Create a pseudo section for the ELF AUXV core dump note on FreeBSD.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
618f726f 5# Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
012b3a21
WT
449# Some targets/architectures can do extra processing/display of
450# segmentation faults. E.g., Intel MPX boundary faults.
451# Call the architecture dependent function to handle the fault.
452# UIOUT is the output stream where the handler will place information.
453M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
454
c2169756
AC
455# GDB's standard (or well known) register numbers. These can map onto
456# a real register or a pseudo (computed) register or not be defined at
1200cd6e 457# all (-1).
3e8c568d 458# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
459v:int:sp_regnum:::-1:-1::0
460v:int:pc_regnum:::-1:-1::0
461v:int:ps_regnum:::-1:-1::0
462v:int:fp0_regnum:::0:-1::0
88c72b7d 463# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 464m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 465# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 466m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 467# Convert from an sdb register number to an internal gdb register number.
d3f73121 468m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 469# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 470# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 471m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 472m:const char *:register_name:int regnr:regnr::0
9c04cab7 473
7b9ee6a8
DJ
474# Return the type of a register specified by the architecture. Only
475# the register cache should call this function directly; others should
476# use "register_type".
97030eea 477M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 478
669fac23
DJ
479M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
480# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 481# deprecated_fp_regnum.
97030eea 482v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 483
97030eea
UW
484M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
485v:int:call_dummy_location::::AT_ENTRY_POINT::0
486M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 487
7eb89530
YQ
488# Return true if the code of FRAME is writable.
489m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
490
97030eea 491m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 492m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 493M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
494# MAP a GDB RAW register number onto a simulator register number. See
495# also include/...-sim.h.
e7faf938 496m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
497m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
498m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
499
500# Determine the address where a longjmp will land and save this address
501# in PC. Return nonzero on success.
502#
503# FRAME corresponds to the longjmp frame.
97030eea 504F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 505
104c1213 506#
97030eea 507v:int:believe_pcc_promotion:::::::
104c1213 508#
0abe36f5 509m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 510f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 511f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 512# Construct a value representing the contents of register REGNUM in
2ed3c037 513# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
514# allocate and return a struct value with all value attributes
515# (but not the value contents) filled in.
2ed3c037 516m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 517#
9898f801
UW
518m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
519m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 520M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 521
6a3a010b
MR
522# Return the return-value convention that will be used by FUNCTION
523# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
524# case the return convention is computed based only on VALTYPE.
525#
526# If READBUF is not NULL, extract the return value and save it in this buffer.
527#
528# If WRITEBUF is not NULL, it contains a return value which will be
529# stored into the appropriate register. This can be used when we want
530# to force the value returned by a function (see the "return" command
531# for instance).
6a3a010b 532M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 533
18648a37
YQ
534# Return true if the return value of function is stored in the first hidden
535# parameter. In theory, this feature should be language-dependent, specified
536# by language and its ABI, such as C++. Unfortunately, compiler may
537# implement it to a target-dependent feature. So that we need such hook here
538# to be aware of this in GDB.
539m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
540
6093d2eb 541m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 542M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
543# On some platforms, a single function may provide multiple entry points,
544# e.g. one that is used for function-pointer calls and a different one
545# that is used for direct function calls.
546# In order to ensure that breakpoints set on the function will trigger
547# no matter via which entry point the function is entered, a platform
548# may provide the skip_entrypoint callback. It is called with IP set
549# to the main entry point of a function (as determined by the symbol table),
550# and should return the address of the innermost entry point, where the
551# actual breakpoint needs to be set. Note that skip_entrypoint is used
552# by GDB common code even when debugging optimized code, where skip_prologue
553# is not used.
554M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
555
97030eea 556f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 557m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
558# Return the adjusted address and kind to use for Z0/Z1 packets.
559# KIND is usually the memory length of the breakpoint, but may have a
560# different target-specific meaning.
0e05dfcb 561m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 562M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
563m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
564m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 565v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
566
567# A function can be addressed by either it's "pointer" (possibly a
568# descriptor address) or "entry point" (first executable instruction).
569# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 570# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
571# a simplified subset of that functionality - the function's address
572# corresponds to the "function pointer" and the function's start
573# corresponds to the "function entry point" - and hence is redundant.
574
97030eea 575v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 576
123dc839
DJ
577# Return the remote protocol register number associated with this
578# register. Normally the identity mapping.
97030eea 579m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 580
b2756930 581# Fetch the target specific address used to represent a load module.
97030eea 582F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 583#
97030eea
UW
584v:CORE_ADDR:frame_args_skip:::0:::0
585M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
586M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
587# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
588# frame-base. Enable frame-base before frame-unwind.
97030eea 589F:int:frame_num_args:struct frame_info *frame:frame
104c1213 590#
97030eea
UW
591M:CORE_ADDR:frame_align:CORE_ADDR address:address
592m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
593v:int:frame_red_zone_size
f0d4cc9e 594#
97030eea 595m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
596# On some machines there are bits in addresses which are not really
597# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 598# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
599# we get a "real" address such as one would find in a symbol table.
600# This is used only for addresses of instructions, and even then I'm
601# not sure it's used in all contexts. It exists to deal with there
602# being a few stray bits in the PC which would mislead us, not as some
603# sort of generic thing to handle alignment or segmentation (it's
604# possible it should be in TARGET_READ_PC instead).
24568a2c 605m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
606
607# FIXME/cagney/2001-01-18: This should be split in two. A target method that
608# indicates if the target needs software single step. An ISA method to
609# implement it.
610#
e6590a1b
UW
611# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612# target can single step. If not, then implement single step using breakpoints.
64c4637f 613#
6f112b18 614# A return value of 1 means that the software_single_step breakpoints
21edc42f
YQ
615# were inserted; 0 means they were not. Multiple breakpoints may be
616# inserted for some instructions such as conditional branch. However,
617# each implementation must always evaluate the condition and only put
618# the breakpoint at the branch destination if the condition is true, so
619# that we ensure forward progress when stepping past a conditional
620# branch to self.
97030eea 621F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 622
3352ef37
AC
623# Return non-zero if the processor is executing a delay slot and a
624# further single-step is needed before the instruction finishes.
97030eea 625M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 626# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 627# disassembler. Perhaps objdump can handle it?
97030eea
UW
628f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
629f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
630
631
cfd8ab24 632# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
633# evaluates non-zero, this is the address where the debugger will place
634# a step-resume breakpoint to get us past the dynamic linker.
97030eea 635m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 636# Some systems also have trampoline code for returning from shared libs.
2c02bd72 637m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 638
c12260ac
CV
639# A target might have problems with watchpoints as soon as the stack
640# frame of the current function has been destroyed. This mostly happens
c9cf6e20 641# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
642# is defined to return a non-zero value if either the given addr is one
643# instruction after the stack destroying instruction up to the trailing
644# return instruction or if we can figure out that the stack frame has
645# already been invalidated regardless of the value of addr. Targets
646# which don't suffer from that problem could just let this functionality
647# untouched.
c9cf6e20 648m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
649# Process an ELF symbol in the minimal symbol table in a backend-specific
650# way. Normally this hook is supposed to do nothing, however if required,
651# then this hook can be used to apply tranformations to symbols that are
652# considered special in some way. For example the MIPS backend uses it
653# to interpret \`st_other' information to mark compressed code symbols so
654# that they can be treated in the appropriate manner in the processing of
655# the main symbol table and DWARF-2 records.
656F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 657f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
658# Process a symbol in the main symbol table in a backend-specific way.
659# Normally this hook is supposed to do nothing, however if required,
660# then this hook can be used to apply tranformations to symbols that
661# are considered special in some way. This is currently used by the
662# MIPS backend to make sure compressed code symbols have the ISA bit
663# set. This in turn is needed for symbol values seen in GDB to match
664# the values used at the runtime by the program itself, for function
665# and label references.
666f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
667# Adjust the address retrieved from a DWARF-2 record other than a line
668# entry in a backend-specific way. Normally this hook is supposed to
669# return the address passed unchanged, however if that is incorrect for
670# any reason, then this hook can be used to fix the address up in the
671# required manner. This is currently used by the MIPS backend to make
672# sure addresses in FDE, range records, etc. referring to compressed
673# code have the ISA bit set, matching line information and the symbol
674# table.
675f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
676# Adjust the address updated by a line entry in a backend-specific way.
677# Normally this hook is supposed to return the address passed unchanged,
678# however in the case of inconsistencies in these records, this hook can
679# be used to fix them up in the required manner. This is currently used
680# by the MIPS backend to make sure all line addresses in compressed code
681# are presented with the ISA bit set, which is not always the case. This
682# in turn ensures breakpoint addresses are correctly matched against the
683# stop PC.
