2002-02-18 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
181c1381 4# Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
104c1213
JM
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
59233f88
AC
22compare_new ()
23{
24 file=$1
66b43ecb 25 if test ! -r ${file}
59233f88
AC
26 then
27 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 28 elif diff -u ${file} new-${file}
59233f88
AC
29 then
30 echo "${file} unchanged" 1>&2
31 else
32 echo "${file} has changed? cp new-${file} ${file}" 1>&2
33 fi
34}
35
36
37# Format of the input table
0b8f9e4d 38read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
39
40do_read ()
41{
34620563
AC
42 comment=""
43 class=""
44 while read line
45 do
46 if test "${line}" = ""
47 then
48 continue
49 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 50 then
34620563
AC
51 continue
52 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 53 then
34620563
AC
54 comment="${comment}
55${line}"
f0d4cc9e 56 else
3d9a5942
AC
57
58 # The semantics of IFS varies between different SH's. Some
59 # treat ``::' as three fields while some treat it as just too.
60 # Work around this by eliminating ``::'' ....
61 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
62
63 OFS="${IFS}" ; IFS="[:]"
34620563
AC
64 eval read ${read} <<EOF
65${line}
66EOF
67 IFS="${OFS}"
68
3d9a5942
AC
69 # .... and then going back through each field and strip out those
70 # that ended up with just that space character.
71 for r in ${read}
72 do
73 if eval test \"\${${r}}\" = \"\ \"
74 then
75 eval ${r}=""
76 fi
77 done
78
50248794
AC
79 case "${level}" in
80 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
81 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
82 "" ) ;;
83 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
84 esac
85
a72293e2
AC
86 case "${class}" in
87 m ) staticdefault="${predefault}" ;;
88 M ) staticdefault="0" ;;
89 * ) test "${staticdefault}" || staticdefault=0 ;;
90 esac
34620563
AC
91 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
92 # multi-arch defaults.
93 # test "${predefault}" || predefault=0
06b25f14
AC
94
95 # come up with a format, use a few guesses for variables
96 case ":${class}:${fmt}:${print}:" in
97 :[vV]::: )
98 if [ "${returntype}" = int ]
99 then
100 fmt="%d"
101 print="${macro}"
102 elif [ "${returntype}" = long ]
103 then
104 fmt="%ld"
105 print="${macro}"
106 fi
107 ;;
108 esac
34620563
AC
109 test "${fmt}" || fmt="%ld"
110 test "${print}" || print="(long) ${macro}"
06b25f14 111
34620563
AC
112 case "${invalid_p}" in
113 0 ) valid_p=1 ;;
114 "" )
72e74a21 115 if [ -n "${predefault}" ]
34620563
AC
116 then
117 #invalid_p="gdbarch->${function} == ${predefault}"
118 valid_p="gdbarch->${function} != ${predefault}"
119 else
120 #invalid_p="gdbarch->${function} == 0"
121 valid_p="gdbarch->${function} != 0"
122 fi
123 ;;
124 * ) valid_p="!(${invalid_p})"
125 esac
126
127 # PREDEFAULT is a valid fallback definition of MEMBER when
128 # multi-arch is not enabled. This ensures that the
129 # default value, when multi-arch is the same as the
130 # default value when not multi-arch. POSTDEFAULT is
131 # always a valid definition of MEMBER as this again
132 # ensures consistency.
133
72e74a21 134 if [ -n "${postdefault}" ]
34620563
AC
135 then
136 fallbackdefault="${postdefault}"
72e74a21 137 elif [ -n "${predefault}" ]
34620563
AC
138 then
139 fallbackdefault="${predefault}"
140 else
73d3c16e 141 fallbackdefault="0"
34620563
AC
142 fi
143
144 #NOT YET: See gdbarch.log for basic verification of
145 # database
146
147 break
f0d4cc9e 148 fi
34620563 149 done
72e74a21 150 if [ -n "${class}" ]
34620563
AC
151 then
152 true
c0e8c252
AC
153 else
154 false
155 fi
156}
157
104c1213 158
f0d4cc9e
AC
159fallback_default_p ()
160{
72e74a21
JB
161 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
162 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
163}
164
165class_is_variable_p ()
166{
4a5c6a1d
AC
167 case "${class}" in
168 *v* | *V* ) true ;;
169 * ) false ;;
170 esac
f0d4cc9e
AC
171}
172
173class_is_function_p ()
174{
4a5c6a1d
AC
175 case "${class}" in
176 *f* | *F* | *m* | *M* ) true ;;
177 * ) false ;;
178 esac
179}
180
181class_is_multiarch_p ()
182{
183 case "${class}" in
184 *m* | *M* ) true ;;
185 * ) false ;;
186 esac
f0d4cc9e
AC
187}
188
189class_is_predicate_p ()
190{
4a5c6a1d
AC
191 case "${class}" in
192 *F* | *V* | *M* ) true ;;
193 * ) false ;;
194 esac
f0d4cc9e
AC
195}
196
197class_is_info_p ()
198{
4a5c6a1d
AC
199 case "${class}" in
200 *i* ) true ;;
201 * ) false ;;
202 esac
f0d4cc9e
AC
203}
204
205
cff3e48b
JM
206# dump out/verify the doco
207for field in ${read}
208do
209 case ${field} in
210
211 class ) : ;;
c4093a6a 212
c0e8c252
AC
213 # # -> line disable
214 # f -> function
215 # hiding a function
2ada493a
AC
216 # F -> function + predicate
217 # hiding a function + predicate to test function validity
c0e8c252
AC
218 # v -> variable
219 # hiding a variable
2ada493a
AC
220 # V -> variable + predicate
221 # hiding a variable + predicate to test variables validity
c0e8c252
AC
222 # i -> set from info
223 # hiding something from the ``struct info'' object
4a5c6a1d
AC
224 # m -> multi-arch function
225 # hiding a multi-arch function (parameterised with the architecture)
226 # M -> multi-arch function + predicate
227 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
228
229 level ) : ;;
230
c0e8c252
AC
231 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
232 # LEVEL is a predicate on checking that a given method is
233 # initialized (using INVALID_P).
cff3e48b
JM
234
235 macro ) : ;;
236
c0e8c252 237 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
238
239 returntype ) : ;;
240
c0e8c252 241 # For functions, the return type; for variables, the data type
cff3e48b
JM
242
243 function ) : ;;
244
c0e8c252
AC
245 # For functions, the member function name; for variables, the
246 # variable name. Member function names are always prefixed with
247 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
248
249 formal ) : ;;
250
c0e8c252
AC
251 # The formal argument list. It is assumed that the formal
252 # argument list includes the actual name of each list element.
253 # A function with no arguments shall have ``void'' as the
254 # formal argument list.
cff3e48b
JM
255
256 actual ) : ;;
257
c0e8c252
AC
258 # The list of actual arguments. The arguments specified shall
259 # match the FORMAL list given above. Functions with out
260 # arguments leave this blank.
cff3e48b
JM
261
262 attrib ) : ;;
263
c0e8c252
AC
264 # Any GCC attributes that should be attached to the function
265 # declaration. At present this field is unused.
cff3e48b 266
0b8f9e4d 267 staticdefault ) : ;;
c0e8c252
AC
268
269 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
270 # created. STATICDEFAULT is the value to insert into that
271 # static gdbarch object. Since this a static object only
272 # simple expressions can be used.
cff3e48b 273
0b8f9e4d 274 # If STATICDEFAULT is empty, zero is used.
c0e8c252 275
0b8f9e4d 276 predefault ) : ;;
cff3e48b 277
10312cc4
AC
278 # An initial value to assign to MEMBER of the freshly
279 # malloc()ed gdbarch object. After initialization, the
280 # freshly malloc()ed object is passed to the target
281 # architecture code for further updates.
cff3e48b 282
0b8f9e4d
AC
283 # If PREDEFAULT is empty, zero is used.
284
10312cc4
AC
285 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
286 # INVALID_P are specified, PREDEFAULT will be used as the
287 # default for the non- multi-arch target.
288
289 # A zero PREDEFAULT function will force the fallback to call
290 # internal_error().
f0d4cc9e
AC
291
292 # Variable declarations can refer to ``gdbarch'' which will
293 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
294
295 postdefault ) : ;;
296
297 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
298 # the target architecture code fail to change the PREDEFAULT
299 # value.
0b8f9e4d
AC
300
301 # If POSTDEFAULT is empty, no post update is performed.
302
303 # If both INVALID_P and POSTDEFAULT are non-empty then
304 # INVALID_P will be used to determine if MEMBER should be
305 # changed to POSTDEFAULT.
306
10312cc4
AC
307 # If a non-empty POSTDEFAULT and a zero INVALID_P are
308 # specified, POSTDEFAULT will be used as the default for the
309 # non- multi-arch target (regardless of the value of
310 # PREDEFAULT).
311
f0d4cc9e
AC
312 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
313
314 # Variable declarations can refer to ``gdbarch'' which will
315 # contain the current architecture. Care should be taken.
cff3e48b 316
c4093a6a 317 invalid_p ) : ;;
cff3e48b 318
0b8f9e4d 319 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 320 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
321 # initialize MEMBER or the initialized the member is invalid.
