2004-02-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4
AC
4#
5# Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
6# Foundation, Inc.
7#
104c1213
JM
8#
9# This file is part of GDB.
10#
11# This program is free software; you can redistribute it and/or modify
12# it under the terms of the GNU General Public License as published by
13# the Free Software Foundation; either version 2 of the License, or
14# (at your option) any later version.
15#
16# This program is distributed in the hope that it will be useful,
17# but WITHOUT ANY WARRANTY; without even the implied warranty of
18# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19# GNU General Public License for more details.
20#
21# You should have received a copy of the GNU General Public License
22# along with this program; if not, write to the Free Software
23# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24
d8864532
AC
25# Make certain that the script is running in an internationalized
26# environment.
27LANG=c ; export LANG
1bd316f0 28LC_ALL=c ; export LC_ALL
d8864532
AC
29
30
59233f88
AC
31compare_new ()
32{
33 file=$1
66b43ecb 34 if test ! -r ${file}
59233f88
AC
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 37 elif diff -u ${file} new-${file}
59233f88
AC
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43}
44
45
46# Format of the input table
0b8f9e4d 47read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
48
49do_read ()
50{
34620563
AC
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
3d9a5942
AC
78 # .... and then going back through each field and strip out those
79 # that ended up with just that space character.
80 for r in ${read}
81 do
82 if eval test \"\${${r}}\" = \"\ \"
83 then
84 eval ${r}=""
85 fi
86 done
87
50248794
AC
88 case "${level}" in
89 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
90 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
e669114a 91 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
50248794
AC
92 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
93 esac
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14
AC
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
34620563
AC
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
06b25f14 117
ae45cd16
AC
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
34620563 121 "" )
f7968451 122 if test -n "${predefault}"
34620563
AC
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 125 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
126 elif class_is_variable_p
127 then
128 predicate="gdbarch->${function} != 0"
129 elif class_is_function_p
130 then
131 predicate="gdbarch->${function} != NULL"
34620563
AC
132 fi
133 ;;
ae45cd16 134 * )
1e9f55d0 135 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
136 kill $$
137 exit 1
138 ;;
139 esac
34620563
AC
140 esac
141
142 # PREDEFAULT is a valid fallback definition of MEMBER when
143 # multi-arch is not enabled. This ensures that the
144 # default value, when multi-arch is the same as the
145 # default value when not multi-arch. POSTDEFAULT is
146 # always a valid definition of MEMBER as this again
147 # ensures consistency.
148
72e74a21 149 if [ -n "${postdefault}" ]
34620563
AC
150 then
151 fallbackdefault="${postdefault}"
72e74a21 152 elif [ -n "${predefault}" ]
34620563
AC
153 then
154 fallbackdefault="${predefault}"
155 else
73d3c16e 156 fallbackdefault="0"
34620563
AC
157 fi
158
159 #NOT YET: See gdbarch.log for basic verification of
160 # database
161
162 break
f0d4cc9e 163 fi
34620563 164 done
72e74a21 165 if [ -n "${class}" ]
34620563
AC
166 then
167 true
c0e8c252
AC
168 else
169 false
170 fi
171}
172
104c1213 173
f0d4cc9e
AC
174fallback_default_p ()
175{
72e74a21
JB
176 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
177 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
178}
179
180class_is_variable_p ()
181{
4a5c6a1d
AC
182 case "${class}" in
183 *v* | *V* ) true ;;
184 * ) false ;;
185 esac
f0d4cc9e
AC
186}
187
188class_is_function_p ()
189{
4a5c6a1d
AC
190 case "${class}" in
191 *f* | *F* | *m* | *M* ) true ;;
192 * ) false ;;
193 esac
194}
195
196class_is_multiarch_p ()
197{
198 case "${class}" in
199 *m* | *M* ) true ;;
200 * ) false ;;
201 esac
f0d4cc9e
AC
202}
203
204class_is_predicate_p ()
205{
4a5c6a1d
AC
206 case "${class}" in
207 *F* | *V* | *M* ) true ;;
208 * ) false ;;
209 esac
f0d4cc9e
AC
210}
211
212class_is_info_p ()
213{
4a5c6a1d
AC
214 case "${class}" in
215 *i* ) true ;;
216 * ) false ;;
217 esac
f0d4cc9e
AC
218}
219
220
cff3e48b
JM
221# dump out/verify the doco
222for field in ${read}
223do
224 case ${field} in
225
226 class ) : ;;
c4093a6a 227
c0e8c252
AC
228 # # -> line disable
229 # f -> function
230 # hiding a function
2ada493a
AC
231 # F -> function + predicate
232 # hiding a function + predicate to test function validity
c0e8c252
AC
233 # v -> variable
234 # hiding a variable
2ada493a
AC
235 # V -> variable + predicate
236 # hiding a variable + predicate to test variables validity
c0e8c252
AC
237 # i -> set from info
238 # hiding something from the ``struct info'' object
4a5c6a1d
AC
239 # m -> multi-arch function
240 # hiding a multi-arch function (parameterised with the architecture)
241 # M -> multi-arch function + predicate
242 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
243
244 level ) : ;;
245
c0e8c252
AC
246 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
247 # LEVEL is a predicate on checking that a given method is
248 # initialized (using INVALID_P).
cff3e48b
JM
249
250 macro ) : ;;
251
c0e8c252 252 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
253
254 returntype ) : ;;
255
c0e8c252 256 # For functions, the return type; for variables, the data type
cff3e48b
JM
257
258 function ) : ;;
259
c0e8c252
AC
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
263
264 formal ) : ;;
265
c0e8c252
AC
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
cff3e48b
JM
270
271 actual ) : ;;
272
c0e8c252
AC
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
cff3e48b
JM
276
277 attrib ) : ;;
278
c0e8c252
AC
279 # Any GCC attributes that should be attached to the function
280 # declaration. At present this field is unused.
cff3e48b 281
0b8f9e4d 282 staticdefault ) : ;;
c0e8c252
AC
283
284 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
285 # created. STATICDEFAULT is the value to insert into that
286 # static gdbarch object. Since this a static object only
287 # simple expressions can be used.
cff3e48b 288
0b8f9e4d 289 # If STATICDEFAULT is empty, zero is used.
c0e8c252 290
0b8f9e4d 291 predefault ) : ;;
cff3e48b 292
10312cc4
AC
293 # An initial value to assign to MEMBER of the freshly
294 # malloc()ed gdbarch object. After initialization, the
295 # freshly malloc()ed object is passed to the target
296 # architecture code for further updates.
cff3e48b 297
0b8f9e4d
AC
298 # If PREDEFAULT is empty, zero is used.
299
10312cc4
AC
300 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
301 # INVALID_P are specified, PREDEFAULT will be used as the
302 # default for the non- multi-arch target.
303
304 # A zero PREDEFAULT function will force the fallback to call
305 # internal_error().
f0d4cc9e
AC
306
307 # Variable declarations can refer to ``gdbarch'' which will
308 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
309
310 postdefault ) : ;;
311
312 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
313 # the target architecture code fail to change the PREDEFAULT
314 # value.
0b8f9e4d
AC
315
316 # If POSTDEFAULT is empty, no post update is performed.
317
318 # If both INVALID_P and POSTDEFAULT are non-empty then
319 # INVALID_P will be used to determine if MEMBER should be
320 # changed to POSTDEFAULT.
321
10312cc4
AC
322 # If a non-empty POSTDEFAULT and a zero INVALID_P are
323 # specified, POSTDEFAULT will be used as the default for the
324 # non- multi-arch target (regardless of the value of
325 # PREDEFAULT).
326
f0d4cc9e
AC
327 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
328
db446970
AC
329 # Variable declarations can refer to ``current_gdbarch'' which
330 # will contain the current architecture. Care should be
331 # taken.
cff3e48b 332
c4093a6a 333 invalid_p ) : ;;
cff3e48b 334
0b8f9e4d 335 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 336 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
337 # initialize MEMBER or the initialized the member is invalid.
338 # If POSTDEFAULT is non-empty then MEMBER will be updated to
339 # that value. If POSTDEFAULT is empty then internal_error()
340 # is called.
341
342 # If INVALID_P is empty, a check that MEMBER is no longer
343 # equal to PREDEFAULT is used.
344
f0d4cc9e
AC
345 # The expression ``0'' disables the INVALID_P check making
346 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
347
348 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
349
350 fmt ) : ;;
351
c0e8c252
AC
352 # printf style format string that can be used to print out the
353 # MEMBER. Sometimes "%s" is useful. For functions, this is
354 # ignored and the function address is printed.
355
0b8f9e4d 356 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
357
358 print ) : ;;
359
c0e8c252
AC
360 # An optional equation that casts MEMBER to a value suitable
361 # for formatting by FMT.
362
0b8f9e4d 363 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
364
365 print_p ) : ;;
366
c0e8c252
AC
367 # An optional indicator for any predicte to wrap around the
368 # print member code.
369
4b9b3959 370 # () -> Call a custom function to do the dump.
c0e8c252
AC
371 # exp -> Wrap print up in ``if (${print_p}) ...
372 # ``'' -> No predicate
cff3e48b 373
0b8f9e4d
AC
374 # If PRINT_P is empty, ``1'' is always used.
