* gdbarch.sh (gdbarch_data): Add gdbarch parameter.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
181c1381 4# Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
104c1213
JM
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
d8864532
AC
22# Make certain that the script is running in an internationalized
23# environment.
24LANG=c ; export LANG
1bd316f0 25LC_ALL=c ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
0b8f9e4d 44read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
3d9a5942
AC
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
50248794
AC
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
88 "" ) ;;
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
34620563
AC
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
06b25f14
AC
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
34620563
AC
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
06b25f14 117
34620563
AC
118 case "${invalid_p}" in
119 0 ) valid_p=1 ;;
120 "" )
72e74a21 121 if [ -n "${predefault}" ]
34620563
AC
122 then
123 #invalid_p="gdbarch->${function} == ${predefault}"
124 valid_p="gdbarch->${function} != ${predefault}"
125 else
126 #invalid_p="gdbarch->${function} == 0"
127 valid_p="gdbarch->${function} != 0"
128 fi
129 ;;
130 * ) valid_p="!(${invalid_p})"
131 esac
132
133 # PREDEFAULT is a valid fallback definition of MEMBER when
134 # multi-arch is not enabled. This ensures that the
135 # default value, when multi-arch is the same as the
136 # default value when not multi-arch. POSTDEFAULT is
137 # always a valid definition of MEMBER as this again
138 # ensures consistency.
139
72e74a21 140 if [ -n "${postdefault}" ]
34620563
AC
141 then
142 fallbackdefault="${postdefault}"
72e74a21 143 elif [ -n "${predefault}" ]
34620563
AC
144 then
145 fallbackdefault="${predefault}"
146 else
73d3c16e 147 fallbackdefault="0"
34620563
AC
148 fi
149
150 #NOT YET: See gdbarch.log for basic verification of
151 # database
152
153 break
f0d4cc9e 154 fi
34620563 155 done
72e74a21 156 if [ -n "${class}" ]
34620563
AC
157 then
158 true
c0e8c252
AC
159 else
160 false
161 fi
162}
163
104c1213 164
f0d4cc9e
AC
165fallback_default_p ()
166{
72e74a21
JB
167 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
168 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
169}
170
171class_is_variable_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *v* | *V* ) true ;;
175 * ) false ;;
176 esac
f0d4cc9e
AC
177}
178
179class_is_function_p ()
180{
4a5c6a1d
AC
181 case "${class}" in
182 *f* | *F* | *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185}
186
187class_is_multiarch_p ()
188{
189 case "${class}" in
190 *m* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_predicate_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *F* | *V* | *M* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203class_is_info_p ()
204{
4a5c6a1d
AC
205 case "${class}" in
206 *i* ) true ;;
207 * ) false ;;
208 esac
f0d4cc9e
AC
209}
210
211
cff3e48b
JM
212# dump out/verify the doco
213for field in ${read}
214do
215 case ${field} in
216
217 class ) : ;;
c4093a6a 218
c0e8c252
AC
219 # # -> line disable
220 # f -> function
221 # hiding a function
2ada493a
AC
222 # F -> function + predicate
223 # hiding a function + predicate to test function validity
c0e8c252
AC
224 # v -> variable
225 # hiding a variable
2ada493a
AC
226 # V -> variable + predicate
227 # hiding a variable + predicate to test variables validity
c0e8c252
AC
228 # i -> set from info
229 # hiding something from the ``struct info'' object
4a5c6a1d
AC
230 # m -> multi-arch function
231 # hiding a multi-arch function (parameterised with the architecture)
232 # M -> multi-arch function + predicate
233 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
234
235 level ) : ;;
236
c0e8c252
AC
237 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
238 # LEVEL is a predicate on checking that a given method is
239 # initialized (using INVALID_P).
cff3e48b
JM
240
241 macro ) : ;;
242
c0e8c252 243 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
244
245 returntype ) : ;;
246
c0e8c252 247 # For functions, the return type; for variables, the data type
cff3e48b
JM
248
249 function ) : ;;
250
c0e8c252
AC
251 # For functions, the member function name; for variables, the
252 # variable name. Member function names are always prefixed with
253 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
254
255 formal ) : ;;
256
c0e8c252
AC
257 # The formal argument list. It is assumed that the formal
258 # argument list includes the actual name of each list element.