684f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
685v:int:cannot_step_breakpoint:::0:0::0
686v:int:have_nonsteppable_watchpoint:::0:0::0
687F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
688M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
689
690# Return the appropriate type_flags for the supplied address class.
691# This function should return 1 if the address class was recognized and
692# type_flags was set, zero otherwise.
97030eea 693M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 694# Is a register in a group
97030eea 695m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 696# Fetch the pointer to the ith function argument.
97030eea 697F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 698
5aa82d05
AA
699# Iterate over all supported register notes in a core file. For each
700# supported register note section, the iterator must call CB and pass
701# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
702# the supported register note sections based on the current register
703# values. Otherwise it should enumerate all supported register note
704# sections.
705M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 706
6432734d
UW
707# Create core file notes
708M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
709
b3ac9c77
SDJ
710# The elfcore writer hook to use to write Linux prpsinfo notes to core
711# files. Most Linux architectures use the same prpsinfo32 or
712# prpsinfo64 layouts, and so won't need to provide this hook, as we
713# call the Linux generic routines in bfd to write prpsinfo notes by
714# default.
715F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
716
35c2fab7
UW
717# Find core file memory regions
718M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
719
de584861 720# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
721# core file into buffer READBUF with length LEN. Return the number of bytes read
722# (zero indicates failure).
723# failed, otherwise, return the red length of READBUF.
724M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 725
356a5233
JB
726# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
727# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
728# Return the number of bytes read (zero indicates failure).
729M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 730
c0edd9ed 731# How the core target converts a PTID from a core file to a string.
28439f5e
PA
732M:char *:core_pid_to_str:ptid_t ptid:ptid
733
4dfc5dbc
JB
734# How the core target extracts the name of a thread from a core file.
735M:const char *:core_thread_name:struct thread_info *thr:thr
736
a78c2d62 737# BFD target to use when generating a core file.
86ba1042 738V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 739
0d5de010
DJ
740# If the elements of C++ vtables are in-place function descriptors rather
741# than normal function pointers (which may point to code or a descriptor),
742# set this to one.
97030eea 743v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
744
745# Set if the least significant bit of the delta is used instead of the least
746# significant bit of the pfn for pointers to virtual member functions.
97030eea 747v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
748
749# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 750f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 751
1668ae25 752# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
753V:ULONGEST:max_insn_length:::0:0
754
755# Copy the instruction at FROM to TO, and make any adjustments
756# necessary to single-step it at that address.
757#
758# REGS holds the state the thread's registers will have before
759# executing the copied instruction; the PC in REGS will refer to FROM,
760# not the copy at TO. The caller should update it to point at TO later.
761#
762# Return a pointer to data of the architecture's choice to be passed
763# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
764# the instruction's effects have been completely simulated, with the
765# resulting state written back to REGS.
766#
767# For a general explanation of displaced stepping and how GDB uses it,
768# see the comments in infrun.c.
769#
770# The TO area is only guaranteed to have space for
771# gdbarch_max_insn_length (arch) bytes, so this function must not
772# write more bytes than that to that area.
773#
774# If you do not provide this function, GDB assumes that the
775# architecture does not support displaced stepping.
776#
777# If your architecture doesn't need to adjust instructions before
778# single-stepping them, consider using simple_displaced_step_copy_insn
779# here.
7f03bd92
PA
780#
781# If the instruction cannot execute out of line, return NULL. The
782# core falls back to stepping past the instruction in-line instead in
783# that case.
237fc4c9
PA
784M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
785
99e40580
UW
786# Return true if GDB should use hardware single-stepping to execute
787# the displaced instruction identified by CLOSURE. If false,
788# GDB will simply restart execution at the displaced instruction
789# location, and it is up to the target to ensure GDB will receive
790# control again (e.g. by placing a software breakpoint instruction
791# into the displaced instruction buffer).
792#
793# The default implementation returns false on all targets that
794# provide a gdbarch_software_single_step routine, and true otherwise.
795m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
796
237fc4c9
PA
797# Fix up the state resulting from successfully single-stepping a
798# displaced instruction, to give the result we would have gotten from
799# stepping the instruction in its original location.
800#
801# REGS is the register state resulting from single-stepping the
802# displaced instruction.
803#
804# CLOSURE is the result from the matching call to
805# gdbarch_displaced_step_copy_insn.
806#
807# If you provide gdbarch_displaced_step_copy_insn.but not this
808# function, then GDB assumes that no fixup is needed after
809# single-stepping the instruction.
810#
811# For a general explanation of displaced stepping and how GDB uses it,
812# see the comments in infrun.c.
813M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
814
815# Free a closure returned by gdbarch_displaced_step_copy_insn.
816#
817# If you provide gdbarch_displaced_step_copy_insn, you must provide
818# this function as well.
819#
820# If your architecture uses closures that don't need to be freed, then
821# you can use simple_displaced_step_free_closure here.
822#
823# For a general explanation of displaced stepping and how GDB uses it,
824# see the comments in infrun.c.
825m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
826
827# Return the address of an appropriate place to put displaced
828# instructions while we step over them. There need only be one such
829# place, since we're only stepping one thread over a breakpoint at a
830# time.
831#
832# For a general explanation of displaced stepping and how GDB uses it,
833# see the comments in infrun.c.
834m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
835
dde08ee1
PA
836# Relocate an instruction to execute at a different address. OLDLOC
837# is the address in the inferior memory where the instruction to
838# relocate is currently at. On input, TO points to the destination
839# where we want the instruction to be copied (and possibly adjusted)
840# to. On output, it points to one past the end of the resulting
841# instruction(s). The effect of executing the instruction at TO shall
842# be the same as if executing it at FROM. For example, call
843# instructions that implicitly push the return address on the stack
844# should be adjusted to return to the instruction after OLDLOC;
845# relative branches, and other PC-relative instructions need the
846# offset adjusted; etc.
847M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
848
1c772458 849# Refresh overlay mapped state for section OSECT.
97030eea 850F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 851
97030eea 852M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
853
854# Handle special encoding of static variables in stabs debug info.
0d5cff50 855F:const char *:static_transform_name:const char *name:name
203c3895 856# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 857v:int:sofun_address_maybe_missing:::0:0::0
1cded358 858
0508c3ec
HZ
859# Parse the instruction at ADDR storing in the record execution log
860# the registers REGCACHE and memory ranges that will be affected when
861# the instruction executes, along with their current values.
862# Return -1 if something goes wrong, 0 otherwise.
863M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
864
3846b520
HZ
865# Save process state after a signal.
866# Return -1 if something goes wrong, 0 otherwise.
2ea28649 867M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 868
22203bbf 869# Signal translation: translate inferior's signal (target's) number
86b49880
PA
870# into GDB's representation. The implementation of this method must
871# be host independent. IOW, don't rely on symbols of the NAT_FILE
872# header (the nm-*.h files), the host <signal.h> header, or similar
873# headers. This is mainly used when cross-debugging core files ---
874# "Live" targets hide the translation behind the target interface
1f8cf220
PA
875# (target_wait, target_resume, etc.).
876M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 877
eb14d406
SDJ
878# Signal translation: translate the GDB's internal signal number into
879# the inferior's signal (target's) representation. The implementation
880# of this method must be host independent. IOW, don't rely on symbols
881# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
882# header, or similar headers.
883# Return the target signal number if found, or -1 if the GDB internal
884# signal number is invalid.
885M:int:gdb_signal_to_target:enum gdb_signal signal:signal
886
4aa995e1
PA
887# Extra signal info inspection.
888#
889# Return a type suitable to inspect extra signal information.
890M:struct type *:get_siginfo_type:void:
891
60c5725c
DJ
892# Record architecture-specific information from the symbol table.
893M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 894
a96d9b2e
SDJ
895# Function for the 'catch syscall' feature.
896
897# Get architecture-specific system calls information from registers.
898M:LONGEST:get_syscall_number:ptid_t ptid:ptid
899
458c8db8
SDJ
900# The filename of the XML syscall for this architecture.
901v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
902
903# Information about system calls from this architecture
904v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
905
55aa24fb
SDJ
906# SystemTap related fields and functions.
907
05c0465e
SDJ
908# A NULL-terminated array of prefixes used to mark an integer constant
909# on the architecture's assembly.
55aa24fb
SDJ
910# For example, on x86 integer constants are written as:
911#
912# \$10 ;; integer constant 10
913#
914# in this case, this prefix would be the character \`\$\'.
05c0465e 915v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 916
05c0465e
SDJ
917# A NULL-terminated array of suffixes used to mark an integer constant
918# on the architecture's assembly.
