MIPS: Keep the ISA bit in compressed code addresses
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
3e29f34a
MR
638# Process an ELF symbol in the minimal symbol table in a backend-specific
639# way. Normally this hook is supposed to do nothing, however if required,
640# then this hook can be used to apply tranformations to symbols that are
641# considered special in some way. For example the MIPS backend uses it
642# to interpret \`st_other' information to mark compressed code symbols so
643# that they can be treated in the appropriate manner in the processing of
644# the main symbol table and DWARF-2 records.
645F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 646f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
647# Process a symbol in the main symbol table in a backend-specific way.
648# Normally this hook is supposed to do nothing, however if required,
649# then this hook can be used to apply tranformations to symbols that
650# are considered special in some way. This is currently used by the
651# MIPS backend to make sure compressed code symbols have the ISA bit
652# set. This in turn is needed for symbol values seen in GDB to match
653# the values used at the runtime by the program itself, for function
654# and label references.
655f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656# Adjust the address retrieved from a DWARF-2 record other than a line
657# entry in a backend-specific way. Normally this hook is supposed to
658# return the address passed unchanged, however if that is incorrect for
659# any reason, then this hook can be used to fix the address up in the
660# required manner. This is currently used by the MIPS backend to make
661# sure addresses in FDE, range records, etc. referring to compressed
662# code have the ISA bit set, matching line information and the symbol
663# table.
664f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665# Adjust the address updated by a line entry in a backend-specific way.
666# Normally this hook is supposed to return the address passed unchanged,
667# however in the case of inconsistencies in these records, this hook can
668# be used to fix them up in the required manner. This is currently used
669# by the MIPS backend to make sure all line addresses in compressed code
670# are presented with the ISA bit set, which is not always the case. This
671# in turn ensures breakpoint addresses are correctly matched against the
672# stop PC.
673f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
674v:int:cannot_step_breakpoint:::0:0::0
675v:int:have_nonsteppable_watchpoint:::0:0::0
676F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
678
679# Return the appropriate type_flags for the supplied address class.
680# This function should return 1 if the address class was recognized and
681# type_flags was set, zero otherwise.
97030eea 682M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 683# Is a register in a group
97030eea 684m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 685# Fetch the pointer to the ith function argument.
97030eea 686F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 687
5aa82d05
AA
688# Iterate over all supported register notes in a core file. For each
689# supported register note section, the iterator must call CB and pass
690# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691# the supported register note sections based on the current register
692# values. Otherwise it should enumerate all supported register note
693# sections.
694M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 695
6432734d
UW
696# Create core file notes
697M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
b3ac9c77
SDJ
699# The elfcore writer hook to use to write Linux prpsinfo notes to core
700# files. Most Linux architectures use the same prpsinfo32 or
701# prpsinfo64 layouts, and so won't need to provide this hook, as we
702# call the Linux generic routines in bfd to write prpsinfo notes by
703# default.
704F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
35c2fab7
UW
706# Find core file memory regions
707M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
de584861 709# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
710# core file into buffer READBUF with length LEN. Return the number of bytes read
711# (zero indicates failure).
712# failed, otherwise, return the red length of READBUF.
713M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 714
356a5233
JB
715# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
717# Return the number of bytes read (zero indicates failure).
718M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 719
c0edd9ed 720# How the core target converts a PTID from a core file to a string.
28439f5e
PA
721M:char *:core_pid_to_str:ptid_t ptid:ptid
722
a78c2d62 723# BFD target to use when generating a core file.
86ba1042 724V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 725
0d5de010
DJ
726# If the elements of C++ vtables are in-place function descriptors rather
727# than normal function pointers (which may point to code or a descriptor),
728# set this to one.
97030eea 729v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
730
731# Set if the least significant bit of the delta is used instead of the least
732# significant bit of the pfn for pointers to virtual member functions.
97030eea 733v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
734
735# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 736f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 737
1668ae25 738# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
739V:ULONGEST:max_insn_length:::0:0
740
741# Copy the instruction at FROM to TO, and make any adjustments
742# necessary to single-step it at that address.
743#
744# REGS holds the state the thread's registers will have before
745# executing the copied instruction; the PC in REGS will refer to FROM,
746# not the copy at TO. The caller should update it to point at TO later.
747#
748# Return a pointer to data of the architecture's choice to be passed
749# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750# the instruction's effects have been completely simulated, with the
751# resulting state written back to REGS.
752#
753# For a general explanation of displaced stepping and how GDB uses it,
754# see the comments in infrun.c.
755#
756# The TO area is only guaranteed to have space for
757# gdbarch_max_insn_length (arch) bytes, so this function must not
758# write more bytes than that to that area.
759#
760# If you do not provide this function, GDB assumes that the
761# architecture does not support displaced stepping.
762#
763# If your architecture doesn't need to adjust instructions before
764# single-stepping them, consider using simple_displaced_step_copy_insn
765# here.
766M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
99e40580
UW
768# Return true if GDB should use hardware single-stepping to execute
769# the displaced instruction identified by CLOSURE. If false,
770# GDB will simply restart execution at the displaced instruction
771# location, and it is up to the target to ensure GDB will receive
772# control again (e.g. by placing a software breakpoint instruction
773# into the displaced instruction buffer).
774#
775# The default implementation returns false on all targets that
776# provide a gdbarch_software_single_step routine, and true otherwise.
777m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
237fc4c9
PA
779# Fix up the state resulting from successfully single-stepping a
780# displaced instruction, to give the result we would have gotten from
781# stepping the instruction in its original location.
782#
783# REGS is the register state resulting from single-stepping the
784# displaced instruction.
785#
786# CLOSURE is the result from the matching call to
787# gdbarch_displaced_step_copy_insn.
788#
789# If you provide gdbarch_displaced_step_copy_insn.but not this
790# function, then GDB assumes that no fixup is needed after
791# single-stepping the instruction.
792#
793# For a general explanation of displaced stepping and how GDB uses it,
794# see the comments in infrun.c.
795M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797# Free a closure returned by gdbarch_displaced_step_copy_insn.
798#
799# If you provide gdbarch_displaced_step_copy_insn, you must provide
800# this function as well.
801#
802# If your architecture uses closures that don't need to be freed, then
803# you can use simple_displaced_step_free_closure here.
804#
805# For a general explanation of displaced stepping and how GDB uses it,
806# see the comments in infrun.c.
807m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809# Return the address of an appropriate place to put displaced
810# instructions while we step over them. There need only be one such
811# place, since we're only stepping one thread over a breakpoint at a
812# time.
813#
814# For a general explanation of displaced stepping and how GDB uses it,
815# see the comments in infrun.c.
816m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
dde08ee1
PA
818# Relocate an instruction to execute at a different address. OLDLOC
819# is the address in the inferior memory where the instruction to
820# relocate is currently at. On input, TO points to the destination
821# where we want the instruction to be copied (and possibly adjusted)
822# to. On output, it points to one past the end of the resulting
823# instruction(s). The effect of executing the instruction at TO shall
824# be the same as if executing it at FROM. For example, call
825# instructions that implicitly push the return address on the stack
826# should be adjusted to return to the instruction after OLDLOC;
827# relative branches, and other PC-relative instructions need the
828# offset adjusted; etc.
829M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
1c772458 831# Refresh overlay mapped state for section OSECT.
97030eea 832F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 833
97030eea 834M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
835
836# Handle special encoding of static variables in stabs debug info.