322 # If POSTDEFAULT is non-empty then MEMBER will be updated to
323 # that value. If POSTDEFAULT is empty then internal_error()
324 # is called.
325
326 # If INVALID_P is empty, a check that MEMBER is no longer
327 # equal to PREDEFAULT is used.
328
f0d4cc9e
AC
329 # The expression ``0'' disables the INVALID_P check making
330 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
331
332 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
333
334 fmt ) : ;;
335
c0e8c252
AC
336 # printf style format string that can be used to print out the
337 # MEMBER. Sometimes "%s" is useful. For functions, this is
338 # ignored and the function address is printed.
339
0b8f9e4d 340 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
341
342 print ) : ;;
343
c0e8c252
AC
344 # An optional equation that casts MEMBER to a value suitable
345 # for formatting by FMT.
346
0b8f9e4d 347 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
348
349 print_p ) : ;;
350
c0e8c252
AC
351 # An optional indicator for any predicte to wrap around the
352 # print member code.
353
4b9b3959 354 # () -> Call a custom function to do the dump.
c0e8c252
AC
355 # exp -> Wrap print up in ``if (${print_p}) ...
356 # ``'' -> No predicate
cff3e48b 357
0b8f9e4d
AC
358 # If PRINT_P is empty, ``1'' is always used.
359
cff3e48b
JM
360 description ) : ;;
361
0b8f9e4d 362 # Currently unused.
cff3e48b 363
50248794
AC
364 *)
365 echo "Bad field ${field}"
366 exit 1;;
cff3e48b
JM
367 esac
368done
369
cff3e48b 370
104c1213
JM
371function_list ()
372{
cff3e48b 373 # See below (DOCO) for description of each field
34620563 374 cat <<EOF
0b8f9e4d 375i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 376#
d7449b42 377i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
66b43ecb
AC
378# Number of bits in a char or unsigned char for the target machine.
379# Just like CHAR_BIT in <limits.h> but describes the target machine.
380# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
381#
382# Number of bits in a short or unsigned short for the target machine.
383v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
384# Number of bits in an int or unsigned int for the target machine.
385v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
386# Number of bits in a long or unsigned long for the target machine.
387v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
388# Number of bits in a long long or unsigned long long for the target
389# machine.
390v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
391# Number of bits in a float for the target machine.
392v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
393# Number of bits in a double for the target machine.
394v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
395# Number of bits in a long double for the target machine.
17ef5d92 396v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
397# For most targets, a pointer on the target and its representation as an
398# address in GDB have the same size and "look the same". For such a
399# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
400# / addr_bit will be set from it.
401#
402# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
403# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
404#
405# ptr_bit is the size of a pointer on the target
66b43ecb 406v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b
DT
407# addr_bit is the size of a target address as represented in gdb
408v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb
AC
409# Number of bits in a BFD_VMA for the target object file format.
410v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 411#
4e409299 412# One if \`char' acts like \`signed char', zero if \`unsigned char'.
2c283bc4 413v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 414#
39f77062
KB
415f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
416f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
be8dfb87
AC
417f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
418f::TARGET_WRITE_FP:void:write_fp:CORE_ADDR val:val::0:generic_target_write_fp::0
419f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
420f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
39d4ef09
AC
421# Function for getting target's idea of a frame pointer. FIXME: GDB's
422# whole scheme for dealing with "frames" and "frame pointers" needs a
423# serious shakedown.
424f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 425#
61a0eb5b
AC
426M:::void:register_read:int regnum, char *buf:regnum, buf:
427M:::void:register_write:int regnum, char *buf:regnum, buf:
428#
104c1213 429v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
430# This macro gives the number of pseudo-registers that live in the
431# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
432# These pseudo-registers may be aliases for other registers,
433# combinations of other registers, or they may be computed by GDB.
0aba1244 434v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
104c1213
JM
435v:2:SP_REGNUM:int:sp_regnum::::0:-1
436v:2:FP_REGNUM:int:fp_regnum::::0:-1
437v:2:PC_REGNUM:int:pc_regnum::::0:-1
0b8f9e4d
AC
438v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
439v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
440v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
88c72b7d
AC
441# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
442f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
443# Provide a default mapping from a ecoff register number to a gdb REGNUM.
444f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
445# Provide a default mapping from a DWARF register number to a gdb REGNUM.
446f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
447# Convert from an sdb register number to an internal gdb register number.
448# This should be defined in tm.h, if REGISTER_NAMES is not set up
449# to map one to one onto the sdb register numbers.
450f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
451f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
0b8f9e4d 452f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
104c1213
JM
453v:2:REGISTER_SIZE:int:register_size::::0:-1
454v:2:REGISTER_BYTES:int:register_bytes::::0:-1
455f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
46cd78fb 456f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
104c1213 457v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
ce29138a 458f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
104c1213
JM
459v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
460f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
666e11c5 461f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
5e74b15c 462f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
7c7651b2
AC
463# MAP a GDB RAW register number onto a simulator register number. See
464# also include/...-sim.h.
465f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
2649061d 466F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
01fb7433
AC
467f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
468f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0
RE
469# setjmp/longjmp support.
470F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
104c1213 471#
028c194b
AC
472# Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
473# much better but at least they are vaguely consistent). The headers
474# and body contain convoluted #if/#else sequences for determine how
475# things should be compiled. Instead of trying to mimic that
476# behaviour here (and hence entrench it further) gdbarch simply
477# reqires that these methods be set up from the word go. This also
478# avoids any potential problems with moving beyond multi-arch partial.
104c1213 479v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
a985cd41 480v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
0b8f9e4d
AC
481f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
482v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
83e6b173 483v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
104c1213 484v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
0b8f9e4d 485v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
a4a7d16f 486f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
104c1213 487v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
0b8f9e4d
AC
488v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
489v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
490v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
491v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
492f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
10312cc4 493f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
7824d2f2 494f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
104c1213 495#
f0d4cc9e
AC
496v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
497v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
0b8f9e4d 498f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
028c194b
AC
499# GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
500# old code has strange #ifdef interaction. So far no one has found
501# that default_get_saved_register() is the default they are after.
104c1213
JM
502f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
503#
6e6d6484 504f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
0b8f9e4d
AC
505f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
506f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
34620563
AC
507# This function is called when the value of a pseudo-register needs to
508# be updated. Typically it will be defined on a per-architecture
509# basis.
31e9866e 510F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
34620563
AC
511# This function is called when the value of a pseudo-register needs to
512# be set or stored. Typically it will be defined on a
513# per-architecture basis.
31e9866e 514F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
104c1213 515#
ac2e2ef7
AC
516f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
517f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 518F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 519#
0b8f9e4d 520f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
104c1213 521f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
6e6d6484 522f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
c0e8c252 523f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
c30e0066 524F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
c0e8c252 525f:2:POP_FRAME:void:pop_frame:void:-:::0
104c1213 526#
c0e8c252
AC
527f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
528f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
d6dd581e 529F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
56f12751 530f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
104c1213
JM
531#
532f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
5fdff426 533F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
104c1213
JM
534#
535f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
0b8f9e4d 536f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
104c1213 537f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
0b8f9e4d
AC
538f:2:BREAKPOINT_FROM_PC:unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
539f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
540f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
104c1213 541v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
e02bc4cc 542f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
104c1213
JM
543v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
544#
0b8f9e4d 545f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213
JM
546#
547v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
0b8f9e4d 548f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
104c1213 549f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
028c194b 550# See comments on DUMMY_FRAME for why this is required at level 1.
104c1213
JM
551f:1:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
552f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
553f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
554f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
555f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
556f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
557#
2ada493a 558F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
6acf50cd 559v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
d03e67c9 560F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
d1e3cf49 561F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
58d5518e 562v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e
AC
563#
564v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
565v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
2fa5c1e0 566v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
875e1767
AC
567f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
568# On some machines there are bits in addresses which are not really
569# part of the address, but are used by the kernel, the hardware, etc.
570# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
571# we get a "real" address such as one would find in a symbol table.
572# This is used only for addresses of instructions, and even then I'm
573# not sure it's used in all contexts. It exists to deal with there
574# being a few stray bits in the PC which would mislead us, not as some
575# sort of generic thing to handle alignment or segmentation (it's
576# possible it should be in TARGET_READ_PC instead).
577f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
181c1381
RE
578# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
579# ADDR_BITS_REMOVE.
580f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
581# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
582# the target needs software single step. An ISA method to implement it.
583#
584# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
585# using the breakpoint system instead of blatting memory directly (as with rs6000).
586#
587# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
588# single step. If not, then implement single step using breakpoints.
589F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
2bf0cb65 590f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
bdcd319a 591f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
68e9cc94
CV
592# For SVR4 shared libraries, each call goes through a small piece of
593# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
594# to nonzero if we are current stopped in one of these.
595f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
c12260ac
CV
596# A target might have problems with watchpoints as soon as the stack
597# frame of the current function has been destroyed. This mostly happens
598# as the first action in a funtion's epilogue. in_function_epilogue_p()
599# is defined to return a non-zero value if either the given addr is one
600# instruction after the stack destroying instruction up to the trailing
601# return instruction or if we can figure out that the stack frame has
602# already been invalidated regardless of the value of addr. Targets
603# which don't suffer from that problem could just let this functionality
604# untouched.
