gdbarch: Use an anonymous union for target data in `gdbarch_info'
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
61baf725 5# Copyright (C) 1998-2017 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
ea480a30 352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
32c9a795 353
66b43ecb 354# Number of bits in a short or unsigned short for the target machine.
ea480a30 355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 356# Number of bits in an int or unsigned int for the target machine.
ea480a30 357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 358# Number of bits in a long or unsigned long for the target machine.
ea480a30 359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
360# Number of bits in a long long or unsigned long long for the target
361# machine.
ea480a30 362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
205c306f
DM
363# Alignment of a long long or unsigned long long for the target
364# machine.
ea480a30 365v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 366
f9e9243a
UW
367# The ABI default bit-size and format for "half", "float", "double", and
368# "long double". These bit/format pairs should eventually be combined
369# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
370# Each format describes both the big and little endian layouts (if
371# useful).
456fcf94 372
ea480a30
SM
373v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
374v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
375v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
376v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
377v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
378v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
379v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
380v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 381
53375380
PA
382# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
383# starting with C++11.
ea480a30 384v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 385# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 386v;int;wchar_signed;;;1;-1;1
53375380 387
9b790ce7
UW
388# Returns the floating-point format to be used for values of length LENGTH.
389# NAME, if non-NULL, is the type name, which may be used to distinguish
390# different target formats of the same length.
ea480a30 391m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 392
52204a0b
DT
393# For most targets, a pointer on the target and its representation as an
394# address in GDB have the same size and "look the same". For such a
17a912b6 395# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
396# / addr_bit will be set from it.
397#
17a912b6 398# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
399# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
400# gdbarch_address_to_pointer as well.
52204a0b
DT
401#
402# ptr_bit is the size of a pointer on the target
ea480a30 403v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 404# addr_bit is the size of a target address as represented in gdb
ea480a30 405v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 406#
8da614df
CV
407# dwarf2_addr_size is the target address size as used in the Dwarf debug
408# info. For .debug_frame FDEs, this is supposed to be the target address
409# size from the associated CU header, and which is equivalent to the
410# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
411# Unfortunately there is no good way to determine this value. Therefore
412# dwarf2_addr_size simply defaults to the target pointer size.
413#
414# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
415# defined using the target's pointer size so far.
416#
417# Note that dwarf2_addr_size only needs to be redefined by a target if the
418# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
419# and if Dwarf versions < 4 need to be supported.
ea480a30 420v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 421#
4e409299 422# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 423v;int;char_signed;;;1;-1;1
4e409299 424#
ea480a30
SM
425F;CORE_ADDR;read_pc;struct regcache *regcache;regcache
426F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
427# Function for getting target's idea of a frame pointer. FIXME: GDB's
428# whole scheme for dealing with "frames" and "frame pointers" needs a
429# serious shakedown.
ea480a30 430m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 431#
ea480a30 432M;enum register_status;pseudo_register_read;struct regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
433# Read a register into a new struct value. If the register is wholly
434# or partly unavailable, this should call mark_value_bytes_unavailable
435# as appropriate. If this is defined, then pseudo_register_read will
436# never be called.
ea480a30
SM
437M;struct value *;pseudo_register_read_value;struct regcache *regcache, int cookednum;regcache, cookednum
438M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 439#
ea480a30 440v;int;num_regs;;;0;-1
0aba1244
EZ
441# This macro gives the number of pseudo-registers that live in the
442# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
443# These pseudo-registers may be aliases for other registers,
444# combinations of other registers, or they may be computed by GDB.
ea480a30 445v;int;num_pseudo_regs;;;0;0;;0
c2169756 446
175ff332
HZ
447# Assemble agent expression bytecode to collect pseudo-register REG.
448# Return -1 if something goes wrong, 0 otherwise.
ea480a30 449M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
450
451# Assemble agent expression bytecode to push the value of pseudo-register
452# REG on the interpreter stack.
453# Return -1 if something goes wrong, 0 otherwise.
ea480a30 454M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 455
012b3a21
WT
456# Some targets/architectures can do extra processing/display of
457# segmentation faults. E.g., Intel MPX boundary faults.
458# Call the architecture dependent function to handle the fault.
459# UIOUT is the output stream where the handler will place information.
ea480a30 460M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 461
c2169756
AC
462# GDB's standard (or well known) register numbers. These can map onto
463# a real register or a pseudo (computed) register or not be defined at
1200cd6e 464# all (-1).
3e8c568d 465# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
466v;int;sp_regnum;;;-1;-1;;0
467v;int;pc_regnum;;;-1;-1;;0
468v;int;ps_regnum;;;-1;-1;;0
469v;int;fp0_regnum;;;0;-1;;0
88c72b7d 470# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 471m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 472# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 473m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 474# Convert from an sdb register number to an internal gdb register number.
ea480a30 475m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 476# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 477# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
478m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
479m;const char *;register_name;int regnr;regnr;;0
9c04cab7 480
7b9ee6a8
DJ
481# Return the type of a register specified by the architecture. Only
482# the register cache should call this function directly; others should
483# use "register_type".
ea480a30 484M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 485
ea480a30 486M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
669fac23 487# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 488# deprecated_fp_regnum.
ea480a30 489v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 490
ea480a30
SM
491M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
492v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
493M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 494
7eb89530 495# Return true if the code of FRAME is writable.
ea480a30 496m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 497
ea480a30
SM
498m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
499m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
500M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
501# MAP a GDB RAW register number onto a simulator register number. See
502# also include/...-sim.h.
ea480a30
SM
503m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
504m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
505m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
506
507# Determine the address where a longjmp will land and save this address
508# in PC. Return nonzero on success.
509#
510# FRAME corresponds to the longjmp frame.
ea480a30 511F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 512
104c1213 513#
ea480a30 514v;int;believe_pcc_promotion;;;;;;;
104c1213 515#
ea480a30
SM
516m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
517f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
518f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 519# Construct a value representing the contents of register REGNUM in
2ed3c037 520# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
521# allocate and return a struct value with all value attributes
522# (but not the value contents) filled in.
ea480a30 523m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 524#
ea480a30
SM
525m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
526m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
527M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 528
6a3a010b
MR
529# Return the return-value convention that will be used by FUNCTION
530# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
531# case the return convention is computed based only on VALTYPE.
532#
533# If READBUF is not NULL, extract the return value and save it in this buffer.
534#
535# If WRITEBUF is not NULL, it contains a return value which will be
536# stored into the appropriate register. This can be used when we want
537# to force the value returned by a function (see the "return" command
538# for instance).
ea480a30 539M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 540
18648a37
YQ
541# Return true if the return value of function is stored in the first hidden
542# parameter. In theory, this feature should be language-dependent, specified
543# by language and its ABI, such as C++. Unfortunately, compiler may
544# implement it to a target-dependent feature. So that we need such hook here
545# to be aware of this in GDB.
ea480a30 546m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 547
ea480a30
SM
548m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
549M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
550# On some platforms, a single function may provide multiple entry points,
551# e.g. one that is used for function-pointer calls and a different one
552# that is used for direct function calls.
553# In order to ensure that breakpoints set on the function will trigger
554# no matter via which entry point the function is entered, a platform
555# may provide the skip_entrypoint callback. It is called with IP set
556# to the main entry point of a function (as determined by the symbol table),
557# and should return the address of the innermost entry point, where the
558# actual breakpoint needs to be set. Note that skip_entrypoint is used
559# by GDB common code even when debugging optimized code, where skip_prologue
560# is not used.
ea480a30 561M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 562
ea480a30
SM
563f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
564m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
565
566# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 567m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
568
569# Return the software breakpoint from KIND. KIND can have target
570# specific meaning like the Z0 kind parameter.
571# SIZE is set to the software breakpoint's length in memory.
ea480a30 572m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 573
833b7ab5
YQ
574# Return the breakpoint kind for this target based on the current
575# processor state (e.g. the current instruction mode on ARM) and the
576# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 577m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 578
ea480a30
SM
579M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
580m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
581m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
582v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
583
584# A function can be addressed by either it's "pointer" (possibly a
585# descriptor address) or "entry point" (first executable instruction).
586# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 587# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
588# a simplified subset of that functionality - the function's address
589# corresponds to the "function pointer" and the function's start
590# corresponds to the "function entry point" - and hence is redundant.
591
ea480a30 592v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 593
123dc839
DJ
594# Return the remote protocol register number associated with this
595# register. Normally the identity mapping.
ea480a30 596m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 597
b2756930 598# Fetch the target specific address used to represent a load module.
ea480a30 599F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
104c1213 600#
ea480a30
SM
601v;CORE_ADDR;frame_args_skip;;;0;;;0
602M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
603M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
42efa47a
AC
604# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
605# frame-base. Enable frame-base before frame-unwind.
ea480a30 606F;int;frame_num_args;struct frame_info *frame;frame
104c1213 607#
ea480a30
SM
608M;CORE_ADDR;frame_align;CORE_ADDR address;address
609m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
610v;int;frame_red_zone_size
f0d4cc9e 611#
ea480a30 612m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
613# On some machines there are bits in addresses which are not really
614# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 615# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
616# we get a "real" address such as one would find in a symbol table.
