* gdbarch.sh (gdbarch_dump): Use core_addr_to_string_nz
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1
DJ
5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6# 2008 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
623d3eb1 346i:const struct target_desc *:target_desc:::::::plongest ((long) gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
97030eea
UW
469f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
97030eea 566f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
552c04a7
TT
578# Given a vector of command-line arguments, return a newly allocated
579# string which, when passed to the create_inferior function, will be
580# parsed (on Unix systems, by the shell) to yield the same vector.
581# This function should call error() if the argument vector is not
582# representable for this target or if this target does not support
583# command-line arguments.
584# ARGC is the number of elements in the vector.
585# ARGV is an array of strings, one per argument.
97030eea
UW
586m:char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
587f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
588f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
be7811ad 589v:const char *:name_of_malloc:::"malloc":"malloc"::0:gdbarch->name_of_malloc
97030eea
UW
590v:int:cannot_step_breakpoint:::0:0::0
591v:int:have_nonsteppable_watchpoint:::0:0::0
592F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
593M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
594M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 595# Is a register in a group
97030eea 596m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 597# Fetch the pointer to the ith function argument.
97030eea 598F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
599
600# Return the appropriate register set for a core file section with
601# name SECT_NAME and size SECT_SIZE.
97030eea 602M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 603
17ea7499
CES
604# Supported register notes in a core file.
605v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
606
de584861
PA
607# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
608# core file into buffer READBUF with length LEN.
97030eea 609M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 610
0d5de010
DJ
611# If the elements of C++ vtables are in-place function descriptors rather
612# than normal function pointers (which may point to code or a descriptor),
613# set this to one.
97030eea 614v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
615
616# Set if the least significant bit of the delta is used instead of the least
617# significant bit of the pfn for pointers to virtual member functions.
97030eea 618v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
619
620# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 621F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 622
237fc4c9
PA
623# The maximum length of an instruction on this architecture.
624V:ULONGEST:max_insn_length:::0:0
625
626# Copy the instruction at FROM to TO, and make any adjustments
627# necessary to single-step it at that address.
628#
629# REGS holds the state the thread's registers will have before
630# executing the copied instruction; the PC in REGS will refer to FROM,
631# not the copy at TO. The caller should update it to point at TO later.
632#
633# Return a pointer to data of the architecture's choice to be passed
634# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
635# the instruction's effects have been completely simulated, with the
636# resulting state written back to REGS.
637#
638# For a general explanation of displaced stepping and how GDB uses it,
639# see the comments in infrun.c.
640#
641# The TO area is only guaranteed to have space for
642# gdbarch_max_insn_length (arch) bytes, so this function must not
643# write more bytes than that to that area.
644#
645# If you do not provide this function, GDB assumes that the
646# architecture does not support displaced stepping.
647#
648# If your architecture doesn't need to adjust instructions before
649# single-stepping them, consider using simple_displaced_step_copy_insn
650# here.
651M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
652
653# Fix up the state resulting from successfully single-stepping a
654# displaced instruction, to give the result we would have gotten from
655# stepping the instruction in its original location.
656#
657# REGS is the register state resulting from single-stepping the
658# displaced instruction.
659#
660# CLOSURE is the result from the matching call to
661# gdbarch_displaced_step_copy_insn.
662#
663# If you provide gdbarch_displaced_step_copy_insn.but not this
664# function, then GDB assumes that no fixup is needed after
665# single-stepping the instruction.
666#
667# For a general explanation of displaced stepping and how GDB uses it,
668# see the comments in infrun.c.
669M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
670
671# Free a closure returned by gdbarch_displaced_step_copy_insn.
672#
673# If you provide gdbarch_displaced_step_copy_insn, you must provide
674# this function as well.
675#
676# If your architecture uses closures that don't need to be freed, then
677# you can use simple_displaced_step_free_closure here.
678#
679# For a general explanation of displaced stepping and how GDB uses it,
680# see the comments in infrun.c.
681m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
682
683# Return the address of an appropriate place to put displaced
684# instructions while we step over them. There need only be one such
685# place, since we're only stepping one thread over a breakpoint at a
686# time.
687#
688# For a general explanation of displaced stepping and how GDB uses it,
689# see the comments in infrun.c.
690m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
691
1c772458 692# Refresh overlay mapped state for section OSECT.
97030eea 693F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 694
97030eea 695M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
696
697# Handle special encoding of static variables in stabs debug info.
97030eea 698F:char *:static_transform_name:char *name:name
203c3895 699# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 700v:int:sofun_address_maybe_missing:::0:0::0
1cded358
AR
701
702# Signal translation: translate inferior's signal (host's) number into
703# GDB's representation.
704m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
705# Signal translation: translate GDB's signal number into inferior's host
706# signal number.
707m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c
DJ
708
709# Record architecture-specific information from the symbol table.
710M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
104c1213 711EOF
104c1213
JM
712}
713
0b8f9e4d
AC
714#
715# The .log file
716#
717exec > new-gdbarch.log
34620563 718function_list | while do_read
0b8f9e4d
AC
719do
720 cat <<EOF
2f9b146e 721${class} ${returntype} ${function} ($formal)
104c1213 722EOF
3d9a5942
AC
723 for r in ${read}
724 do
725 eval echo \"\ \ \ \ ${r}=\${${r}}\"
726 done
f0d4cc9e 727 if class_is_predicate_p && fallback_default_p
0b8f9e4d 728 then
66d659b1 729 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
730 kill $$
731 exit 1
732 fi
72e74a21 733 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
734 then
735 echo "Error: postdefault is useless when invalid_p=0" 1>&2
736 kill $$
737 exit 1
738 fi
a72293e2
AC
739 if class_is_multiarch_p
740 then
741 if class_is_predicate_p ; then :
742 elif test "x${predefault}" = "x"
743 then
2f9b146e 744 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
745 kill $$
746 exit 1
747 fi
748 fi
3d9a5942 749 echo ""
0b8f9e4d
AC
750done
751
752exec 1>&2
753compare_new gdbarch.log
754
104c1213
JM
755
756copyright ()
757{
758cat <<EOF
59233f88
AC
759/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
760
104c1213 761/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 762
50efebf8 763 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 764 Free Software Foundation, Inc.