259 # A function with no arguments shall have ``void'' as the
260 # formal argument list.
cff3e48b
JM
261
262 actual ) : ;;
263
c0e8c252
AC
264 # The list of actual arguments. The arguments specified shall
265 # match the FORMAL list given above. Functions with out
266 # arguments leave this blank.
cff3e48b
JM
267
268 attrib ) : ;;
269
c0e8c252
AC
270 # Any GCC attributes that should be attached to the function
271 # declaration. At present this field is unused.
cff3e48b 272
0b8f9e4d 273 staticdefault ) : ;;
c0e8c252
AC
274
275 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
276 # created. STATICDEFAULT is the value to insert into that
277 # static gdbarch object. Since this a static object only
278 # simple expressions can be used.
cff3e48b 279
0b8f9e4d 280 # If STATICDEFAULT is empty, zero is used.
c0e8c252 281
0b8f9e4d 282 predefault ) : ;;
cff3e48b 283
10312cc4
AC
284 # An initial value to assign to MEMBER of the freshly
285 # malloc()ed gdbarch object. After initialization, the
286 # freshly malloc()ed object is passed to the target
287 # architecture code for further updates.
cff3e48b 288
0b8f9e4d
AC
289 # If PREDEFAULT is empty, zero is used.
290
10312cc4
AC
291 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
292 # INVALID_P are specified, PREDEFAULT will be used as the
293 # default for the non- multi-arch target.
294
295 # A zero PREDEFAULT function will force the fallback to call
296 # internal_error().
f0d4cc9e
AC
297
298 # Variable declarations can refer to ``gdbarch'' which will
299 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
300
301 postdefault ) : ;;
302
303 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
304 # the target architecture code fail to change the PREDEFAULT
305 # value.
0b8f9e4d
AC
306
307 # If POSTDEFAULT is empty, no post update is performed.
308
309 # If both INVALID_P and POSTDEFAULT are non-empty then
310 # INVALID_P will be used to determine if MEMBER should be
311 # changed to POSTDEFAULT.
312
10312cc4
AC
313 # If a non-empty POSTDEFAULT and a zero INVALID_P are
314 # specified, POSTDEFAULT will be used as the default for the
315 # non- multi-arch target (regardless of the value of
316 # PREDEFAULT).
317
f0d4cc9e
AC
318 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
319
320 # Variable declarations can refer to ``gdbarch'' which will
321 # contain the current architecture. Care should be taken.
cff3e48b 322
c4093a6a 323 invalid_p ) : ;;
cff3e48b 324
0b8f9e4d 325 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 326 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
327 # initialize MEMBER or the initialized the member is invalid.
328 # If POSTDEFAULT is non-empty then MEMBER will be updated to
329 # that value. If POSTDEFAULT is empty then internal_error()
330 # is called.
331
332 # If INVALID_P is empty, a check that MEMBER is no longer
333 # equal to PREDEFAULT is used.
334
f0d4cc9e
AC
335 # The expression ``0'' disables the INVALID_P check making
336 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
337
338 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
339
340 fmt ) : ;;
341
c0e8c252
AC
342 # printf style format string that can be used to print out the
343 # MEMBER. Sometimes "%s" is useful. For functions, this is
344 # ignored and the function address is printed.
345
0b8f9e4d 346 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
347
348 print ) : ;;
349
c0e8c252
AC
350 # An optional equation that casts MEMBER to a value suitable
351 # for formatting by FMT.
352
0b8f9e4d 353 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
354
355 print_p ) : ;;
356
c0e8c252
AC
357 # An optional indicator for any predicte to wrap around the
358 # print member code.
359
4b9b3959 360 # () -> Call a custom function to do the dump.
c0e8c252
AC
361 # exp -> Wrap print up in ``if (${print_p}) ...