605m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
606# Given a vector of command-line arguments, return a newly allocated
607# string which, when passed to the create_inferior function, will be
608# parsed (on Unix systems, by the shell) to yield the same vector.
609# This function should call error() if the argument vector is not
610# representable for this target or if this target does not support
611# command-line arguments.
612# ARGC is the number of elements in the vector.
613# ARGV is an array of strings, one per argument.
614m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
b6af0555 615F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
a2cf933a
EZ
616f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
617f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
104c1213 618EOF
104c1213
JM
619}
620
0b8f9e4d
AC
621#
622# The .log file
623#
624exec > new-gdbarch.log
34620563 625function_list | while do_read
0b8f9e4d
AC
626do
627 cat <<EOF
104c1213
JM
628${class} ${macro}(${actual})
629 ${returntype} ${function} ($formal)${attrib}
104c1213 630EOF
3d9a5942
AC
631 for r in ${read}
632 do
633 eval echo \"\ \ \ \ ${r}=\${${r}}\"
634 done
635# #fallbackdefault=${fallbackdefault}
636# #valid_p=${valid_p}
637#EOF
f0d4cc9e 638 if class_is_predicate_p && fallback_default_p
0b8f9e4d 639 then
66b43ecb 640 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
641 kill $$
642 exit 1
643 fi
72e74a21 644 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
645 then
646 echo "Error: postdefault is useless when invalid_p=0" 1>&2
647 kill $$
648 exit 1
649 fi
a72293e2
AC
650 if class_is_multiarch_p
651 then
652 if class_is_predicate_p ; then :
653 elif test "x${predefault}" = "x"
654 then
655 echo "Error: pure multi-arch function must have a predefault" 1>&2
656 kill $$
657 exit 1
658 fi
659 fi
3d9a5942 660 echo ""
0b8f9e4d
AC
661done
662
663exec 1>&2
664compare_new gdbarch.log
665
104c1213
JM
666
667copyright ()
668{
669cat <<EOF
59233f88
AC
670/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
671
104c1213 672/* Dynamic architecture support for GDB, the GNU debugger.
181c1381 673 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
104c1213
JM
674
675 This file is part of GDB.
676
677 This program is free software; you can redistribute it and/or modify
678 it under the terms of the GNU General Public License as published by
679 the Free Software Foundation; either version 2 of the License, or
680 (at your option) any later version.
681
682 This program is distributed in the hope that it will be useful,
683 but WITHOUT ANY WARRANTY; without even the implied warranty of
684 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
685 GNU General Public License for more details.
686
687 You should have received a copy of the GNU General Public License
688 along with this program; if not, write to the Free Software
689 Foundation, Inc., 59 Temple Place - Suite 330,
690 Boston, MA 02111-1307, USA. */
691
104c1213
JM
692/* This file was created with the aid of \`\`gdbarch.sh''.
693
52204a0b 694 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
695 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
696 against the existing \`\`gdbarch.[hc]''. Any differences found
697 being reported.
698
699 If editing this file, please also run gdbarch.sh and merge any
52204a0b 700 changes into that script. Conversely, when making sweeping changes
104c1213
JM
701 to this file, modifying gdbarch.sh and using its output may prove
702 easier. */
703
704EOF
705}
706
707#
708# The .h file
709#
710
711exec > new-gdbarch.h
712copyright
713cat <<EOF
714#ifndef GDBARCH_H
715#define GDBARCH_H
716
2bf0cb65 717#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
fd0407d6
AC
718#if !GDB_MULTI_ARCH
719#include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
720#endif
2bf0cb65 721
104c1213
JM
722struct frame_info;
723struct value;
b6af0555 724struct objfile;
a2cf933a 725struct minimal_symbol;
104c1213 726
104c1213
JM
727extern struct gdbarch *current_gdbarch;
728
729
104c1213
JM
730/* If any of the following are defined, the target wasn't correctly
731 converted. */
732
104c1213
JM
733#if GDB_MULTI_ARCH
734#if defined (EXTRA_FRAME_INFO)
735#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
736#endif
737#endif
738
739#if GDB_MULTI_ARCH
740#if defined (FRAME_FIND_SAVED_REGS)
741#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
742#endif
743#endif
83905903
AC
744
745#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
746#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
747#endif
104c1213
JM
748EOF
749
750# function typedef's
3d9a5942
AC
751printf "\n"
752printf "\n"
753printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 754function_list | while do_read
104c1213 755do
2ada493a
AC
756 if class_is_info_p
757 then
3d9a5942
AC
758 printf "\n"
759 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
760 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 761 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
762 printf "#error \"Non multi-arch definition of ${macro}\"\n"
763 printf "#endif\n"
3d9a5942 764 printf "#if GDB_MULTI_ARCH\n"
028c194b 765 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
3d9a5942
AC
766 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
767 printf "#endif\n"
768 printf "#endif\n"
2ada493a 769 fi
104c1213
JM
770done
771
772# function typedef's
3d9a5942
AC
773printf "\n"
774printf "\n"
775printf "/* The following are initialized by the target dependent code. */\n"
34620563 776function_list | while do_read
104c1213 777do
72e74a21 778 if [ -n "${comment}" ]
34620563
AC
779 then
780 echo "${comment}" | sed \
781 -e '2 s,#,/*,' \
782 -e '3,$ s,#, ,' \
783 -e '$ s,$, */,'
784 fi
b77be6cf 785 if class_is_multiarch_p
2ada493a 786 then
b77be6cf
AC
787 if class_is_predicate_p
788 then
789 printf "\n"
790 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
791 fi
792 else
793 if class_is_predicate_p
794 then
795 printf "\n"
796 printf "#if defined (${macro})\n"
797 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
798 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 799 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
800 printf "#define ${macro}_P() (1)\n"
801 printf "#endif\n"
eee30e78 802 printf "#endif\n"
b77be6cf
AC
803 printf "\n"
804 printf "/* Default predicate for non- multi-arch targets. */\n"
805 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
806 printf "#define ${macro}_P() (0)\n"
807 printf "#endif\n"
808 printf "\n"
809 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 810 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
811 printf "#error \"Non multi-arch definition of ${macro}\"\n"
812 printf "#endif\n"
028c194b 813 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
814 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
815 printf "#endif\n"
816 fi
4a5c6a1d 817 fi
2ada493a
AC
818 if class_is_variable_p
819 then
f0d4cc9e 820 if fallback_default_p || class_is_predicate_p
33489c5b 821 then
3d9a5942
AC
822 printf "\n"
823 printf "/* Default (value) for non- multi-arch platforms. */\n"
824 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
f0d4cc9e
AC
825 echo "#define ${macro} (${fallbackdefault})" \
826 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
3d9a5942 827 printf "#endif\n"
33489c5b 828 fi
3d9a5942
AC
829 printf "\n"
830 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
831 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 832 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
833 printf "#error \"Non multi-arch definition of ${macro}\"\n"
834 printf "#endif\n"
3d9a5942 835 printf "#if GDB_MULTI_ARCH\n"
028c194b 836 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
3d9a5942
AC
837 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
838 printf "#endif\n"
839 printf "#endif\n"
2ada493a
AC
840 fi
841 if class_is_function_p
842 then
b77be6cf
AC
843 if class_is_multiarch_p ; then :
844 elif fallback_default_p || class_is_predicate_p
33489c5b 845 then
3d9a5942
AC
846 printf "\n"
847 printf "/* Default (function) for non- multi-arch platforms. */\n"
848 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
72e74a21 849 if [ "x${fallbackdefault}" = "x0" ]
33489c5b 850 then
8e65ff28 851 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
33489c5b 852 else
f0d4cc9e
AC
853 # FIXME: Should be passing current_gdbarch through!
854 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
855 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
33489c5b 856 fi
3d9a5942 857 printf "#endif\n"
33489c5b 858 fi
3d9a5942 859 printf "\n"
72e74a21 860 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
861 then
862 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
863 elif class_is_multiarch_p
864 then
865 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
866 else
867 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
868 fi
72e74a21 869 if [ "x${formal}" = "xvoid" ]
104c1213 870 then
3d9a5942 871 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 872 else
3d9a5942 873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 874 fi
3d9a5942 875 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
876 if class_is_multiarch_p ; then :
877 else
028c194b 878 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
879 printf "#error \"Non multi-arch definition of ${macro}\"\n"
880 printf "#endif\n"
4a5c6a1d 881 printf "#if GDB_MULTI_ARCH\n"
028c194b 882 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
72e74a21 883 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
884 then
885 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 886 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
887 then
888 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
889 else
890 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
891 fi
892 printf "#endif\n"
893 printf "#endif\n"
104c1213 894 fi
2ada493a 895 fi
104c1213
JM
896done
897
898# close it off
899cat <<EOF
900
901extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
902
903
904/* Mechanism for co-ordinating the selection of a specific
905 architecture.
906
907 GDB targets (*-tdep.c) can register an interest in a specific
908 architecture. Other GDB components can register a need to maintain
909 per-architecture data.