617# This is used only for addresses of instructions, and even then I'm
618# not sure it's used in all contexts. It exists to deal with there
619# being a few stray bits in the PC which would mislead us, not as some
620# sort of generic thing to handle alignment or segmentation (it's
621# possible it should be in TARGET_READ_PC instead).
ea480a30 622m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b
UW
623
624# FIXME/cagney/2001-01-18: This should be split in two. A target method that
625# indicates if the target needs software single step. An ISA method to
626# implement it.
627#
e6590a1b
UW
628# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
629# target can single step. If not, then implement single step using breakpoints.
64c4637f 630#
93f9a11f
YQ
631# Return a vector of addresses on which the software single step
632# breakpoints should be inserted. NULL means software single step is
633# not used.
634# Multiple breakpoints may be inserted for some instructions such as
635# conditional branch. However, each implementation must always evaluate
636# the condition and only put the breakpoint at the branch destination if
637# the condition is true, so that we ensure forward progress when stepping
638# past a conditional branch to self.
a0ff9e1a 639F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 640
3352ef37
AC
641# Return non-zero if the processor is executing a delay slot and a
642# further single-step is needed before the instruction finishes.
ea480a30 643M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 644# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 645# disassembler. Perhaps objdump can handle it?
39503f82 646f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 647f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
648
649
cfd8ab24 650# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
651# evaluates non-zero, this is the address where the debugger will place
652# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 653m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 654# Some systems also have trampoline code for returning from shared libs.
ea480a30 655m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 656
c12260ac
CV
657# A target might have problems with watchpoints as soon as the stack
658# frame of the current function has been destroyed. This mostly happens
c9cf6e20 659# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
660# is defined to return a non-zero value if either the given addr is one
661# instruction after the stack destroying instruction up to the trailing
662# return instruction or if we can figure out that the stack frame has
663# already been invalidated regardless of the value of addr. Targets
664# which don't suffer from that problem could just let this functionality
665# untouched.
ea480a30 666m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
667# Process an ELF symbol in the minimal symbol table in a backend-specific
668# way. Normally this hook is supposed to do nothing, however if required,
669# then this hook can be used to apply tranformations to symbols that are
670# considered special in some way. For example the MIPS backend uses it
671# to interpret \`st_other' information to mark compressed code symbols so
672# that they can be treated in the appropriate manner in the processing of
673# the main symbol table and DWARF-2 records.
ea480a30
SM
674F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
675f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
676# Process a symbol in the main symbol table in a backend-specific way.
677# Normally this hook is supposed to do nothing, however if required,
678# then this hook can be used to apply tranformations to symbols that
679# are considered special in some way. This is currently used by the
680# MIPS backend to make sure compressed code symbols have the ISA bit
681# set. This in turn is needed for symbol values seen in GDB to match
682# the values used at the runtime by the program itself, for function
683# and label references.
ea480a30 684f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
685# Adjust the address retrieved from a DWARF-2 record other than a line
686# entry in a backend-specific way. Normally this hook is supposed to
687# return the address passed unchanged, however if that is incorrect for
688# any reason, then this hook can be used to fix the address up in the
689# required manner. This is currently used by the MIPS backend to make
690# sure addresses in FDE, range records, etc. referring to compressed
691# code have the ISA bit set, matching line information and the symbol
692# table.
ea480a30 693f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
694# Adjust the address updated by a line entry in a backend-specific way.
695# Normally this hook is supposed to return the address passed unchanged,
696# however in the case of inconsistencies in these records, this hook can
697# be used to fix them up in the required manner. This is currently used
698# by the MIPS backend to make sure all line addresses in compressed code
699# are presented with the ISA bit set, which is not always the case. This
700# in turn ensures breakpoint addresses are correctly matched against the
701# stop PC.
ea480a30
SM
702f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
703v;int;cannot_step_breakpoint;;;0;0;;0
704v;int;have_nonsteppable_watchpoint;;;0;0;;0
705F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
706M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
707# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
708# FS are passed from the generic execute_cfa_program function.
ea480a30 709m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
710
711# Return the appropriate type_flags for the supplied address class.
712# This function should return 1 if the address class was recognized and
713# type_flags was set, zero otherwise.
ea480a30 714M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 715# Is a register in a group
ea480a30 716m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 717# Fetch the pointer to the ith function argument.
ea480a30 718F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 719
5aa82d05
AA
720# Iterate over all supported register notes in a core file. For each
721# supported register note section, the iterator must call CB and pass
722# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
723# the supported register note sections based on the current register
724# values. Otherwise it should enumerate all supported register note
725# sections.
ea480a30 726M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 727
6432734d 728# Create core file notes
ea480a30 729M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 730
b3ac9c77
SDJ
731# The elfcore writer hook to use to write Linux prpsinfo notes to core
732# files. Most Linux architectures use the same prpsinfo32 or
733# prpsinfo64 layouts, and so won't need to provide this hook, as we
734# call the Linux generic routines in bfd to write prpsinfo notes by
735# default.
ea480a30 736F;char *;elfcore_write_linux_prpsinfo;bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info;obfd, note_data, note_size, info
b3ac9c77 737
35c2fab7 738# Find core file memory regions
ea480a30 739M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 740
de584861 741# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
742# core file into buffer READBUF with length LEN. Return the number of bytes read
743# (zero indicates failure).
744# failed, otherwise, return the red length of READBUF.
ea480a30 745M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 746
356a5233
JB
747# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
748# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 749# Return the number of bytes read (zero indicates failure).
ea480a30 750M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 751
c0edd9ed 752# How the core target converts a PTID from a core file to a string.
ea480a30 753M;const char *;core_pid_to_str;ptid_t ptid;ptid
28439f5e 754
4dfc5dbc 755# How the core target extracts the name of a thread from a core file.
ea480a30 756M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 757
382b69bb
JB
758# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
759# from core file into buffer READBUF with length LEN. Return the number
760# of bytes read (zero indicates EOF, a negative value indicates failure).
761M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
762
a78c2d62 763# BFD target to use when generating a core file.
ea480a30 764V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 765
0d5de010
DJ
766# If the elements of C++ vtables are in-place function descriptors rather
767# than normal function pointers (which may point to code or a descriptor),
768# set this to one.
ea480a30 769v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
770
771# Set if the least significant bit of the delta is used instead of the least
772# significant bit of the pfn for pointers to virtual member functions.
ea480a30 773v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
774
775# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 776f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 777
1668ae25 778# The maximum length of an instruction on this architecture in bytes.
ea480a30 779V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
780
781# Copy the instruction at FROM to TO, and make any adjustments
782# necessary to single-step it at that address.
783#
784# REGS holds the state the thread's registers will have before
785# executing the copied instruction; the PC in REGS will refer to FROM,
786# not the copy at TO. The caller should update it to point at TO later.
787#
788# Return a pointer to data of the architecture's choice to be passed
789# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
790# the instruction's effects have been completely simulated, with the
791# resulting state written back to REGS.
792#
793# For a general explanation of displaced stepping and how GDB uses it,
794# see the comments in infrun.c.
795#
796# The TO area is only guaranteed to have space for
797# gdbarch_max_insn_length (arch) bytes, so this function must not
798# write more bytes than that to that area.
799#
800# If you do not provide this function, GDB assumes that the
801# architecture does not support displaced stepping.
802#
803# If your architecture doesn't need to adjust instructions before
804# single-stepping them, consider using simple_displaced_step_copy_insn
805# here.
7f03bd92
PA
806#
807# If the instruction cannot execute out of line, return NULL. The
808# core falls back to stepping past the instruction in-line instead in
809# that case.
ea480a30 810M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 811
99e40580
UW
812# Return true if GDB should use hardware single-stepping to execute
813# the displaced instruction identified by CLOSURE. If false,
814# GDB will simply restart execution at the displaced instruction
815# location, and it is up to the target to ensure GDB will receive
816# control again (e.g. by placing a software breakpoint instruction
817# into the displaced instruction buffer).
818#
819# The default implementation returns false on all targets that
820# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 821m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 822
237fc4c9
PA
823# Fix up the state resulting from successfully single-stepping a
824# displaced instruction, to give the result we would have gotten from
825# stepping the instruction in its original location.
826#
827# REGS is the register state resulting from single-stepping the
828# displaced instruction.
829#
830# CLOSURE is the result from the matching call to
831# gdbarch_displaced_step_copy_insn.
832#
833# If you provide gdbarch_displaced_step_copy_insn.but not this
834# function, then GDB assumes that no fixup is needed after
835# single-stepping the instruction.
836#
837# For a general explanation of displaced stepping and how GDB uses it,
838# see the comments in infrun.c.
ea480a30 839M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 840
237fc4c9
PA
841# Return the address of an appropriate place to put displaced
842# instructions while we step over them. There need only be one such
843# place, since we're only stepping one thread over a breakpoint at a
844# time.
