* gdbtypes.c (create_string_type): Receive character type as argument.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6# 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
97030eea
UW
469f:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470f:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
97030eea 566f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
578f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
580v:int:cannot_step_breakpoint:::0:0::0
581v:int:have_nonsteppable_watchpoint:::0:0::0
582F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 585# Is a register in a group
97030eea 586m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 587# Fetch the pointer to the ith function argument.
97030eea 588F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
589
590# Return the appropriate register set for a core file section with
591# name SECT_NAME and size SECT_SIZE.
97030eea 592M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 593
959b8724
PA
594# When creating core dumps, some systems encode the PID in addition
595# to the LWP id in core file register section names. In those cases, the
596# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597# is set to true for such architectures; false if "XXX" represents an LWP
598# or thread id with no special encoding.
599v:int:core_reg_section_encodes_pid:::0:0::0
600
17ea7499
CES
601# Supported register notes in a core file.
602v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
de584861
PA
604# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605# core file into buffer READBUF with length LEN.
97030eea 606M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 607
28439f5e
PA
608# How the core_stratum layer converts a PTID from a core file to a
609# string.
610M:char *:core_pid_to_str:ptid_t ptid:ptid
611
0d5de010
DJ
612# If the elements of C++ vtables are in-place function descriptors rather
613# than normal function pointers (which may point to code or a descriptor),
614# set this to one.
97030eea 615v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
616
617# Set if the least significant bit of the delta is used instead of the least
618# significant bit of the pfn for pointers to virtual member functions.
97030eea 619v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
620
621# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 622F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 623
237fc4c9
PA
624# The maximum length of an instruction on this architecture.
625V:ULONGEST:max_insn_length:::0:0
626
627# Copy the instruction at FROM to TO, and make any adjustments
628# necessary to single-step it at that address.
629#
630# REGS holds the state the thread's registers will have before
631# executing the copied instruction; the PC in REGS will refer to FROM,
632# not the copy at TO. The caller should update it to point at TO later.
633#
634# Return a pointer to data of the architecture's choice to be passed
635# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
636# the instruction's effects have been completely simulated, with the
637# resulting state written back to REGS.
638#
639# For a general explanation of displaced stepping and how GDB uses it,
640# see the comments in infrun.c.
641#
642# The TO area is only guaranteed to have space for
643# gdbarch_max_insn_length (arch) bytes, so this function must not
644# write more bytes than that to that area.
645#
646# If you do not provide this function, GDB assumes that the
647# architecture does not support displaced stepping.
648#
649# If your architecture doesn't need to adjust instructions before
650# single-stepping them, consider using simple_displaced_step_copy_insn
651# here.
652M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
653
654# Fix up the state resulting from successfully single-stepping a
655# displaced instruction, to give the result we would have gotten from
656# stepping the instruction in its original location.
657#
658# REGS is the register state resulting from single-stepping the
659# displaced instruction.
660#
661# CLOSURE is the result from the matching call to
662# gdbarch_displaced_step_copy_insn.
663#
664# If you provide gdbarch_displaced_step_copy_insn.but not this
665# function, then GDB assumes that no fixup is needed after
666# single-stepping the instruction.
667#
668# For a general explanation of displaced stepping and how GDB uses it,
669# see the comments in infrun.c.
670M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
671
672# Free a closure returned by gdbarch_displaced_step_copy_insn.
673#
674# If you provide gdbarch_displaced_step_copy_insn, you must provide
675# this function as well.
676#
677# If your architecture uses closures that don't need to be freed, then
678# you can use simple_displaced_step_free_closure here.
679#
680# For a general explanation of displaced stepping and how GDB uses it,
681# see the comments in infrun.c.
682m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
683
684# Return the address of an appropriate place to put displaced
685# instructions while we step over them. There need only be one such
686# place, since we're only stepping one thread over a breakpoint at a
687# time.
688#
689# For a general explanation of displaced stepping and how GDB uses it,
690# see the comments in infrun.c.
691m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
692
1c772458 693# Refresh overlay mapped state for section OSECT.
97030eea 694F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 695
97030eea 696M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
697
698# Handle special encoding of static variables in stabs debug info.
97030eea 699F:char *:static_transform_name:char *name:name
203c3895 700# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 701v:int:sofun_address_maybe_missing:::0:0::0
1cded358 702
0508c3ec
HZ
703# Parse the instruction at ADDR storing in the record execution log
704# the registers REGCACHE and memory ranges that will be affected when
705# the instruction executes, along with their current values.
706# Return -1 if something goes wrong, 0 otherwise.
707M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
708
1cded358
AR
709# Signal translation: translate inferior's signal (host's) number into
710# GDB's representation.
711m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
712# Signal translation: translate GDB's signal number into inferior's host
713# signal number.
714m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 715
4aa995e1
PA
716# Extra signal info inspection.
717#
718# Return a type suitable to inspect extra signal information.
719M:struct type *:get_siginfo_type:void:
720
60c5725c
DJ
721# Record architecture-specific information from the symbol table.
722M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf
PA
723
724# True if the list of shared libraries is one and only for all
725# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
726# This usually means that all processes, although may or may not share
727# an address space, will see the same set of symbols at the same
728# addresses.
50c71eaf 729v:int:has_global_solist:::0:0::0
2567c7d9
PA
730
731# On some targets, even though each inferior has its own private
732# address space, the debug interface takes care of making breakpoints
733# visible to all address spaces automatically. For such cases,
734# this property should be set to true.
735v:int:has_global_breakpoints:::0:0::0
104c1213 736EOF
104c1213
JM
737}
738
0b8f9e4d
AC
739#
740# The .log file
741#
742exec > new-gdbarch.log
34620563 743function_list | while do_read
0b8f9e4d
AC
744do
745 cat <<EOF
2f9b146e 746${class} ${returntype} ${function} ($formal)
104c1213 747EOF
3d9a5942
AC
748 for r in ${read}
749 do
750 eval echo \"\ \ \ \ ${r}=\${${r}}\"
751 done
f0d4cc9e 752 if class_is_predicate_p && fallback_default_p
0b8f9e4d 753 then
66d659b1 754 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
755 kill $$
756 exit 1
757 fi
72e74a21 758 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
759 then
760 echo "Error: postdefault is useless when invalid_p=0" 1>&2
761 kill $$
762 exit 1
763 fi
a72293e2
AC
764 if class_is_multiarch_p
765 then
766 if class_is_predicate_p ; then :
767 elif test "x${predefault}" = "x"
768 then
2f9b146e 769 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
770 kill $$
771 exit 1
772 fi
773 fi
3d9a5942 774 echo ""
0b8f9e4d
AC
775done
776
777exec 1>&2
778compare_new gdbarch.log
779
104c1213
JM
780
781copyright ()
782{
783cat <<EOF
59233f88
AC
784/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
785
104c1213 786/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 787
50efebf8 788 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 789 Free Software Foundation, Inc.