104c1213
JM
765
766 This file is part of GDB.
767
768 This program is free software; you can redistribute it and/or modify
769 it under the terms of the GNU General Public License as published by
50efebf8 770 the Free Software Foundation; either version 3 of the License, or
104c1213 771 (at your option) any later version.
50efebf8 772
104c1213
JM
773 This program is distributed in the hope that it will be useful,
774 but WITHOUT ANY WARRANTY; without even the implied warranty of
775 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
776 GNU General Public License for more details.
50efebf8 777
104c1213 778 You should have received a copy of the GNU General Public License
50efebf8 779 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 780
104c1213
JM
781/* This file was created with the aid of \`\`gdbarch.sh''.
782
52204a0b 783 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
784 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
785 against the existing \`\`gdbarch.[hc]''. Any differences found
786 being reported.
787
788 If editing this file, please also run gdbarch.sh and merge any
52204a0b 789 changes into that script. Conversely, when making sweeping changes
104c1213
JM
790 to this file, modifying gdbarch.sh and using its output may prove
791 easier. */
792
793EOF
794}
795
796#
797# The .h file
798#
799
800exec > new-gdbarch.h
801copyright
802cat <<EOF
803#ifndef GDBARCH_H
804#define GDBARCH_H
805
da3331ec
AC
806struct floatformat;
807struct ui_file;
104c1213
JM
808struct frame_info;
809struct value;
b6af0555 810struct objfile;
1c772458 811struct obj_section;
a2cf933a 812struct minimal_symbol;
049ee0e4 813struct regcache;
b59ff9d5 814struct reggroup;
6ce6d90f 815struct regset;
a89aa300 816struct disassemble_info;
e2d0e7eb 817struct target_ops;
030f20e1 818struct obstack;
8181d85f 819struct bp_target_info;
424163ea 820struct target_desc;
237fc4c9 821struct displaced_step_closure;
17ea7499 822struct core_regset_section;
104c1213 823
104c1213 824extern struct gdbarch *current_gdbarch;
1cf3db46 825extern struct gdbarch *target_gdbarch;
104c1213
JM
826EOF
827
828# function typedef's
3d9a5942
AC
829printf "\n"
830printf "\n"
831printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 832function_list | while do_read
104c1213 833do
2ada493a
AC
834 if class_is_info_p
835 then
3d9a5942
AC
836 printf "\n"
837 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
838 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 839 fi
104c1213
JM
840done
841
842# function typedef's
3d9a5942
AC
843printf "\n"
844printf "\n"
845printf "/* The following are initialized by the target dependent code. */\n"
34620563 846function_list | while do_read
104c1213 847do
72e74a21 848 if [ -n "${comment}" ]
34620563
AC
849 then
850 echo "${comment}" | sed \
851 -e '2 s,#,/*,' \
852 -e '3,$ s,#, ,' \
853 -e '$ s,$, */,'
854 fi
412d5987
AC
855
856 if class_is_predicate_p
2ada493a 857 then
412d5987
AC
858 printf "\n"
859 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 860 fi
2ada493a
AC
861 if class_is_variable_p
862 then
3d9a5942
AC
863 printf "\n"
864 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
865 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
866 fi
867 if class_is_function_p
868 then
3d9a5942 869 printf "\n"
72e74a21 870 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
871 then
872 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
873 elif class_is_multiarch_p
874 then
875 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
876 else
877 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
878 fi
72e74a21 879 if [ "x${formal}" = "xvoid" ]
104c1213 880 then
3d9a5942 881 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 882 else
3d9a5942 883 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 884 fi
3d9a5942 885 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 886 fi
104c1213
JM
887done
888
889# close it off
890cat <<EOF
891
892extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
893
894
895/* Mechanism for co-ordinating the selection of a specific
896 architecture.
897
898 GDB targets (*-tdep.c) can register an interest in a specific
899 architecture. Other GDB components can register a need to maintain
900 per-architecture data.
901
902 The mechanisms below ensures that there is only a loose connection
903 between the set-architecture command and the various GDB
0fa6923a 904 components. Each component can independently register their need
104c1213
JM
905 to maintain architecture specific data with gdbarch.
906
907 Pragmatics:
908
909 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
910 didn't scale.
911
912 The more traditional mega-struct containing architecture specific
913 data for all the various GDB components was also considered. Since
0fa6923a 914 GDB is built from a variable number of (fairly independent)
104c1213
JM
915 components it was determined that the global aproach was not
916 applicable. */
917
918
919/* Register a new architectural family with GDB.
920
921 Register support for the specified ARCHITECTURE with GDB. When
922 gdbarch determines that the specified architecture has been
923 selected, the corresponding INIT function is called.
924
925 --
926
927 The INIT function takes two parameters: INFO which contains the
928 information available to gdbarch about the (possibly new)
929 architecture; ARCHES which is a list of the previously created
930 \`\`struct gdbarch'' for this architecture.
931
0f79675b 932 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 933 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
934
935 The ARCHES parameter is a linked list (sorted most recently used)
936 of all the previously created architures for this architecture
937 family. The (possibly NULL) ARCHES->gdbarch can used to access
938 values from the previously selected architecture for this
939 architecture family. The global \`\`current_gdbarch'' shall not be
940 used.
104c1213
JM
941
942 The INIT function shall return any of: NULL - indicating that it
ec3d358c 943 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
944 gdbarch'' from the ARCHES list - indicating that the new
945 architecture is just a synonym for an earlier architecture (see
946 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
947 - that describes the selected architecture (see gdbarch_alloc()).