845#
846# For a general explanation of displaced stepping and how GDB uses it,
847# see the comments in infrun.c.
ea480a30 848m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 849
dde08ee1
PA
850# Relocate an instruction to execute at a different address. OLDLOC
851# is the address in the inferior memory where the instruction to
852# relocate is currently at. On input, TO points to the destination
853# where we want the instruction to be copied (and possibly adjusted)
854# to. On output, it points to one past the end of the resulting
855# instruction(s). The effect of executing the instruction at TO shall
856# be the same as if executing it at FROM. For example, call
857# instructions that implicitly push the return address on the stack
858# should be adjusted to return to the instruction after OLDLOC;
859# relative branches, and other PC-relative instructions need the
860# offset adjusted; etc.
ea480a30 861M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 862
1c772458 863# Refresh overlay mapped state for section OSECT.
ea480a30 864F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 865
ea480a30 866M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
867
868# Handle special encoding of static variables in stabs debug info.
ea480a30 869F;const char *;static_transform_name;const char *name;name
203c3895 870# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 871v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 872
0508c3ec
HZ
873# Parse the instruction at ADDR storing in the record execution log
874# the registers REGCACHE and memory ranges that will be affected when
875# the instruction executes, along with their current values.
876# Return -1 if something goes wrong, 0 otherwise.
ea480a30 877M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 878
3846b520
HZ
879# Save process state after a signal.
880# Return -1 if something goes wrong, 0 otherwise.
ea480a30 881M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 882
22203bbf 883# Signal translation: translate inferior's signal (target's) number
86b49880
PA
884# into GDB's representation. The implementation of this method must
885# be host independent. IOW, don't rely on symbols of the NAT_FILE
886# header (the nm-*.h files), the host <signal.h> header, or similar
887# headers. This is mainly used when cross-debugging core files ---
888# "Live" targets hide the translation behind the target interface
1f8cf220 889# (target_wait, target_resume, etc.).
ea480a30 890M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 891
eb14d406
SDJ
892# Signal translation: translate the GDB's internal signal number into
893# the inferior's signal (target's) representation. The implementation
894# of this method must be host independent. IOW, don't rely on symbols
895# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
896# header, or similar headers.
897# Return the target signal number if found, or -1 if the GDB internal
898# signal number is invalid.
ea480a30 899M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 900
4aa995e1
PA
901# Extra signal info inspection.
902#
903# Return a type suitable to inspect extra signal information.
ea480a30 904M;struct type *;get_siginfo_type;void;
4aa995e1 905
60c5725c 906# Record architecture-specific information from the symbol table.
ea480a30 907M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 908
a96d9b2e
SDJ
909# Function for the 'catch syscall' feature.
910
911# Get architecture-specific system calls information from registers.
ea480a30 912M;LONGEST;get_syscall_number;ptid_t ptid;ptid
a96d9b2e 913
458c8db8 914# The filename of the XML syscall for this architecture.
ea480a30 915v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
916
917# Information about system calls from this architecture
ea480a30 918v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 919
55aa24fb
SDJ
920# SystemTap related fields and functions.
921
05c0465e
SDJ
922# A NULL-terminated array of prefixes used to mark an integer constant
923# on the architecture's assembly.
55aa24fb
SDJ
924# For example, on x86 integer constants are written as:
925#
926# \$10 ;; integer constant 10
927#
928# in this case, this prefix would be the character \`\$\'.
ea480a30 929v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 930
05c0465e
SDJ
931# A NULL-terminated array of suffixes used to mark an integer constant
932# on the architecture's assembly.
ea480a30 933v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 934
05c0465e
SDJ
935# A NULL-terminated array of prefixes used to mark a register name on
936# the architecture's assembly.
55aa24fb
SDJ
937# For example, on x86 the register name is written as:
938#
939# \%eax ;; register eax
940#
941# in this case, this prefix would be the character \`\%\'.
ea480a30 942v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 943
05c0465e
SDJ
944# A NULL-terminated array of suffixes used to mark a register name on
945# the architecture's assembly.
ea480a30 946v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 947
05c0465e
SDJ
948# A NULL-terminated array of prefixes used to mark a register
949# indirection on the architecture's assembly.
55aa24fb
SDJ
950# For example, on x86 the register indirection is written as:
951#
952# \(\%eax\) ;; indirecting eax
953#
954# in this case, this prefix would be the charater \`\(\'.
955#
956# Please note that we use the indirection prefix also for register
957# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 958v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 959
05c0465e
SDJ
960# A NULL-terminated array of suffixes used to mark a register
961# indirection on the architecture's assembly.
55aa24fb
SDJ
962# For example, on x86 the register indirection is written as:
963#
964# \(\%eax\) ;; indirecting eax
965#
966# in this case, this prefix would be the charater \`\)\'.
967#
968# Please note that we use the indirection suffix also for register
969# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 970v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 971
05c0465e 972# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
973#
974# For example, on PPC a register is represented by a number in the assembly
975# language (e.g., \`10\' is the 10th general-purpose register). However,
976# inside GDB this same register has an \`r\' appended to its name, so the 10th
977# register would be represented as \`r10\' internally.
ea480a30 978v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
979
980# Suffix used to name a register using GDB's nomenclature.
ea480a30 981v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
982
983# Check if S is a single operand.
984#
985# Single operands can be:
986# \- Literal integers, e.g. \`\$10\' on x86
987# \- Register access, e.g. \`\%eax\' on x86
988# \- Register indirection, e.g. \`\(\%eax\)\' on x86
989# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
990#
991# This function should check for these patterns on the string
992# and return 1 if some were found, or zero otherwise. Please try to match
993# as much info as you can from the string, i.e., if you have to match
994# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 995M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
996
997# Function used to handle a "special case" in the parser.
998#
999# A "special case" is considered to be an unknown token, i.e., a token
1000# that the parser does not know how to parse. A good example of special
1001# case would be ARM's register displacement syntax:
1002#
1003# [R0, #4] ;; displacing R0 by 4
1004#
1005# Since the parser assumes that a register displacement is of the form:
1006#
1007# <number> <indirection_prefix> <register_name> <indirection_suffix>
1008#
1009# it means that it will not be able to recognize and parse this odd syntax.
1010# Therefore, we should add a special case function that will handle this token.
1011#
1012# This function should generate the proper expression form of the expression
1013# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1014# and so on). It should also return 1 if the parsing was successful, or zero
1015# if the token was not recognized as a special token (in this case, returning
1016# zero means that the special parser is deferring the parsing to the generic
1017# parser), and should advance the buffer pointer (p->arg).
ea480a30 1018M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1019
8b367e17
JM
1020# DTrace related functions.
1021
1022# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1023# NARG must be >= 0.
ea480a30 1024M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
8b367e17
JM
1025
1026# True if the given ADDR does not contain the instruction sequence
1027# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1028M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1029
1030# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1031M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1032
1033# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1034M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1035
50c71eaf
PA
1036# True if the list of shared libraries is one and only for all
1037# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1038# This usually means that all processes, although may or may not share
1039# an address space, will see the same set of symbols at the same
1040# addresses.
ea480a30 1041v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1042
1043# On some targets, even though each inferior has its own private
1044# address space, the debug interface takes care of making breakpoints
1045# visible to all address spaces automatically. For such cases,
1046# this property should be set to true.
ea480a30 1047v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1048
1049# True if inferiors share an address space (e.g., uClinux).
ea480a30 1050m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1051
1052# True if a fast tracepoint can be set at an address.
ea480a30 1053m;int;fast_tracepoint_valid_at;CORE_ADDR addr, char **msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1054
5f034a78
MK
1055# Guess register state based on tracepoint location. Used for tracepoints
1056# where no registers have been collected, but there's only one location,
1057# allowing us to guess the PC value, and perhaps some other registers.
1058# On entry, regcache has all registers marked as unavailable.
ea480a30 1059m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1060
f870a310 1061# Return the "auto" target charset.
ea480a30 1062f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1063# Return the "auto" target wide charset.
ea480a30 1064f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1065
1066# If non-empty, this is a file extension that will be opened in place
1067# of the file extension reported by the shared library list.
1068#
1069# This is most useful for toolchains that use a post-linker tool,
1070# where the names of the files run on the target differ in extension
1071# compared to the names of the files GDB should load for debug info.
ea480a30 1072v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1073
1074# If true, the target OS has DOS-based file system semantics. That
1075# is, absolute paths include a drive name, and the backslash is
1076# considered a directory separator.
ea480a30 1077v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1078
1079# Generate bytecodes to collect the return address in a frame.
1080# Since the bytecodes run on the target, possibly with GDB not even
1081# connected, the full unwinding machinery is not available, and
1082# typically this function will issue bytecodes for one or more likely
1083# places that the return address may be found.
ea480a30 1084m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1085
3030c96e 1086# Implement the "info proc" command.
ea480a30 1087M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1088
451b7c33
TT
1089# Implement the "info proc" command for core files. Noe that there
1090# are two "info_proc"-like methods on gdbarch -- one for core files,
1091# one for live targets.
ea480a30 1092M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1093
19630284
JB
1094# Iterate over all objfiles in the order that makes the most sense
1095# for the architecture to make global symbol searches.
1096#
1097# CB is a callback function where OBJFILE is the objfile to be searched,
1098# and CB_DATA a pointer to user-defined data (the same data that is passed
1099# when calling this gdbarch method). The iteration stops if this function
1100# returns nonzero.
1101#
1102# CB_DATA is a pointer to some user-defined data to be passed to
1103# the callback.
1104#
1105# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1106# inspected when the symbol search was requested.
ea480a30 1107m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1108
7e35103a 1109# Ravenscar arch-dependent ops.
ea480a30 1110v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1111
1112# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1113m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1114
1115# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1116m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1117
1118# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1119m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1120
1121# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1122# Return 0 if *READPTR is already at the end of the buffer.
