable. */
998
999
1000/* Register a new architectural family with GDB.
1001
1002 Register support for the specified ARCHITECTURE with GDB. When
1003 gdbarch determines that the specified architecture has been
1004 selected, the corresponding INIT function is called.
1005
1006 --
1007
1008 The INIT function takes two parameters: INFO which contains the
1009 information available to gdbarch about the (possibly new)
1010 architecture; ARCHES which is a list of the previously created
1011 \`\`struct gdbarch'' for this architecture.
1012
0f79675b
AC
1013 The INFO parameter is, as far as possible, be pre-initialized with
1014 information obtained from INFO.ABFD or the previously selected
1015 architecture.
1016
1017 The ARCHES parameter is a linked list (sorted most recently used)
1018 of all the previously created architures for this architecture
1019 family. The (possibly NULL) ARCHES->gdbarch can used to access
1020 values from the previously selected architecture for this
1021 architecture family. The global \`\`current_gdbarch'' shall not be
1022 used.
104c1213
JM
1023
1024 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1025 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1026 gdbarch'' from the ARCHES list - indicating that the new
1027 architecture is just a synonym for an earlier architecture (see
1028 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1029 - that describes the selected architecture (see gdbarch_alloc()).
1030
1031 The DUMP_TDEP function shall print out all target specific values.
1032 Care should be taken to ensure that the function works in both the
1033 multi-arch and non- multi-arch cases. */
104c1213
JM
1034
1035struct gdbarch_list
1036{
1037 struct gdbarch *gdbarch;
1038 struct gdbarch_list *next;
1039};
1040
1041struct gdbarch_info
1042{
104c1213
JM
1043 /* Use default: NULL (ZERO). */
1044 const struct bfd_arch_info *bfd_arch_info;
1045
428721aa 1046 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1047 int byte_order;
1048
1049 /* Use default: NULL (ZERO). */
1050 bfd *abfd;
1051
1052 /* Use default: NULL (ZERO). */
1053 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1054
1055 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1056 enum gdb_osabi osabi;
104c1213
JM
1057};
1058
1059typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1060typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1061
4b9b3959 1062/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1063extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1064
4b9b3959
AC
1065extern void gdbarch_register (enum bfd_architecture architecture,
1066 gdbarch_init_ftype *,
1067 gdbarch_dump_tdep_ftype *);
1068
104c1213 1069
b4a20239
AC
1070/* Return a freshly allocated, NULL terminated, array of the valid
1071 architecture names. Since architectures are registered during the
1072 _initialize phase this function only returns useful information
1073 once initialization has been completed. */
1074
1075extern const char **gdbarch_printable_names (void);
1076
1077
104c1213
JM
1078/* Helper function. Search the list of ARCHES for a GDBARCH that
1079 matches the information provided by INFO. */
1080
1081extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1082
1083
1084/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1085 basic initialization using values obtained from the INFO andTDEP
1086 parameters. set_gdbarch_*() functions are called to complete the
1087 initialization of the object. */
1088
1089extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1090
1091
4b9b3959
AC
1092/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1093 It is assumed that the caller freeds the \`\`struct
1094 gdbarch_tdep''. */
1095
058f20d5
JB
1096extern void gdbarch_free (struct gdbarch *);
1097
1098
b732d07d 1099/* Helper function. Force an update of the current architecture.
104c1213 1100
b732d07d
AC
1101 The actual architecture selected is determined by INFO, \`\`(gdb) set
1102 architecture'' et.al., the existing architecture and BFD's default
1103 architecture. INFO should be initialized to zero and then selected
1104 fields should be updated.
104c1213 1105
16f33e29
AC
1106 Returns non-zero if the update succeeds */
1107
1108extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1109
1110
1111
1112/* Register per-architecture data-pointer.
1113
1114 Reserve space for a per-architecture data-pointer. An identifier
1115 for the reserved data-pointer is returned. That identifer should
95160752 1116 be saved in a local static variable.
104c1213 1117
76860b5f
AC
1118 The per-architecture data-pointer is either initialized explicitly
1119 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1120 gdbarch_data()). FREE() is called to delete either an existing
2af496cb 1121 data-pointer overridden by set_gdbarch_data() or when the
76860b5f 1122 architecture object is being deleted.
104c1213 1123
95160752
AC
1124 When a previously created architecture is re-selected, the
1125 per-architecture data-pointer for that previous architecture is
76860b5f 1126 restored. INIT() is not re-called.
104c1213
JM
1127
1128 Multiple registrarants for any architecture are allowed (and
1129 strongly encouraged). */
1130
95160752 1131struct gdbarch_data;
104c1213 1132
95160752
AC
1133typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1134typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1135 void *pointer);
1136extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1137 gdbarch_data_free_ftype *free);
1138extern void set_gdbarch_data (struct gdbarch *gdbarch,
1139 struct gdbarch_data *data,
1140 void *pointer);
104c1213 1141
451fbdda 1142extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1143
1144
104c1213
JM
1145/* Register per-architecture memory region.
1146
1147 Provide a memory-region swap mechanism. Per-architecture memory
1148 region are created. These memory regions are swapped whenever the
1149 architecture is changed. For a new architecture, the memory region
1150 is initialized with zero (0) and the INIT function is called.
1151
1152 Memory regions are swapped / initialized in the order that they are
1153 registered. NULL DATA and/or INIT values can be specified.