919v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 920
05c0465e
SDJ
921# A NULL-terminated array of prefixes used to mark a register name on
922# the architecture's assembly.
55aa24fb
SDJ
923# For example, on x86 the register name is written as:
924#
925# \%eax ;; register eax
926#
927# in this case, this prefix would be the character \`\%\'.
05c0465e 928v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 929
05c0465e
SDJ
930# A NULL-terminated array of suffixes used to mark a register name on
931# the architecture's assembly.
932v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 933
05c0465e
SDJ
934# A NULL-terminated array of prefixes used to mark a register
935# indirection on the architecture's assembly.
55aa24fb
SDJ
936# For example, on x86 the register indirection is written as:
937#
938# \(\%eax\) ;; indirecting eax
939#
940# in this case, this prefix would be the charater \`\(\'.
941#
942# Please note that we use the indirection prefix also for register
943# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 944v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 945
05c0465e
SDJ
946# A NULL-terminated array of suffixes used to mark a register
947# indirection on the architecture's assembly.
55aa24fb
SDJ
948# For example, on x86 the register indirection is written as:
949#
950# \(\%eax\) ;; indirecting eax
951#
952# in this case, this prefix would be the charater \`\)\'.
953#
954# Please note that we use the indirection suffix also for register
955# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 956v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 957
05c0465e 958# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
959#
960# For example, on PPC a register is represented by a number in the assembly
961# language (e.g., \`10\' is the 10th general-purpose register). However,
962# inside GDB this same register has an \`r\' appended to its name, so the 10th
963# register would be represented as \`r10\' internally.
08af7a40 964v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
965
966# Suffix used to name a register using GDB's nomenclature.
08af7a40 967v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
968
969# Check if S is a single operand.
970#
971# Single operands can be:
972# \- Literal integers, e.g. \`\$10\' on x86
973# \- Register access, e.g. \`\%eax\' on x86
974# \- Register indirection, e.g. \`\(\%eax\)\' on x86
975# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
976#
977# This function should check for these patterns on the string
978# and return 1 if some were found, or zero otherwise. Please try to match
979# as much info as you can from the string, i.e., if you have to match
980# something like \`\(\%\', do not match just the \`\(\'.
981M:int:stap_is_single_operand:const char *s:s
982
983# Function used to handle a "special case" in the parser.
984#
985# A "special case" is considered to be an unknown token, i.e., a token
986# that the parser does not know how to parse. A good example of special
987# case would be ARM's register displacement syntax:
988#
989# [R0, #4] ;; displacing R0 by 4
990#
991# Since the parser assumes that a register displacement is of the form:
992#
993# <number> <indirection_prefix> <register_name> <indirection_suffix>
994#
995# it means that it will not be able to recognize and parse this odd syntax.
996# Therefore, we should add a special case function that will handle this token.
997#
998# This function should generate the proper expression form of the expression
999# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1000# and so on). It should also return 1 if the parsing was successful, or zero
1001# if the token was not recognized as a special token (in this case, returning
1002# zero means that the special parser is deferring the parsing to the generic
1003# parser), and should advance the buffer pointer (p->arg).
1004M:int:stap_parse_special_token:struct stap_parse_info *p:p
1005
8b367e17
JM
1006# DTrace related functions.
1007
1008# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1009# NARG must be >= 0.
1010M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1011
1012# True if the given ADDR does not contain the instruction sequence
1013# corresponding to a disabled DTrace is-enabled probe.
1014M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1015
1016# Enable a DTrace is-enabled probe at ADDR.
1017M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1018
1019# Disable a DTrace is-enabled probe at ADDR.
1020M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1021
50c71eaf
PA
1022# True if the list of shared libraries is one and only for all
1023# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1024# This usually means that all processes, although may or may not share
1025# an address space, will see the same set of symbols at the same
1026# addresses.
50c71eaf 1027v:int:has_global_solist:::0:0::0
2567c7d9
PA
1028
1029# On some targets, even though each inferior has its own private
1030# address space, the debug interface takes care of making breakpoints
1031# visible to all address spaces automatically. For such cases,
1032# this property should be set to true.
1033v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1034
1035# True if inferiors share an address space (e.g., uClinux).
1036m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1037
1038# True if a fast tracepoint can be set at an address.
6b940e6a 1039m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1040
5f034a78
MK
1041# Guess register state based on tracepoint location. Used for tracepoints
1042# where no registers have been collected, but there's only one location,
1043# allowing us to guess the PC value, and perhaps some other registers.
1044# On entry, regcache has all registers marked as unavailable.
1045m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1046
f870a310
TT
1047# Return the "auto" target charset.
1048f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1049# Return the "auto" target wide charset.
1050f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1051
1052# If non-empty, this is a file extension that will be opened in place
1053# of the file extension reported by the shared library list.
1054#
1055# This is most useful for toolchains that use a post-linker tool,
1056# where the names of the files run on the target differ in extension
1057# compared to the names of the files GDB should load for debug info.
1058v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1059
1060# If true, the target OS has DOS-based file system semantics. That
1061# is, absolute paths include a drive name, and the backslash is
1062# considered a directory separator.
1063v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1064
1065# Generate bytecodes to collect the return address in a frame.
1066# Since the bytecodes run on the target, possibly with GDB not even
1067# connected, the full unwinding machinery is not available, and
1068# typically this function will issue bytecodes for one or more likely
1069# places that the return address may be found.
1070m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1071
3030c96e 1072# Implement the "info proc" command.
7bc112c1 1073M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1074
451b7c33
TT
1075# Implement the "info proc" command for core files. Noe that there
1076# are two "info_proc"-like methods on gdbarch -- one for core files,
1077# one for live targets.
7bc112c1 1078M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1079
19630284
JB
1080# Iterate over all objfiles in the order that makes the most sense
1081# for the architecture to make global symbol searches.
1082#
1083# CB is a callback function where OBJFILE is the objfile to be searched,
1084# and CB_DATA a pointer to user-defined data (the same data that is passed
1085# when calling this gdbarch method). The iteration stops if this function
1086# returns nonzero.
1087#
1088# CB_DATA is a pointer to some user-defined data to be passed to
1089# the callback.
1090#
1091# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1092# inspected when the symbol search was requested.
1093m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1094
7e35103a
JB
1095# Ravenscar arch-dependent ops.
1096v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1097
1098# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1099m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1100
1101# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1102m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1103
1104# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1105m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1106
1107# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1108# Return 0 if *READPTR is already at the end of the buffer.
1109# Return -1 if there is insufficient buffer for a whole entry.
1110# Return 1 if an entry was read into *TYPEP and *VALP.
1111M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1112
1113# Find the address range of the current inferior's vsyscall/vDSO, and
1114# write it to *RANGE. If the vsyscall's length can't be determined, a
1115# range with zero length is returned. Returns true if the vsyscall is
1116# found, false otherwise.
1117m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1118
1119# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1120# PROT has GDB_MMAP_PROT_* bitmask format.
1121# Throw an error if it is not possible. Returned address is always valid.
1122f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1123
7f361056
JK
1124# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1125# Print a warning if it is not possible.
1126f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1127
f208eee0
JK
1128# Return string (caller has to use xfree for it) with options for GCC
1129# to produce code for this target, typically "-m64", "-m32" or "-m31".
1130# These options are put before CU's DW_AT_producer compilation options so that
1131# they can override it. Method may also return NULL.
1132m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1133
1134# Return a regular expression that matches names used by this
1135# architecture in GNU configury triplets. The result is statically
1136# allocated and must not be freed. The default implementation simply
1137# returns the BFD architecture name, which is correct in nearly every
1138# case.
1139m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1140
1141# Return the size in 8-bit bytes of an addressable memory unit on this
1142# architecture. This corresponds to the number of 8-bit bytes associated to
1143# each address in memory.
1144m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1145
104c1213 1146EOF
104c1213
JM
1147}
1148
0b8f9e4d
AC
1149#
1150# The .log file
1151#
1152exec > new-gdbarch.log
34620563 1153function_list | while do_read
0b8f9e4d
AC
1154do
1155 cat <<EOF
2f9b146e 1156${class} ${returntype} ${function} ($formal)
104c1213 1157EOF
3d9a5942
AC
1158 for r in ${read}
1159 do
1160 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1161 done
f0d4cc9e 1162 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1163 then
66d659b1 1164 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1165 kill $$
1166 exit 1
1167 fi
72e74a21 1168 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1169 then
1170 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1171 kill $$
1172 exit 1
1173 fi
a72293e2
AC
1174 if class_is_multiarch_p
1175 then
1176 if class_is_predicate_p ; then :
1177 elif test "x${predefault}" = "x"
1178 then
2f9b146e 1179 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1180 kill $$
1181 exit 1
1182 fi
1183 fi
3d9a5942 1184 echo ""
0b8f9e4d
AC
1185done
1186
1187exec 1>&2
1188compare_new gdbarch.log
1189
104c1213
JM
1190
1191copyright ()
1192{
1193cat <<EOF
c4bfde41
JK
1194/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1195/* vi:set ro: */
59233f88 1196
104c1213 1197/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1198
618f726f 1199 Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
1200
1201 This file is part of GDB.
1202
1203 This program is free software; you can redistribute it and/or modify
1204 it under the terms of the GNU General Public License as published by
50efebf8 1205 the Free Software Foundation; either version 3 of the License, or
104c1213 1206 (at your option) any later version.