910
911 The mechanisms below ensures that there is only a loose connection
912 between the set-architecture command and the various GDB
0fa6923a 913 components. Each component can independently register their need
104c1213
JM
914 to maintain architecture specific data with gdbarch.
915
916 Pragmatics:
917
918 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
919 didn't scale.
920
921 The more traditional mega-struct containing architecture specific
922 data for all the various GDB components was also considered. Since
0fa6923a 923 GDB is built from a variable number of (fairly independent)
104c1213
JM
924 components it was determined that the global aproach was not
925 applicable. */
926
927
928/* Register a new architectural family with GDB.
929
930 Register support for the specified ARCHITECTURE with GDB. When
931 gdbarch determines that the specified architecture has been
932 selected, the corresponding INIT function is called.
933
934 --
935
936 The INIT function takes two parameters: INFO which contains the
937 information available to gdbarch about the (possibly new)
938 architecture; ARCHES which is a list of the previously created
939 \`\`struct gdbarch'' for this architecture.
940
941 The INIT function parameter INFO shall, as far as possible, be
942 pre-initialized with information obtained from INFO.ABFD or
428721aa 943 previously selected architecture (if similar).
104c1213
JM
944
945 The INIT function shall return any of: NULL - indicating that it
ec3d358c 946 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
947 gdbarch'' from the ARCHES list - indicating that the new
948 architecture is just a synonym for an earlier architecture (see
949 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
950 - that describes the selected architecture (see gdbarch_alloc()).
951
952 The DUMP_TDEP function shall print out all target specific values.
953 Care should be taken to ensure that the function works in both the
954 multi-arch and non- multi-arch cases. */
104c1213
JM
955
956struct gdbarch_list
957{
958 struct gdbarch *gdbarch;
959 struct gdbarch_list *next;
960};
961
962struct gdbarch_info
963{
104c1213
JM
964 /* Use default: NULL (ZERO). */
965 const struct bfd_arch_info *bfd_arch_info;
966
428721aa 967 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
968 int byte_order;
969
970 /* Use default: NULL (ZERO). */
971 bfd *abfd;
972
973 /* Use default: NULL (ZERO). */
974 struct gdbarch_tdep_info *tdep_info;
975};
976
977typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 978typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 979
4b9b3959 980/* DEPRECATED - use gdbarch_register() */
104c1213
JM
981extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
982
4b9b3959
AC
983extern void gdbarch_register (enum bfd_architecture architecture,
984 gdbarch_init_ftype *,
985 gdbarch_dump_tdep_ftype *);
986
104c1213 987
b4a20239
AC
988/* Return a freshly allocated, NULL terminated, array of the valid
989 architecture names. Since architectures are registered during the
990 _initialize phase this function only returns useful information
991 once initialization has been completed. */
992
993extern const char **gdbarch_printable_names (void);
994
995
104c1213
JM
996/* Helper function. Search the list of ARCHES for a GDBARCH that
997 matches the information provided by INFO. */
998
999extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1000
1001
1002/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1003 basic initialization using values obtained from the INFO andTDEP
1004 parameters. set_gdbarch_*() functions are called to complete the
1005 initialization of the object. */
1006
1007extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1008
1009
4b9b3959
AC
1010/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1011 It is assumed that the caller freeds the \`\`struct
1012 gdbarch_tdep''. */
1013
058f20d5
JB
1014extern void gdbarch_free (struct gdbarch *);
1015
1016
b732d07d 1017/* Helper function. Force an update of the current architecture.
104c1213 1018
b732d07d
AC
1019 The actual architecture selected is determined by INFO, \`\`(gdb) set
1020 architecture'' et.al., the existing architecture and BFD's default
1021 architecture. INFO should be initialized to zero and then selected
1022 fields should be updated.
104c1213 1023
16f33e29
AC
1024 Returns non-zero if the update succeeds */
1025
1026extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1027
1028
1029
1030/* Register per-architecture data-pointer.
1031
1032 Reserve space for a per-architecture data-pointer. An identifier
1033 for the reserved data-pointer is returned. That identifer should
95160752 1034 be saved in a local static variable.
104c1213 1035
95160752
AC
1036 The per-architecture data-pointer can be initialized in one of two
1037 ways: The value can be set explicitly using a call to
1038 set_gdbarch_data(); the value can be set implicitly using the value
1039 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1040 called after the basic architecture vector has been created.
104c1213 1041
95160752
AC
1042 When a previously created architecture is re-selected, the
1043 per-architecture data-pointer for that previous architecture is
1044 restored. INIT() is not called.
1045
1046 During initialization, multiple assignments of the data-pointer are
1047 allowed, non-NULL values are deleted by calling FREE(). If the
1048 architecture is deleted using gdbarch_free() all non-NULL data
1049 pointers are also deleted using FREE().
104c1213
JM
1050
1051 Multiple registrarants for any architecture are allowed (and
1052 strongly encouraged). */
1053
95160752 1054struct gdbarch_data;
104c1213 1055
95160752
AC
1056typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1057typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1058 void *pointer);
1059extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1060 gdbarch_data_free_ftype *free);
1061extern void set_gdbarch_data (struct gdbarch *gdbarch,
1062 struct gdbarch_data *data,
1063 void *pointer);
104c1213
JM
1064
1065extern void *gdbarch_data (struct gdbarch_data*);
1066
1067
104c1213
JM
1068/* Register per-architecture memory region.
1069
1070 Provide a memory-region swap mechanism. Per-architecture memory
1071 region are created. These memory regions are swapped whenever the
1072 architecture is changed. For a new architecture, the memory region
1073 is initialized with zero (0) and the INIT function is called.
1074
1075 Memory regions are swapped / initialized in the order that they are
1076 registered. NULL DATA and/or INIT values can be specified.
1077
1078 New code should use register_gdbarch_data(). */
1079
1080typedef void (gdbarch_swap_ftype) (void);
1081extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1082#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1083
1084
1085
0fa6923a 1086/* The target-system-dependent byte order is dynamic */
104c1213 1087
104c1213 1088extern int target_byte_order;
104c1213
JM
1089#ifndef TARGET_BYTE_ORDER
1090#define TARGET_BYTE_ORDER (target_byte_order + 0)
1091#endif
1092
1093extern int target_byte_order_auto;
1094#ifndef TARGET_BYTE_ORDER_AUTO
1095#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1096#endif
1097
1098
1099
0fa6923a 1100/* The target-system-dependent BFD architecture is dynamic */
104c1213
JM
1101
1102extern int target_architecture_auto;
1103#ifndef TARGET_ARCHITECTURE_AUTO
1104#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1105#endif
1106
1107extern const struct bfd_arch_info *target_architecture;
1108#ifndef TARGET_ARCHITECTURE
1109#define TARGET_ARCHITECTURE (target_architecture + 0)
1110#endif
1111
104c1213 1112
0fa6923a 1113/* The target-system-dependent disassembler is semi-dynamic */
104c1213 1114
104c1213 1115extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
ff844c8d 1116 unsigned int len, disassemble_info *info);
104c1213
JM
1117
1118extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1119 disassemble_info *info);
1120
1121extern void dis_asm_print_address (bfd_vma addr,
1122 disassemble_info *info);
1123
1124extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1125extern disassemble_info tm_print_insn_info;
104c1213
JM
1126#ifndef TARGET_PRINT_INSN_INFO
1127#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1128#endif
1129
1130
1131
0fa6923a 1132/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1133 byte-order, ...) using information found in the BFD */
1134
1135extern void set_gdbarch_from_file (bfd *);
1136
1137
e514a9d6
JM
1138/* Initialize the current architecture to the "first" one we find on
1139 our list. */
1140
1141extern void initialize_current_architecture (void);
1142
ceaa8edf
JB
1143/* For non-multiarched targets, do any initialization of the default
1144 gdbarch object necessary after the _initialize_MODULE functions
1145 have run. */
1146extern void initialize_non_multiarch ();
104c1213
JM
1147
1148/* gdbarch trace variable */
1149extern int gdbarch_debug;
1150
4b9b3959 1151extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1152
1153#endif
1154EOF
1155exec 1>&2
1156#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1157compare_new gdbarch.h
104c1213
JM
1158
1159
1160#
1161# C file
1162#
1163
1164exec > new-gdbarch.c
1165copyright
1166cat <<EOF
1167
1168#include "defs.h"
7355ddba 1169#include "arch-utils.h"
104c1213
JM
1170
1171#if GDB_MULTI_ARCH
1172#include "gdbcmd.h"
1173#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1174#else
1175/* Just include everything in sight so that the every old definition
1176 of macro is visible. */
1177#include "gdb_string.h"
1178#include <ctype.h>
1179#include "symtab.h"
1180#include "frame.h"
1181#include "inferior.h"
1182#include "breakpoint.h"
0596389c 1183#include "gdb_wait.h"
104c1213
JM
1184#include "gdbcore.h"
1185#include "gdbcmd.h"
1186#include "target.h"
1187#include "gdbthread.h"
1188#include "annotate.h"
1189#include "symfile.h" /* for overlay functions */
fd0407d6 1190#include "value.h" /* For old tm.h/nm.h macros. */
104c1213
JM
1191#endif
1192#include "symcat.h"
1193
f0d4cc9e 1194#include "floatformat.h"
104c1213 1195
95160752 1196#include "gdb_assert.h"
67c2c32c 1197#include "gdb-events.h"
95160752 1198
104c1213
JM
1199/* Static function declarations */
1200
1201static void verify_gdbarch (struct gdbarch *gdbarch);
b3cc3077
JB
1202static void alloc_gdbarch_data (struct gdbarch *);
1203static void init_gdbarch_data (struct gdbarch *);
95160752 1204static void free_gdbarch_data (struct gdbarch *);
104c1213
JM
1205static void init_gdbarch_swap (struct gdbarch *);
1206static void swapout_gdbarch_swap (struct gdbarch *);
1207static void swapin_gdbarch_swap (struct gdbarch *);
1208
1209/* Convenience macro for allocting typesafe memory. */
1210
1211#ifndef XMALLOC
1212#define XMALLOC(TYPE) (TYPE*) xmalloc (sizeof (TYPE))
1213#endif
1214
1215
1216/* Non-zero if we want to trace architecture code. */
1217
1218#ifndef GDBARCH_DEBUG
1219#define GDBARCH_DEBUG 0
1220#endif
1221int gdbarch_debug = GDBARCH_DEBUG;
1222
1223EOF
1224
1225# gdbarch open the gdbarch object
3d9a5942
AC
1226printf "\n"
1227printf "/* Maintain the struct gdbarch object */\n"
1228printf "\n"
1229printf "struct gdbarch\n"
1230printf "{\n"
1231printf " /* basic architectural information */\n"
34620563 1232function_list | while do_read
104c1213 1233do
2ada493a
AC
1234 if class_is_info_p
1235 then
3d9a5942 1236 printf " ${returntype} ${function};\n"
2ada493a 1237 fi
104c1213 1238done
3d9a5942
AC
1239printf "\n"
1240printf " /* target specific vector. */\n"
1241printf " struct gdbarch_tdep *tdep;\n"
1242printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1243printf "\n"
1244printf " /* per-architecture data-pointers */\n"
95160752 1245printf " unsigned nr_data;\n"
3d9a5942
AC
1246printf " void **data;\n"
1247printf "\n"
1248printf " /* per-architecture swap-regions */\n"
1249printf " struct gdbarch_swap *swap;\n"
1250printf "\n"
104c1213
JM
1251cat <<EOF
1252 /* Multi-arch values.