948
949 The DUMP_TDEP function shall print out all target specific values.
950 Care should be taken to ensure that the function works in both the
951 multi-arch and non- multi-arch cases. */
104c1213
JM
952
953struct gdbarch_list
954{
955 struct gdbarch *gdbarch;
956 struct gdbarch_list *next;
957};
958
959struct gdbarch_info
960{
104c1213
JM
961 /* Use default: NULL (ZERO). */
962 const struct bfd_arch_info *bfd_arch_info;
963
428721aa 964 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
965 int byte_order;
966
9d4fde75
SS
967 int byte_order_for_code;
968
104c1213
JM
969 /* Use default: NULL (ZERO). */
970 bfd *abfd;
971
972 /* Use default: NULL (ZERO). */
973 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
974
975 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
976 enum gdb_osabi osabi;
424163ea
DJ
977
978 /* Use default: NULL (ZERO). */
979 const struct target_desc *target_desc;
104c1213
JM
980};
981
982typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 983typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 984
4b9b3959 985/* DEPRECATED - use gdbarch_register() */
104c1213
JM
986extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
987
4b9b3959
AC
988extern void gdbarch_register (enum bfd_architecture architecture,
989 gdbarch_init_ftype *,
990 gdbarch_dump_tdep_ftype *);
991
104c1213 992
b4a20239
AC
993/* Return a freshly allocated, NULL terminated, array of the valid
994 architecture names. Since architectures are registered during the
995 _initialize phase this function only returns useful information
996 once initialization has been completed. */
997
998extern const char **gdbarch_printable_names (void);
999
1000
104c1213
JM
1001/* Helper function. Search the list of ARCHES for a GDBARCH that
1002 matches the information provided by INFO. */
1003
424163ea 1004extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1005
1006
1007/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1008 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1009 parameters. set_gdbarch_*() functions are called to complete the
1010 initialization of the object. */
1011
1012extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1013
1014
4b9b3959
AC
1015/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1016 It is assumed that the caller freeds the \`\`struct
1017 gdbarch_tdep''. */
1018
058f20d5
JB
1019extern void gdbarch_free (struct gdbarch *);
1020
1021
aebd7893
AC
1022/* Helper function. Allocate memory from the \`\`struct gdbarch''
1023 obstack. The memory is freed when the corresponding architecture
1024 is also freed. */
1025
1026extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1027#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1028#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1029
1030
b732d07d 1031/* Helper function. Force an update of the current architecture.
104c1213 1032
b732d07d
AC
1033 The actual architecture selected is determined by INFO, \`\`(gdb) set
1034 architecture'' et.al., the existing architecture and BFD's default
1035 architecture. INFO should be initialized to zero and then selected
1036 fields should be updated.
104c1213 1037
16f33e29
AC
1038 Returns non-zero if the update succeeds */
1039
1040extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1041
1042
ebdba546
AC
1043/* Helper function. Find an architecture matching info.
1044
1045 INFO should be initialized using gdbarch_info_init, relevant fields
1046 set, and then finished using gdbarch_info_fill.
1047
1048 Returns the corresponding architecture, or NULL if no matching
1049 architecture was found. "current_gdbarch" is not updated. */
1050
1051extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1052
1053
1054/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1055
1056 FIXME: kettenis/20031124: Of the functions that follow, only
1057 gdbarch_from_bfd is supposed to survive. The others will
1058 dissappear since in the future GDB will (hopefully) be truly
1059 multi-arch. However, for now we're still stuck with the concept of
1060 a single active architecture. */
1061
1062extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1063
104c1213
JM
1064
1065/* Register per-architecture data-pointer.
1066
1067 Reserve space for a per-architecture data-pointer. An identifier
1068 for the reserved data-pointer is returned. That identifer should
95160752 1069 be saved in a local static variable.
104c1213 1070
fcc1c85c
AC
1071 Memory for the per-architecture data shall be allocated using
1072 gdbarch_obstack_zalloc. That memory will be deleted when the
1073 corresponding architecture object is deleted.
104c1213 1074
95160752
AC
1075 When a previously created architecture is re-selected, the
1076 per-architecture data-pointer for that previous architecture is
76860b5f 1077 restored. INIT() is not re-called.
104c1213
JM
1078
1079 Multiple registrarants for any architecture are allowed (and
1080 strongly encouraged). */
1081
95160752 1082struct gdbarch_data;
104c1213 1083
030f20e1
AC
1084typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1085extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1086typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1087extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1088extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1089 struct gdbarch_data *data,
1090 void *pointer);
104c1213 1091
451fbdda 1092extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1093
1094
0fa6923a 1095/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1096 byte-order, ...) using information found in the BFD */
1097
1098extern void set_gdbarch_from_file (bfd *);
1099
1100
e514a9d6
JM
1101/* Initialize the current architecture to the "first" one we find on
1102 our list. */
1103
1104extern void initialize_current_architecture (void);
1105
104c1213
JM
1106/* gdbarch trace variable */
1107extern int gdbarch_debug;
1108
4b9b3959 1109extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1110
1111#endif
1112EOF
1113exec 1>&2
1114#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1115compare_new gdbarch.h
104c1213
JM
1116
1117
1118#
1119# C file
1120#
1121
1122exec > new-gdbarch.c
1123copyright
1124cat <<EOF
1125
1126#include "defs.h"
7355ddba 1127#include "arch-utils.h"
104c1213 1128
104c1213 1129#include "gdbcmd.h"
faaf634c 1130#include "inferior.h"
104c1213
JM
1131#include "symcat.h"
1132
f0d4cc9e 1133#include "floatformat.h"
104c1213 1134
95160752 1135#include "gdb_assert.h"