0d5cff50 837F:const char *:static_transform_name:const char *name:name
203c3895 838# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 839v:int:sofun_address_maybe_missing:::0:0::0
1cded358 840
0508c3ec
HZ
841# Parse the instruction at ADDR storing in the record execution log
842# the registers REGCACHE and memory ranges that will be affected when
843# the instruction executes, along with their current values.
844# Return -1 if something goes wrong, 0 otherwise.
845M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
3846b520
HZ
847# Save process state after a signal.
848# Return -1 if something goes wrong, 0 otherwise.
2ea28649 849M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 850
22203bbf 851# Signal translation: translate inferior's signal (target's) number
86b49880
PA
852# into GDB's representation. The implementation of this method must
853# be host independent. IOW, don't rely on symbols of the NAT_FILE
854# header (the nm-*.h files), the host <signal.h> header, or similar
855# headers. This is mainly used when cross-debugging core files ---
856# "Live" targets hide the translation behind the target interface
1f8cf220
PA
857# (target_wait, target_resume, etc.).
858M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 859
eb14d406
SDJ
860# Signal translation: translate the GDB's internal signal number into
861# the inferior's signal (target's) representation. The implementation
862# of this method must be host independent. IOW, don't rely on symbols
863# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864# header, or similar headers.
865# Return the target signal number if found, or -1 if the GDB internal
866# signal number is invalid.
867M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
4aa995e1
PA
869# Extra signal info inspection.
870#
871# Return a type suitable to inspect extra signal information.
872M:struct type *:get_siginfo_type:void:
873
60c5725c
DJ
874# Record architecture-specific information from the symbol table.
875M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 876
a96d9b2e
SDJ
877# Function for the 'catch syscall' feature.
878
879# Get architecture-specific system calls information from registers.
880M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
458c8db8
SDJ
882# The filename of the XML syscall for this architecture.
883v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885# Information about system calls from this architecture
886v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
55aa24fb
SDJ
888# SystemTap related fields and functions.
889
05c0465e
SDJ
890# A NULL-terminated array of prefixes used to mark an integer constant
891# on the architecture's assembly.
55aa24fb
SDJ
892# For example, on x86 integer constants are written as:
893#
894# \$10 ;; integer constant 10
895#
896# in this case, this prefix would be the character \`\$\'.
05c0465e 897v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 898
05c0465e
SDJ
899# A NULL-terminated array of suffixes used to mark an integer constant
900# on the architecture's assembly.
901v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 902
05c0465e
SDJ
903# A NULL-terminated array of prefixes used to mark a register name on
904# the architecture's assembly.
55aa24fb
SDJ
905# For example, on x86 the register name is written as:
906#
907# \%eax ;; register eax
908#
909# in this case, this prefix would be the character \`\%\'.
05c0465e 910v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 911
05c0465e
SDJ
912# A NULL-terminated array of suffixes used to mark a register name on
913# the architecture's assembly.
914v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 915
05c0465e
SDJ
916# A NULL-terminated array of prefixes used to mark a register
917# indirection on the architecture's assembly.
55aa24fb
SDJ
918# For example, on x86 the register indirection is written as:
919#
920# \(\%eax\) ;; indirecting eax
921#
922# in this case, this prefix would be the charater \`\(\'.
923#
924# Please note that we use the indirection prefix also for register
925# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 926v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 927
05c0465e
SDJ
928# A NULL-terminated array of suffixes used to mark a register
929# indirection on the architecture's assembly.
55aa24fb
SDJ
930# For example, on x86 the register indirection is written as:
931#
932# \(\%eax\) ;; indirecting eax
933#
934# in this case, this prefix would be the charater \`\)\'.
935#
936# Please note that we use the indirection suffix also for register
937# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 938v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 939
05c0465e 940# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
941#
942# For example, on PPC a register is represented by a number in the assembly
943# language (e.g., \`10\' is the 10th general-purpose register). However,
944# inside GDB this same register has an \`r\' appended to its name, so the 10th
945# register would be represented as \`r10\' internally.
08af7a40 946v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
947
948# Suffix used to name a register using GDB's nomenclature.
08af7a40 949v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
950
951# Check if S is a single operand.
952#
953# Single operands can be:
954# \- Literal integers, e.g. \`\$10\' on x86
955# \- Register access, e.g. \`\%eax\' on x86
956# \- Register indirection, e.g. \`\(\%eax\)\' on x86
957# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958#
959# This function should check for these patterns on the string
960# and return 1 if some were found, or zero otherwise. Please try to match
961# as much info as you can from the string, i.e., if you have to match
962# something like \`\(\%\', do not match just the \`\(\'.
963M:int:stap_is_single_operand:const char *s:s
964
965# Function used to handle a "special case" in the parser.
966#
967# A "special case" is considered to be an unknown token, i.e., a token
968# that the parser does not know how to parse. A good example of special
969# case would be ARM's register displacement syntax:
970#
971# [R0, #4] ;; displacing R0 by 4
972#
973# Since the parser assumes that a register displacement is of the form:
974#
975# <number> <indirection_prefix> <register_name> <indirection_suffix>
976#
977# it means that it will not be able to recognize and parse this odd syntax.
978# Therefore, we should add a special case function that will handle this token.
979#
980# This function should generate the proper expression form of the expression
981# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982# and so on). It should also return 1 if the parsing was successful, or zero
983# if the token was not recognized as a special token (in this case, returning
984# zero means that the special parser is deferring the parsing to the generic
985# parser), and should advance the buffer pointer (p->arg).
986M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
988
50c71eaf
PA
989# True if the list of shared libraries is one and only for all
990# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
991# This usually means that all processes, although may or may not share
992# an address space, will see the same set of symbols at the same
993# addresses.
50c71eaf 994v:int:has_global_solist:::0:0::0
2567c7d9
PA
995
996# On some targets, even though each inferior has its own private
997# address space, the debug interface takes care of making breakpoints
998# visible to all address spaces automatically. For such cases,
999# this property should be set to true.
1000v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1001
1002# True if inferiors share an address space (e.g., uClinux).
1003m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1004
1005# True if a fast tracepoint can be set at an address.
1006m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 1007
f870a310
TT
1008# Return the "auto" target charset.
1009f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1010# Return the "auto" target wide charset.
1011f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1012
1013# If non-empty, this is a file extension that will be opened in place
1014# of the file extension reported by the shared library list.
1015#
1016# This is most useful for toolchains that use a post-linker tool,
1017# where the names of the files run on the target differ in extension
1018# compared to the names of the files GDB should load for debug info.
1019v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1020
1021# If true, the target OS has DOS-based file system semantics. That
1022# is, absolute paths include a drive name, and the backslash is
1023# considered a directory separator.
1024v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1025
1026# Generate bytecodes to collect the return address in a frame.
1027# Since the bytecodes run on the target, possibly with GDB not even
1028# connected, the full unwinding machinery is not available, and
1029# typically this function will issue bytecodes for one or more likely
1030# places that the return address may be found.
1031m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1032
3030c96e 1033# Implement the "info proc" command.
7bc112c1 1034M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1035
451b7c33
TT
1036# Implement the "info proc" command for core files. Noe that there
1037# are two "info_proc"-like methods on gdbarch -- one for core files,
1038# one for live targets.
7bc112c1 1039M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1040
19630284
JB
1041# Iterate over all objfiles in the order that makes the most sense
1042# for the architecture to make global symbol searches.