1253
1254 When extending this structure you must:
1255
1256 Add the field below.
1257
1258 Declare set/get functions and define the corresponding
1259 macro in gdbarch.h.
1260
1261 gdbarch_alloc(): If zero/NULL is not a suitable default,
1262 initialize the new field.
1263
1264 verify_gdbarch(): Confirm that the target updated the field
1265 correctly.
1266
7e73cedf 1267 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1268 field is dumped out
1269
c0e8c252 1270 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1271 variable (base values on the host's c-type system).
1272
1273 get_gdbarch(): Implement the set/get functions (probably using
1274 the macro's as shortcuts).
1275
1276 */
1277
1278EOF
34620563 1279function_list | while do_read
104c1213 1280do
2ada493a
AC
1281 if class_is_variable_p
1282 then
3d9a5942 1283 printf " ${returntype} ${function};\n"
2ada493a
AC
1284 elif class_is_function_p
1285 then
3d9a5942 1286 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1287 fi
104c1213 1288done
3d9a5942 1289printf "};\n"
104c1213
JM
1290
1291# A pre-initialized vector
3d9a5942
AC
1292printf "\n"
1293printf "\n"
104c1213
JM
1294cat <<EOF
1295/* The default architecture uses host values (for want of a better
1296 choice). */
1297EOF
3d9a5942
AC
1298printf "\n"
1299printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1300printf "\n"
1301printf "struct gdbarch startup_gdbarch =\n"
1302printf "{\n"
1303printf " /* basic architecture information */\n"
4b9b3959 1304function_list | while do_read
104c1213 1305do
2ada493a
AC
1306 if class_is_info_p
1307 then
3d9a5942 1308 printf " ${staticdefault},\n"
2ada493a 1309 fi
104c1213
JM
1310done
1311cat <<EOF
4b9b3959
AC
1312 /* target specific vector and its dump routine */
1313 NULL, NULL,
104c1213
JM
1314 /*per-architecture data-pointers and swap regions */
1315 0, NULL, NULL,
1316 /* Multi-arch values */
1317EOF
34620563 1318function_list | while do_read
104c1213 1319do
2ada493a
AC
1320 if class_is_function_p || class_is_variable_p
1321 then
3d9a5942 1322 printf " ${staticdefault},\n"
2ada493a 1323 fi
104c1213
JM
1324done
1325cat <<EOF
c0e8c252 1326 /* startup_gdbarch() */
104c1213 1327};
4b9b3959 1328
c0e8c252 1329struct gdbarch *current_gdbarch = &startup_gdbarch;
ceaa8edf
JB
1330
1331/* Do any initialization needed for a non-multiarch configuration
1332 after the _initialize_MODULE functions have been run. */
1333void
1334initialize_non_multiarch ()
1335{
1336 alloc_gdbarch_data (&startup_gdbarch);
1337 init_gdbarch_data (&startup_gdbarch);
1338}
104c1213
JM
1339EOF
1340
1341# Create a new gdbarch struct
3d9a5942
AC
1342printf "\n"
1343printf "\n"
104c1213 1344cat <<EOF
66b43ecb 1345/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1346 \`\`struct gdbarch_info''. */
1347EOF
3d9a5942 1348printf "\n"
104c1213
JM
1349cat <<EOF
1350struct gdbarch *
1351gdbarch_alloc (const struct gdbarch_info *info,
1352 struct gdbarch_tdep *tdep)
1353{
85de9627
AC
1354 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1355 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1356 the current local architecture and not the previous global
1357 architecture. This ensures that the new architectures initial
1358 values are not influenced by the previous architecture. Once
1359 everything is parameterised with gdbarch, this will go away. */
1360 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1361 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1362
1363 alloc_gdbarch_data (current_gdbarch);
1364
1365 current_gdbarch->tdep = tdep;
104c1213 1366EOF
3d9a5942 1367printf "\n"
34620563 1368function_list | while do_read
104c1213 1369do
2ada493a
AC
1370 if class_is_info_p
1371 then
85de9627 1372 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1373 fi
104c1213 1374done
3d9a5942
AC
1375printf "\n"
1376printf " /* Force the explicit initialization of these. */\n"
34620563 1377function_list | while do_read
104c1213 1378do
2ada493a
AC
1379 if class_is_function_p || class_is_variable_p
1380 then
72e74a21 1381 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1382 then
85de9627 1383 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1384 fi
2ada493a 1385 fi
104c1213
JM
1386done
1387cat <<EOF
1388 /* gdbarch_alloc() */
1389
85de9627 1390 return current_gdbarch;
104c1213
JM
1391}
1392EOF
1393
058f20d5 1394# Free a gdbarch struct.
3d9a5942
AC
1395printf "\n"
1396printf "\n"
058f20d5
JB
1397cat <<EOF
1398/* Free a gdbarch struct. This should never happen in normal
1399 operation --- once you've created a gdbarch, you keep it around.