618f726f 1207
104c1213
JM
1208 This program is distributed in the hope that it will be useful,
1209 but WITHOUT ANY WARRANTY; without even the implied warranty of
1210 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1211 GNU General Public License for more details.
618f726f 1212
104c1213 1213 You should have received a copy of the GNU General Public License
50efebf8 1214 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1215
104c1213
JM
1216/* This file was created with the aid of \`\`gdbarch.sh''.
1217
52204a0b 1218 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1219 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1220 against the existing \`\`gdbarch.[hc]''. Any differences found
1221 being reported.
1222
1223 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1224 changes into that script. Conversely, when making sweeping changes
104c1213 1225 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1226 easier. */
104c1213
JM
1227
1228EOF
1229}
1230
1231#
1232# The .h file
1233#
1234
1235exec > new-gdbarch.h
1236copyright
1237cat <<EOF
1238#ifndef GDBARCH_H
1239#define GDBARCH_H
1240
eb7a547a
JB
1241#include "frame.h"
1242
da3331ec
AC
1243struct floatformat;
1244struct ui_file;
104c1213 1245struct value;
b6af0555 1246struct objfile;
1c772458 1247struct obj_section;
a2cf933a 1248struct minimal_symbol;
049ee0e4 1249struct regcache;
b59ff9d5 1250struct reggroup;
6ce6d90f 1251struct regset;
a89aa300 1252struct disassemble_info;
e2d0e7eb 1253struct target_ops;
030f20e1 1254struct obstack;
8181d85f 1255struct bp_target_info;
424163ea 1256struct target_desc;
3e29f34a
MR
1257struct objfile;
1258struct symbol;
237fc4c9 1259struct displaced_step_closure;
a96d9b2e 1260struct syscall;
175ff332 1261struct agent_expr;
6710bf39 1262struct axs_value;
55aa24fb 1263struct stap_parse_info;
8b367e17 1264struct parser_state;
7e35103a 1265struct ravenscar_arch_ops;
b3ac9c77 1266struct elf_internal_linux_prpsinfo;
3437254d 1267struct mem_range;
458c8db8 1268struct syscalls_info;
4dfc5dbc 1269struct thread_info;
012b3a21 1270struct ui_out;
104c1213 1271
8a526fa6
PA
1272#include "regcache.h"
1273
6ecd4729
PA
1274/* The architecture associated with the inferior through the
1275 connection to the target.
1276
1277 The architecture vector provides some information that is really a
1278 property of the inferior, accessed through a particular target:
1279 ptrace operations; the layout of certain RSP packets; the solib_ops
1280 vector; etc. To differentiate architecture accesses to
1281 per-inferior/target properties from
1282 per-thread/per-frame/per-objfile properties, accesses to
1283 per-inferior/target properties should be made through this
1284 gdbarch. */
1285
1286/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1287extern struct gdbarch *target_gdbarch (void);
6ecd4729 1288
19630284
JB
1289/* Callback type for the 'iterate_over_objfiles_in_search_order'
1290 gdbarch method. */
1291
1292typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1293 (struct objfile *objfile, void *cb_data);
5aa82d05 1294
1528345d
AA
1295/* Callback type for regset section iterators. The callback usually
1296 invokes the REGSET's supply or collect method, to which it must
1297 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1298 section name, and HUMAN_NAME is used for diagnostic messages.
1299 CB_DATA should have been passed unchanged through the iterator. */
1300
5aa82d05 1301typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1302 (const char *sect_name, int size, const struct regset *regset,
1303 const char *human_name, void *cb_data);
104c1213
JM
1304EOF
1305
1306# function typedef's
3d9a5942
AC
1307printf "\n"
1308printf "\n"
0963b4bd 1309printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1310function_list | while do_read
104c1213 1311do
2ada493a
AC
1312 if class_is_info_p
1313 then
3d9a5942
AC
1314 printf "\n"
1315 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1316 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1317 fi
104c1213
JM
1318done
1319
1320# function typedef's
3d9a5942
AC
1321printf "\n"
1322printf "\n"
0963b4bd 1323printf "/* The following are initialized by the target dependent code. */\n"
34620563 1324function_list | while do_read
104c1213 1325do
72e74a21 1326 if [ -n "${comment}" ]
34620563
AC
1327 then
1328 echo "${comment}" | sed \
1329 -e '2 s,#,/*,' \
1330 -e '3,$ s,#, ,' \
1331 -e '$ s,$, */,'
1332 fi
412d5987
AC
1333
1334 if class_is_predicate_p
2ada493a 1335 then
412d5987
AC
1336 printf "\n"
1337 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1338 fi
2ada493a
AC
1339 if class_is_variable_p
1340 then
3d9a5942
AC
1341 printf "\n"
1342 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1343 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1344 fi
1345 if class_is_function_p
1346 then
3d9a5942 1347 printf "\n"
72e74a21 1348 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1349 then
1350 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1351 elif class_is_multiarch_p
1352 then
1353 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1354 else
1355 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1356 fi
72e74a21 1357 if [ "x${formal}" = "xvoid" ]
104c1213 1358 then
3d9a5942 1359 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1360 else
3d9a5942 1361 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1362 fi
3d9a5942 1363 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1364 fi
104c1213
JM
1365done
1366
1367# close it off
1368cat <<EOF
1369
a96d9b2e
SDJ
1370/* Definition for an unknown syscall, used basically in error-cases. */
1371#define UNKNOWN_SYSCALL (-1)
1372
104c1213
JM
1373extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1374
1375
1376/* Mechanism for co-ordinating the selection of a specific
1377 architecture.
1378
1379 GDB targets (*-tdep.c) can register an interest in a specific
1380 architecture. Other GDB components can register a need to maintain
1381 per-architecture data.
1382
1383 The mechanisms below ensures that there is only a loose connection
1384 between the set-architecture command and the various GDB
0fa6923a 1385 components. Each component can independently register their need
104c1213
JM
1386 to maintain architecture specific data with gdbarch.
1387
1388 Pragmatics:
1389
1390 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1391 didn't scale.
1392
1393 The more traditional mega-struct containing architecture specific
1394 data for all the various GDB components was also considered. Since
0fa6923a 1395 GDB is built from a variable number of (fairly independent)
104c1213 1396 components it was determined that the global aproach was not
0963b4bd 1397 applicable. */
104c1213
JM
1398
1399
1400/* Register a new architectural family with GDB.
1401
1402 Register support for the specified ARCHITECTURE with GDB. When
1403 gdbarch determines that the specified architecture has been
1404 selected, the corresponding INIT function is called.
1405
1406 --
1407
1408 The INIT function takes two parameters: INFO which contains the
1409 information available to gdbarch about the (possibly new)
1410 architecture; ARCHES which is a list of the previously created
1411 \`\`struct gdbarch'' for this architecture.
1412
0f79675b 1413 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1414 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1415
1416 The ARCHES parameter is a linked list (sorted most recently used)
1417 of all the previously created architures for this architecture
1418 family. The (possibly NULL) ARCHES->gdbarch can used to access
1419 values from the previously selected architecture for this
59837fe0 1420 architecture family.
104c1213
JM
1421
1422 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1423 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1424 gdbarch'' from the ARCHES list - indicating that the new
1425 architecture is just a synonym for an earlier architecture (see
1426 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1427 - that describes the selected architecture (see gdbarch_alloc()).