1043#
1044# CB is a callback function where OBJFILE is the objfile to be searched,
1045# and CB_DATA a pointer to user-defined data (the same data that is passed
1046# when calling this gdbarch method). The iteration stops if this function
1047# returns nonzero.
1048#
1049# CB_DATA is a pointer to some user-defined data to be passed to
1050# the callback.
1051#
1052# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1053# inspected when the symbol search was requested.
1054m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1055
7e35103a
JB
1056# Ravenscar arch-dependent ops.
1057v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1058
1059# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1060m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1061
1062# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1063m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1064
1065# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1066m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1067
1068# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1069# Return 0 if *READPTR is already at the end of the buffer.
1070# Return -1 if there is insufficient buffer for a whole entry.
1071# Return 1 if an entry was read into *TYPEP and *VALP.
1072M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1073
1074# Find the address range of the current inferior's vsyscall/vDSO, and
1075# write it to *RANGE. If the vsyscall's length can't be determined, a
1076# range with zero length is returned. Returns true if the vsyscall is
1077# found, false otherwise.
1078m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
104c1213 1079EOF
104c1213
JM
1080}
1081
0b8f9e4d
AC
1082#
1083# The .log file
1084#
1085exec > new-gdbarch.log
34620563 1086function_list | while do_read
0b8f9e4d
AC
1087do
1088 cat <<EOF
2f9b146e 1089${class} ${returntype} ${function} ($formal)
104c1213 1090EOF
3d9a5942
AC
1091 for r in ${read}
1092 do
1093 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1094 done
f0d4cc9e 1095 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1096 then
66d659b1 1097 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1098 kill $$
1099 exit 1
1100 fi
72e74a21 1101 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1102 then
1103 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1104 kill $$
1105 exit 1
1106 fi
a72293e2
AC
1107 if class_is_multiarch_p
1108 then
1109 if class_is_predicate_p ; then :
1110 elif test "x${predefault}" = "x"
1111 then
2f9b146e 1112 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1113 kill $$
1114 exit 1
1115 fi
1116 fi
3d9a5942 1117 echo ""
0b8f9e4d
AC
1118done
1119
1120exec 1>&2
1121compare_new gdbarch.log
1122
104c1213
JM
1123
1124copyright ()
1125{
1126cat <<EOF
c4bfde41
JK
1127/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1128/* vi:set ro: */
59233f88 1129
104c1213 1130/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1131
ecd75fc8 1132 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1133
1134 This file is part of GDB.
1135
1136 This program is free software; you can redistribute it and/or modify
1137 it under the terms of the GNU General Public License as published by
50efebf8 1138 the Free Software Foundation; either version 3 of the License, or
104c1213 1139 (at your option) any later version.
50efebf8 1140
104c1213
JM
1141 This program is distributed in the hope that it will be useful,
1142 but WITHOUT ANY WARRANTY; without even the implied warranty of
1143 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1144 GNU General Public License for more details.
50efebf8 1145
104c1213 1146 You should have received a copy of the GNU General Public License
50efebf8 1147 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1148
104c1213
JM
1149/* This file was created with the aid of \`\`gdbarch.sh''.
1150
52204a0b 1151 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1152 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1153 against the existing \`\`gdbarch.[hc]''. Any differences found
1154 being reported.
1155
1156 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1157 changes into that script. Conversely, when making sweeping changes
104c1213 1158 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1159 easier. */
104c1213
JM
1160
1161EOF
1162}
1163
1164#
1165# The .h file
1166#
1167
1168exec > new-gdbarch.h
1169copyright
1170cat <<EOF
1171#ifndef GDBARCH_H
1172#define GDBARCH_H
1173
eb7a547a
JB
1174#include "frame.h"
1175
da3331ec
AC
1176struct floatformat;
1177struct ui_file;
104c1213 1178struct value;
b6af0555 1179struct objfile;
1c772458 1180struct obj_section;
a2cf933a 1181struct minimal_symbol;
049ee0e4 1182struct regcache;
b59ff9d5 1183struct reggroup;
6ce6d90f 1184struct regset;
a89aa300 1185struct disassemble_info;
e2d0e7eb 1186struct target_ops;
030f20e1 1187struct obstack;
8181d85f 1188struct bp_target_info;
424163ea 1189struct target_desc;
3e29f34a
MR
1190struct objfile;
1191struct symbol;
237fc4c9 1192struct displaced_step_closure;
17ea7499 1193struct core_regset_section;
a96d9b2e 1194struct syscall;
175ff332 1195struct agent_expr;
6710bf39 1196struct axs_value;
55aa24fb 1197struct stap_parse_info;
7e35103a 1198struct ravenscar_arch_ops;
b3ac9c77 1199struct elf_internal_linux_prpsinfo;
3437254d 1200struct mem_range;
458c8db8 1201struct syscalls_info;
104c1213 1202
6ecd4729
PA
1203/* The architecture associated with the inferior through the
1204 connection to the target.
1205
1206 The architecture vector provides some information that is really a
1207 property of the inferior, accessed through a particular target:
1208 ptrace operations; the layout of certain RSP packets; the solib_ops
1209 vector; etc. To differentiate architecture accesses to
1210 per-inferior/target properties from
1211 per-thread/per-frame/per-objfile properties, accesses to
1212 per-inferior/target properties should be made through this
1213 gdbarch. */
1214
1215/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1216extern struct gdbarch *target_gdbarch (void);
6ecd4729 1217
19630284
JB
1218/* Callback type for the 'iterate_over_objfiles_in_search_order'
1219 gdbarch method. */
1220
1221typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1222 (struct objfile *objfile, void *cb_data);
5aa82d05
AA
1223
1224typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1225 (const char *sect_name, int size, const struct regset *regset,
1226 const char *human_name, void *cb_data);
104c1213
JM
1227EOF
1228
1229# function typedef's
3d9a5942
AC
1230printf "\n"
1231printf "\n"
0963b4bd 1232printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1233function_list | while do_read
104c1213 1234do
2ada493a
AC
1235 if class_is_info_p
1236 then
3d9a5942
AC
1237 printf "\n"
1238 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1239 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1240 fi
104c1213
JM
1241done
1242
1243# function typedef's
3d9a5942
AC
1244printf "\n"
1245printf "\n"
0963b4bd 1246printf "/* The following are initialized by the target dependent code. */\n"
34620563 1247function_list | while do_read
104c1213 1248do
72e74a21 1249 if [ -n "${comment}" ]
34620563
AC
1250 then
1251 echo "${comment}" | sed \
1252 -e '2 s,#,/*,' \
1253 -e '3,$ s,#, ,' \
1254 -e '$ s,$, */,'
1255 fi
412d5987
AC
1256
1257 if class_is_predicate_p
2ada493a 1258 then
412d5987
AC
1259 printf "\n"
1260 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1261 fi
2ada493a
AC
1262 if class_is_variable_p
1263 then
3d9a5942
AC
1264 printf "\n"
1265 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1266 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1267 fi
1268 if class_is_function_p
1269 then
3d9a5942 1270 printf "\n"
72e74a21 1271 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1272 then
1273 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1274 elif class_is_multiarch_p
1275 then
1276 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1277 else
1278 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1279 fi
72e74a21 1280 if [ "x${formal}" = "xvoid" ]
104c1213 1281 then
3d9a5942 1282 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1283 else
3d9a5942 1284 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1285 fi
3d9a5942 1286 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1287 fi
104c1213
JM
1288done
1289
1290# close it off
1291cat <<EOF
1292
a96d9b2e
SDJ
1293/* Definition for an unknown syscall, used basically in error-cases. */
1294#define UNKNOWN_SYSCALL (-1)
1295
104c1213
JM
1296extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1297
1298
1299/* Mechanism for co-ordinating the selection of a specific
1300 architecture.