b66d6d2e 1136#include "gdb_string.h"
b59ff9d5 1137#include "reggroups.h"
4be87837 1138#include "osabi.h"
aebd7893 1139#include "gdb_obstack.h"
383f836e 1140#include "observer.h"
a3ecef73 1141#include "regcache.h"
95160752 1142
104c1213
JM
1143/* Static function declarations */
1144
b3cc3077 1145static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1146
104c1213
JM
1147/* Non-zero if we want to trace architecture code. */
1148
1149#ifndef GDBARCH_DEBUG
1150#define GDBARCH_DEBUG 0
1151#endif
1152int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1153static void
1154show_gdbarch_debug (struct ui_file *file, int from_tty,
1155 struct cmd_list_element *c, const char *value)
1156{
1157 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1158}
104c1213 1159
456fcf94 1160static const char *
8da61cc4 1161pformat (const struct floatformat **format)
456fcf94
AC
1162{
1163 if (format == NULL)
1164 return "(null)";
1165 else
8da61cc4
DJ
1166 /* Just print out one of them - this is only for diagnostics. */
1167 return format[0]->name;
456fcf94
AC
1168}
1169
104c1213
JM
1170EOF
1171
1172# gdbarch open the gdbarch object
3d9a5942
AC
1173printf "\n"
1174printf "/* Maintain the struct gdbarch object */\n"
1175printf "\n"
1176printf "struct gdbarch\n"
1177printf "{\n"
76860b5f
AC
1178printf " /* Has this architecture been fully initialized? */\n"
1179printf " int initialized_p;\n"
aebd7893
AC
1180printf "\n"
1181printf " /* An obstack bound to the lifetime of the architecture. */\n"
1182printf " struct obstack *obstack;\n"
1183printf "\n"
3d9a5942 1184printf " /* basic architectural information */\n"
34620563 1185function_list | while do_read
104c1213 1186do
2ada493a
AC
1187 if class_is_info_p
1188 then
3d9a5942 1189 printf " ${returntype} ${function};\n"
2ada493a 1190 fi
104c1213 1191done
3d9a5942
AC
1192printf "\n"
1193printf " /* target specific vector. */\n"
1194printf " struct gdbarch_tdep *tdep;\n"
1195printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1196printf "\n"
1197printf " /* per-architecture data-pointers */\n"
95160752 1198printf " unsigned nr_data;\n"
3d9a5942
AC
1199printf " void **data;\n"
1200printf "\n"
1201printf " /* per-architecture swap-regions */\n"
1202printf " struct gdbarch_swap *swap;\n"
1203printf "\n"
104c1213
JM
1204cat <<EOF
1205 /* Multi-arch values.
1206
1207 When extending this structure you must:
1208
1209 Add the field below.
1210
1211 Declare set/get functions and define the corresponding
1212 macro in gdbarch.h.
1213
1214 gdbarch_alloc(): If zero/NULL is not a suitable default,
1215 initialize the new field.
1216
1217 verify_gdbarch(): Confirm that the target updated the field
1218 correctly.
1219
7e73cedf 1220 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1221 field is dumped out
1222
c0e8c252 1223 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1224 variable (base values on the host's c-type system).
1225
1226 get_gdbarch(): Implement the set/get functions (probably using
1227 the macro's as shortcuts).
1228
1229 */
1230
1231EOF
34620563 1232function_list | while do_read
104c1213 1233do
2ada493a
AC
1234 if class_is_variable_p
1235 then
3d9a5942 1236 printf " ${returntype} ${function};\n"
2ada493a
AC
1237 elif class_is_function_p
1238 then
2f9b146e 1239 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1240 fi
104c1213 1241done
3d9a5942 1242printf "};\n"
104c1213
JM
1243
1244# A pre-initialized vector
3d9a5942
AC
1245printf "\n"
1246printf "\n"
104c1213
JM
1247cat <<EOF
1248/* The default architecture uses host values (for want of a better
1249 choice). */
1250EOF
3d9a5942
AC
1251printf "\n"
1252printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1253printf "\n"
1254printf "struct gdbarch startup_gdbarch =\n"
1255printf "{\n"
76860b5f 1256printf " 1, /* Always initialized. */\n"
aebd7893 1257printf " NULL, /* The obstack. */\n"
3d9a5942 1258printf " /* basic architecture information */\n"
4b9b3959 1259function_list | while do_read
104c1213 1260do
2ada493a
AC
1261 if class_is_info_p
1262 then
ec5cbaec 1263 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1264 fi
104c1213
JM
1265done
1266cat <<EOF
4b9b3959
AC
1267 /* target specific vector and its dump routine */
1268 NULL, NULL,
104c1213
JM
1269 /*per-architecture data-pointers and swap regions */
1270 0, NULL, NULL,
1271 /* Multi-arch values */
1272EOF
34620563 1273function_list | while do_read
104c1213 1274do
2ada493a
AC
1275 if class_is_function_p || class_is_variable_p
1276 then
ec5cbaec 1277 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1278 fi
104c1213
JM
1279done
1280cat <<EOF
c0e8c252 1281 /* startup_gdbarch() */
104c1213 1282};
4b9b3959 1283
c0e8c252 1284struct gdbarch *current_gdbarch = &startup_gdbarch;
1cf3db46 1285struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1286EOF
1287
1288# Create a new gdbarch struct
104c1213 1289cat <<EOF
7de2341d 1290
66b43ecb 1291/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1292 \`\`struct gdbarch_info''. */
1293EOF
3d9a5942 1294printf "\n"
104c1213
JM
1295cat <<EOF
1296struct gdbarch *
1297gdbarch_alloc (const struct gdbarch_info *info,
1298 struct gdbarch_tdep *tdep)
1299{
be7811ad 1300 struct gdbarch *gdbarch;
aebd7893
AC
1301
1302 /* Create an obstack for allocating all the per-architecture memory,
1303 then use that to allocate the architecture vector. */
1304 struct obstack *obstack = XMALLOC (struct obstack);
1305 obstack_init (obstack);
be7811ad
MD
1306 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1307 memset (gdbarch, 0, sizeof (*gdbarch));
1308 gdbarch->obstack = obstack;
85de9627 1309
be7811ad 1310 alloc_gdbarch_data (gdbarch);
85de9627 1311
be7811ad 1312 gdbarch->tdep = tdep;
104c1213 1313EOF
3d9a5942 1314printf "\n"
34620563 1315function_list | while do_read
104c1213 1316do
2ada493a
AC
1317 if class_is_info_p
1318 then
be7811ad 1319 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1320 fi
104c1213 1321done
3d9a5942
AC
1322printf "\n"
1323printf " /* Force the explicit initialization of these. */\n"
34620563 1324function_list | while do_read
104c1213 1325do
2ada493a
AC
1326 if class_is_function_p || class_is_variable_p
1327 then
72e74a21 1328 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1329 then
be7811ad 1330 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1331 fi
2ada493a 1332 fi
104c1213
JM
1333done
1334cat <<EOF
1335 /* gdbarch_alloc() */
1336
be7811ad 1337 return gdbarch;
104c1213
JM
1338}
1339EOF
1340
058f20d5 1341# Free a gdbarch struct.