1400 However, if an architecture's init function encounters an error
1401 building the structure, it may need to clean up a partially
1402 constructed gdbarch. */
4b9b3959 1403
058f20d5
JB
1404void
1405gdbarch_free (struct gdbarch *arch)
1406{
95160752
AC
1407 gdb_assert (arch != NULL);
1408 free_gdbarch_data (arch);
338d7c5c 1409 xfree (arch);
058f20d5
JB
1410}
1411EOF
1412
104c1213 1413# verify a new architecture
3d9a5942
AC
1414printf "\n"
1415printf "\n"
1416printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1417printf "\n"
104c1213
JM
1418cat <<EOF
1419static void
1420verify_gdbarch (struct gdbarch *gdbarch)
1421{
f16a1923
AC
1422 struct ui_file *log;
1423 struct cleanup *cleanups;
1424 long dummy;
1425 char *buf;
104c1213 1426 /* Only perform sanity checks on a multi-arch target. */
6166d547 1427 if (!GDB_MULTI_ARCH)
104c1213 1428 return;
f16a1923
AC
1429 log = mem_fileopen ();
1430 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1431 /* fundamental */
428721aa 1432 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1433 fprintf_unfiltered (log, "\n\tbyte-order");
104c1213 1434 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1435 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1436 /* Check those that need to be defined for the given multi-arch level. */
1437EOF
34620563 1438function_list | while do_read
104c1213 1439do
2ada493a
AC
1440 if class_is_function_p || class_is_variable_p
1441 then
72e74a21 1442 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1443 then
3d9a5942 1444 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1445 elif class_is_predicate_p
1446 then
3d9a5942 1447 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1448 # FIXME: See do_read for potential simplification
72e74a21 1449 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1450 then
3d9a5942
AC
1451 printf " if (${invalid_p})\n"
1452 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1453 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1454 then
3d9a5942
AC
1455 printf " if (gdbarch->${function} == ${predefault})\n"
1456 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1457 elif [ -n "${postdefault}" ]
f0d4cc9e 1458 then
3d9a5942
AC
1459 printf " if (gdbarch->${function} == 0)\n"
1460 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1461 elif [ -n "${invalid_p}" ]
104c1213 1462 then
50248794 1463 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1464 printf " && (${invalid_p}))\n"
f16a1923 1465 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1466 elif [ -n "${predefault}" ]
104c1213 1467 then
50248794 1468 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1469 printf " && (gdbarch->${function} == ${predefault}))\n"
f16a1923 1470 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1471 fi
2ada493a 1472 fi
104c1213
JM
1473done
1474cat <<EOF
f16a1923
AC
1475 buf = ui_file_xstrdup (log, &dummy);
1476 make_cleanup (xfree, buf);
1477 if (strlen (buf) > 0)
1478 internal_error (__FILE__, __LINE__,
1479 "verify_gdbarch: the following are invalid ...%s",
1480 buf);
1481 do_cleanups (cleanups);
104c1213
JM
1482}
1483EOF
1484
1485# dump the structure
3d9a5942
AC
1486printf "\n"
1487printf "\n"
104c1213 1488cat <<EOF
4b9b3959
AC
1489/* Print out the details of the current architecture. */
1490
1491/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1492 just happens to match the global variable \`\`current_gdbarch''. That
1493 way macros refering to that variable get the local and not the global
1494 version - ulgh. Once everything is parameterised with gdbarch, this
1495 will go away. */
1496
104c1213 1497void
4b9b3959 1498gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1499{
4b9b3959
AC
1500 fprintf_unfiltered (file,
1501 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1502 GDB_MULTI_ARCH);
104c1213 1503EOF
08e45a40 1504function_list | sort -t: +2 | while do_read
104c1213 1505do
4a5c6a1d 1506 # multiarch functions don't have macros.
08e45a40
AC
1507 if class_is_multiarch_p
1508 then
1509 printf " if (GDB_MULTI_ARCH)\n"
1510 printf " fprintf_unfiltered (file,\n"
1511 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1512 printf " (long) current_gdbarch->${function});\n"
1513 continue
1514 fi
06b25f14 1515 # Print the macro definition.
08e45a40 1516 printf "#ifdef ${macro}\n"
72e74a21 1517 if [ "x${returntype}" = "xvoid" ]
63e69063 1518 then
08e45a40 1519 printf "#if GDB_MULTI_ARCH\n"
3d9a5942 1520 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
63e69063 1521 fi
2ada493a
AC
1522 if class_is_function_p
1523 then
3d9a5942
AC
1524 printf " fprintf_unfiltered (file,\n"
1525 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1526 printf " \"${macro}(${actual})\",\n"
1527 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1528 else
3d9a5942
AC
1529 printf " fprintf_unfiltered (file,\n"
1530 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1531 printf " XSTRING (${macro}));\n"
4b9b3959 1532 fi
06b25f14 1533 # Print the architecture vector value
08e45a40 1534 if [ "x${returntype}" = "xvoid" ]
4a5c6a1d 1535 then
08e45a40 1536 printf "#endif\n"
4a5c6a1d 1537 fi
72e74a21 1538 if [ "x${print_p}" = "x()" ]
4b9b3959 1539 then
4a5c6a1d 1540 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1541 elif [ "x${print_p}" = "x0" ]
4b9b3959 1542 then
4a5c6a1d 1543 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1544 elif [ -n "${print_p}" ]
4b9b3959 1545 then
4a5c6a1d 1546 printf " if (${print_p})\n"
3d9a5942
AC
1547 printf " fprintf_unfiltered (file,\n"
1548 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1549 printf " ${print});\n"
4b9b3959
AC
1550 elif class_is_function_p
1551 then
3d9a5942
AC
1552 printf " if (GDB_MULTI_ARCH)\n"
1553 printf " fprintf_unfiltered (file,\n"
1554 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1555 printf " (long) current_gdbarch->${function}\n"
1556 printf " /*${macro} ()*/);\n"
4b9b3959 1557 else
3d9a5942
AC
1558 printf " fprintf_unfiltered (file,\n"
1559 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1560 printf " ${print});\n"
2ada493a 1561 fi
3d9a5942 1562 printf "#endif\n"
104c1213 1563done
381323f4 1564cat <<EOF
4b9b3959
AC
1565 if (current_gdbarch->dump_tdep != NULL)
1566 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1567}
1568EOF
104c1213
JM
1569
1570
1571# GET/SET
3d9a5942 1572printf "\n"
104c1213
JM
1573cat <<EOF
1574struct gdbarch_tdep *
1575gdbarch_tdep (struct gdbarch *gdbarch)
1576{
1577 if (gdbarch_debug >= 2)
3d9a5942 1578 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1579 return gdbarch->tdep;
1580}
1581EOF
3d9a5942 1582printf "\n"
34620563 1583function_list | while do_read
104c1213 1584do
2ada493a
AC
1585 if class_is_predicate_p
1586 then
3d9a5942
AC
1587 printf "\n"
1588 printf "int\n"
1589 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1590 printf "{\n"
72e74a21 1591 if [ -n "${valid_p}" ]
2ada493a 1592 then
3d9a5942 1593 printf " return ${valid_p};\n"
2ada493a 1594 else
3d9a5942 1595 printf "#error \"gdbarch_${function}_p: not defined\"\n"
2ada493a 1596 fi
3d9a5942 1597 printf "}\n"
2ada493a
AC
1598 fi
1599 if class_is_function_p
1600 then
3d9a5942
AC
1601 printf "\n"
1602 printf "${returntype}\n"
72e74a21 1603 if [ "x${formal}" = "xvoid" ]
104c1213 1604 then
3d9a5942 1605 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1606 else
3d9a5942 1607 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1608 fi
3d9a5942
AC
1609 printf "{\n"
1610 printf " if (gdbarch->${function} == 0)\n"
8e65ff28
AC
1611 printf " internal_error (__FILE__, __LINE__,\n"
1612 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
3d9a5942
AC
1613 printf " if (gdbarch_debug >= 2)\n"
1614 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1615 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1616 then
1617 if class_is_multiarch_p
1618 then
1619 params="gdbarch"
1620 else
1621 params=""
1622 fi
1623 else
1624 if class_is_multiarch_p
1625 then
1626 params="gdbarch, ${actual}"
1627 else
1628 params="${actual}"
1629 fi
1630 fi
72e74a21 1631 if [ "x${returntype}" = "xvoid" ]
104c1213 1632 then
4a5c6a1d 1633 printf " gdbarch->${function} (${params});\n"
104c1213 1634 else
4a5c6a1d 1635 printf " return gdbarch->${function} (${params});\n"
104c1213 1636 fi
3d9a5942
AC
1637 printf "}\n"
1638 printf "\n"
1639 printf "void\n"
1640 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1641 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1642 printf "{\n"
1643 printf " gdbarch->${function} = ${function};\n"
1644 printf "}\n"
2ada493a
AC
1645 elif class_is_variable_p
1646 then
3d9a5942
AC
1647 printf "\n"
1648 printf "${returntype}\n"
1649 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1650 printf "{\n"
72e74a21 1651 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1652 then
3d9a5942 1653 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1654 elif [ -n "${invalid_p}" ]
104c1213 1655 then
3d9a5942 1656 printf " if (${invalid_p})\n"
8e65ff28
AC
1657 printf " internal_error (__FILE__, __LINE__,\n"
1658 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
72e74a21 1659 elif [ -n "${predefault}" ]
104c1213 1660 then
3d9a5942 1661 printf " if (gdbarch->${function} == ${predefault})\n"
8e65ff28
AC
1662 printf " internal_error (__FILE__, __LINE__,\n"