1301
1302 GDB targets (*-tdep.c) can register an interest in a specific
1303 architecture. Other GDB components can register a need to maintain
1304 per-architecture data.
1305
1306 The mechanisms below ensures that there is only a loose connection
1307 between the set-architecture command and the various GDB
0fa6923a 1308 components. Each component can independently register their need
104c1213
JM
1309 to maintain architecture specific data with gdbarch.
1310
1311 Pragmatics:
1312
1313 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1314 didn't scale.
1315
1316 The more traditional mega-struct containing architecture specific
1317 data for all the various GDB components was also considered. Since
0fa6923a 1318 GDB is built from a variable number of (fairly independent)
104c1213 1319 components it was determined that the global aproach was not
0963b4bd 1320 applicable. */
104c1213
JM
1321
1322
1323/* Register a new architectural family with GDB.
1324
1325 Register support for the specified ARCHITECTURE with GDB. When
1326 gdbarch determines that the specified architecture has been
1327 selected, the corresponding INIT function is called.
1328
1329 --
1330
1331 The INIT function takes two parameters: INFO which contains the
1332 information available to gdbarch about the (possibly new)
1333 architecture; ARCHES which is a list of the previously created
1334 \`\`struct gdbarch'' for this architecture.
1335
0f79675b 1336 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1337 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1338
1339 The ARCHES parameter is a linked list (sorted most recently used)
1340 of all the previously created architures for this architecture
1341 family. The (possibly NULL) ARCHES->gdbarch can used to access
1342 values from the previously selected architecture for this
59837fe0 1343 architecture family.
104c1213
JM
1344
1345 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1346 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1347 gdbarch'' from the ARCHES list - indicating that the new
1348 architecture is just a synonym for an earlier architecture (see
1349 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1350 - that describes the selected architecture (see gdbarch_alloc()).
1351
1352 The DUMP_TDEP function shall print out all target specific values.
1353 Care should be taken to ensure that the function works in both the
0963b4bd 1354 multi-arch and non- multi-arch cases. */
104c1213
JM
1355
1356struct gdbarch_list
1357{
1358 struct gdbarch *gdbarch;
1359 struct gdbarch_list *next;
1360};
1361
1362struct gdbarch_info
1363{
0963b4bd 1364 /* Use default: NULL (ZERO). */
104c1213
JM
1365 const struct bfd_arch_info *bfd_arch_info;
1366
428721aa 1367 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1368 enum bfd_endian byte_order;
104c1213 1369
94123b4f 1370 enum bfd_endian byte_order_for_code;
9d4fde75 1371
0963b4bd 1372 /* Use default: NULL (ZERO). */
104c1213
JM
1373 bfd *abfd;
1374
0963b4bd 1375 /* Use default: NULL (ZERO). */
104c1213 1376 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1377
1378 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1379 enum gdb_osabi osabi;
424163ea
DJ
1380
1381 /* Use default: NULL (ZERO). */
1382 const struct target_desc *target_desc;
104c1213
JM
1383};
1384
1385typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1386typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1387
4b9b3959 1388/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1389extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1390
4b9b3959
AC
1391extern void gdbarch_register (enum bfd_architecture architecture,
1392 gdbarch_init_ftype *,
1393 gdbarch_dump_tdep_ftype *);
1394
104c1213 1395
b4a20239
AC
1396/* Return a freshly allocated, NULL terminated, array of the valid
1397 architecture names. Since architectures are registered during the
1398 _initialize phase this function only returns useful information
0963b4bd 1399 once initialization has been completed. */
b4a20239
AC
1400
1401extern const char **gdbarch_printable_names (void);
1402
1403
104c1213 1404/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1405 matches the information provided by INFO. */
104c1213 1406
424163ea 1407extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1408
1409
1410/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1411 basic initialization using values obtained from the INFO and TDEP
104c1213 1412 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1413 initialization of the object. */
104c1213
JM
1414
1415extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1416
1417
4b9b3959
AC
1418/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1419 It is assumed that the caller freeds the \`\`struct
0963b4bd 1420 gdbarch_tdep''. */
4b9b3959 1421
058f20d5
JB
1422extern void gdbarch_free (struct gdbarch *);
1423
1424
aebd7893
AC
1425/* Helper function. Allocate memory from the \`\`struct gdbarch''
1426 obstack. The memory is freed when the corresponding architecture
1427 is also freed. */
1428
1429extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1430#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1431#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1432
1433
0963b4bd 1434/* Helper function. Force an update of the current architecture.
104c1213 1435
b732d07d
AC
1436 The actual architecture selected is determined by INFO, \`\`(gdb) set
1437 architecture'' et.al., the existing architecture and BFD's default
1438 architecture. INFO should be initialized to zero and then selected
1439 fields should be updated.
104c1213 1440
0963b4bd 1441 Returns non-zero if the update succeeds. */
16f33e29
AC
1442
1443extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1444
1445
ebdba546
AC
1446/* Helper function. Find an architecture matching info.
1447
1448 INFO should be initialized using gdbarch_info_init, relevant fields
1449 set, and then finished using gdbarch_info_fill.
1450
1451 Returns the corresponding architecture, or NULL if no matching
59837fe0 1452 architecture was found. */
ebdba546
AC
1453
1454extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1455
1456
aff68abb 1457/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1458
aff68abb 1459extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1460
104c1213
JM
1461
1462/* Register per-architecture data-pointer.
1463
1464 Reserve space for a per-architecture data-pointer. An identifier
1465 for the reserved data-pointer is returned. That identifer should
95160752 1466 be saved in a local static variable.
104c1213 1467
fcc1c85c
AC
1468 Memory for the per-architecture data shall be allocated using
1469 gdbarch_obstack_zalloc. That memory will be deleted when the
1470 corresponding architecture object is deleted.
104c1213 1471
95160752
AC
1472 When a previously created architecture is re-selected, the
1473 per-architecture data-pointer for that previous architecture is
76860b5f 1474 restored. INIT() is not re-called.