1154
1155 New code should use register_gdbarch_data(). */
1156
1157typedef void (gdbarch_swap_ftype) (void);
1158extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1159#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1160
1161
1162
0fa6923a 1163/* The target-system-dependent byte order is dynamic */
104c1213 1164
104c1213 1165extern int target_byte_order;
104c1213
JM
1166#ifndef TARGET_BYTE_ORDER
1167#define TARGET_BYTE_ORDER (target_byte_order + 0)
1168#endif
1169
1170extern int target_byte_order_auto;
1171#ifndef TARGET_BYTE_ORDER_AUTO
1172#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1173#endif
1174
1175
1176
0fa6923a 1177/* The target-system-dependent BFD architecture is dynamic */
104c1213
JM
1178
1179extern int target_architecture_auto;
1180#ifndef TARGET_ARCHITECTURE_AUTO
1181#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1182#endif
1183
1184extern const struct bfd_arch_info *target_architecture;
1185#ifndef TARGET_ARCHITECTURE
1186#define TARGET_ARCHITECTURE (target_architecture + 0)
1187#endif
1188
104c1213 1189
0fa6923a 1190/* The target-system-dependent disassembler is semi-dynamic */
104c1213 1191
104c1213 1192extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
ff844c8d 1193 unsigned int len, disassemble_info *info);
104c1213
JM
1194
1195extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1196 disassemble_info *info);
1197
1198extern void dis_asm_print_address (bfd_vma addr,
1199 disassemble_info *info);
1200
1201extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1202extern disassemble_info tm_print_insn_info;
104c1213
JM
1203#ifndef TARGET_PRINT_INSN_INFO
1204#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1205#endif
1206
1207
1208
0fa6923a 1209/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1210 byte-order, ...) using information found in the BFD */
1211
1212extern void set_gdbarch_from_file (bfd *);
1213
1214
e514a9d6
JM
1215/* Initialize the current architecture to the "first" one we find on
1216 our list. */
1217
1218extern void initialize_current_architecture (void);
1219
ceaa8edf
JB
1220/* For non-multiarched targets, do any initialization of the default
1221 gdbarch object necessary after the _initialize_MODULE functions
1222 have run. */
5ae5f592 1223extern void initialize_non_multiarch (void);
104c1213
JM
1224
1225/* gdbarch trace variable */
1226extern int gdbarch_debug;
1227
4b9b3959 1228extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1229
1230#endif
1231EOF
1232exec 1>&2
1233#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1234compare_new gdbarch.h
104c1213
JM
1235
1236
1237#
1238# C file
1239#
1240
1241exec > new-gdbarch.c
1242copyright
1243cat <<EOF
1244
1245#include "defs.h"
7355ddba 1246#include "arch-utils.h"
104c1213
JM
1247
1248#if GDB_MULTI_ARCH
1249#include "gdbcmd.h"
1250#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1251#else
1252/* Just include everything in sight so that the every old definition
1253 of macro is visible. */
1254#include "gdb_string.h"
1255#include <ctype.h>
1256#include "symtab.h"
1257#include "frame.h"
1258#include "inferior.h"
1259#include "breakpoint.h"
0596389c 1260#include "gdb_wait.h"
104c1213
JM
1261#include "gdbcore.h"
1262#include "gdbcmd.h"
1263#include "target.h"
1264#include "gdbthread.h"
1265#include "annotate.h"
1266#include "symfile.h" /* for overlay functions */
fd0407d6 1267#include "value.h" /* For old tm.h/nm.h macros. */
104c1213
JM
1268#endif
1269#include "symcat.h"
1270
f0d4cc9e 1271#include "floatformat.h"
104c1213 1272
95160752 1273#include "gdb_assert.h"
b66d6d2e 1274#include "gdb_string.h"
67c2c32c 1275#include "gdb-events.h"
b59ff9d5 1276#include "reggroups.h"
4be87837 1277#include "osabi.h"
95160752 1278
104c1213
JM
1279/* Static function declarations */
1280
1281static void verify_gdbarch (struct gdbarch *gdbarch);
b3cc3077 1282static void alloc_gdbarch_data (struct gdbarch *);
95160752 1283static void free_gdbarch_data (struct gdbarch *);
104c1213 1284static void init_gdbarch_swap (struct gdbarch *);
40af4b0c 1285static void clear_gdbarch_swap (struct gdbarch *);
104c1213
JM
1286static void swapout_gdbarch_swap (struct gdbarch *);
1287static void swapin_gdbarch_swap (struct gdbarch *);
1288
104c1213
JM
1289/* Non-zero if we want to trace architecture code. */
1290
1291#ifndef GDBARCH_DEBUG
1292#define GDBARCH_DEBUG 0
1293#endif
1294int gdbarch_debug = GDBARCH_DEBUG;
1295
1296EOF
1297
1298# gdbarch open the gdbarch object
3d9a5942
AC
1299printf "\n"
1300printf "/* Maintain the struct gdbarch object */\n"
1301printf "\n"
1302printf "struct gdbarch\n"
1303printf "{\n"
76860b5f
AC
1304printf " /* Has this architecture been fully initialized? */\n"
1305printf " int initialized_p;\n"
3d9a5942 1306printf " /* basic architectural information */\n"
34620563 1307function_list | while do_read
104c1213 1308do
2ada493a
AC
1309 if class_is_info_p
1310 then
3d9a5942 1311 printf " ${returntype} ${function};\n"
2ada493a 1312 fi
104c1213 1313done
3d9a5942
AC
1314printf "\n"
1315printf " /* target specific vector. */\n"
1316printf " struct gdbarch_tdep *tdep;\n"
1317printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1318printf "\n"
1319printf " /* per-architecture data-pointers */\n"
95160752 1320printf " unsigned nr_data;\n"
3d9a5942
AC
1321printf " void **data;\n"
1322printf "\n"
1323printf " /* per-architecture swap-regions */\n"
1324printf " struct gdbarch_swap *swap;\n"
1325printf "\n"
104c1213
JM
1326cat <<EOF
1327 /* Multi-arch values.
1328
1329 When extending this structure you must:
1330
1331 Add the field below.
1332
1333 Declare set/get functions and define the corresponding
1334 macro in gdbarch.h.
1335
1336 gdbarch_alloc(): If zero/NULL is not a suitable default,
1337 initialize the new field.
1338
1339 verify_gdbarch(): Confirm that the target updated the field
1340 correctly.
1341
7e73cedf 1342 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1343 field is dumped out
1344
c0e8c252 1345 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1346 variable (base values on the host's c-type system).
1347
1348 get_gdbarch(): Implement the set/get functions (probably using
1349 the macro's as shortcuts).