375
cff3e48b
JM
376 description ) : ;;
377
0b8f9e4d 378 # Currently unused.
cff3e48b 379
50248794
AC
380 *)
381 echo "Bad field ${field}"
382 exit 1;;
cff3e48b
JM
383 esac
384done
385
cff3e48b 386
104c1213
JM
387function_list ()
388{
cff3e48b 389 # See below (DOCO) for description of each field
34620563 390 cat <<EOF
0b8f9e4d 391i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 392#
d7449b42 393i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
4be87837
DJ
394#
395i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
66b43ecb
AC
396# Number of bits in a char or unsigned char for the target machine.
397# Just like CHAR_BIT in <limits.h> but describes the target machine.
e669114a 398# v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
399#
400# Number of bits in a short or unsigned short for the target machine.
e669114a 401v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 402# Number of bits in an int or unsigned int for the target machine.
e669114a 403v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 404# Number of bits in a long or unsigned long for the target machine.
e669114a 405v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
406# Number of bits in a long long or unsigned long long for the target
407# machine.
e669114a 408v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
66b43ecb 409# Number of bits in a float for the target machine.
e669114a 410v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
66b43ecb 411# Number of bits in a double for the target machine.
e669114a 412v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
66b43ecb 413# Number of bits in a long double for the target machine.
e669114a 414v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
415# For most targets, a pointer on the target and its representation as an
416# address in GDB have the same size and "look the same". For such a
417# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
418# / addr_bit will be set from it.
419#
420# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
421# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
422#
423# ptr_bit is the size of a pointer on the target
e669114a 424v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b 425# addr_bit is the size of a target address as represented in gdb
e669114a 426v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb 427# Number of bits in a BFD_VMA for the target object file format.
e669114a 428v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 429#
4e409299 430# One if \`char' acts like \`signed char', zero if \`unsigned char'.
e669114a 431v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 432#
cde9ea48 433F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
e669114a 434f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
a9e5fdc2 435# UNWIND_SP is a direct replacement for TARGET_READ_SP.
bd1ce8ba 436F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
39d4ef09
AC
437# Function for getting target's idea of a frame pointer. FIXME: GDB's
438# whole scheme for dealing with "frames" and "frame pointers" needs a
439# serious shakedown.
e669114a 440f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 441#
f7968451
AC
442M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
443M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
61a0eb5b 444#
104c1213 445v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
446# This macro gives the number of pseudo-registers that live in the
447# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
448# These pseudo-registers may be aliases for other registers,
449# combinations of other registers, or they may be computed by GDB.
0aba1244 450v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
451
452# GDB's standard (or well known) register numbers. These can map onto
453# a real register or a pseudo (computed) register or not be defined at
1200cd6e 454# all (-1).
a9e5fdc2 455# SP_REGNUM will hopefully be replaced by UNWIND_SP.
1200cd6e 456v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
1200cd6e 457v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 458v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d 459v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
88c72b7d
AC
460# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
461f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
462# Provide a default mapping from a ecoff register number to a gdb REGNUM.
463f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
464# Provide a default mapping from a DWARF register number to a gdb REGNUM.
465f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
466# Convert from an sdb register number to an internal gdb register number.
88c72b7d
AC
467f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
468f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
e23457df 469f::REGISTER_NAME:const char *:register_name:int regnr:regnr
9c04cab7 470
2e092625 471# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
f7968451 472M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
2e092625
AC
473# REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
474F:2:DEPRECATED_REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
9c04cab7
AC
475# DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
476# from REGISTER_TYPE.
b8b527c5 477v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
f3be58bc
AC
478# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
479# register offsets computed using just REGISTER_TYPE, this can be
480# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
481# function with predicate has a valid (callable) initial value. As a
482# consequence, even when the predicate is false, the corresponding
483# function works. This simplifies the migration process - old code,
484# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
62700349 485F::DEPRECATED_REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
f3be58bc
AC
486# If all registers have identical raw and virtual sizes and those
487# sizes agree with the value computed from REGISTER_TYPE,
488# DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
489# registers.
12c266ea 490F:2:DEPRECATED_REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
f3be58bc
AC
491# If all registers have identical raw and virtual sizes and those
492# sizes agree with the value computed from REGISTER_TYPE,
493# DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
494# registers.
f30992d4 495F:2:DEPRECATED_REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
9c04cab7
AC
496# DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
497# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 498V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
9c04cab7
AC
499# DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
500# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 501V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
9c04cab7 502
f3be58bc 503# See gdbint.texinfo, and PUSH_DUMMY_CALL.
f7968451 504M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
f3be58bc
AC
505# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
506# SAVE_DUMMY_FRAME_TOS.
a59fe496 507F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
f3be58bc
AC
508# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
509# DEPRECATED_FP_REGNUM.
510v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
511# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
512# DEPRECATED_TARGET_READ_FP.
513F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
514
b8de8283
AC
515# See gdbint.texinfo. See infcall.c. New, all singing all dancing,
516# replacement for DEPRECATED_PUSH_ARGUMENTS.
517M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
518# PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
519F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
520# DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
521v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
522# Implement PUSH_RETURN_ADDRESS, and then merge in
523# DEPRECATED_PUSH_RETURN_ADDRESS.
f7968451 524F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
b8de8283
AC
525# Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
526F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
527# DEPRECATED_REGISTER_SIZE can be deleted.
528v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
529v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
88a82a65 530F::DEPRECATED_CALL_DUMMY_ADDRESS:CORE_ADDR:deprecated_call_dummy_address:void
b8de8283
AC
531# DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
532v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
533# DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
534v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
535# DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
536v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
537# DEPRECATED_CALL_DUMMY_WORDS can be deleted.
538v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
539# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
540v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
541# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
f7968451 542V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
b8de8283
AC
543# DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
544# PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
545F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
546# This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
f7968451 547M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
b8de8283 548# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
f7968451 549F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
b8de8283
AC
550# Implement PUSH_DUMMY_CALL, then delete
551# DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
552v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
553
903ad3a6 554F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
0ab7a791 555m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
23e3a7ac 556M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
e76f1f2e 557M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
558# MAP a GDB RAW register number onto a simulator register number. See
559# also include/...-sim.h.
8238d0bf 560f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
f7968451 561F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
01fb7433
AC
562f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
563f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0 564# setjmp/longjmp support.
f7968451 565F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
ae45cd16
AC
566# NOTE: cagney/2002-11-24: This function with predicate has a valid
567# (callable) initial value. As a consequence, even when the predicate
568# is false, the corresponding function works. This simplifies the
569# migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
570# doesn't need to be modified.
55e1d7e7 571F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
97f46953 572F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
e669114a 573F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
104c1213 574#
f0d4cc9e 575v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
e669114a 576v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
129c1cd6 577F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
104c1213 578#
781a750d
AC
579# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
580# For raw <-> cooked register conversions, replaced by pseudo registers.
581f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
582# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
583# For raw <-> cooked register conversions, replaced by pseudo registers.
584f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
585# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
586# For raw <-> cooked register conversions, replaced by pseudo registers.
587f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
13d01224 588#
ff2e87ac
AC
589f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
590f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
591f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
104c1213 592#
66140c26 593f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
ac2e2ef7 594f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 595F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 596#
f7968451 597F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
4183d812 598# NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
f7968451 599F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
92ad9cd9
AC
600
601# It has been suggested that this, well actually its predecessor,
602# should take the type/value of the function to be called and not the
603# return type. This is left as an exercise for the reader.
604
963e2bb7 605M:::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, void *readbuf, const void *writebuf:valtype, regcache, readbuf, writebuf
92ad9cd9
AC
606
607# The deprecated methods RETURN_VALUE_ON_STACK, EXTRACT_RETURN_VALUE,
608# STORE_RETURN_VALUE and USE_STRUCT_CONVENTION have all been folded
74055713 609# into RETURN_VALUE.
92ad9cd9
AC
610
611f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
e669114a
AC
612f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
613f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
614f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
615f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
92ad9cd9
AC
616f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
617
74055713
AC
618# As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
619# ABI suitable for the implementation of a robust extract
620# struct-convention return-value address method (the sparc saves the
621# address in the callers frame). All the other cases so far examined,
622# the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
623# erreneous - the code was incorrectly assuming that the return-value
624# address, stored in a register, was preserved across the entire
625# function call.
626
627# For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
628# the ABIs that are still to be analyzed - perhaps this should simply
629# be deleted. The commented out extract_returned_value_address method
630# is provided as a starting point for the 32-bit SPARC. It, or
631# something like it, along with changes to both infcmd.c and stack.c
632# will be needed for that case to work. NB: It is passed the callers
633# frame since it is only after the callee has returned that this
634# function is used.
635
636#M:::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
637F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
638
f7968451
AC
639F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
640F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
104c1213
JM
641#
642f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
643f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
aaab4dba 644f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
a1131521 645M:2:ADJUST_BREAKPOINT_ADDRESS:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
0b8f9e4d
AC
646f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
647f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
71bd6bd4 648v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:::0
6503b91e 649v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:::0
104c1213 650#
f6684c31 651m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213 652#
5867a2fb 653v::FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:::0
0b8f9e4d 654f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
f7968451
AC
655F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
656F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
8bedc050
AC
657# DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
658# note, per UNWIND_PC's doco, that while the two have similar
659# interfaces they have very different underlying implementations.
f7968451
AC
660F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
661M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
662M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
663# DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
664# frame-base. Enable frame-base before frame-unwind.