1123# Return -1 if there is insufficient buffer for a whole entry.
1124# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1125M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1126
2faa3447
JB
1127# Print the description of a single auxv entry described by TYPE and VAL
1128# to FILE.
ea480a30 1129m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1130
3437254d
PA
1131# Find the address range of the current inferior's vsyscall/vDSO, and
1132# write it to *RANGE. If the vsyscall's length can't be determined, a
1133# range with zero length is returned. Returns true if the vsyscall is
1134# found, false otherwise.
ea480a30 1135m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1136
1137# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1138# PROT has GDB_MMAP_PROT_* bitmask format.
1139# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1140f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1141
7f361056
JK
1142# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1143# Print a warning if it is not possible.
ea480a30 1144f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1145
f208eee0
JK
1146# Return string (caller has to use xfree for it) with options for GCC
1147# to produce code for this target, typically "-m64", "-m32" or "-m31".
1148# These options are put before CU's DW_AT_producer compilation options so that
1149# they can override it. Method may also return NULL.
ea480a30 1150m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1151
1152# Return a regular expression that matches names used by this
1153# architecture in GNU configury triplets. The result is statically
1154# allocated and must not be freed. The default implementation simply
1155# returns the BFD architecture name, which is correct in nearly every
1156# case.
ea480a30 1157m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1158
1159# Return the size in 8-bit bytes of an addressable memory unit on this
1160# architecture. This corresponds to the number of 8-bit bytes associated to
1161# each address in memory.
ea480a30 1162m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1163
65b48a81 1164# Functions for allowing a target to modify its disassembler options.
ea480a30
SM
1165v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1166v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1167
104c1213 1168EOF
104c1213
JM
1169}
1170
0b8f9e4d
AC
1171#
1172# The .log file
1173#
1174exec > new-gdbarch.log
34620563 1175function_list | while do_read
0b8f9e4d
AC
1176do
1177 cat <<EOF
2f9b146e 1178${class} ${returntype} ${function} ($formal)
104c1213 1179EOF
3d9a5942
AC
1180 for r in ${read}
1181 do
1182 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1183 done
f0d4cc9e 1184 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1185 then
66d659b1 1186 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1187 kill $$
1188 exit 1
1189 fi
72e74a21 1190 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1191 then
1192 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1193 kill $$
1194 exit 1
1195 fi
a72293e2
AC
1196 if class_is_multiarch_p
1197 then
1198 if class_is_predicate_p ; then :
1199 elif test "x${predefault}" = "x"
1200 then
2f9b146e 1201 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1202 kill $$
1203 exit 1
1204 fi
1205 fi
3d9a5942 1206 echo ""
0b8f9e4d
AC
1207done
1208
1209exec 1>&2
1210compare_new gdbarch.log
1211
104c1213
JM
1212
1213copyright ()
1214{
1215cat <<EOF
c4bfde41
JK
1216/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1217/* vi:set ro: */
59233f88 1218
104c1213 1219/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1220
61baf725 1221 Copyright (C) 1998-2017 Free Software Foundation, Inc.
104c1213
JM
1222
1223 This file is part of GDB.
1224
1225 This program is free software; you can redistribute it and/or modify
1226 it under the terms of the GNU General Public License as published by
50efebf8 1227 the Free Software Foundation; either version 3 of the License, or
104c1213 1228 (at your option) any later version.
618f726f 1229
104c1213
JM
1230 This program is distributed in the hope that it will be useful,
1231 but WITHOUT ANY WARRANTY; without even the implied warranty of
1232 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1233 GNU General Public License for more details.
618f726f 1234
104c1213 1235 You should have received a copy of the GNU General Public License
50efebf8 1236 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1237
104c1213
JM
1238/* This file was created with the aid of \`\`gdbarch.sh''.
1239
52204a0b 1240 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1241 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1242 against the existing \`\`gdbarch.[hc]''. Any differences found
1243 being reported.
1244
1245 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1246 changes into that script. Conversely, when making sweeping changes
104c1213 1247 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1248 easier. */
104c1213
JM
1249
1250EOF
1251}
1252
1253#
1254# The .h file
1255#
1256
1257exec > new-gdbarch.h
1258copyright
1259cat <<EOF
1260#ifndef GDBARCH_H
1261#define GDBARCH_H
1262
a0ff9e1a 1263#include <vector>
eb7a547a 1264#include "frame.h"
65b48a81 1265#include "dis-asm.h"
eb7a547a 1266
da3331ec
AC
1267struct floatformat;
1268struct ui_file;
104c1213 1269struct value;
b6af0555 1270struct objfile;
1c772458 1271struct obj_section;
a2cf933a 1272struct minimal_symbol;
049ee0e4 1273struct regcache;
b59ff9d5 1274struct reggroup;
6ce6d90f 1275struct regset;
a89aa300 1276struct disassemble_info;
e2d0e7eb 1277struct target_ops;
030f20e1 1278struct obstack;
8181d85f 1279struct bp_target_info;
424163ea 1280struct target_desc;
3e29f34a
MR
1281struct objfile;
1282struct symbol;
237fc4c9 1283struct displaced_step_closure;
a96d9b2e 1284struct syscall;
175ff332 1285struct agent_expr;
6710bf39 1286struct axs_value;
55aa24fb 1287struct stap_parse_info;
8b367e17 1288struct parser_state;
7e35103a 1289struct ravenscar_arch_ops;
b3ac9c77 1290struct elf_internal_linux_prpsinfo;
3437254d 1291struct mem_range;
458c8db8 1292struct syscalls_info;
4dfc5dbc 1293struct thread_info;
012b3a21 1294struct ui_out;
104c1213 1295
8a526fa6
PA
1296#include "regcache.h"
1297
6ecd4729
PA
1298/* The architecture associated with the inferior through the
1299 connection to the target.
1300
1301 The architecture vector provides some information that is really a
1302 property of the inferior, accessed through a particular target:
1303 ptrace operations; the layout of certain RSP packets; the solib_ops
1304 vector; etc. To differentiate architecture accesses to
1305 per-inferior/target properties from
1306 per-thread/per-frame/per-objfile properties, accesses to
1307 per-inferior/target properties should be made through this
1308 gdbarch. */
1309
1310/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1311extern struct gdbarch *target_gdbarch (void);
6ecd4729 1312
19630284
JB
1313/* Callback type for the 'iterate_over_objfiles_in_search_order'
1314 gdbarch method. */
1315
1316typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1317 (struct objfile *objfile, void *cb_data);
5aa82d05 1318
1528345d
AA
1319/* Callback type for regset section iterators. The callback usually
1320 invokes the REGSET's supply or collect method, to which it must
1321 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1322 section name, and HUMAN_NAME is used for diagnostic messages.
1323 CB_DATA should have been passed unchanged through the iterator. */
1324
5aa82d05 1325typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1326 (const char *sect_name, int size, const struct regset *regset,
1327 const char *human_name, void *cb_data);
104c1213
JM
1328EOF
1329
1330# function typedef's
3d9a5942
AC
1331printf "\n"
1332printf "\n"
0963b4bd 1333printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1334function_list | while do_read
104c1213 1335do
2ada493a
AC
1336 if class_is_info_p
1337 then
3d9a5942
AC
1338 printf "\n"
1339 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1340 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1341 fi
104c1213
JM
1342done
1343
1344# function typedef's
3d9a5942
AC
1345printf "\n"
1346printf "\n"
0963b4bd 1347printf "/* The following are initialized by the target dependent code. */\n"
34620563 1348function_list | while do_read
104c1213 1349do
72e74a21 1350 if [ -n "${comment}" ]
34620563
AC
1351 then
1352 echo "${comment}" | sed \
1353 -e '2 s,#,/*,' \
1354 -e '3,$ s,#, ,' \
1355 -e '$ s,$, */,'
1356 fi
412d5987
AC
1357
1358 if class_is_predicate_p
2ada493a 1359 then
412d5987
AC
1360 printf "\n"
1361 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1362 fi
2ada493a
AC
1363 if class_is_variable_p
1364 then
3d9a5942
AC
1365 printf "\n"
1366 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1367 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1368 fi
1369 if class_is_function_p
1370 then
3d9a5942 1371 printf "\n"
72e74a21 1372 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1373 then
1374 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1375 elif class_is_multiarch_p
1376 then
1377 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1378 else
1379 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1380 fi
72e74a21 1381 if [ "x${formal}" = "xvoid" ]
104c1213 1382 then
3d9a5942 1383 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1384 else
3d9a5942 1385 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1386 fi
3d9a5942 1387 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1388 fi
104c1213
JM
1389done
1390
1391# close it off
1392cat <<EOF
1393
a96d9b2e
SDJ
1394/* Definition for an unknown syscall, used basically in error-cases. */
1395#define UNKNOWN_SYSCALL (-1)
1396
104c1213
JM
1397extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1398
1399
1400/* Mechanism for co-ordinating the selection of a specific
1401 architecture.
1402
1403 GDB targets (*-tdep.c) can register an interest in a specific
1404 architecture. Other GDB components can register a need to maintain
1405 per-architecture data.
1406
1407 The mechanisms below ensures that there is only a loose connection
1408 between the set-architecture command and the various GDB
0fa6923a 1409 components. Each component can independently register their need
104c1213
JM
1410 to maintain architecture specific data with gdbarch.