1350
1351 */
1352
1353EOF
34620563 1354function_list | while do_read
104c1213 1355do
2ada493a
AC
1356 if class_is_variable_p
1357 then
3d9a5942 1358 printf " ${returntype} ${function};\n"
2ada493a
AC
1359 elif class_is_function_p
1360 then
3d9a5942 1361 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1362 fi
104c1213 1363done
3d9a5942 1364printf "};\n"
104c1213
JM
1365
1366# A pre-initialized vector
3d9a5942
AC
1367printf "\n"
1368printf "\n"
104c1213
JM
1369cat <<EOF
1370/* The default architecture uses host values (for want of a better
1371 choice). */
1372EOF
3d9a5942
AC
1373printf "\n"
1374printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1375printf "\n"
1376printf "struct gdbarch startup_gdbarch =\n"
1377printf "{\n"
76860b5f 1378printf " 1, /* Always initialized. */\n"
3d9a5942 1379printf " /* basic architecture information */\n"
4b9b3959 1380function_list | while do_read
104c1213 1381do
2ada493a
AC
1382 if class_is_info_p
1383 then
3d9a5942 1384 printf " ${staticdefault},\n"
2ada493a 1385 fi
104c1213
JM
1386done
1387cat <<EOF
4b9b3959
AC
1388 /* target specific vector and its dump routine */
1389 NULL, NULL,
104c1213
JM
1390 /*per-architecture data-pointers and swap regions */
1391 0, NULL, NULL,
1392 /* Multi-arch values */
1393EOF
34620563 1394function_list | while do_read
104c1213 1395do
2ada493a
AC
1396 if class_is_function_p || class_is_variable_p
1397 then
3d9a5942 1398 printf " ${staticdefault},\n"
2ada493a 1399 fi
104c1213
JM
1400done
1401cat <<EOF
c0e8c252 1402 /* startup_gdbarch() */
104c1213 1403};
4b9b3959 1404
c0e8c252 1405struct gdbarch *current_gdbarch = &startup_gdbarch;
ceaa8edf
JB
1406
1407/* Do any initialization needed for a non-multiarch configuration
1408 after the _initialize_MODULE functions have been run. */
1409void
5ae5f592 1410initialize_non_multiarch (void)
ceaa8edf
JB
1411{
1412 alloc_gdbarch_data (&startup_gdbarch);
40af4b0c
AC
1413 /* Ensure that all swap areas are zeroed so that they again think
1414 they are starting from scratch. */
1415 clear_gdbarch_swap (&startup_gdbarch);
6c1e5d11 1416 init_gdbarch_swap (&startup_gdbarch);
ceaa8edf 1417}
104c1213
JM
1418EOF
1419
1420# Create a new gdbarch struct
3d9a5942
AC
1421printf "\n"
1422printf "\n"
104c1213 1423cat <<EOF
66b43ecb 1424/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1425 \`\`struct gdbarch_info''. */
1426EOF
3d9a5942 1427printf "\n"
104c1213
JM
1428cat <<EOF
1429struct gdbarch *
1430gdbarch_alloc (const struct gdbarch_info *info,
1431 struct gdbarch_tdep *tdep)
1432{
85de9627
AC
1433 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1434 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1435 the current local architecture and not the previous global
1436 architecture. This ensures that the new architectures initial
1437 values are not influenced by the previous architecture. Once
1438 everything is parameterised with gdbarch, this will go away. */
1439 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1440 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1441
1442 alloc_gdbarch_data (current_gdbarch);
1443
1444 current_gdbarch->tdep = tdep;
104c1213 1445EOF
3d9a5942 1446printf "\n"
34620563 1447function_list | while do_read
104c1213 1448do
2ada493a
AC
1449 if class_is_info_p
1450 then
85de9627 1451 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1452 fi
104c1213 1453done
3d9a5942
AC
1454printf "\n"
1455printf " /* Force the explicit initialization of these. */\n"
34620563 1456function_list | while do_read
104c1213 1457do
2ada493a
AC
1458 if class_is_function_p || class_is_variable_p
1459 then
72e74a21 1460 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1461 then
85de9627 1462 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1463 fi
2ada493a 1464 fi
104c1213
JM
1465done
1466cat <<EOF
1467 /* gdbarch_alloc() */
1468
85de9627 1469 return current_gdbarch;
104c1213
JM
1470}
1471EOF
1472
058f20d5 1473# Free a gdbarch struct.
3d9a5942
AC
1474printf "\n"
1475printf "\n"
058f20d5
JB
1476cat <<EOF
1477/* Free a gdbarch struct. This should never happen in normal
1478 operation --- once you've created a gdbarch, you keep it around.
1479 However, if an architecture's init function encounters an error
1480 building the structure, it may need to clean up a partially
1481 constructed gdbarch. */
4b9b3959 1482
058f20d5
JB
1483void
1484gdbarch_free (struct gdbarch *arch)
1485{
95160752
AC
1486 gdb_assert (arch != NULL);
1487 free_gdbarch_data (arch);
338d7c5c 1488 xfree (arch);
058f20d5
JB
1489}
1490EOF
1491
104c1213 1492# verify a new architecture
3d9a5942
AC
1493printf "\n"
1494printf "\n"
1495printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1496printf "\n"
104c1213
JM
1497cat <<EOF
1498static void
1499verify_gdbarch (struct gdbarch *gdbarch)
1500{
f16a1923
AC
1501 struct ui_file *log;
1502 struct cleanup *cleanups;
1503 long dummy;
1504 char *buf;
104c1213 1505 /* Only perform sanity checks on a multi-arch target. */
6166d547 1506 if (!GDB_MULTI_ARCH)
104c1213 1507 return;
f16a1923
AC
1508 log = mem_fileopen ();
1509 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1510 /* fundamental */
428721aa 1511 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1512 fprintf_unfiltered (log, "\n\tbyte-order");
104c1213 1513 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1514 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1515 /* Check those that need to be defined for the given multi-arch level. */
1516EOF
34620563 1517function_list | while do_read
104c1213 1518do
2ada493a
AC
1519 if class_is_function_p || class_is_variable_p
1520 then
72e74a21 1521 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1522 then
3d9a5942 1523 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1524 elif class_is_predicate_p
1525 then
3d9a5942 1526 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1527 # FIXME: See do_read for potential simplification
72e74a21 1528 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1529 then
3d9a5942
AC
1530 printf " if (${invalid_p})\n"
1531 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1532 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1533 then
3d9a5942
AC
1534 printf " if (gdbarch->${function} == ${predefault})\n"
1535 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1536 elif [ -n "${postdefault}" ]
f0d4cc9e 1537 then
3d9a5942
AC