665F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
666# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
667# frame-base. Enable frame-base before frame-unwind.
668F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
6913c89a 669F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
983a287a 670F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
104c1213 671#
f27dd7fd
AC
672# DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
673# to frame_align and the requirement that methods such as
674# push_dummy_call and frame_red_zone_size maintain correct stack/frame
675# alignment.
676F:2:DEPRECATED_STACK_ALIGN:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
dc604539 677M:::CORE_ADDR:frame_align:CORE_ADDR address:address
192cb3d4
MK
678# DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
679# stabs_argument_has_addr.
8e823e25 680F:2:DEPRECATED_REG_STRUCT_HAS_ADDR:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
192cb3d4 681m:::int:stabs_argument_has_addr:struct type *type:type:::default_stabs_argument_has_addr::0
8b148df9 682v::FRAME_RED_ZONE_SIZE:int:frame_red_zone_size
58d5518e 683v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e 684#
db446970
AC
685v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (current_gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
686v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
687v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (current_gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
e2d0e7eb 688m:::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ:::convert_from_func_ptr_addr_identity::0
875e1767
AC
689# On some machines there are bits in addresses which are not really
690# part of the address, but are used by the kernel, the hardware, etc.
691# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
692# we get a "real" address such as one would find in a symbol table.
693# This is used only for addresses of instructions, and even then I'm
694# not sure it's used in all contexts. It exists to deal with there
695# being a few stray bits in the PC which would mislead us, not as some
696# sort of generic thing to handle alignment or segmentation (it's
697# possible it should be in TARGET_READ_PC instead).
698f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
f6214256 699# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
181c1381
RE
700# ADDR_BITS_REMOVE.
701f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
702# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
703# the target needs software single step. An ISA method to implement it.
704#
705# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
706# using the breakpoint system instead of blatting memory directly (as with rs6000).
707#
708# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
709# single step. If not, then implement single step using breakpoints.
f7968451 710F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
f6c40618
AC
711# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
712# disassembler. Perhaphs objdump can handle it?
a89aa300 713f::TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info:::0:
bdcd319a 714f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
715
716
dea0c52f
MK
717# If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
718# evaluates non-zero, this is the address where the debugger will place
719# a step-resume breakpoint to get us past the dynamic linker.
4c8c40e6 720m:2:SKIP_SOLIB_RESOLVER:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc:::generic_skip_solib_resolver::0
68e9cc94
CV
721# For SVR4 shared libraries, each call goes through a small piece of
722# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 723# to nonzero if we are currently stopped in one of these.
68e9cc94 724f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
725
726# Some systems also have trampoline code for returning from shared libs.
727f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
728
d7bd68ca
AC
729# Sigtramp is a routine that the kernel calls (which then calls the
730# signal handler). On most machines it is a library routine that is
731# linked into the executable.
732#
733# This macro, given a program counter value and the name of the
734# function in which that PC resides (which can be null if the name is
735# not known), returns nonzero if the PC and name show that we are in
736# sigtramp.
737#
738# On most machines just see if the name is sigtramp (and if we have
739# no name, assume we are not in sigtramp).
740#
741# FIXME: cagney/2002-04-21: The function find_pc_partial_function
742# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
743# This means PC_IN_SIGTRAMP function can't be implemented by doing its
744# own local NAME lookup.
745#
746# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
747# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
748# does not.
749f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
43156d82 750F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
e669114a 751F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
c12260ac
CV
752# A target might have problems with watchpoints as soon as the stack
753# frame of the current function has been destroyed. This mostly happens
754# as the first action in a funtion's epilogue. in_function_epilogue_p()
755# is defined to return a non-zero value if either the given addr is one
756# instruction after the stack destroying instruction up to the trailing
757# return instruction or if we can figure out that the stack frame has
758# already been invalidated regardless of the value of addr. Targets
759# which don't suffer from that problem could just let this functionality
760# untouched.
761m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
762# Given a vector of command-line arguments, return a newly allocated
763# string which, when passed to the create_inferior function, will be
764# parsed (on Unix systems, by the shell) to yield the same vector.
765# This function should call error() if the argument vector is not
766# representable for this target or if this target does not support
767# command-line arguments.
768# ARGC is the number of elements in the vector.
769# ARGV is an array of strings, one per argument.
770m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
a2cf933a
EZ
771f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
772f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
e669114a
AC
773v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
774v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
775v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
8b2dbe47 776F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
f7968451 777M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
321432c0 778M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 779# Is a register in a group
7e20f3fb 780m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
f6214256 781# Fetch the pointer to the ith function argument.
f7968451 782F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
783
784# Return the appropriate register set for a core file section with
785# name SECT_NAME and size SECT_SIZE.
786M:::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
104c1213 787EOF
104c1213
JM
788}
789
0b8f9e4d
AC
790#
791# The .log file
792#
793exec > new-gdbarch.log
34620563 794function_list | while do_read
0b8f9e4d
AC
795do
796 cat <<EOF
104c1213
JM
797${class} ${macro}(${actual})
798 ${returntype} ${function} ($formal)${attrib}
104c1213 799EOF
3d9a5942
AC
800 for r in ${read}
801 do
802 eval echo \"\ \ \ \ ${r}=\${${r}}\"
803 done
f0d4cc9e 804 if class_is_predicate_p && fallback_default_p
0b8f9e4d 805 then
66b43ecb 806 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
807 kill $$
808 exit 1
809 fi
72e74a21 810 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
811 then
812 echo "Error: postdefault is useless when invalid_p=0" 1>&2
813 kill $$
814 exit 1
815 fi
a72293e2
AC
816 if class_is_multiarch_p
817 then
818 if class_is_predicate_p ; then :
819 elif test "x${predefault}" = "x"
820 then
821 echo "Error: pure multi-arch function must have a predefault" 1>&2
822 kill $$
823 exit 1
824 fi
825 fi
3d9a5942 826 echo ""
0b8f9e4d
AC
827done
828
829exec 1>&2
830compare_new gdbarch.log
831
104c1213
JM
832
833copyright ()
834{
835cat <<EOF
59233f88
AC
836/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
837
104c1213 838/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4
AC
839
840 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
841 Software Foundation, Inc.
104c1213
JM
842
843 This file is part of GDB.
844
845 This program is free software; you can redistribute it and/or modify
846 it under the terms of the GNU General Public License as published by
847 the Free Software Foundation; either version 2 of the License, or
848 (at your option) any later version.
849
850 This program is distributed in the hope that it will be useful,
851 but WITHOUT ANY WARRANTY; without even the implied warranty of
852 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
853 GNU General Public License for more details.
854
855 You should have received a copy of the GNU General Public License
856 along with this program; if not, write to the Free Software
857 Foundation, Inc., 59 Temple Place - Suite 330,
858 Boston, MA 02111-1307, USA. */
859
104c1213
JM
860/* This file was created with the aid of \`\`gdbarch.sh''.
861
52204a0b 862 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
863 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
864 against the existing \`\`gdbarch.[hc]''. Any differences found
865 being reported.