1411
1412 Pragmatics:
1413
1414 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1415 didn't scale.
1416
1417 The more traditional mega-struct containing architecture specific
1418 data for all the various GDB components was also considered. Since
0fa6923a 1419 GDB is built from a variable number of (fairly independent)
104c1213 1420 components it was determined that the global aproach was not
0963b4bd 1421 applicable. */
104c1213
JM
1422
1423
1424/* Register a new architectural family with GDB.
1425
1426 Register support for the specified ARCHITECTURE with GDB. When
1427 gdbarch determines that the specified architecture has been
1428 selected, the corresponding INIT function is called.
1429
1430 --
1431
1432 The INIT function takes two parameters: INFO which contains the
1433 information available to gdbarch about the (possibly new)
1434 architecture; ARCHES which is a list of the previously created
1435 \`\`struct gdbarch'' for this architecture.
1436
0f79675b 1437 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1438 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1439
1440 The ARCHES parameter is a linked list (sorted most recently used)
1441 of all the previously created architures for this architecture
1442 family. The (possibly NULL) ARCHES->gdbarch can used to access
1443 values from the previously selected architecture for this
59837fe0 1444 architecture family.
104c1213
JM
1445
1446 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1447 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1448 gdbarch'' from the ARCHES list - indicating that the new
1449 architecture is just a synonym for an earlier architecture (see
1450 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1451 - that describes the selected architecture (see gdbarch_alloc()).
1452
1453 The DUMP_TDEP function shall print out all target specific values.
1454 Care should be taken to ensure that the function works in both the
0963b4bd 1455 multi-arch and non- multi-arch cases. */
104c1213
JM
1456
1457struct gdbarch_list
1458{
1459 struct gdbarch *gdbarch;
1460 struct gdbarch_list *next;
1461};
1462
1463struct gdbarch_info
1464{
0963b4bd 1465 /* Use default: NULL (ZERO). */
104c1213
JM
1466 const struct bfd_arch_info *bfd_arch_info;
1467
428721aa 1468 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1469 enum bfd_endian byte_order;
104c1213 1470
94123b4f 1471 enum bfd_endian byte_order_for_code;
9d4fde75 1472
0963b4bd 1473 /* Use default: NULL (ZERO). */
104c1213
JM
1474 bfd *abfd;
1475
0963b4bd 1476 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1477 union
1478 {
1479 /* Architecture-specific information. The generic form for targets
1480 that have extra requirements. */
1481 struct gdbarch_tdep_info *tdep_info;
1482
1483 /* Architecture-specific target description data. Numerous targets
1484 need only this, so give them an easy way to hold it. */
1485 struct tdesc_arch_data *tdesc_data;
1486
1487 /* SPU file system ID. This is a single integer, so using the
1488 generic form would only complicate code. Other targets may
1489 reuse this member if suitable. */
1490 int *id;
1491 };
4be87837
DJ
1492
1493 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1494 enum gdb_osabi osabi;
424163ea
DJ
1495
1496 /* Use default: NULL (ZERO). */
1497 const struct target_desc *target_desc;
104c1213
JM
1498};
1499
1500typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1501typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1502
4b9b3959 1503/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1504extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1505
4b9b3959
AC
1506extern void gdbarch_register (enum bfd_architecture architecture,
1507 gdbarch_init_ftype *,
1508 gdbarch_dump_tdep_ftype *);
1509
104c1213 1510
b4a20239
AC
1511/* Return a freshly allocated, NULL terminated, array of the valid
1512 architecture names. Since architectures are registered during the
1513 _initialize phase this function only returns useful information
0963b4bd 1514 once initialization has been completed. */
b4a20239
AC
1515
1516extern const char **gdbarch_printable_names (void);
1517
1518
104c1213 1519/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1520 matches the information provided by INFO. */
104c1213 1521
424163ea 1522extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1523
1524
1525/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1526 basic initialization using values obtained from the INFO and TDEP
104c1213 1527 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1528 initialization of the object. */
104c1213
JM
1529
1530extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1531
1532
4b9b3959
AC
1533/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1534 It is assumed that the caller freeds the \`\`struct
0963b4bd 1535 gdbarch_tdep''. */
4b9b3959 1536
058f20d5
JB
1537extern void gdbarch_free (struct gdbarch *);
1538
1539
aebd7893
AC
1540/* Helper function. Allocate memory from the \`\`struct gdbarch''
1541 obstack. The memory is freed when the corresponding architecture
1542 is also freed. */
1543
1544extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1545#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1546#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1547
6c214e7c
PP
1548/* Duplicate STRING, returning an equivalent string that's allocated on the
1549 obstack associated with GDBARCH. The string is freed when the corresponding
1550 architecture is also freed. */
1551
1552extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1553
0963b4bd 1554/* Helper function. Force an update of the current architecture.
104c1213 1555
b732d07d
AC
1556 The actual architecture selected is determined by INFO, \`\`(gdb) set
1557 architecture'' et.al., the existing architecture and BFD's default
1558 architecture. INFO should be initialized to zero and then selected
1559 fields should be updated.
104c1213 1560
0963b4bd 1561 Returns non-zero if the update succeeds. */
16f33e29
AC
1562
1563extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1564
1565
ebdba546
AC
1566/* Helper function. Find an architecture matching info.
1567
1568 INFO should be initialized using gdbarch_info_init, relevant fields
1569 set, and then finished using gdbarch_info_fill.
1570
1571 Returns the corresponding architecture, or NULL if no matching
59837fe0 1572 architecture was found. */
ebdba546
AC
1573
1574extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1575
1576
aff68abb 1577/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1578
aff68abb 1579extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1580
104c1213
JM
1581
1582/* Register per-architecture data-pointer.
1583
1584 Reserve space for a per-architecture data-pointer. An identifier
1585 for the reserved data-pointer is returned. That identifer should
95160752 1586 be saved in a local static variable.
104c1213 1587
fcc1c85c
AC
1588 Memory for the per-architecture data shall be allocated using
1589 gdbarch_obstack_zalloc. That memory will be deleted when the
1590 corresponding architecture object is deleted.
104c1213 1591
95160752
AC
1592 When a previously created architecture is re-selected, the
1593 per-architecture data-pointer for that previous architecture is
76860b5f 1594 restored. INIT() is not re-called.
104c1213
JM
1595
1596 Multiple registrarants for any architecture are allowed (and
1597 strongly encouraged). */
1598
95160752 1599struct gdbarch_data;
104c1213 1600
030f20e1
AC
1601typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1602extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1603typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1604extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1605extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1606 struct gdbarch_data *data,
1607 void *pointer);
104c1213 1608
451fbdda 1609extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1610
1611
0fa6923a 1612/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1613 byte-order, ...) using information found in the BFD. */
104c1213
JM
1614
1615extern void set_gdbarch_from_file (bfd *);
1616
1617
e514a9d6
JM
1618/* Initialize the current architecture to the "first" one we find on
1619 our list. */
1620
1621extern void initialize_current_architecture (void);
1622
104c1213 1623/* gdbarch trace variable */
ccce17b0 1624extern unsigned int gdbarch_debug;
104c1213 1625
4b9b3959 1626extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1627
1628#endif
1629EOF
1630exec 1>&2
1631#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1632compare_new gdbarch.h
104c1213
JM
1633
1634
1635#
1636# C file
1637#
1638
1639exec > new-gdbarch.c
1640copyright
1641cat <<EOF
1642
1643#include "defs.h"
7355ddba 1644#include "arch-utils.h"
104c1213 1645
104c1213 1646#include "gdbcmd.h"
faaf634c 1647#include "inferior.h"
104c1213
JM
1648#include "symcat.h"
1649
f0d4cc9e 1650#include "floatformat.h"
b59ff9d5 1651#include "reggroups.h"
4be87837 1652#include "osabi.h"
aebd7893 1653#include "gdb_obstack.h"
383f836e 1654#include "observer.h"
a3ecef73 1655#include "regcache.h"
19630284 1656#include "objfiles.h"
2faa3447 1657#include "auxv.h"
95160752 1658
104c1213
JM
1659/* Static function declarations */
1660
b3cc3077 1661static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1662
104c1213
JM
1663/* Non-zero if we want to trace architecture code. */
1664
1665#ifndef GDBARCH_DEBUG
1666#define GDBARCH_DEBUG 0
1667#endif
ccce17b0 1668unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1669static void
1670show_gdbarch_debug (struct ui_file *file, int from_tty,
1671 struct cmd_list_element *c, const char *value)
1672{
1673 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1674}
104c1213 1675
456fcf94 1676static const char *
8da61cc4 1677pformat (const struct floatformat **format)
456fcf94
AC
1678{
1679 if (format == NULL)
1680 return "(null)";
1681 else
8da61cc4
DJ
1682 /* Just print out one of them - this is only for diagnostics. */
1683 return format[0]->name;
456fcf94
AC
1684}
1685
08105857
PA
1686static const char *
1687pstring (const char *string)
1688{
1689 if (string == NULL)
1690 return "(null)";
1691 return string;
05c0465e
SDJ
1692}
1693
a121b7c1 1694static const char *
f7bb4e3a
PB
1695pstring_ptr (char **string)
1696{
1697 if (string == NULL || *string == NULL)
1698 return "(null)";
1699 return *string;
1700}
1701
05c0465e
SDJ
1702/* Helper function to print a list of strings, represented as "const
1703 char *const *". The list is printed comma-separated. */
1704
a121b7c1 1705static const char *
05c0465e
SDJ
1706pstring_list (const char *const *list)
1707{
1708 static char ret[100];
1709 const char *const *p;
1710 size_t offset = 0;
1711
1712 if (list == NULL)
1713 return "(null)";
1714
1715 ret[0] = '\0';
1716 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1717 {
1718 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1719 offset += 2 + s;
1720 }
1721
1722 if (offset > 0)
1723 {
1724 gdb_assert (offset - 2 < sizeof (ret));
1725 ret[offset - 2] = '\0';
1726 }
1727
1728 return ret;
08105857
PA
1729}
1730
104c1213
JM
1731EOF
1732
1733# gdbarch open the gdbarch object
3d9a5942 1734printf "\n"
0963b4bd 1735printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1736printf "\n"
1737printf "struct gdbarch\n"
1738printf "{\n"
76860b5f
AC
1739printf " /* Has this architecture been fully initialized? */\n"
1740printf " int initialized_p;\n"
aebd7893
AC
1741printf "\n"
1742printf " /* An obstack bound to the lifetime of the architecture. */\n"
1743printf " struct obstack *obstack;\n"
1744printf "\n"
0963b4bd 1745printf " /* basic architectural information. */\n"
34620563 1746function_list | while do_read
104c1213 1747do
2ada493a
AC
1748 if class_is_info_p
1749 then
3d9a5942 1750 printf " ${returntype} ${function};\n"
2ada493a 1751 fi
104c1213 1752done
3d9a5942 1753printf "\n"
0963b4bd 1754printf " /* target specific vector. */\n"
3d9a5942
AC
1755printf " struct gdbarch_tdep *tdep;\n"
1756printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1757printf "\n"
0963b4bd 1758printf " /* per-architecture data-pointers. */\n"
95160752 1759printf " unsigned nr_data;\n"
3d9a5942
AC
1760printf " void **data;\n"
1761printf "\n"
104c1213
JM
1762cat <<EOF
1763 /* Multi-arch values.