1428
1429 The DUMP_TDEP function shall print out all target specific values.
1430 Care should be taken to ensure that the function works in both the
0963b4bd 1431 multi-arch and non- multi-arch cases. */
104c1213
JM
1432
1433struct gdbarch_list
1434{
1435 struct gdbarch *gdbarch;
1436 struct gdbarch_list *next;
1437};
1438
1439struct gdbarch_info
1440{
0963b4bd 1441 /* Use default: NULL (ZERO). */
104c1213
JM
1442 const struct bfd_arch_info *bfd_arch_info;
1443
428721aa 1444 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1445 enum bfd_endian byte_order;
104c1213 1446
94123b4f 1447 enum bfd_endian byte_order_for_code;
9d4fde75 1448
0963b4bd 1449 /* Use default: NULL (ZERO). */
104c1213
JM
1450 bfd *abfd;
1451
0963b4bd 1452 /* Use default: NULL (ZERO). */
ede5f151 1453 void *tdep_info;
4be87837
DJ
1454
1455 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1456 enum gdb_osabi osabi;
424163ea
DJ
1457
1458 /* Use default: NULL (ZERO). */
1459 const struct target_desc *target_desc;
104c1213
JM
1460};
1461
1462typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1463typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1464
4b9b3959 1465/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1466extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1467
4b9b3959
AC
1468extern void gdbarch_register (enum bfd_architecture architecture,
1469 gdbarch_init_ftype *,
1470 gdbarch_dump_tdep_ftype *);
1471
104c1213 1472
b4a20239
AC
1473/* Return a freshly allocated, NULL terminated, array of the valid
1474 architecture names. Since architectures are registered during the
1475 _initialize phase this function only returns useful information
0963b4bd 1476 once initialization has been completed. */
b4a20239
AC
1477
1478extern const char **gdbarch_printable_names (void);
1479
1480
104c1213 1481/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1482 matches the information provided by INFO. */
104c1213 1483
424163ea 1484extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1485
1486
1487/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1488 basic initialization using values obtained from the INFO and TDEP
104c1213 1489 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1490 initialization of the object. */
104c1213
JM
1491
1492extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1493
1494
4b9b3959
AC
1495/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1496 It is assumed that the caller freeds the \`\`struct
0963b4bd 1497 gdbarch_tdep''. */
4b9b3959 1498
058f20d5
JB
1499extern void gdbarch_free (struct gdbarch *);
1500
1501
aebd7893
AC
1502/* Helper function. Allocate memory from the \`\`struct gdbarch''
1503 obstack. The memory is freed when the corresponding architecture
1504 is also freed. */
1505
1506extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1507#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1508#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1509
6c214e7c
PP
1510/* Duplicate STRING, returning an equivalent string that's allocated on the
1511 obstack associated with GDBARCH. The string is freed when the corresponding
1512 architecture is also freed. */
1513
1514extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1515
0963b4bd 1516/* Helper function. Force an update of the current architecture.
104c1213 1517
b732d07d
AC
1518 The actual architecture selected is determined by INFO, \`\`(gdb) set
1519 architecture'' et.al., the existing architecture and BFD's default
1520 architecture. INFO should be initialized to zero and then selected
1521 fields should be updated.
104c1213 1522
0963b4bd 1523 Returns non-zero if the update succeeds. */
16f33e29
AC
1524
1525extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1526
1527
ebdba546
AC
1528/* Helper function. Find an architecture matching info.
1529
1530 INFO should be initialized using gdbarch_info_init, relevant fields
1531 set, and then finished using gdbarch_info_fill.
1532
1533 Returns the corresponding architecture, or NULL if no matching
59837fe0 1534 architecture was found. */
ebdba546
AC
1535
1536extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1537
1538
aff68abb 1539/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1540
aff68abb 1541extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1542
104c1213
JM
1543
1544/* Register per-architecture data-pointer.
1545
1546 Reserve space for a per-architecture data-pointer. An identifier
1547 for the reserved data-pointer is returned. That identifer should
95160752 1548 be saved in a local static variable.
104c1213 1549
fcc1c85c
AC
1550 Memory for the per-architecture data shall be allocated using
1551 gdbarch_obstack_zalloc. That memory will be deleted when the
1552 corresponding architecture object is deleted.
104c1213 1553
95160752
AC
1554 When a previously created architecture is re-selected, the
1555 per-architecture data-pointer for that previous architecture is
76860b5f 1556 restored. INIT() is not re-called.
104c1213
JM
1557
1558 Multiple registrarants for any architecture are allowed (and
1559 strongly encouraged). */
1560
95160752 1561struct gdbarch_data;
104c1213 1562
030f20e1
AC
1563typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1564extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1565typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1566extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1567extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1568 struct gdbarch_data *data,
1569 void *pointer);
104c1213 1570
451fbdda 1571extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1572
1573
0fa6923a 1574/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1575 byte-order, ...) using information found in the BFD. */
104c1213
JM
1576
1577extern void set_gdbarch_from_file (bfd *);
1578
1579
e514a9d6
JM
1580/* Initialize the current architecture to the "first" one we find on
1581 our list. */
1582
1583extern void initialize_current_architecture (void);
1584
104c1213 1585/* gdbarch trace variable */
ccce17b0 1586extern unsigned int gdbarch_debug;
104c1213 1587
4b9b3959 1588extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1589
1590#endif
1591EOF
1592exec 1>&2
1593#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1594compare_new gdbarch.h
104c1213
JM
1595
1596
1597#
1598# C file
1599#
1600
1601exec > new-gdbarch.c
1602copyright
1603cat <<EOF
1604
1605#include "defs.h"
7355ddba 1606#include "arch-utils.h"
104c1213 1607
104c1213 1608#include "gdbcmd.h"
faaf634c 1609#include "inferior.h"
104c1213
JM
1610#include "symcat.h"
1611
f0d4cc9e 1612#include "floatformat.h"
b59ff9d5 1613#include "reggroups.h"
4be87837 1614#include "osabi.h"
aebd7893 1615#include "gdb_obstack.h"
383f836e 1616#include "observer.h"
a3ecef73 1617#include "regcache.h"
19630284 1618#include "objfiles.h"
95160752 1619
104c1213
JM
1620/* Static function declarations */
1621
b3cc3077 1622static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1623
104c1213
JM
1624/* Non-zero if we want to trace architecture code. */
1625
1626#ifndef GDBARCH_DEBUG
1627#define GDBARCH_DEBUG 0
1628#endif
ccce17b0 1629unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1630static void
1631show_gdbarch_debug (struct ui_file *file, int from_tty,
1632 struct cmd_list_element *c, const char *value)
1633{
1634 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1635}
104c1213 1636
456fcf94 1637static const char *
8da61cc4 1638pformat (const struct floatformat **format)
456fcf94
AC
1639{
1640 if (format == NULL)
1641 return "(null)";
1642 else
8da61cc4
DJ
1643 /* Just print out one of them - this is only for diagnostics. */
1644 return format[0]->name;
456fcf94
AC
1645}
1646
08105857
PA
1647static const char *
1648pstring (const char *string)
1649{
1650 if (string == NULL)
1651 return "(null)";
1652 return string;
05c0465e
SDJ
1653}
1654
1655/* Helper function to print a list of strings, represented as "const
1656 char *const *". The list is printed comma-separated. */
1657
1658static char *
1659pstring_list (const char *const *list)
1660{
1661 static char ret[100];
1662 const char *const *p;
1663 size_t offset = 0;
1664
1665 if (list == NULL)
1666 return "(null)";
1667
1668 ret[0] = '\0';
1669 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1670 {
1671 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1672 offset += 2 + s;
1673 }
1674
1675 if (offset > 0)
1676 {
1677 gdb_assert (offset - 2 < sizeof (ret));
1678 ret[offset - 2] = '\0';
1679 }
1680
1681 return ret;
08105857
PA
1682}
1683
104c1213
JM
1684EOF
1685
1686# gdbarch open the gdbarch object
3d9a5942 1687printf "\n"
0963b4bd 1688printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1689printf "\n"
1690printf "struct gdbarch\n"
1691printf "{\n"
76860b5f
AC
1692printf " /* Has this architecture been fully initialized? */\n"
1693printf " int initialized_p;\n"
aebd7893
AC
1694printf "\n"
1695printf " /* An obstack bound to the lifetime of the architecture. */\n"
1696printf " struct obstack *obstack;\n"
1697printf "\n"
0963b4bd 1698printf " /* basic architectural information. */\n"
34620563 1699function_list | while do_read
104c1213 1700do
2ada493a
AC
1701 if class_is_info_p
1702 then
3d9a5942 1703 printf " ${returntype} ${function};\n"
2ada493a 1704 fi
104c1213 1705done
3d9a5942 1706printf "\n"
0963b4bd 1707printf " /* target specific vector. */\n"
3d9a5942
AC
1708printf " struct gdbarch_tdep *tdep;\n"
1709printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1710printf "\n"
0963b4bd 1711printf " /* per-architecture data-pointers. */\n"
95160752 1712printf " unsigned nr_data;\n"
3d9a5942
AC
1713printf " void **data;\n"
1714printf "\n"
104c1213
JM
1715cat <<EOF
1716 /* Multi-arch values.