104c1213
JM
1475
1476 Multiple registrarants for any architecture are allowed (and
1477 strongly encouraged). */
1478
95160752 1479struct gdbarch_data;
104c1213 1480
030f20e1
AC
1481typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1482extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1483typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1484extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1485extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1486 struct gdbarch_data *data,
1487 void *pointer);
104c1213 1488
451fbdda 1489extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1490
1491
0fa6923a 1492/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1493 byte-order, ...) using information found in the BFD. */
104c1213
JM
1494
1495extern void set_gdbarch_from_file (bfd *);
1496
1497
e514a9d6
JM
1498/* Initialize the current architecture to the "first" one we find on
1499 our list. */
1500
1501extern void initialize_current_architecture (void);
1502
104c1213 1503/* gdbarch trace variable */
ccce17b0 1504extern unsigned int gdbarch_debug;
104c1213 1505
4b9b3959 1506extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1507
1508#endif
1509EOF
1510exec 1>&2
1511#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1512compare_new gdbarch.h
104c1213
JM
1513
1514
1515#
1516# C file
1517#
1518
1519exec > new-gdbarch.c
1520copyright
1521cat <<EOF
1522
1523#include "defs.h"
7355ddba 1524#include "arch-utils.h"
104c1213 1525
104c1213 1526#include "gdbcmd.h"
faaf634c 1527#include "inferior.h"
104c1213
JM
1528#include "symcat.h"
1529
f0d4cc9e 1530#include "floatformat.h"
b59ff9d5 1531#include "reggroups.h"
4be87837 1532#include "osabi.h"
aebd7893 1533#include "gdb_obstack.h"
383f836e 1534#include "observer.h"
a3ecef73 1535#include "regcache.h"
19630284 1536#include "objfiles.h"
95160752 1537
104c1213
JM
1538/* Static function declarations */
1539
b3cc3077 1540static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1541
104c1213
JM
1542/* Non-zero if we want to trace architecture code. */
1543
1544#ifndef GDBARCH_DEBUG
1545#define GDBARCH_DEBUG 0
1546#endif
ccce17b0 1547unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1548static void
1549show_gdbarch_debug (struct ui_file *file, int from_tty,
1550 struct cmd_list_element *c, const char *value)
1551{
1552 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1553}
104c1213 1554
456fcf94 1555static const char *
8da61cc4 1556pformat (const struct floatformat **format)
456fcf94
AC
1557{
1558 if (format == NULL)
1559 return "(null)";
1560 else
8da61cc4
DJ
1561 /* Just print out one of them - this is only for diagnostics. */
1562 return format[0]->name;
456fcf94
AC
1563}
1564
08105857
PA
1565static const char *
1566pstring (const char *string)
1567{
1568 if (string == NULL)
1569 return "(null)";
1570 return string;
05c0465e
SDJ
1571}
1572
1573/* Helper function to print a list of strings, represented as "const
1574 char *const *". The list is printed comma-separated. */
1575
1576static char *
1577pstring_list (const char *const *list)
1578{
1579 static char ret[100];
1580 const char *const *p;
1581 size_t offset = 0;
1582
1583 if (list == NULL)
1584 return "(null)";
1585
1586 ret[0] = '\0';
1587 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1588 {
1589 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1590 offset += 2 + s;
1591 }
1592
1593 if (offset > 0)
1594 {
1595 gdb_assert (offset - 2 < sizeof (ret));
1596 ret[offset - 2] = '\0';
1597 }
1598
1599 return ret;
08105857
PA
1600}
1601
104c1213
JM
1602EOF
1603
1604# gdbarch open the gdbarch object
3d9a5942 1605printf "\n"
0963b4bd 1606printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1607printf "\n"
1608printf "struct gdbarch\n"
1609printf "{\n"
76860b5f
AC
1610printf " /* Has this architecture been fully initialized? */\n"
1611printf " int initialized_p;\n"
aebd7893
AC
1612printf "\n"
1613printf " /* An obstack bound to the lifetime of the architecture. */\n"
1614printf " struct obstack *obstack;\n"
1615printf "\n"
0963b4bd 1616printf " /* basic architectural information. */\n"
34620563 1617function_list | while do_read
104c1213 1618do
2ada493a
AC
1619 if class_is_info_p
1620 then
3d9a5942 1621 printf " ${returntype} ${function};\n"
2ada493a 1622 fi
104c1213 1623done
3d9a5942 1624printf "\n"
0963b4bd 1625printf " /* target specific vector. */\n"
3d9a5942
AC
1626printf " struct gdbarch_tdep *tdep;\n"
1627printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1628printf "\n"
0963b4bd 1629printf " /* per-architecture data-pointers. */\n"
95160752 1630printf " unsigned nr_data;\n"
3d9a5942
AC
1631printf " void **data;\n"
1632printf "\n"
104c1213
JM
1633cat <<EOF
1634 /* Multi-arch values.
1635
1636 When extending this structure you must:
1637
1638 Add the field below.
1639
1640 Declare set/get functions and define the corresponding
1641 macro in gdbarch.h.
1642
1643 gdbarch_alloc(): If zero/NULL is not a suitable default,
1644 initialize the new field.
1645
1646 verify_gdbarch(): Confirm that the target updated the field
1647 correctly.
1648
7e73cedf 1649 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1650 field is dumped out
1651
104c1213
JM
1652 get_gdbarch(): Implement the set/get functions (probably using
1653 the macro's as shortcuts).
1654
1655 */
1656
1657EOF
34620563 1658function_list | while do_read
104c1213 1659do
2ada493a
AC
1660 if class_is_variable_p
1661 then
3d9a5942 1662 printf " ${returntype} ${function};\n"
2ada493a
AC
1663 elif class_is_function_p
1664 then
2f9b146e 1665 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1666 fi
104c1213 1667done
3d9a5942 1668printf "};\n"
104c1213 1669
104c1213 1670# Create a new gdbarch struct
104c1213 1671cat <<EOF
7de2341d 1672
66b43ecb 1673/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1674 \`\`struct gdbarch_info''. */
104c1213 1675EOF
3d9a5942 1676printf "\n"
104c1213
JM
1677cat <<EOF
1678struct gdbarch *
1679gdbarch_alloc (const struct gdbarch_info *info,
1680 struct gdbarch_tdep *tdep)
1681{
be7811ad 1682 struct gdbarch *gdbarch;
aebd7893
AC
1683
1684 /* Create an obstack for allocating all the per-architecture memory,
1685 then use that to allocate the architecture vector. */
70ba0933 1686 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1687 obstack_init (obstack);
be7811ad
MD
1688 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1689 memset (gdbarch, 0, sizeof (*gdbarch));
1690 gdbarch->obstack = obstack;
85de9627 1691
be7811ad 1692 alloc_gdbarch_data (gdbarch);
85de9627 1693
be7811ad 1694 gdbarch->tdep = tdep;
104c1213 1695EOF
3d9a5942 1696printf "\n"
34620563 1697function_list | while do_read
104c1213 1698do
2ada493a
AC
1699 if class_is_info_p
1700 then
be7811ad 1701 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1702 fi
104c1213 1703done
3d9a5942 1704printf "\n"
0963b4bd 1705printf " /* Force the explicit initialization of these. */\n"
34620563 1706function_list | while do_read
104c1213 1707do
2ada493a
AC
1708 if class_is_function_p || class_is_variable_p
1709 then
72e74a21 1710 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1711 then
be7811ad 1712 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1713 fi
2ada493a 1714 fi
104c1213
JM
1715done
1716cat <<EOF
1717 /* gdbarch_alloc() */
1718
be7811ad 1719 return gdbarch;
104c1213
JM
1720}
1721EOF
1722
058f20d5 1723# Free a gdbarch struct.
3d9a5942
AC
1724printf "\n"
1725printf "\n"
058f20d5 1726cat <<EOF
aebd7893
AC
1727/* Allocate extra space using the per-architecture obstack. */
1728
1729void *
1730gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1731{
1732 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1733
aebd7893
AC
1734 memset (data, 0, size);
1735 return data;
1736}
1737
1738
058f20d5
JB
1739/* Free a gdbarch struct. This should never happen in normal
1740 operation --- once you've created a gdbarch, you keep it around.