1663 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
104c1213 1664 fi
3d9a5942
AC
1665 printf " if (gdbarch_debug >= 2)\n"
1666 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1667 printf " return gdbarch->${function};\n"
1668 printf "}\n"
1669 printf "\n"
1670 printf "void\n"
1671 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1672 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1673 printf "{\n"
1674 printf " gdbarch->${function} = ${function};\n"
1675 printf "}\n"
2ada493a
AC
1676 elif class_is_info_p
1677 then
3d9a5942
AC
1678 printf "\n"
1679 printf "${returntype}\n"
1680 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1681 printf "{\n"
1682 printf " if (gdbarch_debug >= 2)\n"
1683 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1684 printf " return gdbarch->${function};\n"
1685 printf "}\n"
2ada493a 1686 fi
104c1213
JM
1687done
1688
1689# All the trailing guff
1690cat <<EOF
1691
1692
f44c642f 1693/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1694 modules. */
1695
1696struct gdbarch_data
1697{
95160752
AC
1698 unsigned index;
1699 gdbarch_data_init_ftype *init;
1700 gdbarch_data_free_ftype *free;
104c1213
JM
1701};
1702
1703struct gdbarch_data_registration
1704{
104c1213
JM
1705 struct gdbarch_data *data;
1706 struct gdbarch_data_registration *next;
1707};
1708
f44c642f 1709struct gdbarch_data_registry
104c1213 1710{
95160752 1711 unsigned nr;
104c1213
JM
1712 struct gdbarch_data_registration *registrations;
1713};
1714
f44c642f 1715struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1716{
1717 0, NULL,
1718};
1719
1720struct gdbarch_data *
95160752
AC
1721register_gdbarch_data (gdbarch_data_init_ftype *init,
1722 gdbarch_data_free_ftype *free)
104c1213
JM
1723{
1724 struct gdbarch_data_registration **curr;
f44c642f 1725 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1726 (*curr) != NULL;
1727 curr = &(*curr)->next);
1728 (*curr) = XMALLOC (struct gdbarch_data_registration);
1729 (*curr)->next = NULL;
104c1213 1730 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1731 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752
AC
1732 (*curr)->data->init = init;
1733 (*curr)->data->free = free;
104c1213
JM
1734 return (*curr)->data;
1735}
1736
1737
b3cc3077 1738/* Walk through all the registered users initializing each in turn. */
104c1213
JM
1739
1740static void
b3cc3077 1741init_gdbarch_data (struct gdbarch *gdbarch)
104c1213 1742{
b3cc3077
JB
1743 struct gdbarch_data_registration *rego;
1744 for (rego = gdbarch_data_registry.registrations;
1745 rego != NULL;
1746 rego = rego->next)
104c1213 1747 {
b3cc3077
JB
1748 struct gdbarch_data *data = rego->data;
1749 gdb_assert (data->index < gdbarch->nr_data);
1750 if (data->init != NULL)
95160752 1751 {
b3cc3077
JB
1752 void *pointer = data->init (gdbarch);
1753 set_gdbarch_data (gdbarch, data, pointer);
95160752
AC
1754 }
1755 }
1756}
1757
b3cc3077 1758/* Create/delete the gdbarch data vector. */
95160752
AC
1759
1760static void
b3cc3077 1761alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1762{
b3cc3077
JB
1763 gdb_assert (gdbarch->data == NULL);
1764 gdbarch->nr_data = gdbarch_data_registry.nr;
1765 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1766}
3c875b6f 1767
b3cc3077
JB
1768static void
1769free_gdbarch_data (struct gdbarch *gdbarch)
1770{
1771 struct gdbarch_data_registration *rego;
1772 gdb_assert (gdbarch->data != NULL);
1773 for (rego = gdbarch_data_registry.registrations;
1774 rego != NULL;
1775 rego = rego->next)
95160752 1776 {
b3cc3077
JB
1777 struct gdbarch_data *data = rego->data;
1778 gdb_assert (data->index < gdbarch->nr_data);
1779 if (data->free != NULL && gdbarch->data[data->index] != NULL)
95160752 1780 {
b3cc3077
JB
1781 data->free (gdbarch, gdbarch->data[data->index]);
1782 gdbarch->data[data->index] = NULL;
95160752 1783 }
104c1213 1784 }
b3cc3077
JB
1785 xfree (gdbarch->data);
1786 gdbarch->data = NULL;
104c1213
JM
1787}
1788
1789
b3cc3077
JB
1790/* Initialize the current value of thee specified per-architecture
1791 data-pointer. */
1792
95160752
AC
1793void
1794set_gdbarch_data (struct gdbarch *gdbarch,
1795 struct gdbarch_data *data,
1796 void *pointer)
1797{
1798 gdb_assert (data->index < gdbarch->nr_data);
1799 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1800 data->free (gdbarch, gdbarch->data[data->index]);
1801 gdbarch->data[data->index] = pointer;
1802}
1803
104c1213
JM
1804/* Return the current value of the specified per-architecture
1805 data-pointer. */
1806
1807void *
34620563 1808gdbarch_data (struct gdbarch_data *data)
104c1213 1809{
95160752 1810 gdb_assert (data->index < current_gdbarch->nr_data);
104c1213
JM
1811 return current_gdbarch->data[data->index];
1812}
1813
1814
1815
f44c642f 1816/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1817
1818struct gdbarch_swap
1819{
1820 void *swap;
1821 struct gdbarch_swap_registration *source;
1822 struct gdbarch_swap *next;
1823};
1824
1825struct gdbarch_swap_registration
1826{
1827 void *data;
1828 unsigned long sizeof_data;
1829 gdbarch_swap_ftype *init;
1830 struct gdbarch_swap_registration *next;
1831};
1832
f44c642f 1833struct gdbarch_swap_registry
104c1213
JM
1834{
1835 int nr;
1836 struct gdbarch_swap_registration *registrations;
1837};
1838
f44c642f 1839struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1840{
1841 0, NULL,
1842};
1843
1844void
1845register_gdbarch_swap (void *data,
1846 unsigned long sizeof_data,
1847 gdbarch_swap_ftype *init)
1848{
1849 struct gdbarch_swap_registration **rego;
f44c642f 1850 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1851 (*rego) != NULL;
1852 rego = &(*rego)->next);
1853 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1854 (*rego)->next = NULL;
1855 (*rego)->init = init;
1856 (*rego)->data = data;
1857 (*rego)->sizeof_data = sizeof_data;
1858}
1859
1860
1861static void
1862init_gdbarch_swap (struct gdbarch *gdbarch)
1863{
1864 struct gdbarch_swap_registration *rego;
1865 struct gdbarch_swap **curr = &gdbarch->swap;
f44c642f 1866 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1867 rego != NULL;
1868 rego = rego->next)
1869 {
1870 if (rego->data != NULL)
1871 {
1872 (*curr) = XMALLOC (struct gdbarch_swap);
1873 (*curr)->source = rego;
1874 (*curr)->swap = xmalloc (rego->sizeof_data);
1875 (*curr)->next = NULL;
1876 memset (rego->data, 0, rego->sizeof_data);
1877 curr = &(*curr)->next;
1878 }
1879 if (rego->init != NULL)
1880 rego->init ();
1881 }
1882}
1883
1884static void
1885swapout_gdbarch_swap (struct gdbarch *gdbarch)
1886{
1887 struct gdbarch_swap *curr;
1888 for (curr = gdbarch->swap;
1889 curr != NULL;
1890 curr = curr->next)
1891 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1892}
1893
1894static void
1895swapin_gdbarch_swap (struct gdbarch *gdbarch)
1896{
1897 struct gdbarch_swap *curr;
1898 for (curr = gdbarch->swap;
1899 curr != NULL;
1900 curr = curr->next)
1901 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1902}
1903
1904
f44c642f 1905/* Keep a registry of the architectures known by GDB. */
104c1213 1906
4b9b3959 1907struct gdbarch_registration
104c1213
JM
1908{
1909 enum bfd_architecture bfd_architecture;
1910 gdbarch_init_ftype *init;
4b9b3959 1911 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1912 struct gdbarch_list *arches;
4b9b3959 1913 struct gdbarch_registration *next;
104c1213
JM
1914};
1915
f44c642f 1916static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1917
b4a20239
AC
1918static void
1919append_name (const char ***buf, int *nr, const char *name)
1920{
1921 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1922 (*buf)[*nr] = name;
1923 *nr += 1;
1924}
1925
1926const char **
1927gdbarch_printable_names (void)
1928{
1929 if (GDB_MULTI_ARCH)
1930 {
1931 /* Accumulate a list of names based on the registed list of
1932 architectures. */
1933 enum bfd_architecture a;
1934 int nr_arches = 0;
1935 const char **arches = NULL;
4b9b3959 1936 struct gdbarch_registration *rego;
f44c642f 1937 for (rego = gdbarch_registry;
b4a20239
AC
1938 rego != NULL;
1939 rego = rego->next)
1940 {
1941 const struct bfd_arch_info *ap;
1942 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1943 if (ap == NULL)
8e65ff28
AC
1944 internal_error (__FILE__, __LINE__,
1945 "gdbarch_architecture_names: multi-arch unknown");
b4a20239
AC
1946 do
1947 {
1948 append_name (&arches, &nr_arches, ap->printable_name);
1949 ap = ap->next;
1950 }
1951 while (ap != NULL);
1952 }
1953 append_name (&arches, &nr_arches, NULL);
1954 return arches;
1955 }
1956 else
1957 /* Just return all the architectures that BFD knows. Assume that
1958 the legacy architecture framework supports them. */
1959 return bfd_arch_list ();
1960}
1961
1962
104c1213 1963void
4b9b3959
AC
1964gdbarch_register (enum bfd_architecture bfd_architecture,
1965 gdbarch_init_ftype *init,
1966 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1967{
4b9b3959 1968 struct gdbarch_registration **curr;
104c1213 1969 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1970 /* Check that BFD recognizes this architecture */
104c1213
JM
1971 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1972 if (bfd_arch_info == NULL)
1973 {
8e65ff28
AC
1974 internal_error (__FILE__, __LINE__,