362 # ``'' -> No predicate
cff3e48b 363
0b8f9e4d
AC
364 # If PRINT_P is empty, ``1'' is always used.
365
cff3e48b
JM
366 description ) : ;;
367
0b8f9e4d 368 # Currently unused.
cff3e48b 369
50248794
AC
370 *)
371 echo "Bad field ${field}"
372 exit 1;;
cff3e48b
JM
373 esac
374done
375
cff3e48b 376
104c1213
JM
377function_list ()
378{
cff3e48b 379 # See below (DOCO) for description of each field
34620563 380 cat <<EOF
0b8f9e4d 381i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 382#
d7449b42 383i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
66b43ecb
AC
384# Number of bits in a char or unsigned char for the target machine.
385# Just like CHAR_BIT in <limits.h> but describes the target machine.
386# v::TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
387#
388# Number of bits in a short or unsigned short for the target machine.
389v::TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
390# Number of bits in an int or unsigned int for the target machine.
391v::TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
392# Number of bits in a long or unsigned long for the target machine.
393v::TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
394# Number of bits in a long long or unsigned long long for the target
395# machine.
396v::TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
397# Number of bits in a float for the target machine.
398v::TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
399# Number of bits in a double for the target machine.
400v::TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
401# Number of bits in a long double for the target machine.
17ef5d92 402v::TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
403# For most targets, a pointer on the target and its representation as an
404# address in GDB have the same size and "look the same". For such a
405# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
406# / addr_bit will be set from it.
407#
408# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
409# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
410#
411# ptr_bit is the size of a pointer on the target
66b43ecb 412v::TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b
DT
413# addr_bit is the size of a target address as represented in gdb
414v::TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb
AC
415# Number of bits in a BFD_VMA for the target object file format.
416v::TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 417#
4e409299 418# One if \`char' acts like \`signed char', zero if \`unsigned char'.
2c283bc4 419v::TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 420#
39f77062
KB
421f::TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid::0:generic_target_read_pc::0
422f::TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
be8dfb87 423f::TARGET_READ_FP:CORE_ADDR:read_fp:void:::0:generic_target_read_fp::0
be8dfb87
AC
424f::TARGET_READ_SP:CORE_ADDR:read_sp:void:::0:generic_target_read_sp::0
425f::TARGET_WRITE_SP:void:write_sp:CORE_ADDR val:val::0:generic_target_write_sp::0
39d4ef09
AC
426# Function for getting target's idea of a frame pointer. FIXME: GDB's
427# whole scheme for dealing with "frames" and "frame pointers" needs a
428# serious shakedown.
429f::TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 430#
61a0eb5b
AC
431M:::void:register_read:int regnum, char *buf:regnum, buf:
432M:::void:register_write:int regnum, char *buf:regnum, buf:
433#
104c1213 434v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
435# This macro gives the number of pseudo-registers that live in the
436# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
437# These pseudo-registers may be aliases for other registers,
438# combinations of other registers, or they may be computed by GDB.
0aba1244 439v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
440
441# GDB's standard (or well known) register numbers. These can map onto
442# a real register or a pseudo (computed) register or not be defined at
1200cd6e
AC
443# all (-1).
444v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
445v:2:FP_REGNUM:int:fp_regnum::::-1:-1::0
446v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 447v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d
AC
448v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
449v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
450v:2:NNPC_REGNUM:int:nnpc_regnum::::0:-1::0
88c72b7d
AC
451# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
452f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
453# Provide a default mapping from a ecoff register number to a gdb REGNUM.
454f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
455# Provide a default mapping from a DWARF register number to a gdb REGNUM.
456f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
457# Convert from an sdb register number to an internal gdb register number.
458# This should be defined in tm.h, if REGISTER_NAMES is not set up
459# to map one to one onto the sdb register numbers.