1717
1718 When extending this structure you must:
1719
1720 Add the field below.
1721
1722 Declare set/get functions and define the corresponding
1723 macro in gdbarch.h.
1724
1725 gdbarch_alloc(): If zero/NULL is not a suitable default,
1726 initialize the new field.
1727
1728 verify_gdbarch(): Confirm that the target updated the field
1729 correctly.
1730
7e73cedf 1731 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1732 field is dumped out
1733
104c1213
JM
1734 get_gdbarch(): Implement the set/get functions (probably using
1735 the macro's as shortcuts).
1736
1737 */
1738
1739EOF
34620563 1740function_list | while do_read
104c1213 1741do
2ada493a
AC
1742 if class_is_variable_p
1743 then
3d9a5942 1744 printf " ${returntype} ${function};\n"
2ada493a
AC
1745 elif class_is_function_p
1746 then
2f9b146e 1747 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1748 fi
104c1213 1749done
3d9a5942 1750printf "};\n"
104c1213 1751
104c1213 1752# Create a new gdbarch struct
104c1213 1753cat <<EOF
7de2341d 1754
66b43ecb 1755/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1756 \`\`struct gdbarch_info''. */
104c1213 1757EOF
3d9a5942 1758printf "\n"
104c1213
JM
1759cat <<EOF
1760struct gdbarch *
1761gdbarch_alloc (const struct gdbarch_info *info,
1762 struct gdbarch_tdep *tdep)
1763{
be7811ad 1764 struct gdbarch *gdbarch;
aebd7893
AC
1765
1766 /* Create an obstack for allocating all the per-architecture memory,
1767 then use that to allocate the architecture vector. */
70ba0933 1768 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1769 obstack_init (obstack);
8d749320 1770 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1771 memset (gdbarch, 0, sizeof (*gdbarch));
1772 gdbarch->obstack = obstack;
85de9627 1773
be7811ad 1774 alloc_gdbarch_data (gdbarch);
85de9627 1775
be7811ad 1776 gdbarch->tdep = tdep;
104c1213 1777EOF
3d9a5942 1778printf "\n"
34620563 1779function_list | while do_read
104c1213 1780do
2ada493a
AC
1781 if class_is_info_p
1782 then
be7811ad 1783 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1784 fi
104c1213 1785done
3d9a5942 1786printf "\n"
0963b4bd 1787printf " /* Force the explicit initialization of these. */\n"
34620563 1788function_list | while do_read
104c1213 1789do
2ada493a
AC
1790 if class_is_function_p || class_is_variable_p
1791 then
72e74a21 1792 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1793 then
be7811ad 1794 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1795 fi
2ada493a 1796 fi
104c1213
JM
1797done
1798cat <<EOF
1799 /* gdbarch_alloc() */
1800
be7811ad 1801 return gdbarch;
104c1213
JM
1802}
1803EOF
1804
058f20d5 1805# Free a gdbarch struct.
3d9a5942
AC
1806printf "\n"
1807printf "\n"
058f20d5 1808cat <<EOF
aebd7893
AC
1809/* Allocate extra space using the per-architecture obstack. */
1810
1811void *
1812gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1813{
1814 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1815
aebd7893
AC
1816 memset (data, 0, size);
1817 return data;
1818}
1819
6c214e7c
PP
1820/* See gdbarch.h. */
1821
1822char *
1823gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1824{
1825 return obstack_strdup (arch->obstack, string);
1826}
1827
aebd7893 1828
058f20d5
JB
1829/* Free a gdbarch struct. This should never happen in normal
1830 operation --- once you've created a gdbarch, you keep it around.
1831 However, if an architecture's init function encounters an error
1832 building the structure, it may need to clean up a partially
1833 constructed gdbarch. */
4b9b3959 1834
058f20d5
JB
1835void
1836gdbarch_free (struct gdbarch *arch)
1837{
aebd7893 1838 struct obstack *obstack;
05c547f6 1839
95160752 1840 gdb_assert (arch != NULL);
aebd7893
AC
1841 gdb_assert (!arch->initialized_p);
1842 obstack = arch->obstack;
1843 obstack_free (obstack, 0); /* Includes the ARCH. */
1844 xfree (obstack);
058f20d5
JB
1845}
1846EOF
1847
104c1213 1848# verify a new architecture
104c1213 1849cat <<EOF
db446970
AC
1850
1851
1852/* Ensure that all values in a GDBARCH are reasonable. */
1853
104c1213 1854static void
be7811ad 1855verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1856{
f16a1923
AC
1857 struct ui_file *log;
1858 struct cleanup *cleanups;
759ef836 1859 long length;
f16a1923 1860 char *buf;
05c547f6 1861
f16a1923
AC
1862 log = mem_fileopen ();
1863 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1864 /* fundamental */
be7811ad 1865 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1866 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1867 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1868 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1869 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1870EOF
34620563 1871function_list | while do_read
104c1213 1872do
2ada493a
AC
1873 if class_is_function_p || class_is_variable_p
1874 then
72e74a21 1875 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1876 then
3d9a5942 1877 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1878 elif class_is_predicate_p
1879 then
0963b4bd 1880 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1881 # FIXME: See do_read for potential simplification
72e74a21 1882 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1883 then
3d9a5942 1884 printf " if (${invalid_p})\n"
be7811ad 1885 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1886 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1887 then
be7811ad
MD
1888 printf " if (gdbarch->${function} == ${predefault})\n"
1889 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1890 elif [ -n "${postdefault}" ]
f0d4cc9e 1891 then
be7811ad
MD
1892 printf " if (gdbarch->${function} == 0)\n"
1893 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1894 elif [ -n "${invalid_p}" ]
104c1213 1895 then
4d60522e 1896 printf " if (${invalid_p})\n"
f16a1923 1897 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1898 elif [ -n "${predefault}" ]
104c1213 1899 then
be7811ad 1900 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1901 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1902 fi
2ada493a 1903 fi
104c1213
JM
1904done
1905cat <<EOF
759ef836 1906 buf = ui_file_xstrdup (log, &length);
f16a1923 1907 make_cleanup (xfree, buf);
759ef836 1908 if (length > 0)
f16a1923 1909 internal_error (__FILE__, __LINE__,
85c07804 1910 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1911 buf);
1912 do_cleanups (cleanups);
104c1213
JM
1913}
1914EOF
1915
1916# dump the structure
3d9a5942
AC
1917printf "\n"
1918printf "\n"
104c1213 1919cat <<EOF
0963b4bd 1920/* Print out the details of the current architecture. */
4b9b3959 1921
104c1213 1922void
be7811ad 1923gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1924{
b78960be 1925 const char *gdb_nm_file = "<not-defined>";
05c547f6 1926
b78960be
AC
1927#if defined (GDB_NM_FILE)
1928 gdb_nm_file = GDB_NM_FILE;
1929#endif
1930 fprintf_unfiltered (file,
1931 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1932 gdb_nm_file);
104c1213 1933EOF
97030eea 1934function_list | sort -t: -k 3 | while do_read
104c1213 1935do
1e9f55d0
AC
1936 # First the predicate
1937 if class_is_predicate_p
1938 then
7996bcec 1939 printf " fprintf_unfiltered (file,\n"
48f7351b 1940 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1941 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1942 fi
48f7351b 1943 # Print the corresponding value.
283354d8 1944 if class_is_function_p
4b9b3959 1945 then
7996bcec 1946 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1947 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1948 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1949 else
48f7351b 1950 # It is a variable
2f9b146e
AC
1951 case "${print}:${returntype}" in
1952 :CORE_ADDR )
0b1553bc
UW
1953 fmt="%s"
1954 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1955 ;;
2f9b146e 1956 :* )
48f7351b 1957 fmt="%s"
623d3eb1 1958 print="plongest (gdbarch->${function})"
48f7351b
AC
1959 ;;
1960 * )
2f9b146e 1961 fmt="%s"
48f7351b
AC
1962 ;;
1963 esac
3d9a5942 1964 printf " fprintf_unfiltered (file,\n"
48f7351b 1965 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1966 printf " ${print});\n"
2ada493a 1967 fi
104c1213 1968done
381323f4 1969cat <<EOF
be7811ad
MD
1970 if (gdbarch->dump_tdep != NULL)
1971 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1972}
1973EOF
104c1213
JM
1974
1975
1976# GET/SET
3d9a5942 1977printf "\n"
104c1213
JM
1978cat <<EOF
1979struct gdbarch_tdep *
1980gdbarch_tdep (struct gdbarch *gdbarch)
1981{
1982 if (gdbarch_debug >= 2)
3d9a5942 1983 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1984 return gdbarch->tdep;
1985}
1986EOF
3d9a5942 1987printf "\n"
34620563 1988function_list | while do_read
104c1213 1989do
2ada493a
AC
1990 if class_is_predicate_p
1991 then
3d9a5942
AC
1992 printf "\n"
1993 printf "int\n"
1994 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1995 printf "{\n"
8de9bdc4 1996 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1997 printf " return ${predicate};\n"
3d9a5942 1998 printf "}\n"
2ada493a
AC
1999 fi
2000 if class_is_function_p
2001 then
3d9a5942
AC
2002 printf "\n"
2003 printf "${returntype}\n"
72e74a21 2004 if [ "x${formal}" = "xvoid" ]
104c1213 2005 then
3d9a5942 2006 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2007 else
3d9a5942 2008 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2009 fi
3d9a5942 2010 printf "{\n"
8de9bdc4 2011 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2012 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2013 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2014 then
2015 # Allow a call to a function with a predicate.