3d9a5942
AC
1342printf "\n"
1343printf "\n"
058f20d5 1344cat <<EOF
aebd7893
AC
1345/* Allocate extra space using the per-architecture obstack. */
1346
1347void *
1348gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1349{
1350 void *data = obstack_alloc (arch->obstack, size);
1351 memset (data, 0, size);
1352 return data;
1353}
1354
1355
058f20d5
JB
1356/* Free a gdbarch struct. This should never happen in normal
1357 operation --- once you've created a gdbarch, you keep it around.
1358 However, if an architecture's init function encounters an error
1359 building the structure, it may need to clean up a partially
1360 constructed gdbarch. */
4b9b3959 1361
058f20d5
JB
1362void
1363gdbarch_free (struct gdbarch *arch)
1364{
aebd7893 1365 struct obstack *obstack;
95160752 1366 gdb_assert (arch != NULL);
aebd7893
AC
1367 gdb_assert (!arch->initialized_p);
1368 obstack = arch->obstack;
1369 obstack_free (obstack, 0); /* Includes the ARCH. */
1370 xfree (obstack);
058f20d5
JB
1371}
1372EOF
1373
104c1213 1374# verify a new architecture
104c1213 1375cat <<EOF
db446970
AC
1376
1377
1378/* Ensure that all values in a GDBARCH are reasonable. */
1379
104c1213 1380static void
be7811ad 1381verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1382{
f16a1923
AC
1383 struct ui_file *log;
1384 struct cleanup *cleanups;
1385 long dummy;
1386 char *buf;
f16a1923
AC
1387 log = mem_fileopen ();
1388 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1389 /* fundamental */
be7811ad 1390 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1391 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1392 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1393 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1394 /* Check those that need to be defined for the given multi-arch level. */
1395EOF
34620563 1396function_list | while do_read
104c1213 1397do
2ada493a
AC
1398 if class_is_function_p || class_is_variable_p
1399 then
72e74a21 1400 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1401 then
3d9a5942 1402 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1403 elif class_is_predicate_p
1404 then
3d9a5942 1405 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1406 # FIXME: See do_read for potential simplification
72e74a21 1407 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1408 then
3d9a5942 1409 printf " if (${invalid_p})\n"
be7811ad 1410 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1411 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1412 then
be7811ad
MD
1413 printf " if (gdbarch->${function} == ${predefault})\n"
1414 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1415 elif [ -n "${postdefault}" ]
f0d4cc9e 1416 then
be7811ad
MD
1417 printf " if (gdbarch->${function} == 0)\n"
1418 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1419 elif [ -n "${invalid_p}" ]
104c1213 1420 then
4d60522e 1421 printf " if (${invalid_p})\n"
f16a1923 1422 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1423 elif [ -n "${predefault}" ]
104c1213 1424 then
be7811ad 1425 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1426 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1427 fi
2ada493a 1428 fi
104c1213
JM
1429done
1430cat <<EOF
f16a1923
AC
1431 buf = ui_file_xstrdup (log, &dummy);
1432 make_cleanup (xfree, buf);
1433 if (strlen (buf) > 0)
1434 internal_error (__FILE__, __LINE__,
85c07804 1435 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1436 buf);
1437 do_cleanups (cleanups);
104c1213
JM
1438}
1439EOF
1440
1441# dump the structure
3d9a5942
AC
1442printf "\n"
1443printf "\n"
104c1213 1444cat <<EOF
4b9b3959
AC
1445/* Print out the details of the current architecture. */
1446
104c1213 1447void
be7811ad 1448gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1449{
b78960be 1450 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1451#if defined (GDB_NM_FILE)
1452 gdb_nm_file = GDB_NM_FILE;
1453#endif
1454 fprintf_unfiltered (file,
1455 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1456 gdb_nm_file);
104c1213 1457EOF
97030eea 1458function_list | sort -t: -k 3 | while do_read
104c1213 1459do
1e9f55d0
AC
1460 # First the predicate
1461 if class_is_predicate_p
1462 then
7996bcec 1463 printf " fprintf_unfiltered (file,\n"
48f7351b 1464 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1465 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1466 fi
48f7351b 1467 # Print the corresponding value.
283354d8 1468 if class_is_function_p
4b9b3959 1469 then
7996bcec 1470 printf " fprintf_unfiltered (file,\n"
48f7351b 1471 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
be7811ad 1472 printf " (long) gdbarch->${function});\n"
4b9b3959 1473 else
48f7351b 1474 # It is a variable
2f9b146e
AC
1475 case "${print}:${returntype}" in
1476 :CORE_ADDR )
0b1553bc
UW
1477 fmt="%s"
1478 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1479 ;;
2f9b146e 1480 :* )
48f7351b 1481 fmt="%s"
623d3eb1 1482 print="plongest (gdbarch->${function})"
48f7351b
AC
1483 ;;
1484 * )
2f9b146e 1485 fmt="%s"
48f7351b
AC
1486 ;;
1487 esac
3d9a5942 1488 printf " fprintf_unfiltered (file,\n"
48f7351b 1489 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1490 printf " ${print});\n"
2ada493a 1491 fi
104c1213 1492done
381323f4 1493cat <<EOF
be7811ad
MD
1494 if (gdbarch->dump_tdep != NULL)
1495 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1496}
1497EOF
104c1213
JM
1498
1499
1500# GET/SET
3d9a5942 1501printf "\n"
104c1213
JM
1502cat <<EOF
1503struct gdbarch_tdep *
1504gdbarch_tdep (struct gdbarch *gdbarch)
1505{
1506 if (gdbarch_debug >= 2)
3d9a5942 1507 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1508 return gdbarch->tdep;
1509}
1510EOF
3d9a5942 1511printf "\n"
34620563 1512function_list | while do_read
104c1213 1513do
2ada493a
AC
1514 if class_is_predicate_p
1515 then
3d9a5942
AC
1516 printf "\n"
1517 printf "int\n"
1518 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1519 printf "{\n"
8de9bdc4 1520 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1521 printf " return ${predicate};\n"
3d9a5942 1522 printf "}\n"
2ada493a
AC
1523 fi
1524 if class_is_function_p
1525 then
3d9a5942
AC
1526 printf "\n"
1527 printf "${returntype}\n"
72e74a21 1528 if [ "x${formal}" = "xvoid" ]
104c1213 1529 then
3d9a5942 1530 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1531 else
3d9a5942 1532 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1533 fi
3d9a5942 1534 printf "{\n"
8de9bdc4 1535 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1536 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1537 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1538 then
1539 # Allow a call to a function with a predicate.