1538 printf " if (gdbarch->${function} == 0)\n"
1539 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1540 elif [ -n "${invalid_p}" ]
104c1213 1541 then
50248794 1542 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1543 printf " && (${invalid_p}))\n"
f16a1923 1544 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1545 elif [ -n "${predefault}" ]
104c1213 1546 then
50248794 1547 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1548 printf " && (gdbarch->${function} == ${predefault}))\n"
f16a1923 1549 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1550 fi
2ada493a 1551 fi
104c1213
JM
1552done
1553cat <<EOF
f16a1923
AC
1554 buf = ui_file_xstrdup (log, &dummy);
1555 make_cleanup (xfree, buf);
1556 if (strlen (buf) > 0)
1557 internal_error (__FILE__, __LINE__,
1558 "verify_gdbarch: the following are invalid ...%s",
1559 buf);
1560 do_cleanups (cleanups);
104c1213
JM
1561}
1562EOF
1563
1564# dump the structure
3d9a5942
AC
1565printf "\n"
1566printf "\n"
104c1213 1567cat <<EOF
4b9b3959
AC
1568/* Print out the details of the current architecture. */
1569
1570/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1571 just happens to match the global variable \`\`current_gdbarch''. That
1572 way macros refering to that variable get the local and not the global
1573 version - ulgh. Once everything is parameterised with gdbarch, this
1574 will go away. */
1575
104c1213 1576void
4b9b3959 1577gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1578{
4b9b3959
AC
1579 fprintf_unfiltered (file,
1580 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1581 GDB_MULTI_ARCH);
104c1213 1582EOF
9ba8d803 1583function_list | sort -t: -k 3 | while do_read
104c1213 1584do
1e9f55d0
AC
1585 # First the predicate
1586 if class_is_predicate_p
1587 then
1588 if class_is_multiarch_p
1589 then
1590 printf " if (GDB_MULTI_ARCH)\n"
1591 printf " fprintf_unfiltered (file,\n"
1592 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1593 printf " gdbarch_${function}_p (current_gdbarch));\n"
1594 else
1595 printf "#ifdef ${macro}_P\n"
1596 printf " fprintf_unfiltered (file,\n"
1597 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1598 printf " \"${macro}_P()\",\n"
1599 printf " XSTRING (${macro}_P ()));\n"
1600 printf " fprintf_unfiltered (file,\n"
1601 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1602 printf " ${macro}_P ());\n"
1603 printf "#endif\n"
1604 fi
1605 fi
4a5c6a1d 1606 # multiarch functions don't have macros.
08e45a40
AC
1607 if class_is_multiarch_p
1608 then
1609 printf " if (GDB_MULTI_ARCH)\n"
1610 printf " fprintf_unfiltered (file,\n"
1611 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1612 printf " (long) current_gdbarch->${function});\n"
1613 continue
1614 fi
06b25f14 1615 # Print the macro definition.
08e45a40 1616 printf "#ifdef ${macro}\n"
72e74a21 1617 if [ "x${returntype}" = "xvoid" ]
63e69063 1618 then
08e45a40 1619 printf "#if GDB_MULTI_ARCH\n"
3d9a5942 1620 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
63e69063 1621 fi
2ada493a
AC
1622 if class_is_function_p
1623 then
3d9a5942
AC
1624 printf " fprintf_unfiltered (file,\n"
1625 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1626 printf " \"${macro}(${actual})\",\n"
1627 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1628 else
3d9a5942
AC
1629 printf " fprintf_unfiltered (file,\n"
1630 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1631 printf " XSTRING (${macro}));\n"
4b9b3959 1632 fi
06b25f14 1633 # Print the architecture vector value
08e45a40 1634 if [ "x${returntype}" = "xvoid" ]
4a5c6a1d 1635 then
08e45a40 1636 printf "#endif\n"
4a5c6a1d 1637 fi
72e74a21 1638 if [ "x${print_p}" = "x()" ]
4b9b3959 1639 then
4a5c6a1d 1640 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1641 elif [ "x${print_p}" = "x0" ]
4b9b3959 1642 then
4a5c6a1d 1643 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1644 elif [ -n "${print_p}" ]
4b9b3959 1645 then
4a5c6a1d 1646 printf " if (${print_p})\n"
3d9a5942
AC
1647 printf " fprintf_unfiltered (file,\n"
1648 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1649 printf " ${print});\n"
4b9b3959
AC
1650 elif class_is_function_p
1651 then
3d9a5942
AC
1652 printf " if (GDB_MULTI_ARCH)\n"
1653 printf " fprintf_unfiltered (file,\n"
6cbda714 1654 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
3d9a5942
AC
1655 printf " (long) current_gdbarch->${function}\n"
1656 printf " /*${macro} ()*/);\n"
4b9b3959 1657 else
3d9a5942
AC
1658 printf " fprintf_unfiltered (file,\n"
1659 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1660 printf " ${print});\n"
2ada493a 1661 fi
3d9a5942 1662 printf "#endif\n"
104c1213 1663done
381323f4 1664cat <<EOF
4b9b3959
AC
1665 if (current_gdbarch->dump_tdep != NULL)
1666 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1667}
1668EOF
104c1213
JM
1669
1670
1671# GET/SET
3d9a5942 1672printf "\n"
104c1213
JM
1673cat <<EOF
1674struct gdbarch_tdep *
1675gdbarch_tdep (struct gdbarch *gdbarch)
1676{
1677 if (gdbarch_debug >= 2)
3d9a5942 1678 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1679 return gdbarch->tdep;
1680}
1681EOF
3d9a5942 1682printf "\n"
34620563 1683function_list | while do_read
104c1213 1684do
2ada493a
AC
1685 if class_is_predicate_p
1686 then
3d9a5942
AC
1687 printf "\n"
1688 printf "int\n"
1689 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1690 printf "{\n"
8de9bdc4 1691 printf " gdb_assert (gdbarch != NULL);\n"
ae45cd16 1692 if [ -n "${predicate}" ]
2ada493a 1693 then
ae45cd16 1694 printf " return ${predicate};\n"
2ada493a 1695 else
ae45cd16 1696 printf " return gdbarch->${function} != 0;\n"
2ada493a 1697 fi
3d9a5942 1698 printf "}\n"
2ada493a
AC
1699 fi
1700 if class_is_function_p
1701 then
3d9a5942
AC
1702 printf "\n"
1703 printf "${returntype}\n"
72e74a21 1704 if [ "x${formal}" = "xvoid" ]
104c1213 1705 then
3d9a5942 1706 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1707 else
3d9a5942 1708 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1709 fi
3d9a5942 1710 printf "{\n"
8de9bdc4 1711 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 1712 printf " if (gdbarch->${function} == 0)\n"
8e65ff28
AC
1713 printf " internal_error (__FILE__, __LINE__,\n"
1714 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
ae45cd16
AC
1715 if class_is_predicate_p && test -n "${predicate}"
1716 then
1717 # Allow a call to a function with a predicate.