460f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
461f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
0b8f9e4d 462f:2:REGISTER_NAME:char *:register_name:int regnr:regnr:::legacy_register_name::0
104c1213
JM
463v:2:REGISTER_SIZE:int:register_size::::0:-1
464v:2:REGISTER_BYTES:int:register_bytes::::0:-1
465f:2:REGISTER_BYTE:int:register_byte:int reg_nr:reg_nr::0:0
46cd78fb 466f:2:REGISTER_RAW_SIZE:int:register_raw_size:int reg_nr:reg_nr::generic_register_raw_size:0
104c1213 467v:2:MAX_REGISTER_RAW_SIZE:int:max_register_raw_size::::0:-1
ce29138a 468f:2:REGISTER_VIRTUAL_SIZE:int:register_virtual_size:int reg_nr:reg_nr::generic_register_virtual_size:0
104c1213
JM
469v:2:MAX_REGISTER_VIRTUAL_SIZE:int:max_register_virtual_size::::0:-1
470f:2:REGISTER_VIRTUAL_TYPE:struct type *:register_virtual_type:int reg_nr:reg_nr::0:0
666e11c5 471f:2:DO_REGISTERS_INFO:void:do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs:::do_registers_info::0
5e74b15c 472f:2:PRINT_FLOAT_INFO:void:print_float_info:void::::default_print_float_info::0
7c7651b2
AC
473# MAP a GDB RAW register number onto a simulator register number. See
474# also include/...-sim.h.
475f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::default_register_sim_regno::0
2649061d 476F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
01fb7433
AC
477f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
478f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0
RE
479# setjmp/longjmp support.
480F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
104c1213 481#
028c194b
AC
482# Non multi-arch DUMMY_FRAMES are a mess (multi-arch ones are not that
483# much better but at least they are vaguely consistent). The headers
484# and body contain convoluted #if/#else sequences for determine how
485# things should be compiled. Instead of trying to mimic that
486# behaviour here (and hence entrench it further) gdbarch simply
487# reqires that these methods be set up from the word go. This also
488# avoids any potential problems with moving beyond multi-arch partial.
104c1213 489v:1:USE_GENERIC_DUMMY_FRAMES:int:use_generic_dummy_frames::::0:-1
a985cd41 490v:1:CALL_DUMMY_LOCATION:int:call_dummy_location::::0:0
0b8f9e4d
AC
491f:2:CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void:::0:0::gdbarch->call_dummy_location == AT_ENTRY_POINT && gdbarch->call_dummy_address == 0
492v:2:CALL_DUMMY_START_OFFSET:CORE_ADDR:call_dummy_start_offset::::0:-1:::0x%08lx
83e6b173 493v:2:CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:call_dummy_breakpoint_offset::::0:-1::gdbarch->call_dummy_breakpoint_offset_p && gdbarch->call_dummy_breakpoint_offset == -1:0x%08lx::CALL_DUMMY_BREAKPOINT_OFFSET_P
104c1213 494v:1:CALL_DUMMY_BREAKPOINT_OFFSET_P:int:call_dummy_breakpoint_offset_p::::0:-1
0b8f9e4d 495v:2:CALL_DUMMY_LENGTH:int:call_dummy_length::::0:-1:::::CALL_DUMMY_LOCATION == BEFORE_TEXT_END || CALL_DUMMY_LOCATION == AFTER_TEXT_END
a4a7d16f 496f:1:PC_IN_CALL_DUMMY:int:pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::0:0
104c1213 497v:1:CALL_DUMMY_P:int:call_dummy_p::::0:-1
0b8f9e4d
AC
498v:2:CALL_DUMMY_WORDS:LONGEST *:call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
499v:2:SIZEOF_CALL_DUMMY_WORDS:int:sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0:0x%08lx
500v:1:CALL_DUMMY_STACK_ADJUST_P:int:call_dummy_stack_adjust_p::::0:-1:::0x%08lx
501v:2:CALL_DUMMY_STACK_ADJUST:int:call_dummy_stack_adjust::::0:::gdbarch->call_dummy_stack_adjust_p && gdbarch->call_dummy_stack_adjust == 0:0x%08lx::CALL_DUMMY_STACK_ADJUST_P
502f:2:FIX_CALL_DUMMY:void:fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p:::0
10312cc4 503f:2:INIT_FRAME_PC_FIRST:void:init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_noop::0
7824d2f2 504f:2:INIT_FRAME_PC:void:init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev:::init_frame_pc_default::0
104c1213 505#
f0d4cc9e
AC
506v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
507v:2:BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
0b8f9e4d 508f:2:COERCE_FLOAT_TO_DOUBLE:int:coerce_float_to_double:struct type *formal, struct type *actual:formal, actual:::default_coerce_float_to_double::0
028c194b
AC
509# GET_SAVED_REGISTER is like DUMMY_FRAMES. It is at level one as the
510# old code has strange #ifdef interaction. So far no one has found
511# that default_get_saved_register() is the default they are after.