956ac328 1540 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1541 fi
3d9a5942
AC
1542 printf " if (gdbarch_debug >= 2)\n"
1543 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1544 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1545 then
1546 if class_is_multiarch_p
1547 then
1548 params="gdbarch"
1549 else
1550 params=""
1551 fi
1552 else
1553 if class_is_multiarch_p
1554 then
1555 params="gdbarch, ${actual}"
1556 else
1557 params="${actual}"
1558 fi
1559 fi
72e74a21 1560 if [ "x${returntype}" = "xvoid" ]
104c1213 1561 then
4a5c6a1d 1562 printf " gdbarch->${function} (${params});\n"
104c1213 1563 else
4a5c6a1d 1564 printf " return gdbarch->${function} (${params});\n"
104c1213 1565 fi
3d9a5942
AC
1566 printf "}\n"
1567 printf "\n"
1568 printf "void\n"
1569 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1570 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1571 printf "{\n"
1572 printf " gdbarch->${function} = ${function};\n"
1573 printf "}\n"
2ada493a
AC
1574 elif class_is_variable_p
1575 then
3d9a5942
AC
1576 printf "\n"
1577 printf "${returntype}\n"
1578 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1579 printf "{\n"
8de9bdc4 1580 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1581 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1582 then
3d9a5942 1583 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1584 elif [ -n "${invalid_p}" ]
104c1213 1585 then
956ac328
AC
1586 printf " /* Check variable is valid. */\n"
1587 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1588 elif [ -n "${predefault}" ]
104c1213 1589 then
956ac328
AC
1590 printf " /* Check variable changed from pre-default. */\n"
1591 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1592 fi
3d9a5942
AC
1593 printf " if (gdbarch_debug >= 2)\n"
1594 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1595 printf " return gdbarch->${function};\n"
1596 printf "}\n"
1597 printf "\n"
1598 printf "void\n"
1599 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1600 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1601 printf "{\n"
1602 printf " gdbarch->${function} = ${function};\n"
1603 printf "}\n"
2ada493a
AC
1604 elif class_is_info_p
1605 then
3d9a5942
AC
1606 printf "\n"
1607 printf "${returntype}\n"
1608 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1609 printf "{\n"
8de9bdc4 1610 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1611 printf " if (gdbarch_debug >= 2)\n"
1612 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1613 printf " return gdbarch->${function};\n"
1614 printf "}\n"
2ada493a 1615 fi
104c1213
JM
1616done
1617
1618# All the trailing guff
1619cat <<EOF
1620
1621
f44c642f 1622/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1623 modules. */
1624
1625struct gdbarch_data
1626{
95160752 1627 unsigned index;
76860b5f 1628 int init_p;
030f20e1
AC
1629 gdbarch_data_pre_init_ftype *pre_init;
1630 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1631};
1632
1633struct gdbarch_data_registration
1634{
104c1213
JM
1635 struct gdbarch_data *data;
1636 struct gdbarch_data_registration *next;
1637};
1638
f44c642f 1639struct gdbarch_data_registry
104c1213 1640{
95160752 1641 unsigned nr;
104c1213
JM
1642 struct gdbarch_data_registration *registrations;
1643};
1644
f44c642f 1645struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1646{
1647 0, NULL,
1648};
1649
030f20e1
AC
1650static struct gdbarch_data *
1651gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1652 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1653{
1654 struct gdbarch_data_registration **curr;
76860b5f 1655 /* Append the new registraration. */
f44c642f 1656 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1657 (*curr) != NULL;
1658 curr = &(*curr)->next);
1659 (*curr) = XMALLOC (struct gdbarch_data_registration);
1660 (*curr)->next = NULL;
104c1213 1661 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1662 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1663 (*curr)->data->pre_init = pre_init;
1664 (*curr)->data->post_init = post_init;
76860b5f 1665 (*curr)->data->init_p = 1;
104c1213
JM
1666 return (*curr)->data;
1667}
1668
030f20e1
AC
1669struct gdbarch_data *
1670gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1671{
1672 return gdbarch_data_register (pre_init, NULL);
1673}
1674
1675struct gdbarch_data *
1676gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1677{
1678 return gdbarch_data_register (NULL, post_init);
1679}
104c1213 1680
b3cc3077 1681/* Create/delete the gdbarch data vector. */
95160752
AC
1682
1683static void
b3cc3077 1684alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1685{
b3cc3077
JB
1686 gdb_assert (gdbarch->data == NULL);
1687 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1688 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1689}
3c875b6f 1690
76860b5f 1691/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1692 data-pointer. */
1693
95160752 1694void
030f20e1
AC
1695deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1696 struct gdbarch_data *data,
1697 void *pointer)
95160752
AC
1698{
1699 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1700 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1701 gdb_assert (data->pre_init == NULL);
95160752
AC
1702 gdbarch->data[data->index] = pointer;
1703}
1704
104c1213
JM
1705/* Return the current value of the specified per-architecture
1706 data-pointer. */
1707
1708void *
451fbdda 1709gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1710{
451fbdda 1711 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1712 if (gdbarch->data[data->index] == NULL)
76860b5f 1713 {
030f20e1
AC
1714 /* The data-pointer isn't initialized, call init() to get a
1715 value. */
1716 if (data->pre_init != NULL)
1717 /* Mid architecture creation: pass just the obstack, and not
1718 the entire architecture, as that way it isn't possible for