1764
1765 When extending this structure you must:
1766
1767 Add the field below.
1768
1769 Declare set/get functions and define the corresponding
1770 macro in gdbarch.h.
1771
1772 gdbarch_alloc(): If zero/NULL is not a suitable default,
1773 initialize the new field.
1774
1775 verify_gdbarch(): Confirm that the target updated the field
1776 correctly.
1777
7e73cedf 1778 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1779 field is dumped out
1780
104c1213
JM
1781 get_gdbarch(): Implement the set/get functions (probably using
1782 the macro's as shortcuts).
1783
1784 */
1785
1786EOF
34620563 1787function_list | while do_read
104c1213 1788do
2ada493a
AC
1789 if class_is_variable_p
1790 then
3d9a5942 1791 printf " ${returntype} ${function};\n"
2ada493a
AC
1792 elif class_is_function_p
1793 then
2f9b146e 1794 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1795 fi
104c1213 1796done
3d9a5942 1797printf "};\n"
104c1213 1798
104c1213 1799# Create a new gdbarch struct
104c1213 1800cat <<EOF
7de2341d 1801
66b43ecb 1802/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1803 \`\`struct gdbarch_info''. */
104c1213 1804EOF
3d9a5942 1805printf "\n"
104c1213
JM
1806cat <<EOF
1807struct gdbarch *
1808gdbarch_alloc (const struct gdbarch_info *info,
1809 struct gdbarch_tdep *tdep)
1810{
be7811ad 1811 struct gdbarch *gdbarch;
aebd7893
AC
1812
1813 /* Create an obstack for allocating all the per-architecture memory,
1814 then use that to allocate the architecture vector. */
70ba0933 1815 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1816 obstack_init (obstack);
8d749320 1817 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1818 memset (gdbarch, 0, sizeof (*gdbarch));
1819 gdbarch->obstack = obstack;
85de9627 1820
be7811ad 1821 alloc_gdbarch_data (gdbarch);
85de9627 1822
be7811ad 1823 gdbarch->tdep = tdep;
104c1213 1824EOF
3d9a5942 1825printf "\n"
34620563 1826function_list | while do_read
104c1213 1827do
2ada493a
AC
1828 if class_is_info_p
1829 then
be7811ad 1830 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1831 fi
104c1213 1832done
3d9a5942 1833printf "\n"
0963b4bd 1834printf " /* Force the explicit initialization of these. */\n"
34620563 1835function_list | while do_read
104c1213 1836do
2ada493a
AC
1837 if class_is_function_p || class_is_variable_p
1838 then
72e74a21 1839 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1840 then
be7811ad 1841 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1842 fi
2ada493a 1843 fi
104c1213
JM
1844done
1845cat <<EOF
1846 /* gdbarch_alloc() */
1847
be7811ad 1848 return gdbarch;
104c1213
JM
1849}
1850EOF
1851
058f20d5 1852# Free a gdbarch struct.
3d9a5942
AC
1853printf "\n"
1854printf "\n"
058f20d5 1855cat <<EOF
aebd7893
AC
1856/* Allocate extra space using the per-architecture obstack. */
1857
1858void *
1859gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1860{
1861 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1862
aebd7893
AC
1863 memset (data, 0, size);
1864 return data;
1865}
1866
6c214e7c
PP
1867/* See gdbarch.h. */
1868
1869char *
1870gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1871{
1872 return obstack_strdup (arch->obstack, string);
1873}
1874
aebd7893 1875
058f20d5
JB
1876/* Free a gdbarch struct. This should never happen in normal
1877 operation --- once you've created a gdbarch, you keep it around.
1878 However, if an architecture's init function encounters an error
1879 building the structure, it may need to clean up a partially
1880 constructed gdbarch. */
4b9b3959 1881
058f20d5
JB
1882void
1883gdbarch_free (struct gdbarch *arch)
1884{
aebd7893 1885 struct obstack *obstack;
05c547f6 1886
95160752 1887 gdb_assert (arch != NULL);
aebd7893
AC
1888 gdb_assert (!arch->initialized_p);
1889 obstack = arch->obstack;
1890 obstack_free (obstack, 0); /* Includes the ARCH. */
1891 xfree (obstack);
058f20d5
JB
1892}
1893EOF
1894
104c1213 1895# verify a new architecture
104c1213 1896cat <<EOF
db446970
AC
1897
1898
1899/* Ensure that all values in a GDBARCH are reasonable. */
1900
104c1213 1901static void
be7811ad 1902verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1903{
d7e74731 1904 string_file log;
05c547f6 1905
104c1213 1906 /* fundamental */
be7811ad 1907 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1908 log.puts ("\n\tbyte-order");
be7811ad 1909 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1910 log.puts ("\n\tbfd_arch_info");
0963b4bd 1911 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1912EOF
34620563 1913function_list | while do_read
104c1213 1914do
2ada493a
AC
1915 if class_is_function_p || class_is_variable_p
1916 then
72e74a21 1917 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1918 then
3d9a5942 1919 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1920 elif class_is_predicate_p
1921 then
0963b4bd 1922 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1923 # FIXME: See do_read for potential simplification
72e74a21 1924 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1925 then
3d9a5942 1926 printf " if (${invalid_p})\n"
be7811ad 1927 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1928 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1929 then
be7811ad
MD
1930 printf " if (gdbarch->${function} == ${predefault})\n"
1931 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1932 elif [ -n "${postdefault}" ]
f0d4cc9e 1933 then
be7811ad
MD
1934 printf " if (gdbarch->${function} == 0)\n"
1935 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1936 elif [ -n "${invalid_p}" ]
104c1213 1937 then
4d60522e 1938 printf " if (${invalid_p})\n"
d7e74731 1939 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1940 elif [ -n "${predefault}" ]
104c1213 1941 then
be7811ad 1942 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1943 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1944 fi
2ada493a 1945 fi
104c1213
JM
1946done
1947cat <<EOF
d7e74731 1948 if (!log.empty ())
f16a1923 1949 internal_error (__FILE__, __LINE__,
85c07804 1950 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1951 log.c_str ());
104c1213
JM
1952}
1953EOF
1954
1955# dump the structure
3d9a5942
AC
1956printf "\n"
1957printf "\n"
104c1213 1958cat <<EOF
0963b4bd 1959/* Print out the details of the current architecture. */
4b9b3959 1960
104c1213 1961void
be7811ad 1962gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1963{
b78960be 1964 const char *gdb_nm_file = "<not-defined>";
05c547f6 1965
b78960be
AC
1966#if defined (GDB_NM_FILE)
1967 gdb_nm_file = GDB_NM_FILE;
1968#endif
1969 fprintf_unfiltered (file,
1970 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1971 gdb_nm_file);
104c1213 1972EOF
ea480a30 1973function_list | sort '-t;' -k 3 | while do_read
104c1213 1974do
1e9f55d0
AC
1975 # First the predicate
1976 if class_is_predicate_p
1977 then
7996bcec 1978 printf " fprintf_unfiltered (file,\n"
48f7351b 1979 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1980 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1981 fi
48f7351b 1982 # Print the corresponding value.