1741 However, if an architecture's init function encounters an error
1742 building the structure, it may need to clean up a partially
1743 constructed gdbarch. */
4b9b3959 1744
058f20d5
JB
1745void
1746gdbarch_free (struct gdbarch *arch)
1747{
aebd7893 1748 struct obstack *obstack;
05c547f6 1749
95160752 1750 gdb_assert (arch != NULL);
aebd7893
AC
1751 gdb_assert (!arch->initialized_p);
1752 obstack = arch->obstack;
1753 obstack_free (obstack, 0); /* Includes the ARCH. */
1754 xfree (obstack);
058f20d5
JB
1755}
1756EOF
1757
104c1213 1758# verify a new architecture
104c1213 1759cat <<EOF
db446970
AC
1760
1761
1762/* Ensure that all values in a GDBARCH are reasonable. */
1763
104c1213 1764static void
be7811ad 1765verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1766{
f16a1923
AC
1767 struct ui_file *log;
1768 struct cleanup *cleanups;
759ef836 1769 long length;
f16a1923 1770 char *buf;
05c547f6 1771
f16a1923
AC
1772 log = mem_fileopen ();
1773 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1774 /* fundamental */
be7811ad 1775 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1776 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1777 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1778 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1779 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1780EOF
34620563 1781function_list | while do_read
104c1213 1782do
2ada493a
AC
1783 if class_is_function_p || class_is_variable_p
1784 then
72e74a21 1785 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1786 then
3d9a5942 1787 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1788 elif class_is_predicate_p
1789 then
0963b4bd 1790 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1791 # FIXME: See do_read for potential simplification
72e74a21 1792 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1793 then
3d9a5942 1794 printf " if (${invalid_p})\n"
be7811ad 1795 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1796 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1797 then
be7811ad
MD
1798 printf " if (gdbarch->${function} == ${predefault})\n"
1799 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1800 elif [ -n "${postdefault}" ]
f0d4cc9e 1801 then
be7811ad
MD
1802 printf " if (gdbarch->${function} == 0)\n"
1803 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1804 elif [ -n "${invalid_p}" ]
104c1213 1805 then
4d60522e 1806 printf " if (${invalid_p})\n"
f16a1923 1807 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1808 elif [ -n "${predefault}" ]
104c1213 1809 then
be7811ad 1810 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1811 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1812 fi
2ada493a 1813 fi
104c1213
JM
1814done
1815cat <<EOF
759ef836 1816 buf = ui_file_xstrdup (log, &length);
f16a1923 1817 make_cleanup (xfree, buf);
759ef836 1818 if (length > 0)
f16a1923 1819 internal_error (__FILE__, __LINE__,
85c07804 1820 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1821 buf);
1822 do_cleanups (cleanups);
104c1213
JM
1823}
1824EOF
1825
1826# dump the structure
3d9a5942
AC
1827printf "\n"
1828printf "\n"
104c1213 1829cat <<EOF
0963b4bd 1830/* Print out the details of the current architecture. */
4b9b3959 1831
104c1213 1832void
be7811ad 1833gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1834{
b78960be 1835 const char *gdb_nm_file = "<not-defined>";
05c547f6 1836
b78960be
AC
1837#if defined (GDB_NM_FILE)
1838 gdb_nm_file = GDB_NM_FILE;
1839#endif
1840 fprintf_unfiltered (file,
1841 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1842 gdb_nm_file);
104c1213 1843EOF
97030eea 1844function_list | sort -t: -k 3 | while do_read
104c1213 1845do
1e9f55d0
AC
1846 # First the predicate
1847 if class_is_predicate_p
1848 then
7996bcec 1849 printf " fprintf_unfiltered (file,\n"
48f7351b 1850 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1851 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1852 fi
48f7351b 1853 # Print the corresponding value.
283354d8 1854 if class_is_function_p
4b9b3959 1855 then
7996bcec 1856 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1857 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1858 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1859 else
48f7351b 1860 # It is a variable
2f9b146e
AC
1861 case "${print}:${returntype}" in
1862 :CORE_ADDR )
0b1553bc
UW
1863 fmt="%s"
1864 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1865 ;;
2f9b146e 1866 :* )
48f7351b 1867 fmt="%s"
623d3eb1 1868 print="plongest (gdbarch->${function})"
48f7351b
AC
1869 ;;
1870 * )
2f9b146e 1871 fmt="%s"
48f7351b
AC
1872 ;;
1873 esac
3d9a5942 1874 printf " fprintf_unfiltered (file,\n"
48f7351b 1875 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1876 printf " ${print});\n"
2ada493a 1877 fi
104c1213 1878done
381323f4 1879cat <<EOF
be7811ad
MD
1880 if (gdbarch->dump_tdep != NULL)
1881 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1882}
1883EOF
104c1213
JM
1884
1885
1886# GET/SET
3d9a5942 1887printf "\n"
104c1213
JM
1888cat <<EOF
1889struct gdbarch_tdep *
1890gdbarch_tdep (struct gdbarch *gdbarch)
1891{
1892 if (gdbarch_debug >= 2)
3d9a5942 1893 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1894 return gdbarch->tdep;
1895}
1896EOF
3d9a5942 1897printf "\n"
34620563 1898function_list | while do_read
104c1213 1899do
2ada493a
AC
1900 if class_is_predicate_p
1901 then
3d9a5942
AC
1902 printf "\n"
1903 printf "int\n"
1904 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1905 printf "{\n"
8de9bdc4 1906 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1907 printf " return ${predicate};\n"
3d9a5942 1908 printf "}\n"
2ada493a
AC
1909 fi
1910 if class_is_function_p
1911 then
3d9a5942
AC
1912 printf "\n"
1913 printf "${returntype}\n"
72e74a21 1914 if [ "x${formal}" = "xvoid" ]
104c1213 1915 then
3d9a5942 1916 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1917 else
3d9a5942 1918 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1919 fi
3d9a5942 1920 printf "{\n"
8de9bdc4 1921 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1922 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1923 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1924 then
1925 # Allow a call to a function with a predicate.