866
867 If editing this file, please also run gdbarch.sh and merge any
52204a0b 868 changes into that script. Conversely, when making sweeping changes
104c1213
JM
869 to this file, modifying gdbarch.sh and using its output may prove
870 easier. */
871
872EOF
873}
874
875#
876# The .h file
877#
878
879exec > new-gdbarch.h
880copyright
881cat <<EOF
882#ifndef GDBARCH_H
883#define GDBARCH_H
884
da3331ec
AC
885struct floatformat;
886struct ui_file;
104c1213
JM
887struct frame_info;
888struct value;
b6af0555 889struct objfile;
a2cf933a 890struct minimal_symbol;
049ee0e4 891struct regcache;
b59ff9d5 892struct reggroup;
6ce6d90f 893struct regset;
a89aa300 894struct disassemble_info;
e2d0e7eb 895struct target_ops;
104c1213 896
104c1213
JM
897extern struct gdbarch *current_gdbarch;
898
899
104c1213
JM
900/* If any of the following are defined, the target wasn't correctly
901 converted. */
902
83905903
AC
903#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
904#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
905#endif
104c1213
JM
906EOF
907
908# function typedef's
3d9a5942
AC
909printf "\n"
910printf "\n"
911printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 912function_list | while do_read
104c1213 913do
2ada493a
AC
914 if class_is_info_p
915 then
3d9a5942
AC
916 printf "\n"
917 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
918 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 919 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
920 printf "#error \"Non multi-arch definition of ${macro}\"\n"
921 printf "#endif\n"
c25083af 922 printf "#if !defined (${macro})\n"
3d9a5942
AC
923 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
924 printf "#endif\n"
2ada493a 925 fi
104c1213
JM
926done
927
928# function typedef's
3d9a5942
AC
929printf "\n"
930printf "\n"
931printf "/* The following are initialized by the target dependent code. */\n"
34620563 932function_list | while do_read
104c1213 933do
72e74a21 934 if [ -n "${comment}" ]
34620563
AC
935 then
936 echo "${comment}" | sed \
937 -e '2 s,#,/*,' \
938 -e '3,$ s,#, ,' \
939 -e '$ s,$, */,'
940 fi
b77be6cf 941 if class_is_multiarch_p
2ada493a 942 then
b77be6cf
AC
943 if class_is_predicate_p
944 then
945 printf "\n"
946 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
947 fi
948 else
949 if class_is_predicate_p
950 then
951 printf "\n"
952 printf "#if defined (${macro})\n"
953 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
954 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 955 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
956 printf "#define ${macro}_P() (1)\n"
957 printf "#endif\n"
eee30e78 958 printf "#endif\n"
b77be6cf 959 printf "\n"
b77be6cf 960 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 961 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
962 printf "#error \"Non multi-arch definition of ${macro}\"\n"
963 printf "#endif\n"
028c194b 964 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
965 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
966 printf "#endif\n"
967 fi
4a5c6a1d 968 fi
2ada493a
AC
969 if class_is_variable_p
970 then
3d9a5942
AC
971 printf "\n"
972 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
973 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 974 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
975 printf "#error \"Non multi-arch definition of ${macro}\"\n"
976 printf "#endif\n"
c25083af
AC
977 printf "#if !defined (${macro})\n"
978 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
979 printf "#endif\n"
2ada493a
AC
980 fi
981 if class_is_function_p
982 then
3d9a5942 983 printf "\n"
72e74a21 984 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
985 then
986 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
987 elif class_is_multiarch_p
988 then
989 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
990 else
991 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
992 fi
72e74a21 993 if [ "x${formal}" = "xvoid" ]
104c1213 994 then
3d9a5942 995 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 996 else
3d9a5942 997 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 998 fi
3d9a5942 999 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
1000 if class_is_multiarch_p ; then :
1001 else
028c194b 1002 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
1003 printf "#error \"Non multi-arch definition of ${macro}\"\n"
1004 printf "#endif\n"
c25083af
AC
1005 if [ "x${actual}" = "x" ]
1006 then
1007 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
1008 elif [ "x${actual}" = "x-" ]
1009 then
1010 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1011 else
1012 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1013 fi
1014 printf "#if !defined (${macro})\n"
72e74a21 1015 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
1016 then
1017 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 1018 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
1019 then
1020 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1021 else
1022 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1023 fi
1024 printf "#endif\n"
104c1213 1025 fi
2ada493a 1026 fi
104c1213
JM
1027done
1028
1029# close it off
1030cat <<EOF
1031
1032extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1033
1034
1035/* Mechanism for co-ordinating the selection of a specific
1036 architecture.
1037
1038 GDB targets (*-tdep.c) can register an interest in a specific
1039 architecture. Other GDB components can register a need to maintain
1040 per-architecture data.
1041
1042 The mechanisms below ensures that there is only a loose connection
1043 between the set-architecture command and the various GDB
0fa6923a 1044 components. Each component can independently register their need
104c1213
JM
1045 to maintain architecture specific data with gdbarch.
1046
1047 Pragmatics:
1048
1049 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1050 didn't scale.
1051
1052 The more traditional mega-struct containing architecture specific
1053 data for all the various GDB components was also considered. Since
0fa6923a 1054 GDB is built from a variable number of (fairly independent)
104c1213
JM
1055 components it was determined that the global aproach was not
1056 applicable. */
1057
1058
1059/* Register a new architectural family with GDB.
1060
1061 Register support for the specified ARCHITECTURE with GDB. When
1062 gdbarch determines that the specified architecture has been
1063 selected, the corresponding INIT function is called.
1064
1065 --
1066
1067 The INIT function takes two parameters: INFO which contains the
1068 information available to gdbarch about the (possibly new)
1069 architecture; ARCHES which is a list of the previously created
1070 \`\`struct gdbarch'' for this architecture.
1071
0f79675b
AC
1072 The INFO parameter is, as far as possible, be pre-initialized with
1073 information obtained from INFO.ABFD or the previously selected
1074 architecture.
1075
1076 The ARCHES parameter is a linked list (sorted most recently used)
1077 of all the previously created architures for this architecture
1078 family. The (possibly NULL) ARCHES->gdbarch can used to access
1079 values from the previously selected architecture for this
1080 architecture family. The global \`\`current_gdbarch'' shall not be
1081 used.
104c1213
JM
1082
1083 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1084 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1085 gdbarch'' from the ARCHES list - indicating that the new
1086 architecture is just a synonym for an earlier architecture (see
1087 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1088 - that describes the selected architecture (see gdbarch_alloc()).
1089
1090 The DUMP_TDEP function shall print out all target specific values.
1091 Care should be taken to ensure that the function works in both the
1092 multi-arch and non- multi-arch cases. */
104c1213
JM
1093
1094struct gdbarch_list
1095{
1096 struct gdbarch *gdbarch;
1097 struct gdbarch_list *next;
1098};
1099
1100struct gdbarch_info
1101{
104c1213
JM
1102 /* Use default: NULL (ZERO). */
1103 const struct bfd_arch_info *bfd_arch_info;
1104
428721aa 1105 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1106 int byte_order;
1107
1108 /* Use default: NULL (ZERO). */
1109 bfd *abfd;
1110
1111 /* Use default: NULL (ZERO). */
1112 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1113
1114 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1115 enum gdb_osabi osabi;
104c1213
JM
1116};
1117
1118typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1119typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1120
4b9b3959 1121/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1122extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1123
4b9b3959
AC
1124extern void gdbarch_register (enum bfd_architecture architecture,
1125 gdbarch_init_ftype *,
1126 gdbarch_dump_tdep_ftype *);
1127
104c1213 1128
b4a20239
AC
1129/* Return a freshly allocated, NULL terminated, array of the valid
1130 architecture names. Since architectures are registered during the
1131 _initialize phase this function only returns useful information
1132 once initialization has been completed. */
1133
1134extern const char **gdbarch_printable_names (void);
1135
1136
104c1213
JM
1137/* Helper function. Search the list of ARCHES for a GDBARCH that
1138 matches the information provided by INFO. */
1139
1140extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1141
1142
1143/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1144 basic initialization using values obtained from the INFO andTDEP
1145 parameters. set_gdbarch_*() functions are called to complete the
1146 initialization of the object. */
1147
1148extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1149
1150
4b9b3959
AC
1151/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1152 It is assumed that the caller freeds the \`\`struct
1153 gdbarch_tdep''. */
1154
058f20d5
JB
1155extern void gdbarch_free (struct gdbarch *);
1156
1157
aebd7893
AC
1158/* Helper function. Allocate memory from the \`\`struct gdbarch''
1159 obstack. The memory is freed when the corresponding architecture
1160 is also freed. */
1161
1162extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1163#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1164#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1165
1166
b732d07d 1167/* Helper function. Force an update of the current architecture.
104c1213 1168
b732d07d
AC
1169 The actual architecture selected is determined by INFO, \`\`(gdb) set
1170 architecture'' et.al., the existing architecture and BFD's default
1171 architecture. INFO should be initialized to zero and then selected
1172 fields should be updated.
104c1213 1173
16f33e29
AC
1174 Returns non-zero if the update succeeds */
1175
1176extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1177
1178
ebdba546
AC
1179/* Helper function. Find an architecture matching info.
1180
1181 INFO should be initialized using gdbarch_info_init, relevant fields
1182 set, and then finished using gdbarch_info_fill.
1183
1184 Returns the corresponding architecture, or NULL if no matching
1185 architecture was found. "current_gdbarch" is not updated. */
1186
1187extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1188
1189
1190/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1191
1192 FIXME: kettenis/20031124: Of the functions that follow, only
1193 gdbarch_from_bfd is supposed to survive. The others will
1194 dissappear since in the future GDB will (hopefully) be truly
1195 multi-arch. However, for now we're still stuck with the concept of
1196 a single active architecture. */
1197
1198extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1199
104c1213
JM
1200
1201/* Register per-architecture data-pointer.
1202
1203 Reserve space for a per-architecture data-pointer. An identifier
1204 for the reserved data-pointer is returned. That identifer should
95160752 1205 be saved in a local static variable.
104c1213 1206
76860b5f
AC
1207 The per-architecture data-pointer is either initialized explicitly
1208 (set_gdbarch_data()) or implicitly (by INIT() via a call to
fcc1c85c
AC
1209 gdbarch_data()).
1210
1211 Memory for the per-architecture data shall be allocated using
1212 gdbarch_obstack_zalloc. That memory will be deleted when the
1213 corresponding architecture object is deleted.
104c1213 1214
95160752
AC
1215 When a previously created architecture is re-selected, the
1216 per-architecture data-pointer for that previous architecture is
76860b5f 1217 restored. INIT() is not re-called.
104c1213
JM
1218
1219 Multiple registrarants for any architecture are allowed (and
1220 strongly encouraged). */
1221
95160752 1222struct gdbarch_data;
104c1213 1223
95160752 1224typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
fcc1c85c 1225extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init);
95160752
AC
1226extern void set_gdbarch_data (struct gdbarch *gdbarch,
1227 struct gdbarch_data *data,
1228 void *pointer);
104c1213 1229
451fbdda 1230extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1231
1232
a8cf2722 1233
104c1213
JM
1234/* Register per-architecture memory region.
1235
1236 Provide a memory-region swap mechanism. Per-architecture memory
1237 region are created. These memory regions are swapped whenever the
1238 architecture is changed. For a new architecture, the memory region
1239 is initialized with zero (0) and the INIT function is called.