283354d8 1983 if class_is_function_p
4b9b3959 1984 then
7996bcec 1985 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1986 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1987 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1988 else
48f7351b 1989 # It is a variable
2f9b146e
AC
1990 case "${print}:${returntype}" in
1991 :CORE_ADDR )
0b1553bc
UW
1992 fmt="%s"
1993 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1994 ;;
2f9b146e 1995 :* )
48f7351b 1996 fmt="%s"
623d3eb1 1997 print="plongest (gdbarch->${function})"
48f7351b
AC
1998 ;;
1999 * )
2f9b146e 2000 fmt="%s"
48f7351b
AC
2001 ;;
2002 esac
3d9a5942 2003 printf " fprintf_unfiltered (file,\n"
48f7351b 2004 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 2005 printf " ${print});\n"
2ada493a 2006 fi
104c1213 2007done
381323f4 2008cat <<EOF
be7811ad
MD
2009 if (gdbarch->dump_tdep != NULL)
2010 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2011}
2012EOF
104c1213
JM
2013
2014
2015# GET/SET
3d9a5942 2016printf "\n"
104c1213
JM
2017cat <<EOF
2018struct gdbarch_tdep *
2019gdbarch_tdep (struct gdbarch *gdbarch)
2020{
2021 if (gdbarch_debug >= 2)
3d9a5942 2022 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2023 return gdbarch->tdep;
2024}
2025EOF
3d9a5942 2026printf "\n"
34620563 2027function_list | while do_read
104c1213 2028do
2ada493a
AC
2029 if class_is_predicate_p
2030 then
3d9a5942
AC
2031 printf "\n"
2032 printf "int\n"
2033 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2034 printf "{\n"
8de9bdc4 2035 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2036 printf " return ${predicate};\n"
3d9a5942 2037 printf "}\n"
2ada493a
AC
2038 fi
2039 if class_is_function_p
2040 then
3d9a5942
AC
2041 printf "\n"
2042 printf "${returntype}\n"
72e74a21 2043 if [ "x${formal}" = "xvoid" ]
104c1213 2044 then
3d9a5942 2045 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2046 else
3d9a5942 2047 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2048 fi
3d9a5942 2049 printf "{\n"
8de9bdc4 2050 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2051 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2052 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2053 then
2054 # Allow a call to a function with a predicate.
956ac328 2055 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2056 fi
3d9a5942
AC
2057 printf " if (gdbarch_debug >= 2)\n"
2058 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2059 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2060 then
2061 if class_is_multiarch_p
2062 then
2063 params="gdbarch"
2064 else
2065 params=""
2066 fi
2067 else
2068 if class_is_multiarch_p
2069 then
2070 params="gdbarch, ${actual}"
2071 else
2072 params="${actual}"
2073 fi
2074 fi
72e74a21 2075 if [ "x${returntype}" = "xvoid" ]
104c1213 2076 then
4a5c6a1d 2077 printf " gdbarch->${function} (${params});\n"
104c1213 2078 else
4a5c6a1d 2079 printf " return gdbarch->${function} (${params});\n"
104c1213 2080 fi
3d9a5942
AC
2081 printf "}\n"
2082 printf "\n"
2083 printf "void\n"
2084 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2085 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2086 printf "{\n"
2087 printf " gdbarch->${function} = ${function};\n"
2088 printf "}\n"
2ada493a
AC
2089 elif class_is_variable_p
2090 then
3d9a5942
AC
2091 printf "\n"
2092 printf "${returntype}\n"
2093 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2094 printf "{\n"
8de9bdc4 2095 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2096 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2097 then
3d9a5942 2098 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2099 elif [ -n "${invalid_p}" ]
104c1213 2100 then
956ac328
AC
2101 printf " /* Check variable is valid. */\n"
2102 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2103 elif [ -n "${predefault}" ]
104c1213 2104 then
956ac328
AC
2105 printf " /* Check variable changed from pre-default. */\n"
2106 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2107 fi
3d9a5942
AC
2108 printf " if (gdbarch_debug >= 2)\n"
2109 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2110 printf " return gdbarch->${function};\n"
2111 printf "}\n"
2112 printf "\n"
2113 printf "void\n"
2114 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2115 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2116 printf "{\n"
2117 printf " gdbarch->${function} = ${function};\n"
2118 printf "}\n"
2ada493a
AC
2119 elif class_is_info_p
2120 then
3d9a5942
AC
2121 printf "\n"
2122 printf "${returntype}\n"
2123 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2124 printf "{\n"
8de9bdc4 2125 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2126 printf " if (gdbarch_debug >= 2)\n"
2127 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2128 printf " return gdbarch->${function};\n"
2129 printf "}\n"
2ada493a 2130 fi
104c1213
JM
2131done
2132
2133# All the trailing guff
2134cat <<EOF
2135
2136
f44c642f 2137/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2138 modules. */
104c1213
JM
2139
2140struct gdbarch_data
2141{
95160752 2142 unsigned index;
76860b5f 2143 int init_p;
030f20e1
AC
2144 gdbarch_data_pre_init_ftype *pre_init;
2145 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2146};
2147
2148struct gdbarch_data_registration
2149{
104c1213
JM
2150 struct gdbarch_data *data;
2151 struct gdbarch_data_registration *next;
2152};
2153
f44c642f 2154struct gdbarch_data_registry
104c1213 2155{
95160752 2156 unsigned nr;
104c1213
JM
2157 struct gdbarch_data_registration *registrations;
2158};
2159
f44c642f 2160struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2161{
2162 0, NULL,
2163};
2164
030f20e1
AC
2165static struct gdbarch_data *
2166gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2167 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2168{
2169 struct gdbarch_data_registration **curr;
05c547f6
MS
2170
2171 /* Append the new registration. */
f44c642f 2172 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2173 (*curr) != NULL;
2174 curr = &(*curr)->next);
70ba0933 2175 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2176 (*curr)->next = NULL;
70ba0933 2177 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2178 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2179 (*curr)->data->pre_init = pre_init;
2180 (*curr)->data->post_init = post_init;
76860b5f 2181 (*curr)->data->init_p = 1;
104c1213
JM
2182 return (*curr)->data;
2183}
2184
030f20e1
AC
2185struct gdbarch_data *
2186gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2187{
2188 return gdbarch_data_register (pre_init, NULL);
2189}
2190
2191struct gdbarch_data *
2192gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2193{
2194 return gdbarch_data_register (NULL, post_init);
2195}
104c1213 2196
0963b4bd 2197/* Create/delete the gdbarch data vector. */
95160752
AC
2198
2199static void
b3cc3077 2200alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2201{
b3cc3077
JB
2202 gdb_assert (gdbarch->data == NULL);
2203 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2204 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2205}
3c875b6f 2206
76860b5f 2207/* Initialize the current value of the specified per-architecture
0963b4bd 2208 data-pointer. */
b3cc3077 2209
95160752 2210void
030f20e1
AC
2211deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2212 struct gdbarch_data *data,
2213 void *pointer)
95160752
AC
2214{
2215 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2216 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2217 gdb_assert (data->pre_init == NULL);
95160752
AC
2218 gdbarch->data[data->index] = pointer;
2219}
2220
104c1213 2221/* Return the current value of the specified per-architecture
0963b4bd 2222 data-pointer. */
104c1213
JM
2223
2224void *
451fbdda 2225gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2226{
451fbdda 2227 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2228 if (gdbarch->data[data->index] == NULL)
76860b5f 2229 {
030f20e1
AC
2230 /* The data-pointer isn't initialized, call init() to get a
2231 value. */
2232 if (data->pre_init != NULL)
2233 /* Mid architecture creation: pass just the obstack, and not
2234 the entire architecture, as that way it isn't possible for
2235 pre-init code to refer to undefined architecture
2236 fields. */
2237 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2238 else if (gdbarch->initialized_p
2239 && data->post_init != NULL)
2240 /* Post architecture creation: pass the entire architecture
2241 (as all fields are valid), but be careful to also detect
2242 recursive references. */
2243 {
2244 gdb_assert (data->init_p);
2245 data->init_p = 0;
2246 gdbarch->data[data->index] = data->post_init (gdbarch);
2247 data->init_p = 1;
2248 }
2249 else
2250 /* The architecture initialization hasn't completed - punt -
2251 hope that the caller knows what they are doing. Once
2252 deprecated_set_gdbarch_data has been initialized, this can be
2253 changed to an internal error. */
2254 return NULL;
76860b5f
AC
2255 gdb_assert (gdbarch->data[data->index] != NULL);
2256 }
451fbdda 2257 return gdbarch->data[data->index];
104c1213
JM
2258}
2259
2260
0963b4bd 2261/* Keep a registry of the architectures known by GDB. */
104c1213 2262
4b9b3959 2263struct gdbarch_registration
104c1213
JM
2264{
2265 enum bfd_architecture bfd_architecture;
2266 gdbarch_init_ftype *init;
4b9b3959 2267 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2268 struct gdbarch_list *arches;
4b9b3959 2269 struct gdbarch_registration *next;
104c1213
JM
2270};
2271
f44c642f 2272static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2273