104c1213
JM
790
791 This file is part of GDB.
792
793 This program is free software; you can redistribute it and/or modify
794 it under the terms of the GNU General Public License as published by
50efebf8 795 the Free Software Foundation; either version 3 of the License, or
104c1213 796 (at your option) any later version.
50efebf8 797
104c1213
JM
798 This program is distributed in the hope that it will be useful,
799 but WITHOUT ANY WARRANTY; without even the implied warranty of
800 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
801 GNU General Public License for more details.
50efebf8 802
104c1213 803 You should have received a copy of the GNU General Public License
50efebf8 804 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 805
104c1213
JM
806/* This file was created with the aid of \`\`gdbarch.sh''.
807
52204a0b 808 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
809 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
810 against the existing \`\`gdbarch.[hc]''. Any differences found
811 being reported.
812
813 If editing this file, please also run gdbarch.sh and merge any
52204a0b 814 changes into that script. Conversely, when making sweeping changes
104c1213
JM
815 to this file, modifying gdbarch.sh and using its output may prove
816 easier. */
817
818EOF
819}
820
821#
822# The .h file
823#
824
825exec > new-gdbarch.h
826copyright
827cat <<EOF
828#ifndef GDBARCH_H
829#define GDBARCH_H
830
da3331ec
AC
831struct floatformat;
832struct ui_file;
104c1213
JM
833struct frame_info;
834struct value;
b6af0555 835struct objfile;
1c772458 836struct obj_section;
a2cf933a 837struct minimal_symbol;
049ee0e4 838struct regcache;
b59ff9d5 839struct reggroup;
6ce6d90f 840struct regset;
a89aa300 841struct disassemble_info;
e2d0e7eb 842struct target_ops;
030f20e1 843struct obstack;
8181d85f 844struct bp_target_info;
424163ea 845struct target_desc;
237fc4c9 846struct displaced_step_closure;
17ea7499 847struct core_regset_section;
104c1213 848
104c1213 849extern struct gdbarch *current_gdbarch;
9e2ace22
JB
850
851/* The architecture associated with the connection to the target.
852
853 The architecture vector provides some information that is really
854 a property of the target: The layout of certain packets, for instance;
855 or the solib_ops vector. Etc. To differentiate architecture accesses
856 to per-target properties from per-thread/per-frame/per-objfile properties,
857 accesses to per-target properties should be made through target_gdbarch.
858
859 Eventually, when support for multiple targets is implemented in
860 GDB, this global should be made target-specific. */
1cf3db46 861extern struct gdbarch *target_gdbarch;
104c1213
JM
862EOF
863
864# function typedef's
3d9a5942
AC
865printf "\n"
866printf "\n"
867printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 868function_list | while do_read
104c1213 869do
2ada493a
AC
870 if class_is_info_p
871 then
3d9a5942
AC
872 printf "\n"
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
874 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 875 fi
104c1213
JM
876done
877
878# function typedef's
3d9a5942
AC
879printf "\n"
880printf "\n"
881printf "/* The following are initialized by the target dependent code. */\n"
34620563 882function_list | while do_read
104c1213 883do
72e74a21 884 if [ -n "${comment}" ]
34620563
AC
885 then
886 echo "${comment}" | sed \
887 -e '2 s,#,/*,' \
888 -e '3,$ s,#, ,' \
889 -e '$ s,$, */,'
890 fi
412d5987
AC
891
892 if class_is_predicate_p
2ada493a 893 then
412d5987
AC
894 printf "\n"
895 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 896 fi
2ada493a
AC
897 if class_is_variable_p
898 then
3d9a5942
AC
899 printf "\n"
900 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
901 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
902 fi
903 if class_is_function_p
904 then
3d9a5942 905 printf "\n"
72e74a21 906 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
907 then
908 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
909 elif class_is_multiarch_p
910 then
911 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
912 else
913 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
914 fi
72e74a21 915 if [ "x${formal}" = "xvoid" ]
104c1213 916 then
3d9a5942 917 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 918 else
3d9a5942 919 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 920 fi
3d9a5942 921 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 922 fi
104c1213
JM
923done
924
925# close it off
926cat <<EOF
927
928extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
929
930
931/* Mechanism for co-ordinating the selection of a specific
932 architecture.
933
934 GDB targets (*-tdep.c) can register an interest in a specific
935 architecture. Other GDB components can register a need to maintain
936 per-architecture data.
937
938 The mechanisms below ensures that there is only a loose connection
939 between the set-architecture command and the various GDB
0fa6923a 940 components. Each component can independently register their need
104c1213
JM
941 to maintain architecture specific data with gdbarch.
942
943 Pragmatics:
944
945 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
946 didn't scale.
947
948 The more traditional mega-struct containing architecture specific
949 data for all the various GDB components was also considered. Since
0fa6923a 950 GDB is built from a variable number of (fairly independent)
104c1213
JM
951 components it was determined that the global aproach was not
952 applicable. */
953
954
955/* Register a new architectural family with GDB.
956
957 Register support for the specified ARCHITECTURE with GDB. When
958 gdbarch determines that the specified architecture has been
959 selected, the corresponding INIT function is called.
960
961 --
962
963 The INIT function takes two parameters: INFO which contains the
964 information available to gdbarch about the (possibly new)
965 architecture; ARCHES which is a list of the previously created
966 \`\`struct gdbarch'' for this architecture.