1718 printf " /* Ignore predicate (${predicate}). */\n"
1719 fi
3d9a5942
AC
1720 printf " if (gdbarch_debug >= 2)\n"
1721 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1722 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1723 then
1724 if class_is_multiarch_p
1725 then
1726 params="gdbarch"
1727 else
1728 params=""
1729 fi
1730 else
1731 if class_is_multiarch_p
1732 then
1733 params="gdbarch, ${actual}"
1734 else
1735 params="${actual}"
1736 fi
1737 fi
72e74a21 1738 if [ "x${returntype}" = "xvoid" ]
104c1213 1739 then
4a5c6a1d 1740 printf " gdbarch->${function} (${params});\n"
104c1213 1741 else
4a5c6a1d 1742 printf " return gdbarch->${function} (${params});\n"
104c1213 1743 fi
3d9a5942
AC
1744 printf "}\n"
1745 printf "\n"
1746 printf "void\n"
1747 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1748 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1749 printf "{\n"
1750 printf " gdbarch->${function} = ${function};\n"
1751 printf "}\n"
2ada493a
AC
1752 elif class_is_variable_p
1753 then
3d9a5942
AC
1754 printf "\n"
1755 printf "${returntype}\n"
1756 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1757 printf "{\n"
8de9bdc4 1758 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1759 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1760 then
3d9a5942 1761 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1762 elif [ -n "${invalid_p}" ]
104c1213 1763 then
3d9a5942 1764 printf " if (${invalid_p})\n"
8e65ff28
AC
1765 printf " internal_error (__FILE__, __LINE__,\n"
1766 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
72e74a21 1767 elif [ -n "${predefault}" ]
104c1213 1768 then
3d9a5942 1769 printf " if (gdbarch->${function} == ${predefault})\n"
8e65ff28
AC
1770 printf " internal_error (__FILE__, __LINE__,\n"
1771 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
104c1213 1772 fi
3d9a5942
AC
1773 printf " if (gdbarch_debug >= 2)\n"
1774 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1775 printf " return gdbarch->${function};\n"
1776 printf "}\n"
1777 printf "\n"
1778 printf "void\n"
1779 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1780 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1781 printf "{\n"
1782 printf " gdbarch->${function} = ${function};\n"
1783 printf "}\n"
2ada493a
AC
1784 elif class_is_info_p
1785 then
3d9a5942
AC
1786 printf "\n"
1787 printf "${returntype}\n"
1788 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1789 printf "{\n"
8de9bdc4 1790 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1791 printf " if (gdbarch_debug >= 2)\n"
1792 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1793 printf " return gdbarch->${function};\n"
1794 printf "}\n"
2ada493a 1795 fi
104c1213
JM
1796done
1797
1798# All the trailing guff
1799cat <<EOF
1800
1801
f44c642f 1802/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1803 modules. */
1804
1805struct gdbarch_data
1806{
95160752 1807 unsigned index;
76860b5f 1808 int init_p;
95160752
AC
1809 gdbarch_data_init_ftype *init;
1810 gdbarch_data_free_ftype *free;
104c1213
JM
1811};
1812
1813struct gdbarch_data_registration
1814{
104c1213
JM
1815 struct gdbarch_data *data;
1816 struct gdbarch_data_registration *next;
1817};
1818
f44c642f 1819struct gdbarch_data_registry
104c1213 1820{
95160752 1821 unsigned nr;
104c1213
JM
1822 struct gdbarch_data_registration *registrations;
1823};
1824
f44c642f 1825struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1826{
1827 0, NULL,
1828};
1829
1830struct gdbarch_data *
95160752
AC
1831register_gdbarch_data (gdbarch_data_init_ftype *init,
1832 gdbarch_data_free_ftype *free)
104c1213
JM
1833{
1834 struct gdbarch_data_registration **curr;
76860b5f 1835 /* Append the new registraration. */
f44c642f 1836 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1837 (*curr) != NULL;
1838 curr = &(*curr)->next);
1839 (*curr) = XMALLOC (struct gdbarch_data_registration);
1840 (*curr)->next = NULL;
104c1213 1841 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1842 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752 1843 (*curr)->data->init = init;
76860b5f 1844 (*curr)->data->init_p = 1;
95160752 1845 (*curr)->data->free = free;
104c1213
JM
1846 return (*curr)->data;
1847}
1848
1849
b3cc3077 1850/* Create/delete the gdbarch data vector. */
95160752
AC
1851
1852static void
b3cc3077 1853alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1854{
b3cc3077
JB
1855 gdb_assert (gdbarch->data == NULL);
1856 gdbarch->nr_data = gdbarch_data_registry.nr;
1857 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1858}
3c875b6f 1859
b3cc3077
JB
1860static void
1861free_gdbarch_data (struct gdbarch *gdbarch)
1862{
1863 struct gdbarch_data_registration *rego;
1864 gdb_assert (gdbarch->data != NULL);
1865 for (rego = gdbarch_data_registry.registrations;
1866 rego != NULL;
1867 rego = rego->next)
95160752 1868 {
b3cc3077
JB
1869 struct gdbarch_data *data = rego->data;
1870 gdb_assert (data->index < gdbarch->nr_data);
1871 if (data->free != NULL && gdbarch->data[data->index] != NULL)
95160752 1872 {
b3cc3077
JB
1873 data->free (gdbarch, gdbarch->data[data->index]);
1874 gdbarch->data[data->index] = NULL;
95160752 1875 }
104c1213 1876 }
b3cc3077
JB
1877 xfree (gdbarch->data);
1878 gdbarch->data = NULL;
104c1213
JM
1879}
1880
1881
76860b5f 1882/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1883 data-pointer. */
1884
95160752
AC
1885void
1886set_gdbarch_data (struct gdbarch *gdbarch,
1887 struct gdbarch_data *data,
1888 void *pointer)
1889{
1890 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1891 if (gdbarch->data[data->index] != NULL)
1892 {
1893 gdb_assert (data->free != NULL);