b4a20239
AC
2274static void
2275append_name (const char ***buf, int *nr, const char *name)
2276{
1dc7a623 2277 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2278 (*buf)[*nr] = name;
2279 *nr += 1;
2280}
2281
2282const char **
2283gdbarch_printable_names (void)
2284{
7996bcec 2285 /* Accumulate a list of names based on the registed list of
0963b4bd 2286 architectures. */
7996bcec
AC
2287 int nr_arches = 0;
2288 const char **arches = NULL;
2289 struct gdbarch_registration *rego;
05c547f6 2290
7996bcec
AC
2291 for (rego = gdbarch_registry;
2292 rego != NULL;
2293 rego = rego->next)
b4a20239 2294 {
7996bcec
AC
2295 const struct bfd_arch_info *ap;
2296 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2297 if (ap == NULL)
2298 internal_error (__FILE__, __LINE__,
85c07804 2299 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2300 do
2301 {
2302 append_name (&arches, &nr_arches, ap->printable_name);
2303 ap = ap->next;
2304 }
2305 while (ap != NULL);
b4a20239 2306 }
7996bcec
AC
2307 append_name (&arches, &nr_arches, NULL);
2308 return arches;
b4a20239
AC
2309}
2310
2311
104c1213 2312void
4b9b3959
AC
2313gdbarch_register (enum bfd_architecture bfd_architecture,
2314 gdbarch_init_ftype *init,
2315 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2316{
4b9b3959 2317 struct gdbarch_registration **curr;
104c1213 2318 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2319
ec3d358c 2320 /* Check that BFD recognizes this architecture */
104c1213
JM
2321 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2322 if (bfd_arch_info == NULL)
2323 {
8e65ff28 2324 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2325 _("gdbarch: Attempt to register "
2326 "unknown architecture (%d)"),
8e65ff28 2327 bfd_architecture);
104c1213 2328 }
0963b4bd 2329 /* Check that we haven't seen this architecture before. */
f44c642f 2330 for (curr = &gdbarch_registry;
104c1213
JM
2331 (*curr) != NULL;
2332 curr = &(*curr)->next)
2333 {
2334 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2335 internal_error (__FILE__, __LINE__,
64b9b334 2336 _("gdbarch: Duplicate registration "
0963b4bd 2337 "of architecture (%s)"),
8e65ff28 2338 bfd_arch_info->printable_name);
104c1213
JM
2339 }
2340 /* log it */
2341 if (gdbarch_debug)
30737ed9 2342 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2343 bfd_arch_info->printable_name,
30737ed9 2344 host_address_to_string (init));
104c1213 2345 /* Append it */
70ba0933 2346 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2347 (*curr)->bfd_architecture = bfd_architecture;
2348 (*curr)->init = init;
4b9b3959 2349 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2350 (*curr)->arches = NULL;
2351 (*curr)->next = NULL;
4b9b3959
AC
2352}
2353
2354void
2355register_gdbarch_init (enum bfd_architecture bfd_architecture,
2356 gdbarch_init_ftype *init)
2357{
2358 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2359}
104c1213
JM
2360
2361
424163ea 2362/* Look for an architecture using gdbarch_info. */
104c1213
JM
2363
2364struct gdbarch_list *
2365gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2366 const struct gdbarch_info *info)
2367{
2368 for (; arches != NULL; arches = arches->next)
2369 {
2370 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2371 continue;
2372 if (info->byte_order != arches->gdbarch->byte_order)
2373 continue;
4be87837
DJ
2374 if (info->osabi != arches->gdbarch->osabi)
2375 continue;
424163ea
DJ
2376 if (info->target_desc != arches->gdbarch->target_desc)
2377 continue;
104c1213
JM
2378 return arches;
2379 }
2380 return NULL;
2381}
2382
2383
ebdba546 2384/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2385 architecture if needed. Return that new architecture. */
104c1213 2386
59837fe0
UW
2387struct gdbarch *
2388gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2389{
2390 struct gdbarch *new_gdbarch;
4b9b3959 2391 struct gdbarch_registration *rego;
104c1213 2392
b732d07d 2393 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2394 sources: "set ..."; INFOabfd supplied; and the global
2395 defaults. */
2396 gdbarch_info_fill (&info);
4be87837 2397
0963b4bd 2398 /* Must have found some sort of architecture. */
b732d07d 2399 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2400
2401 if (gdbarch_debug)
2402 {
2403 fprintf_unfiltered (gdb_stdlog,
59837fe0 2404 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2405 (info.bfd_arch_info != NULL
2406 ? info.bfd_arch_info->printable_name
2407 : "(null)"));
2408 fprintf_unfiltered (gdb_stdlog,
59837fe0 2409 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2410 info.byte_order,
d7449b42 2411 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2412 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2413 : "default"));
4be87837 2414 fprintf_unfiltered (gdb_stdlog,
59837fe0 2415 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2416 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2417 fprintf_unfiltered (gdb_stdlog,
59837fe0 2418 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2419 host_address_to_string (info.abfd));
104c1213 2420 fprintf_unfiltered (gdb_stdlog,
59837fe0 2421 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2422 host_address_to_string (info.tdep_info));
104c1213
JM
2423 }
2424
ebdba546 2425 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2426 for (rego = gdbarch_registry;
2427 rego != NULL;
2428 rego = rego->next)
2429 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2430 break;
2431 if (rego == NULL)
2432 {
2433 if (gdbarch_debug)
59837fe0 2434 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2435 "No matching architecture\n");
b732d07d
AC
2436 return 0;
2437 }
2438
ebdba546 2439 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2440 new_gdbarch = rego->init (info, rego->arches);
2441
ebdba546
AC
2442 /* Did the tdep code like it? No. Reject the change and revert to
2443 the old architecture. */
104c1213
JM
2444 if (new_gdbarch == NULL)
2445 {
2446 if (gdbarch_debug)
59837fe0 2447 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2448 "Target rejected architecture\n");
2449 return NULL;
104c1213
JM
2450 }
2451
ebdba546
AC
2452 /* Is this a pre-existing architecture (as determined by already
2453 being initialized)? Move it to the front of the architecture
2454 list (keeping the list sorted Most Recently Used). */
2455 if (new_gdbarch->initialized_p)
104c1213 2456 {
ebdba546 2457 struct gdbarch_list **list;
fe978cb0 2458 struct gdbarch_list *self;
104c1213 2459 if (gdbarch_debug)
59837fe0 2460 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2461 "Previous architecture %s (%s) selected\n",
2462 host_address_to_string (new_gdbarch),
104c1213 2463 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2464 /* Find the existing arch in the list. */
2465 for (list = &rego->arches;
2466 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2467 list = &(*list)->next);
2468 /* It had better be in the list of architectures. */
2469 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2470 /* Unlink SELF. */
2471 self = (*list);
2472 (*list) = self->next;
2473 /* Insert SELF at the front. */
2474 self->next = rego->arches;
2475 rego->arches = self;
ebdba546
AC
2476 /* Return it. */
2477 return new_gdbarch;
104c1213
JM
2478 }
2479
ebdba546
AC
2480 /* It's a new architecture. */
2481 if (gdbarch_debug)
59837fe0 2482 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2483 "New architecture %s (%s) selected\n",
2484 host_address_to_string (new_gdbarch),
ebdba546
AC
2485 new_gdbarch->bfd_arch_info->printable_name);
2486
2487 /* Insert the new architecture into the front of the architecture
2488 list (keep the list sorted Most Recently Used). */
0f79675b 2489 {
fe978cb0
PA
2490 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2491 self->next = rego->arches;
2492 self->gdbarch = new_gdbarch;
2493 rego->arches = self;
0f79675b 2494 }
104c1213 2495
4b9b3959
AC
2496 /* Check that the newly installed architecture is valid. Plug in
2497 any post init values. */
2498 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2499 verify_gdbarch (new_gdbarch);
ebdba546 2500 new_gdbarch->initialized_p = 1;
104c1213 2501
4b9b3959 2502 if (gdbarch_debug)
ebdba546
AC
2503 gdbarch_dump (new_gdbarch, gdb_stdlog);
2504
2505 return new_gdbarch;
2506}
2507
e487cc15 2508/* Make the specified architecture current. */
ebdba546
AC
2509
2510void
aff68abb 2511set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2512{
2513 gdb_assert (new_gdbarch != NULL);
ebdba546 2514 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2515 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2516 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2517 registers_changed ();
ebdba546 2518}
104c1213 2519
f5656ead 2520/* Return the current inferior's arch. */
6ecd4729
PA
2521
2522struct gdbarch *
f5656ead 2523target_gdbarch (void)
6ecd4729
PA
2524{
2525 return current_inferior ()->gdbarch;
2526}
2527
104c1213 2528extern void _initialize_gdbarch (void);
b4a20239 2529
104c1213 2530void
34620563 2531_initialize_gdbarch (void)
104c1213 2532{
ccce17b0 2533 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2534Set architecture debugging."), _("\\
2535Show architecture debugging."), _("\\
2536When non-zero, architecture debugging is enabled."),
2537 NULL,
920d2a44 2538 show_gdbarch_debug,
85c07804 2539 &setdebuglist, &showdebuglist);
104c1213
JM
2540}
2541EOF
2542
2543# close things off
2544exec 1>&2
2545#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2546compare_new gdbarch.c
This page took 2.055316 seconds and 4 git commands to generate.