967
0f79675b 968 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 969 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
970
971 The ARCHES parameter is a linked list (sorted most recently used)
972 of all the previously created architures for this architecture
973 family. The (possibly NULL) ARCHES->gdbarch can used to access
974 values from the previously selected architecture for this
975 architecture family. The global \`\`current_gdbarch'' shall not be
976 used.
104c1213
JM
977
978 The INIT function shall return any of: NULL - indicating that it
ec3d358c 979 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
980 gdbarch'' from the ARCHES list - indicating that the new
981 architecture is just a synonym for an earlier architecture (see
982 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
983 - that describes the selected architecture (see gdbarch_alloc()).
984
985 The DUMP_TDEP function shall print out all target specific values.
986 Care should be taken to ensure that the function works in both the
987 multi-arch and non- multi-arch cases. */
104c1213
JM
988
989struct gdbarch_list
990{
991 struct gdbarch *gdbarch;
992 struct gdbarch_list *next;
993};
994
995struct gdbarch_info
996{
104c1213
JM
997 /* Use default: NULL (ZERO). */
998 const struct bfd_arch_info *bfd_arch_info;
999
428721aa 1000 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1001 int byte_order;
1002
9d4fde75
SS
1003 int byte_order_for_code;
1004
104c1213
JM
1005 /* Use default: NULL (ZERO). */
1006 bfd *abfd;
1007
1008 /* Use default: NULL (ZERO). */
1009 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1010
1011 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1012 enum gdb_osabi osabi;
424163ea
DJ
1013
1014 /* Use default: NULL (ZERO). */
1015 const struct target_desc *target_desc;
104c1213
JM
1016};
1017
1018typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1019typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1020
4b9b3959 1021/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1022extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1023
4b9b3959
AC
1024extern void gdbarch_register (enum bfd_architecture architecture,
1025 gdbarch_init_ftype *,
1026 gdbarch_dump_tdep_ftype *);
1027
104c1213 1028
b4a20239
AC
1029/* Return a freshly allocated, NULL terminated, array of the valid
1030 architecture names. Since architectures are registered during the
1031 _initialize phase this function only returns useful information
1032 once initialization has been completed. */
1033
1034extern const char **gdbarch_printable_names (void);
1035
1036
104c1213
JM
1037/* Helper function. Search the list of ARCHES for a GDBARCH that
1038 matches the information provided by INFO. */
1039
424163ea 1040extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1041
1042
1043/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1044 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1045 parameters. set_gdbarch_*() functions are called to complete the
1046 initialization of the object. */
1047
1048extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1049
1050
4b9b3959
AC
1051/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1052 It is assumed that the caller freeds the \`\`struct
1053 gdbarch_tdep''. */
1054
058f20d5
JB
1055extern void gdbarch_free (struct gdbarch *);
1056
1057
aebd7893
AC
1058/* Helper function. Allocate memory from the \`\`struct gdbarch''
1059 obstack. The memory is freed when the corresponding architecture
1060 is also freed. */
1061
1062extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1063#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1064#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1065
1066
b732d07d 1067/* Helper function. Force an update of the current architecture.
104c1213 1068
b732d07d
AC
1069 The actual architecture selected is determined by INFO, \`\`(gdb) set
1070 architecture'' et.al., the existing architecture and BFD's default
1071 architecture. INFO should be initialized to zero and then selected
1072 fields should be updated.
104c1213 1073
16f33e29
AC
1074 Returns non-zero if the update succeeds */
1075
1076extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1077
1078
ebdba546
AC
1079/* Helper function. Find an architecture matching info.
1080
1081 INFO should be initialized using gdbarch_info_init, relevant fields
1082 set, and then finished using gdbarch_info_fill.
1083
1084 Returns the corresponding architecture, or NULL if no matching
1085 architecture was found. "current_gdbarch" is not updated. */
1086
1087extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1088
1089
1090/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1091
1092 FIXME: kettenis/20031124: Of the functions that follow, only
1093 gdbarch_from_bfd is supposed to survive. The others will
1094 dissappear since in the future GDB will (hopefully) be truly
1095 multi-arch. However, for now we're still stuck with the concept of
1096 a single active architecture. */
1097
1098extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1099
104c1213
JM
1100
1101/* Register per-architecture data-pointer.
1102
1103 Reserve space for a per-architecture data-pointer. An identifier
1104 for the reserved data-pointer is returned. That identifer should
95160752 1105 be saved in a local static variable.
104c1213 1106
fcc1c85c
AC
1107 Memory for the per-architecture data shall be allocated using
1108 gdbarch_obstack_zalloc. That memory will be deleted when the
1109 corresponding architecture object is deleted.
104c1213 1110
95160752
AC
1111 When a previously created architecture is re-selected, the
1112 per-architecture data-pointer for that previous architecture is
76860b5f 1113 restored. INIT() is not re-called.