1894 data->free (gdbarch, gdbarch->data[data->index]);
1895 }
95160752
AC
1896 gdbarch->data[data->index] = pointer;
1897}
1898
104c1213
JM
1899/* Return the current value of the specified per-architecture
1900 data-pointer. */
1901
1902void *
451fbdda 1903gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1904{
451fbdda 1905 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1906 /* The data-pointer isn't initialized, call init() to get a value but
1907 only if the architecture initializaiton has completed. Otherwise
1908 punt - hope that the caller knows what they are doing. */
1909 if (gdbarch->data[data->index] == NULL
1910 && gdbarch->initialized_p)
1911 {
1912 /* Be careful to detect an initialization cycle. */
1913 gdb_assert (data->init_p);
1914 data->init_p = 0;
1915 gdb_assert (data->init != NULL);
1916 gdbarch->data[data->index] = data->init (gdbarch);
1917 data->init_p = 1;
1918 gdb_assert (gdbarch->data[data->index] != NULL);
1919 }
451fbdda 1920 return gdbarch->data[data->index];
104c1213
JM
1921}
1922
1923
1924
f44c642f 1925/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1926
1927struct gdbarch_swap
1928{
1929 void *swap;
1930 struct gdbarch_swap_registration *source;
1931 struct gdbarch_swap *next;
1932};
1933
1934struct gdbarch_swap_registration
1935{
1936 void *data;
1937 unsigned long sizeof_data;
1938 gdbarch_swap_ftype *init;
1939 struct gdbarch_swap_registration *next;
1940};
1941
f44c642f 1942struct gdbarch_swap_registry
104c1213
JM
1943{
1944 int nr;
1945 struct gdbarch_swap_registration *registrations;
1946};
1947
f44c642f 1948struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1949{
1950 0, NULL,
1951};
1952
1953void
1954register_gdbarch_swap (void *data,
1955 unsigned long sizeof_data,
1956 gdbarch_swap_ftype *init)
1957{
1958 struct gdbarch_swap_registration **rego;
f44c642f 1959 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1960 (*rego) != NULL;
1961 rego = &(*rego)->next);
1962 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1963 (*rego)->next = NULL;
1964 (*rego)->init = init;
1965 (*rego)->data = data;
1966 (*rego)->sizeof_data = sizeof_data;
1967}
1968
40af4b0c
AC
1969static void
1970clear_gdbarch_swap (struct gdbarch *gdbarch)
1971{
1972 struct gdbarch_swap *curr;
1973 for (curr = gdbarch->swap;
1974 curr != NULL;
1975 curr = curr->next)
1976 {
1977 memset (curr->source->data, 0, curr->source->sizeof_data);
1978 }
1979}
104c1213
JM
1980
1981static void
1982init_gdbarch_swap (struct gdbarch *gdbarch)
1983{
1984 struct gdbarch_swap_registration *rego;
1985 struct gdbarch_swap **curr = &gdbarch->swap;
f44c642f 1986 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1987 rego != NULL;
1988 rego = rego->next)
1989 {
1990 if (rego->data != NULL)
1991 {
1992 (*curr) = XMALLOC (struct gdbarch_swap);
1993 (*curr)->source = rego;
1994 (*curr)->swap = xmalloc (rego->sizeof_data);
1995 (*curr)->next = NULL;
104c1213
JM
1996 curr = &(*curr)->next;
1997 }
1998 if (rego->init != NULL)
1999 rego->init ();
2000 }
2001}
2002
2003static void
2004swapout_gdbarch_swap (struct gdbarch *gdbarch)
2005{
2006 struct gdbarch_swap *curr;
2007 for (curr = gdbarch->swap;
2008 curr != NULL;
2009 curr = curr->next)
2010 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2011}
2012
2013static void
2014swapin_gdbarch_swap (struct gdbarch *gdbarch)
2015{
2016 struct gdbarch_swap *curr;
2017 for (curr = gdbarch->swap;
2018 curr != NULL;
2019 curr = curr->next)
2020 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2021}
2022
2023
f44c642f 2024/* Keep a registry of the architectures known by GDB. */
104c1213 2025
4b9b3959 2026struct gdbarch_registration
104c1213
JM
2027{
2028 enum bfd_architecture bfd_architecture;
2029 gdbarch_init_ftype *init;
4b9b3959 2030 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2031 struct gdbarch_list *arches;
4b9b3959 2032 struct gdbarch_registration *next;
104c1213
JM
2033};
2034
f44c642f 2035static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2036
b4a20239
AC
2037static void
2038append_name (const char ***buf, int *nr, const char *name)
2039{
2040 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2041 (*buf)[*nr] = name;
2042 *nr += 1;
2043}
2044
2045const char **
2046gdbarch_printable_names (void)
2047{
2048 if (GDB_MULTI_ARCH)
2049 {
2050 /* Accumulate a list of names based on the registed list of
2051 architectures. */
2052 enum bfd_architecture a;
2053 int nr_arches = 0;
2054 const char **arches = NULL;
4b9b3959 2055 struct gdbarch_registration *rego;
f44c642f 2056 for (rego = gdbarch_registry;
b4a20239
AC
2057 rego != NULL;
2058 rego = rego->next)
2059 {
2060 const struct bfd_arch_info *ap;
2061 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2062 if (ap == NULL)
8e65ff28
AC
2063 internal_error (__FILE__, __LINE__,
2064 "gdbarch_architecture_names: multi-arch unknown");
b4a20239
AC
2065 do
2066 {
2067 append_name (&arches, &nr_arches, ap->printable_name);
2068 ap = ap->next;
2069 }
2070 while (ap != NULL);
2071 }
2072 append_name (&arches, &nr_arches, NULL);
2073 return arches;
2074 }
2075 else
2076 /* Just return all the architectures that BFD knows. Assume that
2077 the legacy architecture framework supports them. */
2078 return bfd_arch_list ();
2079}
2080
2081
104c1213 2082void
4b9b3959
AC
2083gdbarch_register (enum bfd_architecture bfd_architecture,
2084 gdbarch_init_ftype *init,
2085 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2086{
4b9b3959 2087 struct gdbarch_registration **curr;
104c1213 2088 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2089 /* Check that BFD recognizes this architecture */
104c1213