104c1213
JM
512f:1:GET_SAVED_REGISTER:void:get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval::generic_get_saved_register:0
513#
6e6d6484 514f:2:REGISTER_CONVERTIBLE:int:register_convertible:int nr:nr:::generic_register_convertible_not::0
0b8f9e4d
AC
515f:2:REGISTER_CONVERT_TO_VIRTUAL:void:register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
516f:2:REGISTER_CONVERT_TO_RAW:void:register_convert_to_raw:struct type *type, int regnum, char *from, char *to:type, regnum, from, to:::0::0
34620563
AC
517# This function is called when the value of a pseudo-register needs to
518# be updated. Typically it will be defined on a per-architecture
519# basis.
31e9866e 520F:2:FETCH_PSEUDO_REGISTER:void:fetch_pseudo_register:int regnum:regnum:
34620563
AC
521# This function is called when the value of a pseudo-register needs to
522# be set or stored. Typically it will be defined on a
523# per-architecture basis.
31e9866e 524F:2:STORE_PSEUDO_REGISTER:void:store_pseudo_register:int regnum:regnum:
104c1213 525#
ac2e2ef7
AC
526f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, void *buf:type, buf:::unsigned_pointer_to_address::0
527f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 528F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 529#
0b8f9e4d 530f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
104c1213 531f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf::0:0
6e6d6484 532f:2:PUSH_ARGUMENTS:CORE_ADDR:push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr:::default_push_arguments::0
c0e8c252 533f:2:PUSH_DUMMY_FRAME:void:push_dummy_frame:void:-:::0
c30e0066 534F:2:PUSH_RETURN_ADDRESS:CORE_ADDR:push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
c0e8c252 535f:2:POP_FRAME:void:pop_frame:void:-:::0
104c1213 536#
c0e8c252
AC
537f:2:STORE_STRUCT_RETURN:void:store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
538f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, char *valbuf:type, valbuf:::0
d6dd581e 539F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:char *regbuf:regbuf:::0
56f12751 540f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
104c1213
JM
541#
542f:2:FRAME_INIT_SAVED_REGS:void:frame_init_saved_regs:struct frame_info *frame:frame::0:0
5fdff426 543F:2:INIT_EXTRA_FRAME_INFO:void:init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
104c1213
JM
544#
545f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
0b8f9e4d 546f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
104c1213 547f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
f4f9705a 548f:2:BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::legacy_breakpoint_from_pc::0
0b8f9e4d
AC
549f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
550f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
104c1213 551v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
e02bc4cc 552f::PREPARE_TO_PROCEED:int:prepare_to_proceed:int select_it:select_it::0:default_prepare_to_proceed::0
104c1213
JM
553v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
554#
0b8f9e4d 555f:2:REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213
JM
556#
557v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
0b8f9e4d 558f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
104c1213 559f:2:FRAME_CHAIN:CORE_ADDR:frame_chain:struct frame_info *frame:frame::0:0
7f55af32
AC
560# Define a default FRAME_CHAIN_VALID, in the form that is suitable for
561# most targets. If FRAME_CHAIN_VALID returns zero it means that the
562# given frame is the outermost one and has no caller.
563#
564# XXXX - both default and alternate frame_chain_valid functions are
565# deprecated. New code should use dummy frames and one of the generic
566# functions.