104c1213
JM
1114
1115 Multiple registrarants for any architecture are allowed (and
1116 strongly encouraged). */
1117
95160752 1118struct gdbarch_data;
104c1213 1119
030f20e1
AC
1120typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1121extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1122typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1123extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1124extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1125 struct gdbarch_data *data,
1126 void *pointer);
104c1213 1127
451fbdda 1128extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1129
1130
0fa6923a 1131/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1132 byte-order, ...) using information found in the BFD */
1133
1134extern void set_gdbarch_from_file (bfd *);
1135
1136
e514a9d6
JM
1137/* Initialize the current architecture to the "first" one we find on
1138 our list. */
1139
1140extern void initialize_current_architecture (void);
1141
104c1213
JM
1142/* gdbarch trace variable */
1143extern int gdbarch_debug;
1144
4b9b3959 1145extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1146
1147#endif
1148EOF
1149exec 1>&2
1150#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1151compare_new gdbarch.h
104c1213
JM
1152
1153
1154#
1155# C file
1156#
1157
1158exec > new-gdbarch.c
1159copyright
1160cat <<EOF
1161
1162#include "defs.h"
7355ddba 1163#include "arch-utils.h"
104c1213 1164
104c1213 1165#include "gdbcmd.h"
faaf634c 1166#include "inferior.h"
104c1213
JM
1167#include "symcat.h"
1168
f0d4cc9e 1169#include "floatformat.h"
104c1213 1170
95160752 1171#include "gdb_assert.h"
b66d6d2e 1172#include "gdb_string.h"
b59ff9d5 1173#include "reggroups.h"
4be87837 1174#include "osabi.h"
aebd7893 1175#include "gdb_obstack.h"
383f836e 1176#include "observer.h"
a3ecef73 1177#include "regcache.h"
95160752 1178
104c1213
JM
1179/* Static function declarations */
1180
b3cc3077 1181static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1182
104c1213
JM
1183/* Non-zero if we want to trace architecture code. */
1184
1185#ifndef GDBARCH_DEBUG
1186#define GDBARCH_DEBUG 0
1187#endif
1188int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1189static void
1190show_gdbarch_debug (struct ui_file *file, int from_tty,
1191 struct cmd_list_element *c, const char *value)
1192{
1193 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1194}
104c1213 1195
456fcf94 1196static const char *
8da61cc4 1197pformat (const struct floatformat **format)
456fcf94
AC
1198{
1199 if (format == NULL)
1200 return "(null)";
1201 else
8da61cc4
DJ
1202 /* Just print out one of them - this is only for diagnostics. */
1203 return format[0]->name;
456fcf94
AC
1204}
1205
104c1213
JM
1206EOF
1207
1208# gdbarch open the gdbarch object
3d9a5942
AC
1209printf "\n"
1210printf "/* Maintain the struct gdbarch object */\n"
1211printf "\n"
1212printf "struct gdbarch\n"
1213printf "{\n"
76860b5f
AC
1214printf " /* Has this architecture been fully initialized? */\n"
1215printf " int initialized_p;\n"
aebd7893
AC
1216printf "\n"
1217printf " /* An obstack bound to the lifetime of the architecture. */\n"
1218printf " struct obstack *obstack;\n"
1219printf "\n"
3d9a5942 1220printf " /* basic architectural information */\n"
34620563 1221function_list | while do_read
104c1213 1222do
2ada493a
AC
1223 if class_is_info_p
1224 then
3d9a5942 1225 printf " ${returntype} ${function};\n"
2ada493a 1226 fi
104c1213 1227done
3d9a5942
AC
1228printf "\n"
1229printf " /* target specific vector. */\n"
1230printf " struct gdbarch_tdep *tdep;\n"
1231printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1232printf "\n"
1233printf " /* per-architecture data-pointers */\n"
95160752 1234printf " unsigned nr_data;\n"
3d9a5942
AC
1235printf " void **data;\n"
1236printf "\n"
1237printf " /* per-architecture swap-regions */\n"
1238printf " struct gdbarch_swap *swap;\n"
1239printf "\n"
104c1213
JM
1240cat <<EOF
1241 /* Multi-arch values.
1242
1243 When extending this structure you must:
1244
1245 Add the field below.
1246
1247 Declare set/get functions and define the corresponding
1248 macro in gdbarch.h.
1249
1250 gdbarch_alloc(): If zero/NULL is not a suitable default,
1251 initialize the new field.
1252
1253 verify_gdbarch(): Confirm that the target updated the field
1254 correctly.
1255
7e73cedf 1256 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1257 field is dumped out
1258
c0e8c252 1259 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1260 variable (base values on the host's c-type system).
1261
1262 get_gdbarch(): Implement the set/get functions (probably using
1263 the macro's as shortcuts).
1264
1265 */
1266
1267EOF
34620563 1268function_list | while do_read
104c1213 1269do
2ada493a
AC
1270 if class_is_variable_p
1271 then
3d9a5942 1272 printf " ${returntype} ${function};\n"
2ada493a
AC
1273 elif class_is_function_p
1274 then
2f9b146e 1275 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1276 fi
104c1213 1277done
3d9a5942 1278printf "};\n"
104c1213
JM
1279
1280# A pre-initialized vector
3d9a5942
AC
1281printf "\n"
1282printf "\n"
104c1213
JM
1283cat <<EOF
1284/* The default architecture uses host values (for want of a better
1285 choice). */
1286EOF
3d9a5942
AC
1287printf "\n"
1288printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1289printf "\n"
1290printf "struct gdbarch startup_gdbarch =\n"
1291printf "{\n"
76860b5f 1292printf " 1, /* Always initialized. */\n"
aebd7893 1293printf " NULL, /* The obstack. */\n"
3d9a5942 1294printf " /* basic architecture information */\n"
4b9b3959 1295function_list | while do_read
104c1213 1296do
2ada493a
AC
1297 if class_is_info_p
1298 then
ec5cbaec 1299 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1300 fi
104c1213
JM
1301done
1302cat <<EOF
4b9b3959
AC
1303 /* target specific vector and its dump routine */
1304 NULL, NULL,
104c1213
JM
1305 /*per-architecture data-pointers and swap regions */
1306 0, NULL, NULL,
1307 /* Multi-arch values */
1308EOF
34620563 1309function_list | while do_read
104c1213 1310do
2ada493a
AC
1311 if class_is_function_p || class_is_variable_p
1312 then
ec5cbaec 1313 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1314 fi
104c1213
JM
1315done
1316cat <<EOF
c0e8c252 1317 /* startup_gdbarch() */
104c1213 1318};
4b9b3959 1319
c0e8c252 1320struct gdbarch *current_gdbarch = &startup_gdbarch;
1cf3db46 1321struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1322EOF
1323
1324# Create a new gdbarch struct
104c1213 1325cat <<EOF
7de2341d 1326
66b43ecb 1327/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1328 \`\`struct gdbarch_info''. */
1329EOF
3d9a5942 1330printf "\n"
104c1213
JM
1331cat <<EOF
1332struct gdbarch *
1333gdbarch_alloc (const struct gdbarch_info *info,
1334 struct gdbarch_tdep *tdep)
1335{
be7811ad 1336 struct gdbarch *gdbarch;
aebd7893
AC
1337
1338 /* Create an obstack for allocating all the per-architecture memory,
1339 then use that to allocate the architecture vector. */
1340 struct obstack *obstack = XMALLOC (struct obstack);
1341 obstack_init (obstack);
be7811ad
MD
1342 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1343 memset (gdbarch, 0, sizeof (*gdbarch));
1344 gdbarch->obstack = obstack;
85de9627 1345
be7811ad 1346 alloc_gdbarch_data (gdbarch);
85de9627 1347
be7811ad 1348 gdbarch->tdep = tdep;
104c1213 1349EOF
3d9a5942 1350printf "\n"
34620563 1351function_list | while do_read
104c1213 1352do
2ada493a
AC
1353 if class_is_info_p
1354 then
be7811ad 1355 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1356 fi
104c1213 1357done
3d9a5942
AC
1358printf "\n"
1359printf " /* Force the explicit initialization of these. */\n"
34620563 1360function_list | while do_read
104c1213 1361do
2ada493a
AC
1362 if class_is_function_p || class_is_variable_p
1363 then
72e74a21 1364 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1365 then
be7811ad 1366 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1367 fi
2ada493a 1368 fi
104c1213
JM
1369done
1370cat <<EOF
1371 /* gdbarch_alloc() */
1372
be7811ad 1373 return gdbarch;
104c1213
JM
1374}
1375EOF
1376
058f20d5 1377# Free a gdbarch struct.