JM
2090 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2091 if (bfd_arch_info == NULL)
2092 {
8e65ff28
AC
2093 internal_error (__FILE__, __LINE__,
2094 "gdbarch: Attempt to register unknown architecture (%d)",
2095 bfd_architecture);
104c1213
JM
2096 }
2097 /* Check that we haven't seen this architecture before */
f44c642f 2098 for (curr = &gdbarch_registry;
104c1213
JM
2099 (*curr) != NULL;
2100 curr = &(*curr)->next)
2101 {
2102 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2103 internal_error (__FILE__, __LINE__,
2104 "gdbarch: Duplicate registraration of architecture (%s)",
2105 bfd_arch_info->printable_name);
104c1213
JM
2106 }
2107 /* log it */
2108 if (gdbarch_debug)
2109 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2110 bfd_arch_info->printable_name,
2111 (long) init);
2112 /* Append it */
4b9b3959 2113 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2114 (*curr)->bfd_architecture = bfd_architecture;
2115 (*curr)->init = init;
4b9b3959 2116 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2117 (*curr)->arches = NULL;
2118 (*curr)->next = NULL;
8e1a459b
C
2119 /* When non- multi-arch, install whatever target dump routine we've
2120 been provided - hopefully that routine has been written correctly
4b9b3959
AC
2121 and works regardless of multi-arch. */
2122 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2123 && startup_gdbarch.dump_tdep == NULL)
2124 startup_gdbarch.dump_tdep = dump_tdep;
2125}
2126
2127void
2128register_gdbarch_init (enum bfd_architecture bfd_architecture,
2129 gdbarch_init_ftype *init)
2130{
2131 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2132}
104c1213
JM
2133
2134
2135/* Look for an architecture using gdbarch_info. Base search on only
2136 BFD_ARCH_INFO and BYTE_ORDER. */
2137
2138struct gdbarch_list *
2139gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2140 const struct gdbarch_info *info)
2141{
2142 for (; arches != NULL; arches = arches->next)
2143 {
2144 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2145 continue;
2146 if (info->byte_order != arches->gdbarch->byte_order)
2147 continue;
4be87837
DJ
2148 if (info->osabi != arches->gdbarch->osabi)
2149 continue;
104c1213
JM
2150 return arches;
2151 }
2152 return NULL;
2153}
2154
2155
2156/* Update the current architecture. Return ZERO if the update request
2157 failed. */
2158
2159int
16f33e29 2160gdbarch_update_p (struct gdbarch_info info)
104c1213
JM
2161{
2162 struct gdbarch *new_gdbarch;
40af4b0c 2163 struct gdbarch *old_gdbarch;
4b9b3959 2164 struct gdbarch_registration *rego;
104c1213 2165
b732d07d
AC
2166 /* Fill in missing parts of the INFO struct using a number of
2167 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2168
2169 /* \`\`(gdb) set architecture ...'' */
2170 if (info.bfd_arch_info == NULL
2171 && !TARGET_ARCHITECTURE_AUTO)
2172 info.bfd_arch_info = TARGET_ARCHITECTURE;
2173 if (info.bfd_arch_info == NULL
2174 && info.abfd != NULL
2175 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2176 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2177 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
104c1213 2178 if (info.bfd_arch_info == NULL)
b732d07d
AC
2179 info.bfd_arch_info = TARGET_ARCHITECTURE;
2180
2181 /* \`\`(gdb) set byte-order ...'' */
428721aa 2182 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d
AC
2183 && !TARGET_BYTE_ORDER_AUTO)
2184 info.byte_order = TARGET_BYTE_ORDER;
2185 /* From the INFO struct. */
428721aa 2186 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d 2187 && info.abfd != NULL)
d7449b42 2188 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
778eb05e 2189 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
428721aa 2190 : BFD_ENDIAN_UNKNOWN);
b732d07d 2191 /* From the current target. */
428721aa 2192 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
b732d07d 2193 info.byte_order = TARGET_BYTE_ORDER;
104c1213 2194
4be87837
DJ
2195 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2196 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2197 info.osabi = gdbarch_lookup_osabi (info.abfd);
2198 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2199 info.osabi = current_gdbarch->osabi;
2200
b732d07d
AC
2201 /* Must have found some sort of architecture. */
2202 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2203
2204 if (gdbarch_debug)
2205 {
2206 fprintf_unfiltered (gdb_stdlog,
b732d07d 2207 "gdbarch_update: info.bfd_arch_info %s\n",
104c1213
JM
2208 (info.bfd_arch_info != NULL
2209 ? info.bfd_arch_info->printable_name
2210 : "(null)"));
2211 fprintf_unfiltered (gdb_stdlog,
b732d07d 2212 "gdbarch_update: info.byte_order %d (%s)\n",
104c1213 2213 info.byte_order,
d7449b42 2214 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2215 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2216 : "default"));
4be87837
DJ
2217 fprintf_unfiltered (gdb_stdlog,
2218 "gdbarch_update: info.osabi %d (%s)\n",
2219 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2220 fprintf_unfiltered (gdb_stdlog,
b732d07d 2221 "gdbarch_update: info.abfd 0x%lx\n",
104c1213
JM
2222 (long) info.abfd);
2223 fprintf_unfiltered (gdb_stdlog,
b732d07d 2224 "gdbarch_update: info.tdep_info 0x%lx\n",
104c1213
JM
2225 (long) info.tdep_info);
2226 }
2227
b732d07d
AC
2228 /* Find the target that knows about this architecture. */
2229 for (rego = gdbarch_registry;
2230 rego != NULL;
2231 rego = rego->next)
2232 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2233 break;
2234 if (rego == NULL)
2235 {
2236 if (gdbarch_debug)
2237 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2238 return 0;
2239 }
2240
40af4b0c
AC