1975 "gdbarch: Attempt to register unknown architecture (%d)",
1976 bfd_architecture);
104c1213
JM
1977 }
1978 /* Check that we haven't seen this architecture before */
f44c642f 1979 for (curr = &gdbarch_registry;
104c1213
JM
1980 (*curr) != NULL;
1981 curr = &(*curr)->next)
1982 {
1983 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
1984 internal_error (__FILE__, __LINE__,
1985 "gdbarch: Duplicate registraration of architecture (%s)",
1986 bfd_arch_info->printable_name);
104c1213
JM
1987 }
1988 /* log it */
1989 if (gdbarch_debug)
1990 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1991 bfd_arch_info->printable_name,
1992 (long) init);
1993 /* Append it */
4b9b3959 1994 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1995 (*curr)->bfd_architecture = bfd_architecture;
1996 (*curr)->init = init;
4b9b3959 1997 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1998 (*curr)->arches = NULL;
1999 (*curr)->next = NULL;
8e1a459b
C
2000 /* When non- multi-arch, install whatever target dump routine we've
2001 been provided - hopefully that routine has been written correctly
4b9b3959
AC
2002 and works regardless of multi-arch. */
2003 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2004 && startup_gdbarch.dump_tdep == NULL)
2005 startup_gdbarch.dump_tdep = dump_tdep;
2006}
2007
2008void
2009register_gdbarch_init (enum bfd_architecture bfd_architecture,
2010 gdbarch_init_ftype *init)
2011{
2012 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2013}
104c1213
JM
2014
2015
2016/* Look for an architecture using gdbarch_info. Base search on only
2017 BFD_ARCH_INFO and BYTE_ORDER. */
2018
2019struct gdbarch_list *
2020gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2021 const struct gdbarch_info *info)
2022{
2023 for (; arches != NULL; arches = arches->next)
2024 {
2025 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2026 continue;
2027 if (info->byte_order != arches->gdbarch->byte_order)
2028 continue;
2029 return arches;
2030 }
2031 return NULL;
2032}
2033
2034
2035/* Update the current architecture. Return ZERO if the update request
2036 failed. */
2037
2038int
16f33e29 2039gdbarch_update_p (struct gdbarch_info info)
104c1213
JM
2040{
2041 struct gdbarch *new_gdbarch;
2042 struct gdbarch_list **list;
4b9b3959 2043 struct gdbarch_registration *rego;
104c1213 2044
b732d07d
AC
2045 /* Fill in missing parts of the INFO struct using a number of
2046 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2047
2048 /* \`\`(gdb) set architecture ...'' */
2049 if (info.bfd_arch_info == NULL
2050 && !TARGET_ARCHITECTURE_AUTO)
2051 info.bfd_arch_info = TARGET_ARCHITECTURE;
2052 if (info.bfd_arch_info == NULL
2053 && info.abfd != NULL
2054 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2055 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2056 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
104c1213 2057 if (info.bfd_arch_info == NULL)
b732d07d
AC
2058 info.bfd_arch_info = TARGET_ARCHITECTURE;
2059
2060 /* \`\`(gdb) set byte-order ...'' */
428721aa 2061 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d
AC
2062 && !TARGET_BYTE_ORDER_AUTO)
2063 info.byte_order = TARGET_BYTE_ORDER;
2064 /* From the INFO struct. */
428721aa 2065 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d 2066 && info.abfd != NULL)
d7449b42 2067 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
778eb05e 2068 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
428721aa 2069 : BFD_ENDIAN_UNKNOWN);
b732d07d 2070 /* From the current target. */
428721aa 2071 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
b732d07d 2072 info.byte_order = TARGET_BYTE_ORDER;
104c1213 2073
b732d07d
AC
2074 /* Must have found some sort of architecture. */
2075 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2076
2077 if (gdbarch_debug)
2078 {
2079 fprintf_unfiltered (gdb_stdlog,
b732d07d 2080 "gdbarch_update: info.bfd_arch_info %s\n",
104c1213
JM
2081 (info.bfd_arch_info != NULL
2082 ? info.bfd_arch_info->printable_name
2083 : "(null)"));
2084 fprintf_unfiltered (gdb_stdlog,
b732d07d 2085 "gdbarch_update: info.byte_order %d (%s)\n",
104c1213 2086 info.byte_order,
d7449b42 2087 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2088 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213
JM
2089 : "default"));
2090 fprintf_unfiltered (gdb_stdlog,
b732d07d 2091 "gdbarch_update: info.abfd 0x%lx\n",
104c1213
JM
2092 (long) info.abfd);
2093 fprintf_unfiltered (gdb_stdlog,
b732d07d 2094 "gdbarch_update: info.tdep_info 0x%lx\n",
104c1213
JM
2095 (long) info.tdep_info);
2096 }
2097
b732d07d
AC
2098 /* Find the target that knows about this architecture. */
2099 for (rego = gdbarch_registry;
2100 rego != NULL;
2101 rego = rego->next)
2102 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2103 break;
2104 if (rego == NULL)
2105 {
2106 if (gdbarch_debug)
2107 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2108 return 0;
2109 }
2110
104c1213
JM
2111 /* Ask the target for a replacement architecture. */
2112 new_gdbarch = rego->init (info, rego->arches);
2113
2114 /* Did the target like it? No. Reject the change. */
2115 if (new_gdbarch == NULL)
2116 {
2117 if (gdbarch_debug)
3d9a5942 2118 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
104c1213
JM
2119 return 0;
2120 }
2121
2122 /* Did the architecture change? No. Do nothing. */
2123 if (current_gdbarch == new_gdbarch)
2124 {
2125 if (gdbarch_debug)
3d9a5942 2126 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
104c1213
JM
2127 (long) new_gdbarch,
2128 new_gdbarch->bfd_arch_info->printable_name);
2129 return 1;
2130 }
2131
2132 /* Swap all data belonging to the old target out */
2133 swapout_gdbarch_swap (current_gdbarch);
2134
2135 /* Is this a pre-existing architecture? Yes. Swap it in. */
2136 for (list = &rego->arches;
2137 (*list) != NULL;
2138 list = &(*list)->next)
2139 {
2140 if ((*list)->gdbarch == new_gdbarch)
2141 {
2142 if (gdbarch_debug)
4b9b3959 2143 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2144 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2145 (long) new_gdbarch,
2146 new_gdbarch->bfd_arch_info->printable_name);
2147 current_gdbarch = new_gdbarch;
2148 swapin_gdbarch_swap (new_gdbarch);
67c2c32c 2149 architecture_changed_event ();
104c1213
JM
2150 return 1;
2151 }
2152 }
4b9b3959 2153
104c1213
JM
2154 /* Append this new architecture to this targets list. */
2155 (*list) = XMALLOC (struct gdbarch_list);
2156 (*list)->next = NULL;
2157 (*list)->gdbarch = new_gdbarch;
2158
2159 /* Switch to this new architecture. Dump it out. */
2160 current_gdbarch = new_gdbarch;
2161 if (gdbarch_debug)
2162 {
2163 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2164 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2165 (long) new_gdbarch,
2166 new_gdbarch->bfd_arch_info->printable_name);
104c1213
JM
2167 }
2168
4b9b3959
AC
2169 /* Check that the newly installed architecture is valid. Plug in
2170 any post init values. */
2171 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213
JM
2172 verify_gdbarch (new_gdbarch);
2173
2174 /* Initialize the per-architecture memory (swap) areas.
2175 CURRENT_GDBARCH must be update before these modules are
2176 called. */
2177 init_gdbarch_swap (new_gdbarch);
2178
b3cc3077
JB
2179 /* Initialize the per-architecture data-pointer of all parties that
2180 registered an interest in this architecture. CURRENT_GDBARCH
2181 must be updated before these modules are called. */
2182 init_gdbarch_data (new_gdbarch);
67c2c32c
KS
2183 architecture_changed_event ();
2184
4b9b3959
AC
2185 if (gdbarch_debug)
2186 gdbarch_dump (current_gdbarch, gdb_stdlog);
2187
104c1213
JM
2188 return 1;
2189}
2190
2191
104c1213
JM
2192/* Disassembler */
2193
2194/* Pointer to the target-dependent disassembly function. */
2195int (*tm_print_insn) (bfd_vma, disassemble_info *);
2196disassemble_info tm_print_insn_info;
2197
2198
104c1213 2199extern void _initialize_gdbarch (void);
b4a20239 2200
104c1213 2201void
34620563 2202_initialize_gdbarch (void)
104c1213 2203{
59233f88
AC
2204 struct cmd_list_element *c;
2205
104c1213
JM
2206 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2207 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2208 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2209 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2210 tm_print_insn_info.print_address_func = dis_asm_print_address;
2211
59233f88 2212 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2213 class_maintenance,
2214 var_zinteger,
2215 (char *)&gdbarch_debug,
3d9a5942 2216 "Set architecture debugging.\\n\\
59233f88
AC
2217When non-zero, architecture debugging is enabled.", &setdebuglist),
2218 &showdebuglist);
2219 c = add_set_cmd ("archdebug",
2220 class_maintenance,
2221 var_zinteger,
2222 (char *)&gdbarch_debug,
3d9a5942 2223 "Set architecture debugging.\\n\\
59233f88
AC
2224When non-zero, architecture debugging is enabled.", &setlist);
2225
2226 deprecate_cmd (c, "set debug arch");
2227 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2228}
2229EOF
2230
2231# close things off
2232exec 1>&2
2233#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2234compare_new gdbarch.c
This page took 0.285844 seconds and 4 git commands to generate.