3d9a5942
AC
1378printf "\n"
1379printf "\n"
058f20d5 1380cat <<EOF
aebd7893
AC
1381/* Allocate extra space using the per-architecture obstack. */
1382
1383void *
1384gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1385{
1386 void *data = obstack_alloc (arch->obstack, size);
1387 memset (data, 0, size);
1388 return data;
1389}
1390
1391
058f20d5
JB
1392/* Free a gdbarch struct. This should never happen in normal
1393 operation --- once you've created a gdbarch, you keep it around.
1394 However, if an architecture's init function encounters an error
1395 building the structure, it may need to clean up a partially
1396 constructed gdbarch. */
4b9b3959 1397
058f20d5
JB
1398void
1399gdbarch_free (struct gdbarch *arch)
1400{
aebd7893 1401 struct obstack *obstack;
95160752 1402 gdb_assert (arch != NULL);
aebd7893
AC
1403 gdb_assert (!arch->initialized_p);
1404 obstack = arch->obstack;
1405 obstack_free (obstack, 0); /* Includes the ARCH. */
1406 xfree (obstack);
058f20d5
JB
1407}
1408EOF
1409
104c1213 1410# verify a new architecture
104c1213 1411cat <<EOF
db446970
AC
1412
1413
1414/* Ensure that all values in a GDBARCH are reasonable. */
1415
104c1213 1416static void
be7811ad 1417verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1418{
f16a1923
AC
1419 struct ui_file *log;
1420 struct cleanup *cleanups;
1421 long dummy;
1422 char *buf;
f16a1923
AC
1423 log = mem_fileopen ();
1424 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1425 /* fundamental */
be7811ad 1426 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1427 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1428 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1429 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1430 /* Check those that need to be defined for the given multi-arch level. */
1431EOF
34620563 1432function_list | while do_read
104c1213 1433do
2ada493a
AC
1434 if class_is_function_p || class_is_variable_p
1435 then
72e74a21 1436 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1437 then
3d9a5942 1438 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1439 elif class_is_predicate_p
1440 then
3d9a5942 1441 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1442 # FIXME: See do_read for potential simplification
72e74a21 1443 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1444 then
3d9a5942 1445 printf " if (${invalid_p})\n"
be7811ad 1446 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1447 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1448 then
be7811ad
MD
1449 printf " if (gdbarch->${function} == ${predefault})\n"
1450 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1451 elif [ -n "${postdefault}" ]
f0d4cc9e 1452 then
be7811ad
MD
1453 printf " if (gdbarch->${function} == 0)\n"
1454 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1455 elif [ -n "${invalid_p}" ]
104c1213 1456 then
4d60522e 1457 printf " if (${invalid_p})\n"
f16a1923 1458 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1459 elif [ -n "${predefault}" ]
104c1213 1460 then
be7811ad 1461 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1462 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1463 fi
2ada493a 1464 fi
104c1213
JM
1465done
1466cat <<EOF
f16a1923
AC
1467 buf = ui_file_xstrdup (log, &dummy);
1468 make_cleanup (xfree, buf);
1469 if (strlen (buf) > 0)
1470 internal_error (__FILE__, __LINE__,
85c07804 1471 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1472 buf);
1473 do_cleanups (cleanups);
104c1213
JM
1474}
1475EOF
1476
1477# dump the structure
3d9a5942
AC
1478printf "\n"
1479printf "\n"
104c1213 1480cat <<EOF
4b9b3959
AC
1481/* Print out the details of the current architecture. */
1482
104c1213 1483void
be7811ad 1484gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1485{
b78960be 1486 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1487#if defined (GDB_NM_FILE)
1488 gdb_nm_file = GDB_NM_FILE;
1489#endif
1490 fprintf_unfiltered (file,
1491 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1492 gdb_nm_file);
104c1213 1493EOF
97030eea 1494function_list | sort -t: -k 3 | while do_read
104c1213 1495do
1e9f55d0
AC
1496 # First the predicate
1497 if class_is_predicate_p
1498 then
7996bcec 1499 printf " fprintf_unfiltered (file,\n"
48f7351b 1500 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1501 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1502 fi
48f7351b 1503 # Print the corresponding value.