1240
1241 Memory regions are swapped / initialized in the order that they are
1242 registered. NULL DATA and/or INIT values can be specified.
1243
1244 New code should use register_gdbarch_data(). */
1245
1246typedef void (gdbarch_swap_ftype) (void);
1247extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1248#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1249
1250
1251
0fa6923a 1252/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1253 byte-order, ...) using information found in the BFD */
1254
1255extern void set_gdbarch_from_file (bfd *);
1256
1257
e514a9d6
JM
1258/* Initialize the current architecture to the "first" one we find on
1259 our list. */
1260
1261extern void initialize_current_architecture (void);
1262
104c1213
JM
1263/* gdbarch trace variable */
1264extern int gdbarch_debug;
1265
4b9b3959 1266extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1267
1268#endif
1269EOF
1270exec 1>&2
1271#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1272compare_new gdbarch.h
104c1213
JM
1273
1274
1275#
1276# C file
1277#
1278
1279exec > new-gdbarch.c
1280copyright
1281cat <<EOF
1282
1283#include "defs.h"
7355ddba 1284#include "arch-utils.h"
104c1213 1285
104c1213
JM
1286#include "gdbcmd.h"
1287#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
104c1213
JM
1288#include "symcat.h"
1289
f0d4cc9e 1290#include "floatformat.h"
104c1213 1291
95160752 1292#include "gdb_assert.h"
b66d6d2e 1293#include "gdb_string.h"
67c2c32c 1294#include "gdb-events.h"
b59ff9d5 1295#include "reggroups.h"
4be87837 1296#include "osabi.h"
e9a2674e 1297#include "symfile.h" /* For entry_point_address. */
aebd7893 1298#include "gdb_obstack.h"
95160752 1299
104c1213
JM
1300/* Static function declarations */
1301
b3cc3077 1302static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1303
104c1213
JM
1304/* Non-zero if we want to trace architecture code. */
1305
1306#ifndef GDBARCH_DEBUG
1307#define GDBARCH_DEBUG 0
1308#endif
1309int gdbarch_debug = GDBARCH_DEBUG;
1310
1311EOF
1312
1313# gdbarch open the gdbarch object
3d9a5942
AC
1314printf "\n"
1315printf "/* Maintain the struct gdbarch object */\n"
1316printf "\n"
1317printf "struct gdbarch\n"
1318printf "{\n"
76860b5f
AC
1319printf " /* Has this architecture been fully initialized? */\n"
1320printf " int initialized_p;\n"
aebd7893
AC
1321printf "\n"
1322printf " /* An obstack bound to the lifetime of the architecture. */\n"
1323printf " struct obstack *obstack;\n"
1324printf "\n"
3d9a5942 1325printf " /* basic architectural information */\n"
34620563 1326function_list | while do_read
104c1213 1327do
2ada493a
AC
1328 if class_is_info_p
1329 then
3d9a5942 1330 printf " ${returntype} ${function};\n"
2ada493a 1331 fi
104c1213 1332done
3d9a5942
AC
1333printf "\n"
1334printf " /* target specific vector. */\n"
1335printf " struct gdbarch_tdep *tdep;\n"
1336printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1337printf "\n"
1338printf " /* per-architecture data-pointers */\n"
95160752 1339printf " unsigned nr_data;\n"
3d9a5942
AC
1340printf " void **data;\n"
1341printf "\n"
1342printf " /* per-architecture swap-regions */\n"
1343printf " struct gdbarch_swap *swap;\n"
1344printf "\n"
104c1213
JM
1345cat <<EOF
1346 /* Multi-arch values.
1347
1348 When extending this structure you must:
1349
1350 Add the field below.
1351
1352 Declare set/get functions and define the corresponding
1353 macro in gdbarch.h.
1354
1355 gdbarch_alloc(): If zero/NULL is not a suitable default,
1356 initialize the new field.
1357
1358 verify_gdbarch(): Confirm that the target updated the field
1359 correctly.
1360
7e73cedf 1361 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1362 field is dumped out
1363
c0e8c252 1364 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1365 variable (base values on the host's c-type system).
1366
1367 get_gdbarch(): Implement the set/get functions (probably using
1368 the macro's as shortcuts).
1369
1370 */
1371
1372EOF
34620563 1373function_list | while do_read
104c1213 1374do
2ada493a
AC
1375 if class_is_variable_p
1376 then
3d9a5942 1377 printf " ${returntype} ${function};\n"
2ada493a
AC
1378 elif class_is_function_p
1379 then
3d9a5942 1380 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1381 fi
104c1213 1382done
3d9a5942 1383printf "};\n"
104c1213
JM
1384
1385# A pre-initialized vector
3d9a5942
AC
1386printf "\n"
1387printf "\n"
104c1213
JM
1388cat <<EOF
1389/* The default architecture uses host values (for want of a better
1390 choice). */
1391EOF
3d9a5942
AC
1392printf "\n"
1393printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1394printf "\n"
1395printf "struct gdbarch startup_gdbarch =\n"
1396printf "{\n"
76860b5f 1397printf " 1, /* Always initialized. */\n"
aebd7893 1398printf " NULL, /* The obstack. */\n"
3d9a5942 1399printf " /* basic architecture information */\n"
4b9b3959 1400function_list | while do_read
104c1213 1401do
2ada493a
AC
1402 if class_is_info_p
1403 then
ec5cbaec 1404 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1405 fi
104c1213
JM
1406done
1407cat <<EOF
4b9b3959
AC
1408 /* target specific vector and its dump routine */
1409 NULL, NULL,
104c1213
JM
1410 /*per-architecture data-pointers and swap regions */
1411 0, NULL, NULL,
1412 /* Multi-arch values */
1413EOF
34620563 1414function_list | while do_read
104c1213 1415do
2ada493a
AC
1416 if class_is_function_p || class_is_variable_p
1417 then
ec5cbaec 1418 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1419 fi
104c1213
JM
1420done
1421cat <<EOF
c0e8c252 1422 /* startup_gdbarch() */
104c1213 1423};
4b9b3959 1424
c0e8c252 1425struct gdbarch *current_gdbarch = &startup_gdbarch;
104c1213
JM
1426EOF
1427
1428# Create a new gdbarch struct
104c1213 1429cat <<EOF
7de2341d 1430
66b43ecb 1431/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1432 \`\`struct gdbarch_info''. */
1433EOF
3d9a5942 1434printf "\n"
104c1213
JM
1435cat <<EOF
1436struct gdbarch *
1437gdbarch_alloc (const struct gdbarch_info *info,
1438 struct gdbarch_tdep *tdep)
1439{
85de9627
AC
1440 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1441 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1442 the current local architecture and not the previous global
1443 architecture. This ensures that the new architectures initial
1444 values are not influenced by the previous architecture. Once
1445 everything is parameterised with gdbarch, this will go away. */
aebd7893
AC
1446 struct gdbarch *current_gdbarch;
1447
1448 /* Create an obstack for allocating all the per-architecture memory,
1449 then use that to allocate the architecture vector. */
1450 struct obstack *obstack = XMALLOC (struct obstack);
1451 obstack_init (obstack);
1452 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
85de9627 1453 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
aebd7893 1454 current_gdbarch->obstack = obstack;
85de9627
AC
1455
1456 alloc_gdbarch_data (current_gdbarch);
1457
1458 current_gdbarch->tdep = tdep;
104c1213 1459EOF
3d9a5942 1460printf "\n"
34620563 1461function_list | while do_read
104c1213 1462do
2ada493a
AC
1463 if class_is_info_p
1464 then
85de9627 1465 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1466 fi
104c1213 1467done
3d9a5942
AC
1468printf "\n"
1469printf " /* Force the explicit initialization of these. */\n"
34620563 1470function_list | while do_read
104c1213 1471do
2ada493a
AC
1472 if class_is_function_p || class_is_variable_p
1473 then
72e74a21 1474 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1475 then
85de9627 1476 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1477 fi
2ada493a 1478 fi
104c1213
JM
1479done
1480cat <<EOF
1481 /* gdbarch_alloc() */
1482
85de9627 1483 return current_gdbarch;
104c1213
JM
1484}
1485EOF
1486
058f20d5 1487# Free a gdbarch struct.
3d9a5942
AC
1488printf "\n"
1489printf "\n"
058f20d5 1490cat <<EOF
aebd7893
AC
1491/* Allocate extra space using the per-architecture obstack. */
1492
1493void *
1494gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1495{
1496 void *data = obstack_alloc (arch->obstack, size);
1497 memset (data, 0, size);
1498 return data;
1499}
1500
1501
058f20d5
JB
1502/* Free a gdbarch struct. This should never happen in normal
1503 operation --- once you've created a gdbarch, you keep it around.