956ac328 1926 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1927 fi
3d9a5942
AC
1928 printf " if (gdbarch_debug >= 2)\n"
1929 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1930 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1931 then
1932 if class_is_multiarch_p
1933 then
1934 params="gdbarch"
1935 else
1936 params=""
1937 fi
1938 else
1939 if class_is_multiarch_p
1940 then
1941 params="gdbarch, ${actual}"
1942 else
1943 params="${actual}"
1944 fi
1945 fi
72e74a21 1946 if [ "x${returntype}" = "xvoid" ]
104c1213 1947 then
4a5c6a1d 1948 printf " gdbarch->${function} (${params});\n"
104c1213 1949 else
4a5c6a1d 1950 printf " return gdbarch->${function} (${params});\n"
104c1213 1951 fi
3d9a5942
AC
1952 printf "}\n"
1953 printf "\n"
1954 printf "void\n"
1955 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1956 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1957 printf "{\n"
1958 printf " gdbarch->${function} = ${function};\n"
1959 printf "}\n"
2ada493a
AC
1960 elif class_is_variable_p
1961 then
3d9a5942
AC
1962 printf "\n"
1963 printf "${returntype}\n"
1964 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1965 printf "{\n"
8de9bdc4 1966 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1967 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1968 then
3d9a5942 1969 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1970 elif [ -n "${invalid_p}" ]
104c1213 1971 then
956ac328
AC
1972 printf " /* Check variable is valid. */\n"
1973 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1974 elif [ -n "${predefault}" ]
104c1213 1975 then
956ac328
AC
1976 printf " /* Check variable changed from pre-default. */\n"
1977 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1978 fi
3d9a5942
AC
1979 printf " if (gdbarch_debug >= 2)\n"
1980 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1981 printf " return gdbarch->${function};\n"
1982 printf "}\n"
1983 printf "\n"
1984 printf "void\n"
1985 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1986 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1987 printf "{\n"
1988 printf " gdbarch->${function} = ${function};\n"
1989 printf "}\n"
2ada493a
AC
1990 elif class_is_info_p
1991 then
3d9a5942
AC
1992 printf "\n"
1993 printf "${returntype}\n"
1994 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1995 printf "{\n"
8de9bdc4 1996 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1997 printf " if (gdbarch_debug >= 2)\n"
1998 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1999 printf " return gdbarch->${function};\n"
2000 printf "}\n"
2ada493a 2001 fi
104c1213
JM
2002done
2003
2004# All the trailing guff
2005cat <<EOF
2006
2007
f44c642f 2008/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2009 modules. */
104c1213
JM
2010
2011struct gdbarch_data
2012{
95160752 2013 unsigned index;
76860b5f 2014 int init_p;
030f20e1
AC
2015 gdbarch_data_pre_init_ftype *pre_init;
2016 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2017};
2018
2019struct gdbarch_data_registration
2020{
104c1213
JM
2021 struct gdbarch_data *data;
2022 struct gdbarch_data_registration *next;
2023};
2024
f44c642f 2025struct gdbarch_data_registry
104c1213 2026{
95160752 2027 unsigned nr;
104c1213
JM
2028 struct gdbarch_data_registration *registrations;
2029};
2030
f44c642f 2031struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2032{
2033 0, NULL,
2034};
2035
030f20e1
AC
2036static struct gdbarch_data *
2037gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2038 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2039{
2040 struct gdbarch_data_registration **curr;
05c547f6
MS
2041
2042 /* Append the new registration. */
f44c642f 2043 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2044 (*curr) != NULL;
2045 curr = &(*curr)->next);
70ba0933 2046 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2047 (*curr)->next = NULL;
70ba0933 2048 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2049 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2050 (*curr)->data->pre_init = pre_init;
2051 (*curr)->data->post_init = post_init;
76860b5f 2052 (*curr)->data->init_p = 1;
104c1213
JM
2053 return (*curr)->data;
2054}
2055
030f20e1
AC
2056struct gdbarch_data *
2057gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2058{
2059 return gdbarch_data_register (pre_init, NULL);
2060}
2061
2062struct gdbarch_data *
2063gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2064{
2065 return gdbarch_data_register (NULL, post_init);
2066}
104c1213 2067
0963b4bd 2068/* Create/delete the gdbarch data vector. */
95160752
AC
2069
2070static void
b3cc3077 2071alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2072{
b3cc3077
JB
2073 gdb_assert (gdbarch->data == NULL);
2074 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2075 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2076}
3c875b6f 2077
76860b5f 2078/* Initialize the current value of the specified per-architecture
0963b4bd 2079 data-pointer. */
b3cc3077 2080
95160752 2081void
030f20e1
AC
2082deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2083 struct gdbarch_data *data,
2084 void *pointer)
95160752
AC
2085{
2086 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2087 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2088 gdb_assert (data->pre_init == NULL);
95160752
AC
2089 gdbarch->data[data->index] = pointer;
2090}
2091
104c1213 2092/* Return the current value of the specified per-architecture
0963b4bd 2093 data-pointer. */
104c1213
JM
2094
2095void *
451fbdda 2096gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2097{
451fbdda 2098 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2099 if (gdbarch->data[data->index] == NULL)
76860b5f 2100 {
030f20e1
AC
2101 /* The data-pointer isn't initialized, call init() to get a
2102 value. */
2103 if (data->pre_init != NULL)
2104 /* Mid architecture creation: pass just the obstack, and not
2105 the entire architecture, as that way it isn't possible for
2106 pre-init code to refer to undefined architecture
2107 fields. */
2108 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2109 else if (gdbarch->initialized_p
2110 && data->post_init != NULL)
2111 /* Post architecture creation: pass the entire architecture
2112 (as all fields are valid), but be careful to also detect
2113 recursive references. */
2114 {
2115 gdb_assert (data->init_p);
2116 data->init_p = 0;
2117 gdbarch->data[data->index] = data->post_init (gdbarch);
2118 data->init_p = 1;
2119 }
2120 else
2121 /* The architecture initialization hasn't completed - punt -
2122 hope that the caller knows what they are doing. Once
2123 deprecated_set_gdbarch_data has been initialized, this can be
2124 changed to an internal error. */
2125 return NULL;
76860b5f
AC
2126 gdb_assert (gdbarch->data[data->index] != NULL);
2127 }
451fbdda 2128 return gdbarch->data[data->index];
104c1213
JM
2129}
2130
2131
0963b4bd 2132/* Keep a registry of the architectures known by GDB. */
104c1213 2133
4b9b3959 2134struct gdbarch_registration
104c1213
JM
2135{
2136 enum bfd_architecture bfd_architecture;
2137 gdbarch_init_ftype *init;
4b9b3959 2138 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2139 struct gdbarch_list *arches;
4b9b3959 2140 struct gdbarch_registration *next;
104c1213
JM
2141};
2142
f44c642f 2143static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2144
b4a20239
AC
2145static void
2146append_name (const char ***buf, int *nr, const char *name)
2147{
2148 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2149 (*buf)[*nr] = name;
2150 *nr += 1;
2151}
2152
2153const char **
2154gdbarch_printable_names (void)
2155{
7996bcec 2156 /* Accumulate a list of names based on the registed list of
0963b4bd 2157 architectures. */
7996bcec
AC
2158 int nr_arches = 0;
2159 const char **arches = NULL;
2160 struct gdbarch_registration *rego;
05c547f6 2161
7996bcec
AC
2162 for (rego = gdbarch_registry;
2163 rego != NULL;
2164 rego = rego->next)
b4a20239 2165 {
7996bcec
AC
2166 const struct bfd_arch_info *ap;
2167 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2168 if (ap == NULL)
2169 internal_error (__FILE__, __LINE__,
85c07804 2170 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2171 do
2172 {
2173 append_name (&arches, &nr_arches, ap->printable_name);
2174 ap = ap->next;
2175 }
2176 while (ap != NULL);
b4a20239 2177 }
7996bcec
AC
2178 append_name (&arches, &nr_arches, NULL);
2179 return arches;
b4a20239
AC
2180}
2181
2182