283354d8 1504 if class_is_function_p
4b9b3959 1505 then
7996bcec 1506 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1507 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1508 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1509 else
48f7351b 1510 # It is a variable
2f9b146e
AC
1511 case "${print}:${returntype}" in
1512 :CORE_ADDR )
0b1553bc
UW
1513 fmt="%s"
1514 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1515 ;;
2f9b146e 1516 :* )
48f7351b 1517 fmt="%s"
623d3eb1 1518 print="plongest (gdbarch->${function})"
48f7351b
AC
1519 ;;
1520 * )
2f9b146e 1521 fmt="%s"
48f7351b
AC
1522 ;;
1523 esac
3d9a5942 1524 printf " fprintf_unfiltered (file,\n"
48f7351b 1525 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1526 printf " ${print});\n"
2ada493a 1527 fi
104c1213 1528done
381323f4 1529cat <<EOF
be7811ad
MD
1530 if (gdbarch->dump_tdep != NULL)
1531 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1532}
1533EOF
104c1213
JM
1534
1535
1536# GET/SET
3d9a5942 1537printf "\n"
104c1213
JM
1538cat <<EOF
1539struct gdbarch_tdep *
1540gdbarch_tdep (struct gdbarch *gdbarch)
1541{
1542 if (gdbarch_debug >= 2)
3d9a5942 1543 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1544 return gdbarch->tdep;
1545}
1546EOF
3d9a5942 1547printf "\n"
34620563 1548function_list | while do_read
104c1213 1549do
2ada493a
AC
1550 if class_is_predicate_p
1551 then
3d9a5942
AC
1552 printf "\n"
1553 printf "int\n"
1554 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1555 printf "{\n"
8de9bdc4 1556 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1557 printf " return ${predicate};\n"
3d9a5942 1558 printf "}\n"
2ada493a
AC
1559 fi
1560 if class_is_function_p
1561 then
3d9a5942
AC
1562 printf "\n"
1563 printf "${returntype}\n"
72e74a21 1564 if [ "x${formal}" = "xvoid" ]
104c1213 1565 then
3d9a5942 1566 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1567 else
3d9a5942 1568 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1569 fi
3d9a5942 1570 printf "{\n"
8de9bdc4 1571 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1572 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1573 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1574 then
1575 # Allow a call to a function with a predicate.
956ac328 1576 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1577 fi
3d9a5942
AC
1578 printf " if (gdbarch_debug >= 2)\n"
1579 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1580 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1581 then
1582 if class_is_multiarch_p
1583 then
1584 params="gdbarch"
1585 else
1586 params=""
1587 fi
1588 else
1589 if class_is_multiarch_p
1590 then
1591 params="gdbarch, ${actual}"
1592 else
1593 params="${actual}"
1594 fi
1595 fi
72e74a21 1596 if [ "x${returntype}" = "xvoid" ]
104c1213 1597 then
4a5c6a1d 1598 printf " gdbarch->${function} (${params});\n"
104c1213 1599 else
4a5c6a1d 1600 printf " return gdbarch->${function} (${params});\n"
104c1213 1601 fi
3d9a5942
AC
1602 printf "}\n"
1603 printf "\n"
1604 printf "void\n"
1605 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1606 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1607 printf "{\n"
1608 printf " gdbarch->${function} = ${function};\n"
1609 printf "}\n"
2ada493a
AC
1610 elif class_is_variable_p
1611 then
3d9a5942
AC
1612 printf "\n"
1613 printf "${returntype}\n"
1614 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1615 printf "{\n"
8de9bdc4 1616 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1617 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1618 then
3d9a5942 1619 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1620 elif [ -n "${invalid_p}" ]
104c1213 1621 then
956ac328
AC
1622 printf " /* Check variable is valid. */\n"
1623 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1624 elif [ -n "${predefault}" ]
104c1213 1625 then
956ac328
AC
1626 printf " /* Check variable changed from pre-default. */\n"
1627 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1628 fi
3d9a5942
AC
1629 printf " if (gdbarch_debug >= 2)\n"
1630 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1631 printf " return gdbarch->${function};\n"
1632 printf "}\n"
1633 printf "\n"
1634 printf "void\n"
1635 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1636 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1637 printf "{\n"
1638 printf " gdbarch->${function} = ${function};\n"
1639 printf "}\n"
2ada493a
AC
1640 elif class_is_info_p
1641 then
3d9a5942
AC
1642 printf "\n"
1643 printf "${returntype}\n"
1644 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1645 printf "{\n"
8de9bdc4 1646 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1647 printf " if (gdbarch_debug >= 2)\n"
1648 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1649 printf " return gdbarch->${function};\n"
1650 printf "}\n"
2ada493a 1651 fi
104c1213
JM
1652done
1653
1654# All the trailing guff
1655cat <<EOF
1656
1657
f44c642f 1658/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1659 modules. */
1660
1661struct gdbarch_data
1662{
95160752 1663 unsigned index;
76860b5f 1664 int init_p;
030f20e1
AC
1665 gdbarch_data_pre_init_ftype *pre_init;
1666 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1667};
1668
1669struct gdbarch_data_registration
1670{
104c1213
JM
1671 struct gdbarch_data *data;
1672 struct gdbarch_data_registration *next;
1673};
1674
f44c642f 1675struct gdbarch_data_registry
104c1213 1676{
95160752 1677 unsigned nr;
104c1213
JM
1678 struct gdbarch_data_registration *registrations;
1679};
1680
f44c642f 1681struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1682{
1683 0, NULL,
1684};
1685
030f20e1
AC
1686static struct gdbarch_data *
1687gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1688 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1689{
1690 struct gdbarch_data_registration **curr;
76860b5f 1691 /* Append the new registraration. */
f44c642f 1692 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1693 (*curr) != NULL;
1694 curr = &(*curr)->next);
1695 (*curr) = XMALLOC (struct gdbarch_data_registration);
1696 (*curr)->next = NULL;
104c1213 1697 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1698 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1699 (*curr)->data->pre_init = pre_init;
1700 (*curr)->data->post_init = post_init;
76860b5f 1701 (*curr)->data->init_p = 1;
104c1213
JM
1702 return (*curr)->data;
1703}
1704
030f20e1
AC
1705struct gdbarch_data *
1706gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1707{
1708 return gdbarch_data_register (pre_init, NULL);
1709}
1710
1711struct gdbarch_data *
1712gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1713{
1714 return gdbarch_data_register (NULL, post_init);