1504 However, if an architecture's init function encounters an error
1505 building the structure, it may need to clean up a partially
1506 constructed gdbarch. */
4b9b3959 1507
058f20d5
JB
1508void
1509gdbarch_free (struct gdbarch *arch)
1510{
aebd7893 1511 struct obstack *obstack;
95160752 1512 gdb_assert (arch != NULL);
aebd7893
AC
1513 gdb_assert (!arch->initialized_p);
1514 obstack = arch->obstack;
1515 obstack_free (obstack, 0); /* Includes the ARCH. */
1516 xfree (obstack);
058f20d5
JB
1517}
1518EOF
1519
104c1213 1520# verify a new architecture
104c1213 1521cat <<EOF
db446970
AC
1522
1523
1524/* Ensure that all values in a GDBARCH are reasonable. */
1525
1526/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1527 just happens to match the global variable \`\`current_gdbarch''. That
1528 way macros refering to that variable get the local and not the global
1529 version - ulgh. Once everything is parameterised with gdbarch, this
1530 will go away. */
1531
104c1213 1532static void
db446970 1533verify_gdbarch (struct gdbarch *current_gdbarch)
104c1213 1534{
f16a1923
AC
1535 struct ui_file *log;
1536 struct cleanup *cleanups;
1537 long dummy;
1538 char *buf;
f16a1923
AC
1539 log = mem_fileopen ();
1540 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1541 /* fundamental */
db446970 1542 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1543 fprintf_unfiltered (log, "\n\tbyte-order");
db446970 1544 if (current_gdbarch->bfd_arch_info == NULL)
f16a1923 1545 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1546 /* Check those that need to be defined for the given multi-arch level. */
1547EOF
34620563 1548function_list | while do_read
104c1213 1549do
2ada493a
AC
1550 if class_is_function_p || class_is_variable_p
1551 then
72e74a21 1552 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1553 then
3d9a5942 1554 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1555 elif class_is_predicate_p
1556 then
3d9a5942 1557 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1558 # FIXME: See do_read for potential simplification
72e74a21 1559 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1560 then
3d9a5942 1561 printf " if (${invalid_p})\n"
db446970 1562 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1563 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1564 then
db446970
AC
1565 printf " if (current_gdbarch->${function} == ${predefault})\n"
1566 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1567 elif [ -n "${postdefault}" ]
f0d4cc9e 1568 then
db446970
AC
1569 printf " if (current_gdbarch->${function} == 0)\n"
1570 printf " current_gdbarch->${function} = ${postdefault};\n"
72e74a21 1571 elif [ -n "${invalid_p}" ]
104c1213 1572 then
50248794 1573 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1574 printf " && (${invalid_p}))\n"
f16a1923 1575 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1576 elif [ -n "${predefault}" ]
104c1213 1577 then
50248794 1578 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
db446970 1579 printf " && (current_gdbarch->${function} == ${predefault}))\n"
f16a1923 1580 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1581 fi
2ada493a 1582 fi
104c1213
JM
1583done
1584cat <<EOF
f16a1923
AC
1585 buf = ui_file_xstrdup (log, &dummy);
1586 make_cleanup (xfree, buf);
1587 if (strlen (buf) > 0)
1588 internal_error (__FILE__, __LINE__,
1589 "verify_gdbarch: the following are invalid ...%s",
1590 buf);
1591 do_cleanups (cleanups);
104c1213
JM
1592}
1593EOF
1594
1595# dump the structure
3d9a5942
AC
1596printf "\n"
1597printf "\n"
104c1213 1598cat <<EOF
4b9b3959
AC
1599/* Print out the details of the current architecture. */
1600
1601/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1602 just happens to match the global variable \`\`current_gdbarch''. That
1603 way macros refering to that variable get the local and not the global
1604 version - ulgh. Once everything is parameterised with gdbarch, this
1605 will go away. */
1606
104c1213 1607void
db446970 1608gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
104c1213 1609{
4b9b3959
AC
1610 fprintf_unfiltered (file,
1611 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1612 GDB_MULTI_ARCH);
104c1213 1613EOF
9ba8d803 1614function_list | sort -t: -k 3 | while do_read
104c1213 1615do
1e9f55d0
AC
1616 # First the predicate
1617 if class_is_predicate_p
1618 then
1619 if class_is_multiarch_p
1620 then
7996bcec
AC
1621 printf " fprintf_unfiltered (file,\n"
1622 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1623 printf " gdbarch_${function}_p (current_gdbarch));\n"
1e9f55d0
AC
1624 else
1625 printf "#ifdef ${macro}_P\n"
1626 printf " fprintf_unfiltered (file,\n"
1627 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1628 printf " \"${macro}_P()\",\n"
1629 printf " XSTRING (${macro}_P ()));\n"
1630 printf " fprintf_unfiltered (file,\n"
1631 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1632 printf " ${macro}_P ());\n"
1633 printf "#endif\n"
1634 fi
1635 fi
4a5c6a1d 1636 # multiarch functions don't have macros.
08e45a40
AC
1637 if class_is_multiarch_p
1638 then
7996bcec
AC
1639 printf " fprintf_unfiltered (file,\n"
1640 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1641 printf " (long) current_gdbarch->${function});\n"
08e45a40
AC
1642 continue
1643 fi
06b25f14 1644 # Print the macro definition.
08e45a40 1645 printf "#ifdef ${macro}\n"
2ada493a
AC
1646 if class_is_function_p
1647 then
3d9a5942
AC
1648 printf " fprintf_unfiltered (file,\n"
1649 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1650 printf " \"${macro}(${actual})\",\n"
1651 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1652 else
3d9a5942
AC
1653 printf " fprintf_unfiltered (file,\n"
1654 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1655 printf " XSTRING (${macro}));\n"
4b9b3959 1656 fi
72e74a21 1657 if [ "x${print_p}" = "x()" ]
4b9b3959 1658 then
4a5c6a1d 1659 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1660 elif [ "x${print_p}" = "x0" ]
4b9b3959 1661 then
4a5c6a1d 1662 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1663 elif [ -n "${print_p}" ]
4b9b3959 1664 then
4a5c6a1d 1665 printf " if (${print_p})\n"
3d9a5942
AC
1666 printf " fprintf_unfiltered (file,\n"
1667 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1668 printf " ${print});\n"
4b9b3959
AC
1669 elif class_is_function_p
1670 then
7996bcec
AC
1671 printf " fprintf_unfiltered (file,\n"
1672 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
1673 printf " (long) current_gdbarch->${function}\n"
1674 printf " /*${macro} ()*/);\n"
4b9b3959 1675 else
3d9a5942
AC
1676 printf " fprintf_unfiltered (file,\n"
1677 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1678 printf " ${print});\n"
2ada493a 1679 fi
3d9a5942 1680 printf "#endif\n"
104c1213 1681done
381323f4 1682cat <<EOF
4b9b3959
AC
1683 if (current_gdbarch->dump_tdep != NULL)
1684 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1685}
1686EOF
104c1213
JM
1687
1688
1689# GET/SET
3d9a5942 1690printf "\n"
104c1213
JM
1691cat <<EOF
1692struct gdbarch_tdep *
1693gdbarch_tdep (struct gdbarch *gdbarch)
1694{
1695 if (gdbarch_debug >= 2)
3d9a5942 1696 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1697 return gdbarch->tdep;
1698}
1699EOF
3d9a5942 1700printf "\n"
34620563 1701function_list | while do_read
104c1213 1702do
2ada493a
AC
1703 if class_is_predicate_p
1704 then
3d9a5942
AC
1705 printf "\n"
1706 printf "int\n"
1707 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1708 printf "{\n"
8de9bdc4 1709 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1710 printf " return ${predicate};\n"
3d9a5942 1711 printf "}\n"
2ada493a
AC
1712 fi
1713 if class_is_function_p
1714 then
3d9a5942
AC
1715 printf "\n"
1716 printf "${returntype}\n"
72e74a21 1717 if [ "x${formal}" = "xvoid" ]
104c1213 1718 then
3d9a5942 1719 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1720 else
3d9a5942 1721 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1722 fi
3d9a5942 1723 printf "{\n"
8de9bdc4 1724 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1725 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1726 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1727 then
1728 # Allow a call to a function with a predicate.