1719 pre-init code to refer to undefined architecture
1720 fields. */
1721 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1722 else if (gdbarch->initialized_p
1723 && data->post_init != NULL)
1724 /* Post architecture creation: pass the entire architecture
1725 (as all fields are valid), but be careful to also detect
1726 recursive references. */
1727 {
1728 gdb_assert (data->init_p);
1729 data->init_p = 0;
1730 gdbarch->data[data->index] = data->post_init (gdbarch);
1731 data->init_p = 1;
1732 }
1733 else
1734 /* The architecture initialization hasn't completed - punt -
1735 hope that the caller knows what they are doing. Once
1736 deprecated_set_gdbarch_data has been initialized, this can be
1737 changed to an internal error. */
1738 return NULL;
76860b5f
AC
1739 gdb_assert (gdbarch->data[data->index] != NULL);
1740 }
451fbdda 1741 return gdbarch->data[data->index];
104c1213
JM
1742}
1743
1744
f44c642f 1745/* Keep a registry of the architectures known by GDB. */
104c1213 1746
4b9b3959 1747struct gdbarch_registration
104c1213
JM
1748{
1749 enum bfd_architecture bfd_architecture;
1750 gdbarch_init_ftype *init;
4b9b3959 1751 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1752 struct gdbarch_list *arches;
4b9b3959 1753 struct gdbarch_registration *next;
104c1213
JM
1754};
1755
f44c642f 1756static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1757
b4a20239
AC
1758static void
1759append_name (const char ***buf, int *nr, const char *name)
1760{
1761 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1762 (*buf)[*nr] = name;
1763 *nr += 1;
1764}
1765
1766const char **
1767gdbarch_printable_names (void)
1768{
7996bcec
AC
1769 /* Accumulate a list of names based on the registed list of
1770 architectures. */
1771 enum bfd_architecture a;
1772 int nr_arches = 0;
1773 const char **arches = NULL;
1774 struct gdbarch_registration *rego;
1775 for (rego = gdbarch_registry;
1776 rego != NULL;
1777 rego = rego->next)
b4a20239 1778 {
7996bcec
AC
1779 const struct bfd_arch_info *ap;
1780 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1781 if (ap == NULL)
1782 internal_error (__FILE__, __LINE__,
85c07804 1783 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1784 do
1785 {
1786 append_name (&arches, &nr_arches, ap->printable_name);
1787 ap = ap->next;
1788 }
1789 while (ap != NULL);
b4a20239 1790 }
7996bcec
AC
1791 append_name (&arches, &nr_arches, NULL);
1792 return arches;
b4a20239
AC
1793}
1794
1795
104c1213 1796void
4b9b3959
AC
1797gdbarch_register (enum bfd_architecture bfd_architecture,
1798 gdbarch_init_ftype *init,
1799 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1800{
4b9b3959 1801 struct gdbarch_registration **curr;
104c1213 1802 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1803 /* Check that BFD recognizes this architecture */
104c1213
JM
1804 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1805 if (bfd_arch_info == NULL)
1806 {
8e65ff28 1807 internal_error (__FILE__, __LINE__,
85c07804 1808 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1809 bfd_architecture);
104c1213
JM
1810 }
1811 /* Check that we haven't seen this architecture before */
f44c642f 1812 for (curr = &gdbarch_registry;
104c1213
JM
1813 (*curr) != NULL;
1814 curr = &(*curr)->next)
1815 {
1816 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1817 internal_error (__FILE__, __LINE__,
85c07804 1818 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1819 bfd_arch_info->printable_name);
104c1213
JM
1820 }
1821 /* log it */
1822 if (gdbarch_debug)
1823 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1824 bfd_arch_info->printable_name,
1825 (long) init);
1826 /* Append it */
4b9b3959 1827 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1828 (*curr)->bfd_architecture = bfd_architecture;
1829 (*curr)->init = init;
4b9b3959 1830 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1831 (*curr)->arches = NULL;
1832 (*curr)->next = NULL;
4b9b3959
AC
1833}
1834
1835void
1836register_gdbarch_init (enum bfd_architecture bfd_architecture,
1837 gdbarch_init_ftype *init)
1838{
1839 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1840}
104c1213
JM
1841
1842
424163ea 1843/* Look for an architecture using gdbarch_info. */
104c1213
JM
1844
1845struct gdbarch_list *
1846gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1847 const struct gdbarch_info *info)
1848{
1849 for (; arches != NULL; arches = arches->next)
1850 {
1851 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1852 continue;
1853 if (info->byte_order != arches->gdbarch->byte_order)
1854 continue;
4be87837
DJ
1855 if (info->osabi != arches->gdbarch->osabi)
1856 continue;
424163ea
DJ
1857 if (info->target_desc != arches->gdbarch->target_desc)
1858 continue;
104c1213
JM
1859 return arches;
1860 }
1861 return NULL;
1862}
1863
1864
ebdba546
AC
1865/* Find an architecture that matches the specified INFO. Create a new
1866 architecture if needed. Return that new architecture. Assumes
1867 that there is no current architecture. */
104c1213 1868
ebdba546 1869static struct gdbarch *
7a107747 1870find_arch_by_info (struct gdbarch_info info)
104c1213
JM
1871{
1872 struct gdbarch *new_gdbarch;
4b9b3959 1873 struct gdbarch_registration *rego;
104c1213 1874
ebdba546
AC
1875 /* The existing architecture has been swapped out - all this code
1876 works from a clean slate. */
1877 gdb_assert (current_gdbarch == NULL);
1878
b732d07d 1879 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1880 sources: "set ..."; INFOabfd supplied; and the global
1881 defaults. */
1882 gdbarch_info_fill (&info);
4be87837 1883
b732d07d
AC
1884 /* Must have found some sort of architecture. */
1885 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1886
1887 if (gdbarch_debug)
1888 {
1889 fprintf_unfiltered (gdb_stdlog,
ebdba546 1890 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1891 (info.bfd_arch_info != NULL