1715}
104c1213 1716
b3cc3077 1717/* Create/delete the gdbarch data vector. */
95160752
AC
1718
1719static void
b3cc3077 1720alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1721{
b3cc3077
JB
1722 gdb_assert (gdbarch->data == NULL);
1723 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1724 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1725}
3c875b6f 1726
76860b5f 1727/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1728 data-pointer. */
1729
95160752 1730void
030f20e1
AC
1731deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1732 struct gdbarch_data *data,
1733 void *pointer)
95160752
AC
1734{
1735 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1736 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1737 gdb_assert (data->pre_init == NULL);
95160752
AC
1738 gdbarch->data[data->index] = pointer;
1739}
1740
104c1213
JM
1741/* Return the current value of the specified per-architecture
1742 data-pointer. */
1743
1744void *
451fbdda 1745gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1746{
451fbdda 1747 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1748 if (gdbarch->data[data->index] == NULL)
76860b5f 1749 {
030f20e1
AC
1750 /* The data-pointer isn't initialized, call init() to get a
1751 value. */
1752 if (data->pre_init != NULL)
1753 /* Mid architecture creation: pass just the obstack, and not
1754 the entire architecture, as that way it isn't possible for
1755 pre-init code to refer to undefined architecture
1756 fields. */
1757 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1758 else if (gdbarch->initialized_p
1759 && data->post_init != NULL)
1760 /* Post architecture creation: pass the entire architecture
1761 (as all fields are valid), but be careful to also detect
1762 recursive references. */
1763 {
1764 gdb_assert (data->init_p);
1765 data->init_p = 0;
1766 gdbarch->data[data->index] = data->post_init (gdbarch);
1767 data->init_p = 1;
1768 }
1769 else
1770 /* The architecture initialization hasn't completed - punt -
1771 hope that the caller knows what they are doing. Once
1772 deprecated_set_gdbarch_data has been initialized, this can be
1773 changed to an internal error. */
1774 return NULL;
76860b5f
AC
1775 gdb_assert (gdbarch->data[data->index] != NULL);
1776 }
451fbdda 1777 return gdbarch->data[data->index];
104c1213
JM
1778}
1779
1780
f44c642f 1781/* Keep a registry of the architectures known by GDB. */
104c1213 1782
4b9b3959 1783struct gdbarch_registration
104c1213
JM
1784{
1785 enum bfd_architecture bfd_architecture;
1786 gdbarch_init_ftype *init;
4b9b3959 1787 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1788 struct gdbarch_list *arches;
4b9b3959 1789 struct gdbarch_registration *next;
104c1213
JM
1790};
1791
f44c642f 1792static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1793
b4a20239
AC
1794static void
1795append_name (const char ***buf, int *nr, const char *name)
1796{
1797 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1798 (*buf)[*nr] = name;
1799 *nr += 1;
1800}
1801
1802const char **
1803gdbarch_printable_names (void)
1804{
7996bcec
AC
1805 /* Accumulate a list of names based on the registed list of
1806 architectures. */
1807 enum bfd_architecture a;
1808 int nr_arches = 0;
1809 const char **arches = NULL;
1810 struct gdbarch_registration *rego;
1811 for (rego = gdbarch_registry;
1812 rego != NULL;
1813 rego = rego->next)
b4a20239 1814 {
7996bcec
AC
1815 const struct bfd_arch_info *ap;
1816 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1817 if (ap == NULL)
1818 internal_error (__FILE__, __LINE__,
85c07804 1819 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1820 do
1821 {
1822 append_name (&arches, &nr_arches, ap->printable_name);
1823 ap = ap->next;
1824 }
1825 while (ap != NULL);
b4a20239 1826 }
7996bcec
AC
1827 append_name (&arches, &nr_arches, NULL);
1828 return arches;
b4a20239
AC
1829}
1830
1831
104c1213 1832void
4b9b3959
AC
1833gdbarch_register (enum bfd_architecture bfd_architecture,
1834 gdbarch_init_ftype *init,
1835 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1836{
4b9b3959 1837 struct gdbarch_registration **curr;
104c1213 1838 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1839 /* Check that BFD recognizes this architecture */
104c1213
JM
1840 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1841 if (bfd_arch_info == NULL)
1842 {
8e65ff28 1843 internal_error (__FILE__, __LINE__,
85c07804 1844 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1845 bfd_architecture);
104c1213
JM
1846 }
1847 /* Check that we haven't seen this architecture before */
f44c642f 1848 for (curr = &gdbarch_registry;
104c1213
JM
1849 (*curr) != NULL;
1850 curr = &(*curr)->next)
1851 {
1852 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1853 internal_error (__FILE__, __LINE__,
85c07804 1854 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1855 bfd_arch_info->printable_name);
104c1213
JM
1856 }
1857 /* log it */
1858 if (gdbarch_debug)
30737ed9 1859 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1860 bfd_arch_info->printable_name,
30737ed9 1861 host_address_to_string (init));
104c1213 1862 /* Append it */
4b9b3959 1863 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1864 (*curr)->bfd_architecture = bfd_architecture;
1865 (*curr)->init = init;
4b9b3959 1866 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1867 (*curr)->arches = NULL;
1868 (*curr)->next = NULL;
4b9b3959
AC
1869}
1870
1871void
1872register_gdbarch_init (enum bfd_architecture bfd_architecture,
1873 gdbarch_init_ftype *init)
1874{
1875 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1876}
104c1213
JM
1877
1878
424163ea 1879/* Look for an architecture using gdbarch_info. */
104c1213
JM
1880
1881struct gdbarch_list *
1882gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1883 const struct gdbarch_info *info)
1884{
1885 for (; arches != NULL; arches = arches->next)
1886 {
1887 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1888 continue;
1889 if (info->byte_order != arches->gdbarch->byte_order)
1890 continue;
4be87837
DJ
1891 if (info->osabi != arches->gdbarch->osabi)
1892 continue;
424163ea
DJ
1893 if (info->target_desc != arches->gdbarch->target_desc)
1894 continue;
104c1213
JM
1895 return arches;
1896 }
1897 return NULL;
1898}
1899
1900
ebdba546
AC
1901/* Find an architecture that matches the specified INFO. Create a new
1902 architecture if needed. Return that new architecture. Assumes
1903 that there is no current architecture. */
104c1213 1904
ebdba546 1905static struct gdbarch *
7a107747 1906find_arch_by_info (struct gdbarch_info info)
104c1213
JM
1907{
1908 struct gdbarch *new_gdbarch;