104c1213 2183void
4b9b3959
AC
2184gdbarch_register (enum bfd_architecture bfd_architecture,
2185 gdbarch_init_ftype *init,
2186 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2187{
4b9b3959 2188 struct gdbarch_registration **curr;
104c1213 2189 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2190
ec3d358c 2191 /* Check that BFD recognizes this architecture */
104c1213
JM
2192 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2193 if (bfd_arch_info == NULL)
2194 {
8e65ff28 2195 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2196 _("gdbarch: Attempt to register "
2197 "unknown architecture (%d)"),
8e65ff28 2198 bfd_architecture);
104c1213 2199 }
0963b4bd 2200 /* Check that we haven't seen this architecture before. */
f44c642f 2201 for (curr = &gdbarch_registry;
104c1213
JM
2202 (*curr) != NULL;
2203 curr = &(*curr)->next)
2204 {
2205 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2206 internal_error (__FILE__, __LINE__,
64b9b334 2207 _("gdbarch: Duplicate registration "
0963b4bd 2208 "of architecture (%s)"),
8e65ff28 2209 bfd_arch_info->printable_name);
104c1213
JM
2210 }
2211 /* log it */
2212 if (gdbarch_debug)
30737ed9 2213 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2214 bfd_arch_info->printable_name,
30737ed9 2215 host_address_to_string (init));
104c1213 2216 /* Append it */
70ba0933 2217 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2218 (*curr)->bfd_architecture = bfd_architecture;
2219 (*curr)->init = init;
4b9b3959 2220 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2221 (*curr)->arches = NULL;
2222 (*curr)->next = NULL;
4b9b3959
AC
2223}
2224
2225void
2226register_gdbarch_init (enum bfd_architecture bfd_architecture,
2227 gdbarch_init_ftype *init)
2228{
2229 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2230}
104c1213
JM
2231
2232
424163ea 2233/* Look for an architecture using gdbarch_info. */
104c1213
JM
2234
2235struct gdbarch_list *
2236gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2237 const struct gdbarch_info *info)
2238{
2239 for (; arches != NULL; arches = arches->next)
2240 {
2241 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2242 continue;
2243 if (info->byte_order != arches->gdbarch->byte_order)
2244 continue;
4be87837
DJ
2245 if (info->osabi != arches->gdbarch->osabi)
2246 continue;
424163ea
DJ
2247 if (info->target_desc != arches->gdbarch->target_desc)
2248 continue;
104c1213
JM
2249 return arches;
2250 }
2251 return NULL;
2252}
2253
2254
ebdba546 2255/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2256 architecture if needed. Return that new architecture. */
104c1213 2257
59837fe0
UW
2258struct gdbarch *
2259gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2260{
2261 struct gdbarch *new_gdbarch;
4b9b3959 2262 struct gdbarch_registration *rego;
104c1213 2263
b732d07d 2264 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2265 sources: "set ..."; INFOabfd supplied; and the global
2266 defaults. */
2267 gdbarch_info_fill (&info);
4be87837 2268
0963b4bd 2269 /* Must have found some sort of architecture. */
b732d07d 2270 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2271
2272 if (gdbarch_debug)
2273 {
2274 fprintf_unfiltered (gdb_stdlog,
59837fe0 2275 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2276 (info.bfd_arch_info != NULL
2277 ? info.bfd_arch_info->printable_name
2278 : "(null)"));
2279 fprintf_unfiltered (gdb_stdlog,
59837fe0 2280 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2281 info.byte_order,
d7449b42 2282 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2283 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2284 : "default"));
4be87837 2285 fprintf_unfiltered (gdb_stdlog,
59837fe0 2286 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2287 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2288 fprintf_unfiltered (gdb_stdlog,
59837fe0 2289 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2290 host_address_to_string (info.abfd));
104c1213 2291 fprintf_unfiltered (gdb_stdlog,
59837fe0 2292 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2293 host_address_to_string (info.tdep_info));
104c1213
JM
2294 }
2295
ebdba546 2296 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2297 for (rego = gdbarch_registry;
2298 rego != NULL;
2299 rego = rego->next)
2300 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2301 break;
2302 if (rego == NULL)
2303 {
2304 if (gdbarch_debug)
59837fe0 2305 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2306 "No matching architecture\n");
b732d07d
AC
2307 return 0;
2308 }
2309
ebdba546 2310 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2311 new_gdbarch = rego->init (info, rego->arches);
2312
ebdba546
AC
2313 /* Did the tdep code like it? No. Reject the change and revert to
2314 the old architecture. */
104c1213
JM
2315 if (new_gdbarch == NULL)
2316 {
2317 if (gdbarch_debug)
59837fe0 2318 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2319 "Target rejected architecture\n");
2320 return NULL;
104c1213
JM
2321 }
2322
ebdba546
AC
2323 /* Is this a pre-existing architecture (as determined by already
2324 being initialized)? Move it to the front of the architecture
2325 list (keeping the list sorted Most Recently Used). */
2326 if (new_gdbarch->initialized_p)
104c1213 2327 {
ebdba546
AC
2328 struct gdbarch_list **list;
2329 struct gdbarch_list *this;
104c1213 2330 if (gdbarch_debug)
59837fe0 2331 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2332 "Previous architecture %s (%s) selected\n",
2333 host_address_to_string (new_gdbarch),
104c1213 2334 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2335 /* Find the existing arch in the list. */
2336 for (list = &rego->arches;
2337 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2338 list = &(*list)->next);
2339 /* It had better be in the list of architectures. */
2340 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2341 /* Unlink THIS. */
2342 this = (*list);
2343 (*list) = this->next;
2344 /* Insert THIS at the front. */
2345 this->next = rego->arches;
2346 rego->arches = this;
2347 /* Return it. */
2348 return new_gdbarch;
104c1213
JM
2349 }
2350
ebdba546
AC
2351 /* It's a new architecture. */
2352 if (gdbarch_debug)
59837fe0 2353 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2354 "New architecture %s (%s) selected\n",
2355 host_address_to_string (new_gdbarch),
ebdba546
AC
2356 new_gdbarch->bfd_arch_info->printable_name);
2357
2358 /* Insert the new architecture into the front of the architecture
2359 list (keep the list sorted Most Recently Used). */
0f79675b 2360 {
70ba0933 2361 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2362 this->next = rego->arches;
2363 this->gdbarch = new_gdbarch;
2364 rego->arches = this;
2365 }
104c1213 2366
4b9b3959
AC
2367 /* Check that the newly installed architecture is valid. Plug in
2368 any post init values. */
2369 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2370 verify_gdbarch (new_gdbarch);
ebdba546 2371 new_gdbarch->initialized_p = 1;
104c1213 2372
4b9b3959 2373 if (gdbarch_debug)
ebdba546
AC
2374 gdbarch_dump (new_gdbarch, gdb_stdlog);
2375
2376 return new_gdbarch;
2377}
2378
e487cc15 2379/* Make the specified architecture current. */
ebdba546
AC
2380
2381void
aff68abb 2382set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2383{
2384 gdb_assert (new_gdbarch != NULL);
ebdba546 2385 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2386 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2387 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2388 registers_changed ();
ebdba546 2389}
104c1213 2390
f5656ead 2391/* Return the current inferior's arch. */
6ecd4729
PA
2392
2393struct gdbarch *
f5656ead 2394target_gdbarch (void)
6ecd4729
PA
2395{
2396 return current_inferior ()->gdbarch;
2397}
2398
104c1213 2399extern void _initialize_gdbarch (void);
b4a20239 2400
104c1213 2401void
34620563 2402_initialize_gdbarch (void)
104c1213 2403{
ccce17b0 2404 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2405Set architecture debugging."), _("\\
2406Show architecture debugging."), _("\\
2407When non-zero, architecture debugging is enabled."),
2408 NULL,
920d2a44 2409 show_gdbarch_debug,
85c07804 2410 &setdebuglist, &showdebuglist);
104c1213
JM
2411}
2412EOF
2413
2414# close things off
2415exec 1>&2
2416#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2417compare_new gdbarch.c
This page took 1.365485 seconds and 4 git commands to generate.