956ac328 2016 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2017 fi
3d9a5942
AC
2018 printf " if (gdbarch_debug >= 2)\n"
2019 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2020 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2021 then
2022 if class_is_multiarch_p
2023 then
2024 params="gdbarch"
2025 else
2026 params=""
2027 fi
2028 else
2029 if class_is_multiarch_p
2030 then
2031 params="gdbarch, ${actual}"
2032 else
2033 params="${actual}"
2034 fi
2035 fi
72e74a21 2036 if [ "x${returntype}" = "xvoid" ]
104c1213 2037 then
4a5c6a1d 2038 printf " gdbarch->${function} (${params});\n"
104c1213 2039 else
4a5c6a1d 2040 printf " return gdbarch->${function} (${params});\n"
104c1213 2041 fi
3d9a5942
AC
2042 printf "}\n"
2043 printf "\n"
2044 printf "void\n"
2045 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2046 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2047 printf "{\n"
2048 printf " gdbarch->${function} = ${function};\n"
2049 printf "}\n"
2ada493a
AC
2050 elif class_is_variable_p
2051 then
3d9a5942
AC
2052 printf "\n"
2053 printf "${returntype}\n"
2054 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2055 printf "{\n"
8de9bdc4 2056 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2057 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2058 then
3d9a5942 2059 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2060 elif [ -n "${invalid_p}" ]
104c1213 2061 then
956ac328
AC
2062 printf " /* Check variable is valid. */\n"
2063 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2064 elif [ -n "${predefault}" ]
104c1213 2065 then
956ac328
AC
2066 printf " /* Check variable changed from pre-default. */\n"
2067 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2068 fi
3d9a5942
AC
2069 printf " if (gdbarch_debug >= 2)\n"
2070 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2071 printf " return gdbarch->${function};\n"
2072 printf "}\n"
2073 printf "\n"
2074 printf "void\n"
2075 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2076 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2077 printf "{\n"
2078 printf " gdbarch->${function} = ${function};\n"
2079 printf "}\n"
2ada493a
AC
2080 elif class_is_info_p
2081 then
3d9a5942
AC
2082 printf "\n"
2083 printf "${returntype}\n"
2084 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2085 printf "{\n"
8de9bdc4 2086 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2087 printf " if (gdbarch_debug >= 2)\n"
2088 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2089 printf " return gdbarch->${function};\n"
2090 printf "}\n"
2ada493a 2091 fi
104c1213
JM
2092done
2093
2094# All the trailing guff
2095cat <<EOF
2096
2097
f44c642f 2098/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2099 modules. */
104c1213
JM
2100
2101struct gdbarch_data
2102{
95160752 2103 unsigned index;
76860b5f 2104 int init_p;
030f20e1
AC
2105 gdbarch_data_pre_init_ftype *pre_init;
2106 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2107};
2108
2109struct gdbarch_data_registration
2110{
104c1213
JM
2111 struct gdbarch_data *data;
2112 struct gdbarch_data_registration *next;
2113};
2114
f44c642f 2115struct gdbarch_data_registry
104c1213 2116{
95160752 2117 unsigned nr;
104c1213
JM
2118 struct gdbarch_data_registration *registrations;
2119};
2120
f44c642f 2121struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2122{
2123 0, NULL,
2124};
2125
030f20e1
AC
2126static struct gdbarch_data *
2127gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2128 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2129{
2130 struct gdbarch_data_registration **curr;
05c547f6
MS
2131
2132 /* Append the new registration. */
f44c642f 2133 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2134 (*curr) != NULL;
2135 curr = &(*curr)->next);
70ba0933 2136 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2137 (*curr)->next = NULL;
70ba0933 2138 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2139 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2140 (*curr)->data->pre_init = pre_init;
2141 (*curr)->data->post_init = post_init;
76860b5f 2142 (*curr)->data->init_p = 1;
104c1213
JM
2143 return (*curr)->data;
2144}
2145
030f20e1
AC
2146struct gdbarch_data *
2147gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2148{
2149 return gdbarch_data_register (pre_init, NULL);
2150}
2151
2152struct gdbarch_data *
2153gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2154{
2155 return gdbarch_data_register (NULL, post_init);
2156}
104c1213 2157
0963b4bd 2158/* Create/delete the gdbarch data vector. */
95160752
AC
2159
2160static void
b3cc3077 2161alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2162{
b3cc3077
JB
2163 gdb_assert (gdbarch->data == NULL);
2164 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2165 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2166}
3c875b6f 2167
76860b5f 2168/* Initialize the current value of the specified per-architecture
0963b4bd 2169 data-pointer. */
b3cc3077 2170
95160752 2171void
030f20e1
AC
2172deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2173 struct gdbarch_data *data,
2174 void *pointer)
95160752
AC
2175{
2176 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2177 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2178 gdb_assert (data->pre_init == NULL);
95160752
AC
2179 gdbarch->data[data->index] = pointer;
2180}
2181
104c1213 2182/* Return the current value of the specified per-architecture
0963b4bd 2183 data-pointer. */
104c1213
JM
2184
2185void *
451fbdda 2186gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2187{
451fbdda 2188 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2189 if (gdbarch->data[data->index] == NULL)
76860b5f 2190 {
030f20e1
AC
2191 /* The data-pointer isn't initialized, call init() to get a
2192 value. */
2193 if (data->pre_init != NULL)
2194 /* Mid architecture creation: pass just the obstack, and not
2195 the entire architecture, as that way it isn't possible for
2196 pre-init code to refer to undefined architecture
2197 fields. */
2198 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2199 else if (gdbarch->initialized_p
2200 && data->post_init != NULL)
2201 /* Post architecture creation: pass the entire architecture
2202 (as all fields are valid), but be careful to also detect
2203 recursive references. */
2204 {
2205 gdb_assert (data->init_p);
2206 data->init_p = 0;
2207 gdbarch->data[data->index] = data->post_init (gdbarch);
2208 data->init_p = 1;
2209 }
2210 else
2211 /* The architecture initialization hasn't completed - punt -
2212 hope that the caller knows what they are doing. Once
2213 deprecated_set_gdbarch_data has been initialized, this can be
2214 changed to an internal error. */
2215 return NULL;
76860b5f
AC
2216 gdb_assert (gdbarch->data[data->index] != NULL);
2217 }
451fbdda 2218 return gdbarch->data[data->index];
104c1213
JM
2219}
2220
2221
0963b4bd 2222/* Keep a registry of the architectures known by GDB. */
104c1213 2223
4b9b3959 2224struct gdbarch_registration
104c1213
JM
2225{
2226 enum bfd_architecture bfd_architecture;
2227 gdbarch_init_ftype *init;
4b9b3959 2228 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2229 struct gdbarch_list *arches;
4b9b3959 2230 struct gdbarch_registration *next;
104c1213
JM
2231};
2232
f44c642f 2233static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2234
b4a20239
AC
2235static void
2236append_name (const char ***buf, int *nr, const char *name)
2237{
1dc7a623 2238 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2239 (*buf)[*nr] = name;
2240 *nr += 1;
2241}
2242
2243const char **
2244gdbarch_printable_names (void)
2245{
7996bcec 2246 /* Accumulate a list of names based on the registed list of
0963b4bd 2247 architectures. */
7996bcec
AC
2248 int nr_arches = 0;
2249 const char **arches = NULL;
2250 struct gdbarch_registration *rego;
05c547f6 2251
7996bcec
AC
2252 for (rego = gdbarch_registry;
2253 rego != NULL;
2254 rego = rego->next)
b4a20239 2255 {
7996bcec
AC
2256 const struct bfd_arch_info *ap;
2257 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2258 if (ap == NULL)
2259 internal_error (__FILE__, __LINE__,
85c07804 2260 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2261 do
2262 {
2263 append_name (&arches, &nr_arches, ap->printable_name);
2264 ap = ap->next;
2265 }
2266 while (ap != NULL);
b4a20239 2267 }
7996bcec
AC
2268 append_name (&arches, &nr_arches, NULL);
2269 return arches;
b4a20239
AC
2270}
2271
2272
104c1213 2273void