4b9b3959 1909 struct gdbarch_registration *rego;
104c1213 1910
ebdba546
AC
1911 /* The existing architecture has been swapped out - all this code
1912 works from a clean slate. */
1913 gdb_assert (current_gdbarch == NULL);
1914
b732d07d 1915 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1916 sources: "set ..."; INFOabfd supplied; and the global
1917 defaults. */
1918 gdbarch_info_fill (&info);
4be87837 1919
b732d07d
AC
1920 /* Must have found some sort of architecture. */
1921 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1922
1923 if (gdbarch_debug)
1924 {
1925 fprintf_unfiltered (gdb_stdlog,
ebdba546 1926 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1927 (info.bfd_arch_info != NULL
1928 ? info.bfd_arch_info->printable_name
1929 : "(null)"));
1930 fprintf_unfiltered (gdb_stdlog,
ebdba546 1931 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 1932 info.byte_order,
d7449b42 1933 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1934 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1935 : "default"));
4be87837 1936 fprintf_unfiltered (gdb_stdlog,
ebdba546 1937 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 1938 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1939 fprintf_unfiltered (gdb_stdlog,
30737ed9
JB
1940 "find_arch_by_info: info.abfd %s\n",
1941 host_address_to_string (info.abfd));
104c1213 1942 fprintf_unfiltered (gdb_stdlog,
30737ed9
JB
1943 "find_arch_by_info: info.tdep_info %s\n",
1944 host_address_to_string (info.tdep_info));
104c1213
JM
1945 }
1946
ebdba546 1947 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1948 for (rego = gdbarch_registry;
1949 rego != NULL;
1950 rego = rego->next)
1951 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1952 break;
1953 if (rego == NULL)
1954 {
1955 if (gdbarch_debug)
ebdba546
AC
1956 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1957 "No matching architecture\n");
b732d07d
AC
1958 return 0;
1959 }
1960
ebdba546 1961 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1962 new_gdbarch = rego->init (info, rego->arches);
1963
ebdba546
AC
1964 /* Did the tdep code like it? No. Reject the change and revert to
1965 the old architecture. */
104c1213
JM
1966 if (new_gdbarch == NULL)
1967 {
1968 if (gdbarch_debug)
ebdba546
AC
1969 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1970 "Target rejected architecture\n");
1971 return NULL;
104c1213
JM
1972 }
1973
ebdba546
AC
1974 /* Is this a pre-existing architecture (as determined by already
1975 being initialized)? Move it to the front of the architecture
1976 list (keeping the list sorted Most Recently Used). */
1977 if (new_gdbarch->initialized_p)
104c1213 1978 {
ebdba546
AC
1979 struct gdbarch_list **list;
1980 struct gdbarch_list *this;
104c1213 1981 if (gdbarch_debug)
ebdba546 1982 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
30737ed9
JB
1983 "Previous architecture %s (%s) selected\n",
1984 host_address_to_string (new_gdbarch),
104c1213 1985 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
1986 /* Find the existing arch in the list. */
1987 for (list = &rego->arches;
1988 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1989 list = &(*list)->next);
1990 /* It had better be in the list of architectures. */
1991 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1992 /* Unlink THIS. */
1993 this = (*list);
1994 (*list) = this->next;
1995 /* Insert THIS at the front. */
1996 this->next = rego->arches;
1997 rego->arches = this;
1998 /* Return it. */
1999 return new_gdbarch;
104c1213
JM
2000 }
2001
ebdba546
AC
2002 /* It's a new architecture. */
2003 if (gdbarch_debug)
2004 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
30737ed9
JB
2005 "New architecture %s (%s) selected\n",
2006 host_address_to_string (new_gdbarch),
ebdba546
AC
2007 new_gdbarch->bfd_arch_info->printable_name);
2008
2009 /* Insert the new architecture into the front of the architecture
2010 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2011 {
2012 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2013 this->next = rego->arches;
2014 this->gdbarch = new_gdbarch;
2015 rego->arches = this;
2016 }
104c1213 2017
4b9b3959
AC
2018 /* Check that the newly installed architecture is valid. Plug in
2019 any post init values. */
2020 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2021 verify_gdbarch (new_gdbarch);
ebdba546 2022 new_gdbarch->initialized_p = 1;
104c1213 2023
4b9b3959 2024 if (gdbarch_debug)
ebdba546
AC
2025 gdbarch_dump (new_gdbarch, gdb_stdlog);
2026
2027 return new_gdbarch;
2028}
2029
2030struct gdbarch *
2031gdbarch_find_by_info (struct gdbarch_info info)
2032{
e487cc15
UW
2033 struct gdbarch *new_gdbarch;
2034
ebdba546
AC
2035 /* Save the previously selected architecture, setting the global to
2036 NULL. This stops things like gdbarch->init() trying to use the
2037 previous architecture's configuration. The previous architecture
2038 may not even be of the same architecture family. The most recent
2039 architecture of the same family is found at the head of the
2040 rego->arches list. */
e487cc15
UW
2041 struct gdbarch *old_gdbarch = current_gdbarch;
2042 current_gdbarch = NULL;
ebdba546
AC
2043
2044 /* Find the specified architecture. */
e487cc15 2045 new_gdbarch = find_arch_by_info (info);
ebdba546
AC
2046
2047 /* Restore the existing architecture. */
2048 gdb_assert (current_gdbarch == NULL);
e487cc15 2049 current_gdbarch = old_gdbarch;
4b9b3959 2050
ebdba546 2051 return new_gdbarch;
104c1213
JM
2052}
2053
e487cc15 2054/* Make the specified architecture current. */
ebdba546
AC
2055
2056void
2057deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2058{
2059 gdb_assert (new_gdbarch != NULL);
2060 gdb_assert (current_gdbarch != NULL);
2061 gdb_assert (new_gdbarch->initialized_p);
e487cc15 2062 current_gdbarch = new_gdbarch;
1cf3db46 2063 target_gdbarch = new_gdbarch;
383f836e 2064 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2065 registers_changed ();
ebdba546 2066}
104c1213 2067
104c1213 2068extern void _initialize_gdbarch (void);
b4a20239 2069
104c1213 2070void
34620563 2071_initialize_gdbarch (void)
104c1213 2072{
59233f88
AC
2073 struct cmd_list_element *c;
2074
85c07804
AC
2075 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2076Set architecture debugging."), _("\\
2077Show architecture debugging."), _("\\
2078When non-zero, architecture debugging is enabled."),
2079 NULL,
920d2a44 2080 show_gdbarch_debug,
85c07804 2081 &setdebuglist, &showdebuglist);
104c1213
JM
2082}
2083EOF
2084
2085# close things off
2086exec 1>&2
2087#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2088compare_new gdbarch.c
This page took 1.008915 seconds and 4 git commands to generate.