1892 ? info.bfd_arch_info->printable_name
1893 : "(null)"));
1894 fprintf_unfiltered (gdb_stdlog,
ebdba546 1895 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 1896 info.byte_order,
d7449b42 1897 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1898 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1899 : "default"));
4be87837 1900 fprintf_unfiltered (gdb_stdlog,
ebdba546 1901 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 1902 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1903 fprintf_unfiltered (gdb_stdlog,
ebdba546 1904 "find_arch_by_info: info.abfd 0x%lx\n",
104c1213
JM
1905 (long) info.abfd);
1906 fprintf_unfiltered (gdb_stdlog,
ebdba546 1907 "find_arch_by_info: info.tdep_info 0x%lx\n",
104c1213
JM
1908 (long) info.tdep_info);
1909 }
1910
ebdba546 1911 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1912 for (rego = gdbarch_registry;
1913 rego != NULL;
1914 rego = rego->next)
1915 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1916 break;
1917 if (rego == NULL)
1918 {
1919 if (gdbarch_debug)
ebdba546
AC
1920 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1921 "No matching architecture\n");
b732d07d
AC
1922 return 0;
1923 }
1924
ebdba546 1925 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1926 new_gdbarch = rego->init (info, rego->arches);
1927
ebdba546
AC
1928 /* Did the tdep code like it? No. Reject the change and revert to
1929 the old architecture. */
104c1213
JM
1930 if (new_gdbarch == NULL)
1931 {
1932 if (gdbarch_debug)
ebdba546
AC
1933 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1934 "Target rejected architecture\n");
1935 return NULL;
104c1213
JM
1936 }
1937
ebdba546
AC
1938 /* Is this a pre-existing architecture (as determined by already
1939 being initialized)? Move it to the front of the architecture
1940 list (keeping the list sorted Most Recently Used). */
1941 if (new_gdbarch->initialized_p)
104c1213 1942 {
ebdba546
AC
1943 struct gdbarch_list **list;
1944 struct gdbarch_list *this;
104c1213 1945 if (gdbarch_debug)
ebdba546
AC
1946 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1947 "Previous architecture 0x%08lx (%s) selected\n",
104c1213
JM
1948 (long) new_gdbarch,
1949 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
1950 /* Find the existing arch in the list. */
1951 for (list = &rego->arches;
1952 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1953 list = &(*list)->next);
1954 /* It had better be in the list of architectures. */
1955 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1956 /* Unlink THIS. */
1957 this = (*list);
1958 (*list) = this->next;
1959 /* Insert THIS at the front. */
1960 this->next = rego->arches;
1961 rego->arches = this;
1962 /* Return it. */
1963 return new_gdbarch;
104c1213
JM
1964 }
1965
ebdba546
AC
1966 /* It's a new architecture. */
1967 if (gdbarch_debug)
1968 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1969 "New architecture 0x%08lx (%s) selected\n",
1970 (long) new_gdbarch,
1971 new_gdbarch->bfd_arch_info->printable_name);
1972
1973 /* Insert the new architecture into the front of the architecture
1974 list (keep the list sorted Most Recently Used). */
0f79675b
AC
1975 {
1976 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
1977 this->next = rego->arches;
1978 this->gdbarch = new_gdbarch;
1979 rego->arches = this;
1980 }
104c1213 1981
4b9b3959
AC
1982 /* Check that the newly installed architecture is valid. Plug in
1983 any post init values. */
1984 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 1985 verify_gdbarch (new_gdbarch);
ebdba546 1986 new_gdbarch->initialized_p = 1;
104c1213 1987
4b9b3959 1988 if (gdbarch_debug)
ebdba546
AC
1989 gdbarch_dump (new_gdbarch, gdb_stdlog);
1990
1991 return new_gdbarch;
1992}
1993
1994struct gdbarch *
1995gdbarch_find_by_info (struct gdbarch_info info)
1996{
e487cc15
UW
1997 struct gdbarch *new_gdbarch;
1998
ebdba546
AC
1999 /* Save the previously selected architecture, setting the global to
2000 NULL. This stops things like gdbarch->init() trying to use the
2001 previous architecture's configuration. The previous architecture
2002 may not even be of the same architecture family. The most recent
2003 architecture of the same family is found at the head of the
2004 rego->arches list. */
e487cc15
UW
2005 struct gdbarch *old_gdbarch = current_gdbarch;
2006 current_gdbarch = NULL;
ebdba546
AC
2007
2008 /* Find the specified architecture. */
e487cc15 2009 new_gdbarch = find_arch_by_info (info);
ebdba546
AC
2010
2011 /* Restore the existing architecture. */
2012 gdb_assert (current_gdbarch == NULL);
e487cc15 2013 current_gdbarch = old_gdbarch;
4b9b3959 2014
ebdba546 2015 return new_gdbarch;
104c1213
JM
2016}
2017
e487cc15 2018/* Make the specified architecture current. */
ebdba546
AC
2019
2020void
2021deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2022{
2023 gdb_assert (new_gdbarch != NULL);
2024 gdb_assert (current_gdbarch != NULL);
2025 gdb_assert (new_gdbarch->initialized_p);
e487cc15 2026 current_gdbarch = new_gdbarch;
1cf3db46 2027 target_gdbarch = new_gdbarch;
383f836e 2028 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2029 registers_changed ();
ebdba546 2030}
104c1213 2031
104c1213 2032extern void _initialize_gdbarch (void);
b4a20239 2033
104c1213 2034void
34620563 2035_initialize_gdbarch (void)
104c1213 2036{
59233f88
AC
2037 struct cmd_list_element *c;
2038
85c07804
AC
2039 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2040Set architecture debugging."), _("\\
2041Show architecture debugging."), _("\\
2042When non-zero, architecture debugging is enabled."),
2043 NULL,
920d2a44 2044 show_gdbarch_debug,
85c07804 2045 &setdebuglist, &showdebuglist);
104c1213
JM
2046}
2047EOF
2048
2049# close things off
2050exec 1>&2
2051#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2052compare_new gdbarch.c
This page took 0.796103 seconds and 4 git commands to generate.