4b9b3959
AC
2274gdbarch_register (enum bfd_architecture bfd_architecture,
2275 gdbarch_init_ftype *init,
2276 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2277{
4b9b3959 2278 struct gdbarch_registration **curr;
104c1213 2279 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2280
ec3d358c 2281 /* Check that BFD recognizes this architecture */
104c1213
JM
2282 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2283 if (bfd_arch_info == NULL)
2284 {
8e65ff28 2285 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2286 _("gdbarch: Attempt to register "
2287 "unknown architecture (%d)"),
8e65ff28 2288 bfd_architecture);
104c1213 2289 }
0963b4bd 2290 /* Check that we haven't seen this architecture before. */
f44c642f 2291 for (curr = &gdbarch_registry;
104c1213
JM
2292 (*curr) != NULL;
2293 curr = &(*curr)->next)
2294 {
2295 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2296 internal_error (__FILE__, __LINE__,
64b9b334 2297 _("gdbarch: Duplicate registration "
0963b4bd 2298 "of architecture (%s)"),
8e65ff28 2299 bfd_arch_info->printable_name);
104c1213
JM
2300 }
2301 /* log it */
2302 if (gdbarch_debug)
30737ed9 2303 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2304 bfd_arch_info->printable_name,
30737ed9 2305 host_address_to_string (init));
104c1213 2306 /* Append it */
70ba0933 2307 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2308 (*curr)->bfd_architecture = bfd_architecture;
2309 (*curr)->init = init;
4b9b3959 2310 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2311 (*curr)->arches = NULL;
2312 (*curr)->next = NULL;
4b9b3959
AC
2313}
2314
2315void
2316register_gdbarch_init (enum bfd_architecture bfd_architecture,
2317 gdbarch_init_ftype *init)
2318{
2319 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2320}
104c1213
JM
2321
2322
424163ea 2323/* Look for an architecture using gdbarch_info. */
104c1213
JM
2324
2325struct gdbarch_list *
2326gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2327 const struct gdbarch_info *info)
2328{
2329 for (; arches != NULL; arches = arches->next)
2330 {
2331 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2332 continue;
2333 if (info->byte_order != arches->gdbarch->byte_order)
2334 continue;
4be87837
DJ
2335 if (info->osabi != arches->gdbarch->osabi)
2336 continue;
424163ea
DJ
2337 if (info->target_desc != arches->gdbarch->target_desc)
2338 continue;
104c1213
JM
2339 return arches;
2340 }
2341 return NULL;
2342}
2343
2344
ebdba546 2345/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2346 architecture if needed. Return that new architecture. */
104c1213 2347
59837fe0
UW
2348struct gdbarch *
2349gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2350{
2351 struct gdbarch *new_gdbarch;
4b9b3959 2352 struct gdbarch_registration *rego;
104c1213 2353
b732d07d 2354 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2355 sources: "set ..."; INFOabfd supplied; and the global
2356 defaults. */
2357 gdbarch_info_fill (&info);
4be87837 2358
0963b4bd 2359 /* Must have found some sort of architecture. */
b732d07d 2360 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2361
2362 if (gdbarch_debug)
2363 {
2364 fprintf_unfiltered (gdb_stdlog,
59837fe0 2365 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2366 (info.bfd_arch_info != NULL
2367 ? info.bfd_arch_info->printable_name
2368 : "(null)"));
2369 fprintf_unfiltered (gdb_stdlog,
59837fe0 2370 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2371 info.byte_order,
d7449b42 2372 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2373 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2374 : "default"));
4be87837 2375 fprintf_unfiltered (gdb_stdlog,
59837fe0 2376 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2377 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2378 fprintf_unfiltered (gdb_stdlog,
59837fe0 2379 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2380 host_address_to_string (info.abfd));
104c1213 2381 fprintf_unfiltered (gdb_stdlog,
59837fe0 2382 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2383 host_address_to_string (info.tdep_info));
104c1213
JM
2384 }
2385
ebdba546 2386 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2387 for (rego = gdbarch_registry;
2388 rego != NULL;
2389 rego = rego->next)
2390 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2391 break;
2392 if (rego == NULL)
2393 {
2394 if (gdbarch_debug)
59837fe0 2395 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2396 "No matching architecture\n");
b732d07d
AC
2397 return 0;
2398 }
2399
ebdba546 2400 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2401 new_gdbarch = rego->init (info, rego->arches);
2402
ebdba546
AC
2403 /* Did the tdep code like it? No. Reject the change and revert to
2404 the old architecture. */
104c1213
JM
2405 if (new_gdbarch == NULL)
2406 {
2407 if (gdbarch_debug)
59837fe0 2408 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2409 "Target rejected architecture\n");
2410 return NULL;
104c1213
JM
2411 }
2412
ebdba546
AC
2413 /* Is this a pre-existing architecture (as determined by already
2414 being initialized)? Move it to the front of the architecture
2415 list (keeping the list sorted Most Recently Used). */
2416 if (new_gdbarch->initialized_p)
104c1213 2417 {
ebdba546 2418 struct gdbarch_list **list;
fe978cb0 2419 struct gdbarch_list *self;
104c1213 2420 if (gdbarch_debug)
59837fe0 2421 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2422 "Previous architecture %s (%s) selected\n",
2423 host_address_to_string (new_gdbarch),
104c1213 2424 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2425 /* Find the existing arch in the list. */
2426 for (list = &rego->arches;
2427 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2428 list = &(*list)->next);
2429 /* It had better be in the list of architectures. */
2430 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2431 /* Unlink SELF. */
2432 self = (*list);
2433 (*list) = self->next;
2434 /* Insert SELF at the front. */
2435 self->next = rego->arches;
2436 rego->arches = self;
ebdba546
AC
2437 /* Return it. */
2438 return new_gdbarch;
104c1213
JM
2439 }
2440
ebdba546
AC
2441 /* It's a new architecture. */
2442 if (gdbarch_debug)
59837fe0 2443 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2444 "New architecture %s (%s) selected\n",
2445 host_address_to_string (new_gdbarch),
ebdba546
AC
2446 new_gdbarch->bfd_arch_info->printable_name);
2447
2448 /* Insert the new architecture into the front of the architecture
2449 list (keep the list sorted Most Recently Used). */
0f79675b 2450 {
fe978cb0
PA
2451 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2452 self->next = rego->arches;
2453 self->gdbarch = new_gdbarch;
2454 rego->arches = self;
0f79675b 2455 }
104c1213 2456
4b9b3959
AC
2457 /* Check that the newly installed architecture is valid. Plug in
2458 any post init values. */
2459 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2460 verify_gdbarch (new_gdbarch);
ebdba546 2461 new_gdbarch->initialized_p = 1;
104c1213 2462
4b9b3959 2463 if (gdbarch_debug)
ebdba546
AC
2464 gdbarch_dump (new_gdbarch, gdb_stdlog);
2465
2466 return new_gdbarch;
2467}
2468
e487cc15 2469/* Make the specified architecture current. */
ebdba546
AC
2470
2471void
aff68abb 2472set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2473{
2474 gdb_assert (new_gdbarch != NULL);
ebdba546 2475 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2476 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2477 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2478 registers_changed ();
ebdba546 2479}
104c1213 2480
f5656ead 2481/* Return the current inferior's arch. */
6ecd4729
PA
2482
2483struct gdbarch *
f5656ead 2484target_gdbarch (void)
6ecd4729
PA
2485{
2486 return current_inferior ()->gdbarch;
2487}
2488
104c1213 2489extern void _initialize_gdbarch (void);
b4a20239 2490
104c1213 2491void
34620563 2492_initialize_gdbarch (void)
104c1213 2493{
ccce17b0 2494 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2495Set architecture debugging."), _("\\
2496Show architecture debugging."), _("\\
2497When non-zero, architecture debugging is enabled."),
2498 NULL,
920d2a44 2499 show_gdbarch_debug,
85c07804 2500 &setdebuglist, &showdebuglist);
104c1213
JM
2501}
2502EOF
2503
2504# close things off
2505exec 1>&2
2506#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2507compare_new gdbarch.c
This page took 1.449324 seconds and 4 git commands to generate.