956ac328 1729 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1730 fi
3d9a5942
AC
1731 printf " if (gdbarch_debug >= 2)\n"
1732 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1733 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1734 then
1735 if class_is_multiarch_p
1736 then
1737 params="gdbarch"
1738 else
1739 params=""
1740 fi
1741 else
1742 if class_is_multiarch_p
1743 then
1744 params="gdbarch, ${actual}"
1745 else
1746 params="${actual}"
1747 fi
1748 fi
72e74a21 1749 if [ "x${returntype}" = "xvoid" ]
104c1213 1750 then
4a5c6a1d 1751 printf " gdbarch->${function} (${params});\n"
104c1213 1752 else
4a5c6a1d 1753 printf " return gdbarch->${function} (${params});\n"
104c1213 1754 fi
3d9a5942
AC
1755 printf "}\n"
1756 printf "\n"
1757 printf "void\n"
1758 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1759 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1760 printf "{\n"
1761 printf " gdbarch->${function} = ${function};\n"
1762 printf "}\n"
2ada493a
AC
1763 elif class_is_variable_p
1764 then
3d9a5942
AC
1765 printf "\n"
1766 printf "${returntype}\n"
1767 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1768 printf "{\n"
8de9bdc4 1769 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1770 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1771 then
3d9a5942 1772 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1773 elif [ -n "${invalid_p}" ]
104c1213 1774 then
956ac328
AC
1775 printf " /* Check variable is valid. */\n"
1776 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1777 elif [ -n "${predefault}" ]
104c1213 1778 then
956ac328
AC
1779 printf " /* Check variable changed from pre-default. */\n"
1780 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1781 fi
3d9a5942
AC
1782 printf " if (gdbarch_debug >= 2)\n"
1783 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1784 printf " return gdbarch->${function};\n"
1785 printf "}\n"
1786 printf "\n"
1787 printf "void\n"
1788 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1789 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1790 printf "{\n"
1791 printf " gdbarch->${function} = ${function};\n"
1792 printf "}\n"
2ada493a
AC
1793 elif class_is_info_p
1794 then
3d9a5942
AC
1795 printf "\n"
1796 printf "${returntype}\n"
1797 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1798 printf "{\n"
8de9bdc4 1799 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1800 printf " if (gdbarch_debug >= 2)\n"
1801 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1802 printf " return gdbarch->${function};\n"
1803 printf "}\n"
2ada493a 1804 fi
104c1213
JM
1805done
1806
1807# All the trailing guff
1808cat <<EOF
1809
1810
f44c642f 1811/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1812 modules. */
1813
1814struct gdbarch_data
1815{
95160752 1816 unsigned index;
76860b5f 1817 int init_p;
95160752 1818 gdbarch_data_init_ftype *init;
104c1213
JM
1819};
1820
1821struct gdbarch_data_registration
1822{
104c1213
JM
1823 struct gdbarch_data *data;
1824 struct gdbarch_data_registration *next;
1825};
1826
f44c642f 1827struct gdbarch_data_registry
104c1213 1828{
95160752 1829 unsigned nr;
104c1213
JM
1830 struct gdbarch_data_registration *registrations;
1831};
1832
f44c642f 1833struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1834{
1835 0, NULL,
1836};
1837
1838struct gdbarch_data *
fcc1c85c 1839register_gdbarch_data (gdbarch_data_init_ftype *init)
104c1213
JM
1840{
1841 struct gdbarch_data_registration **curr;
76860b5f 1842 /* Append the new registraration. */
f44c642f 1843 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1844 (*curr) != NULL;
1845 curr = &(*curr)->next);
1846 (*curr) = XMALLOC (struct gdbarch_data_registration);
1847 (*curr)->next = NULL;
104c1213 1848 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1849 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752 1850 (*curr)->data->init = init;
76860b5f 1851 (*curr)->data->init_p = 1;
104c1213
JM
1852 return (*curr)->data;
1853}
1854
1855
b3cc3077 1856/* Create/delete the gdbarch data vector. */
95160752
AC
1857
1858static void
b3cc3077 1859alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1860{
b3cc3077
JB
1861 gdb_assert (gdbarch->data == NULL);
1862 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1863 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1864}
3c875b6f 1865
76860b5f 1866/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1867 data-pointer. */
1868
95160752
AC
1869void
1870set_gdbarch_data (struct gdbarch *gdbarch,
1871 struct gdbarch_data *data,
1872 void *pointer)
1873{
1874 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1875 gdb_assert (gdbarch->data[data->index] == NULL);
95160752
AC
1876 gdbarch->data[data->index] = pointer;
1877}
1878
104c1213
JM
1879/* Return the current value of the specified per-architecture
1880 data-pointer. */
1881
1882void *
451fbdda 1883gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1884{
451fbdda 1885 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1886 /* The data-pointer isn't initialized, call init() to get a value but
1887 only if the architecture initializaiton has completed. Otherwise
1888 punt - hope that the caller knows what they are doing. */
1889 if (gdbarch->data[data->index] == NULL
1890 && gdbarch->initialized_p)
1891 {
1892 /* Be careful to detect an initialization cycle. */
1893 gdb_assert (data->init_p);
1894 data->init_p = 0;
1895 gdb_assert (data->init != NULL);
1896 gdbarch->data[data->index] = data->init (gdbarch);
1897 data->init_p = 1;
1898 gdb_assert (gdbarch->data[data->index] != NULL);
1899 }
451fbdda 1900 return gdbarch->data[data->index];
104c1213
JM
1901}
1902
1903
1904
f44c642f 1905/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1906
1907struct gdbarch_swap
1908{
1909 void *swap;
1910 struct gdbarch_swap_registration *source;
1911 struct gdbarch_swap *next;
1912};
1913
1914struct gdbarch_swap_registration
1915{
1916 void *data;
1917 unsigned long sizeof_data;
1918 gdbarch_swap_ftype *init;
1919 struct gdbarch_swap_registration *next;
1920};
1921
f44c642f 1922struct gdbarch_swap_registry
104c1213
JM
1923{
1924 int nr;
1925 struct gdbarch_swap_registration *registrations;
1926};
1927
f44c642f 1928struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1929{
1930 0, NULL,
1931};
1932
1933void
1934register_gdbarch_swap (void *data,
1935 unsigned long sizeof_data,
1936 gdbarch_swap_ftype *init)
1937{
1938 struct gdbarch_swap_registration **rego;
f44c642f 1939 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1940 (*rego) != NULL;
1941 rego = &(*rego)->next);
1942 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1943 (*rego)->next = NULL;
1944 (*rego)->init = init;
1945 (*rego)->data = data;
1946 (*rego)->sizeof_data = sizeof_data;
1947}
1948
40af4b0c 1949static void
7de2341d 1950current_gdbarch_swap_init_hack (void)
104c1213
JM
1951{
1952 struct gdbarch_swap_registration *rego;
7de2341d 1953 struct gdbarch_swap **curr = &current_gdbarch->swap;
f44c642f 1954 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1955 rego != NULL;
1956 rego = rego->next)
1957 {
1958 if (rego->data != NULL)
1959 {
7de2341d
AC
1960 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1961 struct gdbarch_swap);
104c1213 1962 (*curr)->source = rego;
7de2341d
AC
1963 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1964 rego->sizeof_data);
104c1213 1965 (*curr)->next = NULL;
104c1213
JM
1966 curr = &(*curr)->next;
1967 }
1968 if (rego->init != NULL)
1969 rego->init ();
1970 }
1971}
1972
7de2341d
AC
1973static struct gdbarch *
1974current_gdbarch_swap_out_hack (void)
104c1213 1975{
7de2341d 1976 struct gdbarch *old_gdbarch = current_gdbarch;
104c1213 1977 struct gdbarch_swap *curr;
7de2341d
AC
1978
1979 gdb_assert (old_gdbarch != NULL);
1980 for (curr = old_gdbarch->swap;
104c1213
JM
1981 curr != NULL;
1982 curr = curr->next)
7de2341d
AC
1983 {
1984 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1985 memset (curr->source->data, 0, curr->source->sizeof_data);
1986 }
1987 current_gdbarch = NULL;
1988 return old_gdbarch;
104c1213
JM
1989}
1990
1991static void
7de2341d 1992current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
104c1213
JM
1993{
1994 struct gdbarch_swap *curr;
7de2341d
AC
1995
1996 gdb_assert (current_gdbarch == NULL);
1997 for (curr = new_gdbarch->swap;
104c1213
JM
1998 curr != NULL;
1999 curr = curr->next)
2000 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
7de2341d 2001 current_gdbarch = new_gdbarch;
104c1213
JM
2002}
2003
2004
f44c642f 2005/* Keep a registry of the architectures known by GDB. */
104c1213 2006
4b9b3959 2007struct gdbarch_registration
104c1213
JM
2008{
2009 enum bfd_architecture bfd_architecture;
2010 gdbarch_init_ftype *init;
4b9b3959 2011 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2012 struct gdbarch_list *arches;
4b9b3959 2013 struct gdbarch_registration *next;
104c1213
JM
2014};
2015
f44c642f 2016static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2017
b4a20239
AC
2018static void
2019append_name (const char ***buf, int *nr, const char *name)
2020{
2021 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2022 (*buf)[*nr] = name;
2023 *nr += 1;
2024}
2025
2026const char **
2027gdbarch_printable_names (void)
2028{
7996bcec
AC
2029 /* Accumulate a list of names based on the registed list of
2030 architectures. */
2031 enum bfd_architecture a;
2032 int nr_arches = 0;
2033 const char **arches = NULL;
2034 struct gdbarch_registration *rego;
2035 for (rego = gdbarch_registry;
2036 rego != NULL;
2037 rego = rego->next)
b4a20239 2038 {
7996bcec
AC
2039 const struct bfd_arch_info *ap;
2040 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2041 if (ap == NULL)
2042 internal_error (__FILE__, __LINE__,
2043 "gdbarch_architecture_names: multi-arch unknown");
2044 do
2045 {
2046 append_name (&arches, &nr_arches, ap->printable_name);
2047 ap = ap->next;
2048 }
2049 while (ap != NULL);
b4a20239 2050 }