2241 /* Swap the data belonging to the old target out setting the
2242 installed data to zero. This stops the ->init() function trying
2243 to refer to the previous architecture's global data structures. */
2244 swapout_gdbarch_swap (current_gdbarch);
2245 clear_gdbarch_swap (current_gdbarch);
2246
2247 /* Save the previously selected architecture, setting the global to
2248 NULL. This stops ->init() trying to use the previous
2249 architecture's configuration. The previous architecture may not
2250 even be of the same architecture family. The most recent
2251 architecture of the same family is found at the head of the
2252 rego->arches list. */
2253 old_gdbarch = current_gdbarch;
2254 current_gdbarch = NULL;
2255
104c1213
JM
2256 /* Ask the target for a replacement architecture. */
2257 new_gdbarch = rego->init (info, rego->arches);
2258
40af4b0c
AC
2259 /* Did the target like it? No. Reject the change and revert to the
2260 old architecture. */
104c1213
JM
2261 if (new_gdbarch == NULL)
2262 {
2263 if (gdbarch_debug)
3d9a5942 2264 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
40af4b0c
AC
2265 swapin_gdbarch_swap (old_gdbarch);
2266 current_gdbarch = old_gdbarch;
104c1213
JM
2267 return 0;
2268 }
2269
40af4b0c
AC
2270 /* Did the architecture change? No. Oops, put the old architecture
2271 back. */
2272 if (old_gdbarch == new_gdbarch)
104c1213
JM
2273 {
2274 if (gdbarch_debug)
3d9a5942 2275 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
104c1213
JM
2276 (long) new_gdbarch,
2277 new_gdbarch->bfd_arch_info->printable_name);
40af4b0c
AC
2278 swapin_gdbarch_swap (old_gdbarch);
2279 current_gdbarch = old_gdbarch;
104c1213
JM
2280 return 1;
2281 }
2282
0f79675b
AC
2283 /* Is this a pre-existing architecture? Yes. Move it to the front
2284 of the list of architectures (keeping the list sorted Most
2285 Recently Used) and then copy it in. */
2286 {
2287 struct gdbarch_list **list;
2288 for (list = &rego->arches;
2289 (*list) != NULL;
2290 list = &(*list)->next)
2291 {
2292 if ((*list)->gdbarch == new_gdbarch)
2293 {
2294 struct gdbarch_list *this;
2295 if (gdbarch_debug)
2296 fprintf_unfiltered (gdb_stdlog,
2297 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2298 (long) new_gdbarch,
2299 new_gdbarch->bfd_arch_info->printable_name);
2300 /* Unlink this. */
2301 this = (*list);
2302 (*list) = this->next;
2303 /* Insert in the front. */
2304 this->next = rego->arches;
2305 rego->arches = this;
2306 /* Copy the new architecture in. */
2307 current_gdbarch = new_gdbarch;
2308 swapin_gdbarch_swap (new_gdbarch);
2309 architecture_changed_event ();
2310 return 1;
2311 }
2312 }
2313 }
2314
2315 /* Prepend this new architecture to the architecture list (keep the
2316 list sorted Most Recently Used). */
2317 {
2318 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2319 this->next = rego->arches;
2320 this->gdbarch = new_gdbarch;
2321 rego->arches = this;
2322 }
104c1213 2323
76860b5f 2324 /* Switch to this new architecture marking it initialized. */
104c1213 2325 current_gdbarch = new_gdbarch;
76860b5f 2326 current_gdbarch->initialized_p = 1;
104c1213
JM
2327 if (gdbarch_debug)
2328 {
2329 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2330 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2331 (long) new_gdbarch,
2332 new_gdbarch->bfd_arch_info->printable_name);
104c1213
JM
2333 }
2334
4b9b3959
AC
2335 /* Check that the newly installed architecture is valid. Plug in
2336 any post init values. */
2337 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213
JM
2338 verify_gdbarch (new_gdbarch);
2339
cf17c188
AC
2340 /* Initialize the per-architecture memory (swap) areas.
2341 CURRENT_GDBARCH must be update before these modules are
2342 called. */
2343 init_gdbarch_swap (new_gdbarch);
2344
76860b5f 2345 /* Initialize the per-architecture data. CURRENT_GDBARCH
cf17c188 2346 must be updated before these modules are called. */
67c2c32c
KS
2347 architecture_changed_event ();
2348
4b9b3959
AC
2349 if (gdbarch_debug)
2350 gdbarch_dump (current_gdbarch, gdb_stdlog);
2351
104c1213
JM
2352 return 1;
2353}
2354
2355
104c1213
JM
2356/* Disassembler */
2357
2358/* Pointer to the target-dependent disassembly function. */
2359int (*tm_print_insn) (bfd_vma, disassemble_info *);
2360disassemble_info tm_print_insn_info;
2361
2362
104c1213 2363extern void _initialize_gdbarch (void);
b4a20239 2364
104c1213 2365void
34620563 2366_initialize_gdbarch (void)
104c1213 2367{
59233f88
AC
2368 struct cmd_list_element *c;
2369
104c1213
JM
2370 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2371 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2372 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2373 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2374 tm_print_insn_info.print_address_func = dis_asm_print_address;
2375
59233f88 2376 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2377 class_maintenance,
2378 var_zinteger,
2379 (char *)&gdbarch_debug,
3d9a5942 2380 "Set architecture debugging.\\n\\
59233f88
AC
2381When non-zero, architecture debugging is enabled.", &setdebuglist),
2382 &showdebuglist);
2383 c = add_set_cmd ("archdebug",
2384 class_maintenance,
2385 var_zinteger,
2386 (char *)&gdbarch_debug,
3d9a5942 2387 "Set architecture debugging.\\n\\
59233f88
AC
2388When non-zero, architecture debugging is enabled.", &setlist);
2389
2390 deprecate_cmd (c, "set debug arch");
2391 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2392}
2393EOF
2394
2395# close things off
2396exec 1>&2
2397#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2398compare_new gdbarch.c
This page took 0.410811 seconds and 4 git commands to generate.