7996bcec
AC
2051 append_name (&arches, &nr_arches, NULL);
2052 return arches;
b4a20239
AC
2053}
2054
2055
104c1213 2056void
4b9b3959
AC
2057gdbarch_register (enum bfd_architecture bfd_architecture,
2058 gdbarch_init_ftype *init,
2059 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2060{
4b9b3959 2061 struct gdbarch_registration **curr;
104c1213 2062 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2063 /* Check that BFD recognizes this architecture */
104c1213
JM
2064 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2065 if (bfd_arch_info == NULL)
2066 {
8e65ff28
AC
2067 internal_error (__FILE__, __LINE__,
2068 "gdbarch: Attempt to register unknown architecture (%d)",
2069 bfd_architecture);
104c1213
JM
2070 }
2071 /* Check that we haven't seen this architecture before */
f44c642f 2072 for (curr = &gdbarch_registry;
104c1213
JM
2073 (*curr) != NULL;
2074 curr = &(*curr)->next)
2075 {
2076 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2077 internal_error (__FILE__, __LINE__,
2078 "gdbarch: Duplicate registraration of architecture (%s)",
2079 bfd_arch_info->printable_name);
104c1213
JM
2080 }
2081 /* log it */
2082 if (gdbarch_debug)
2083 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2084 bfd_arch_info->printable_name,
2085 (long) init);
2086 /* Append it */
4b9b3959 2087 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2088 (*curr)->bfd_architecture = bfd_architecture;
2089 (*curr)->init = init;
4b9b3959 2090 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2091 (*curr)->arches = NULL;
2092 (*curr)->next = NULL;
4b9b3959
AC
2093}
2094
2095void
2096register_gdbarch_init (enum bfd_architecture bfd_architecture,
2097 gdbarch_init_ftype *init)
2098{
2099 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2100}
104c1213
JM
2101
2102
2103/* Look for an architecture using gdbarch_info. Base search on only
2104 BFD_ARCH_INFO and BYTE_ORDER. */
2105
2106struct gdbarch_list *
2107gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2108 const struct gdbarch_info *info)
2109{
2110 for (; arches != NULL; arches = arches->next)
2111 {
2112 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2113 continue;
2114 if (info->byte_order != arches->gdbarch->byte_order)
2115 continue;
4be87837
DJ
2116 if (info->osabi != arches->gdbarch->osabi)
2117 continue;
104c1213
JM
2118 return arches;
2119 }
2120 return NULL;
2121}
2122
2123
ebdba546
AC
2124/* Find an architecture that matches the specified INFO. Create a new
2125 architecture if needed. Return that new architecture. Assumes
2126 that there is no current architecture. */
104c1213 2127
ebdba546
AC
2128static struct gdbarch *
2129find_arch_by_info (struct gdbarch *old_gdbarch, struct gdbarch_info info)
104c1213
JM
2130{
2131 struct gdbarch *new_gdbarch;
4b9b3959 2132 struct gdbarch_registration *rego;
104c1213 2133
ebdba546
AC
2134 /* The existing architecture has been swapped out - all this code
2135 works from a clean slate. */
2136 gdb_assert (current_gdbarch == NULL);
2137
b732d07d 2138 /* Fill in missing parts of the INFO struct using a number of
ebdba546
AC
2139 sources: "set ..."; INFOabfd supplied; and the existing
2140 architecture. */
2141 gdbarch_info_fill (old_gdbarch, &info);
4be87837 2142
b732d07d
AC
2143 /* Must have found some sort of architecture. */
2144 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2145
2146 if (gdbarch_debug)
2147 {
2148 fprintf_unfiltered (gdb_stdlog,
ebdba546 2149 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2150 (info.bfd_arch_info != NULL
2151 ? info.bfd_arch_info->printable_name
2152 : "(null)"));
2153 fprintf_unfiltered (gdb_stdlog,
ebdba546 2154 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 2155 info.byte_order,
d7449b42 2156 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2157 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2158 : "default"));
4be87837 2159 fprintf_unfiltered (gdb_stdlog,
ebdba546 2160 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 2161 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2162 fprintf_unfiltered (gdb_stdlog,
ebdba546 2163 "find_arch_by_info: info.abfd 0x%lx\n",
104c1213
JM
2164 (long) info.abfd);
2165 fprintf_unfiltered (gdb_stdlog,
ebdba546 2166 "find_arch_by_info: info.tdep_info 0x%lx\n",
104c1213
JM
2167 (long) info.tdep_info);
2168 }
2169
ebdba546 2170 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2171 for (rego = gdbarch_registry;
2172 rego != NULL;
2173 rego = rego->next)
2174 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2175 break;
2176 if (rego == NULL)
2177 {
2178 if (gdbarch_debug)
ebdba546
AC
2179 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2180 "No matching architecture\n");
b732d07d
AC
2181 return 0;
2182 }
2183
ebdba546 2184 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2185 new_gdbarch = rego->init (info, rego->arches);
2186
ebdba546
AC
2187 /* Did the tdep code like it? No. Reject the change and revert to
2188 the old architecture. */
104c1213
JM
2189 if (new_gdbarch == NULL)
2190 {
2191 if (gdbarch_debug)
ebdba546
AC
2192 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2193 "Target rejected architecture\n");
2194 return NULL;
104c1213
JM
2195 }
2196
ebdba546
AC
2197 /* Is this a pre-existing architecture (as determined by already
2198 being initialized)? Move it to the front of the architecture
2199 list (keeping the list sorted Most Recently Used). */
2200 if (new_gdbarch->initialized_p)
104c1213 2201 {
ebdba546
AC
2202 struct gdbarch_list **list;
2203 struct gdbarch_list *this;
104c1213 2204 if (gdbarch_debug)
ebdba546
AC
2205 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2206 "Previous architecture 0x%08lx (%s) selected\n",
104c1213
JM
2207 (long) new_gdbarch,
2208 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2209 /* Find the existing arch in the list. */
2210 for (list = &rego->arches;
2211 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2212 list = &(*list)->next);
2213 /* It had better be in the list of architectures. */
2214 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2215 /* Unlink THIS. */
2216 this = (*list);
2217 (*list) = this->next;
2218 /* Insert THIS at the front. */
2219 this->next = rego->arches;
2220 rego->arches = this;
2221 /* Return it. */
2222 return new_gdbarch;
104c1213
JM
2223 }
2224
ebdba546
AC
2225 /* It's a new architecture. */
2226 if (gdbarch_debug)
2227 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2228 "New architecture 0x%08lx (%s) selected\n",
2229 (long) new_gdbarch,
2230 new_gdbarch->bfd_arch_info->printable_name);
2231
2232 /* Insert the new architecture into the front of the architecture
2233 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2234 {
2235 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2236 this->next = rego->arches;
2237 this->gdbarch = new_gdbarch;
2238 rego->arches = this;
2239 }
104c1213 2240
4b9b3959
AC
2241 /* Check that the newly installed architecture is valid. Plug in
2242 any post init values. */
2243 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2244 verify_gdbarch (new_gdbarch);
ebdba546 2245 new_gdbarch->initialized_p = 1;
104c1213 2246
ebdba546
AC
2247 /* Initialize any per-architecture swap areas. This phase requires
2248 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2249 swap the entire architecture out. */
2250 current_gdbarch = new_gdbarch;
7de2341d 2251 current_gdbarch_swap_init_hack ();
ebdba546 2252 current_gdbarch_swap_out_hack ();
67c2c32c 2253
4b9b3959 2254 if (gdbarch_debug)
ebdba546
AC
2255 gdbarch_dump (new_gdbarch, gdb_stdlog);
2256
2257 return new_gdbarch;
2258}
2259
2260struct gdbarch *
2261gdbarch_find_by_info (struct gdbarch_info info)
2262{
2263 /* Save the previously selected architecture, setting the global to
2264 NULL. This stops things like gdbarch->init() trying to use the
2265 previous architecture's configuration. The previous architecture
2266 may not even be of the same architecture family. The most recent
2267 architecture of the same family is found at the head of the
2268 rego->arches list. */
2269 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2270
2271 /* Find the specified architecture. */
2272 struct gdbarch *new_gdbarch = find_arch_by_info (old_gdbarch, info);
2273
2274 /* Restore the existing architecture. */
2275 gdb_assert (current_gdbarch == NULL);
2276 current_gdbarch_swap_in_hack (old_gdbarch);
4b9b3959 2277
ebdba546 2278 return new_gdbarch;
104c1213
JM
2279}
2280
ebdba546
AC
2281/* Make the specified architecture current, swapping the existing one
2282 out. */
2283
2284void
2285deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2286{
2287 gdb_assert (new_gdbarch != NULL);
2288 gdb_assert (current_gdbarch != NULL);
2289 gdb_assert (new_gdbarch->initialized_p);
2290 current_gdbarch_swap_out_hack ();
2291 current_gdbarch_swap_in_hack (new_gdbarch);
2292 architecture_changed_event ();
2293}
104c1213 2294
104c1213 2295extern void _initialize_gdbarch (void);
b4a20239 2296
104c1213 2297void
34620563 2298_initialize_gdbarch (void)
104c1213 2299{
59233f88
AC
2300 struct cmd_list_element *c;
2301
59233f88 2302 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2303 class_maintenance,
2304 var_zinteger,
2305 (char *)&gdbarch_debug,
3d9a5942 2306 "Set architecture debugging.\\n\\
59233f88
AC
2307When non-zero, architecture debugging is enabled.", &setdebuglist),
2308 &showdebuglist);
2309 c = add_set_cmd ("archdebug",
2310 class_maintenance,
2311 var_zinteger,
2312 (char *)&gdbarch_debug,
3d9a5942 2313 "Set architecture debugging.\\n\\
59233f88
AC
2314When non-zero, architecture debugging is enabled.", &setlist);
2315
2316 deprecate_cmd (c, "set debug arch");
2317 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2318}
2319EOF
2320
2321# close things off
2322exec 1>&2
2323#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2324compare_new gdbarch.c
This page took 0.755115 seconds and 4 git commands to generate.