567f:2:FRAME_CHAIN_VALID:int:frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe:::func_frame_chain_valid::0
104c1213
JM
568f:2:FRAME_SAVED_PC:CORE_ADDR:frame_saved_pc:struct frame_info *fi:fi::0:0
569f:2:FRAME_ARGS_ADDRESS:CORE_ADDR:frame_args_address:struct frame_info *fi:fi::0:0
570f:2:FRAME_LOCALS_ADDRESS:CORE_ADDR:frame_locals_address:struct frame_info *fi:fi::0:0
571f:2:SAVED_PC_AFTER_CALL:CORE_ADDR:saved_pc_after_call:struct frame_info *frame:frame::0:0
572f:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame::0:0
573#
2ada493a 574F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
6acf50cd 575v:2:EXTRA_STACK_ALIGNMENT_NEEDED:int:extra_stack_alignment_needed::::0:1::0:::
d03e67c9 576F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
d1e3cf49 577F:2:SAVE_DUMMY_FRAME_TOS:void:save_dummy_frame_tos:CORE_ADDR sp:sp::0:0
58d5518e 578v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e
AC
579#
580v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)
581v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)
2fa5c1e0 582v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)
875e1767
AC
583f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
584# On some machines there are bits in addresses which are not really
585# part of the address, but are used by the kernel, the hardware, etc.
586# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
587# we get a "real" address such as one would find in a symbol table.
588# This is used only for addresses of instructions, and even then I'm
589# not sure it's used in all contexts. It exists to deal with there
590# being a few stray bits in the PC which would mislead us, not as some
591# sort of generic thing to handle alignment or segmentation (it's
592# possible it should be in TARGET_READ_PC instead).
593f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
181c1381
RE
594# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
595# ADDR_BITS_REMOVE.
596f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
598# the target needs software single step. An ISA method to implement it.
599#
600# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
601# using the breakpoint system instead of blatting memory directly (as with rs6000).
602#
603# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
604# single step. If not, then implement single step using breakpoints.
605F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
2bf0cb65 606f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
bdcd319a 607f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
68e9cc94
CV
608# For SVR4 shared libraries, each call goes through a small piece of
609# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
610# to nonzero if we are current stopped in one of these.
611f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d7bd68ca
AC
612# Sigtramp is a routine that the kernel calls (which then calls the
613# signal handler). On most machines it is a library routine that is
614# linked into the executable.
615#
616# This macro, given a program counter value and the name of the
617# function in which that PC resides (which can be null if the name is
618# not known), returns nonzero if the PC and name show that we are in
619# sigtramp.
620#
621# On most machines just see if the name is sigtramp (and if we have
622# no name, assume we are not in sigtramp).
623#
624# FIXME: cagney/2002-04-21: The function find_pc_partial_function
625# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
626# This means PC_IN_SIGTRAMP function can't be implemented by doing its
627# own local NAME lookup.
628#
629# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
630# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
631# does not.
632f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
c12260ac
CV
633# A target might have problems with watchpoints as soon as the stack
634# frame of the current function has been destroyed. This mostly happens
635# as the first action in a funtion's epilogue. in_function_epilogue_p()
636# is defined to return a non-zero value if either the given addr is one
637# instruction after the stack destroying instruction up to the trailing
638# return instruction or if we can figure out that the stack frame has
639# already been invalidated regardless of the value of addr. Targets
640# which don't suffer from that problem could just let this functionality
641# untouched.
642m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
643# Given a vector of command-line arguments, return a newly allocated
644# string which, when passed to the create_inferior function, will be
645# parsed (on Unix systems, by the shell) to yield the same vector.
646# This function should call error() if the argument vector is not
647# representable for this target or if this target does not support
648# command-line arguments.
649# ARGC is the number of elements in the vector.
650# ARGV is an array of strings, one per argument.
651m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
b6af0555 652F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
a2cf933a
EZ
653f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
654f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
104c1213 655EOF
104c1213
JM
656}
657
0b8f9e4d
AC
658#
659# The .log file
660#
661exec > new-gdbarch.log
34620563 662function_list | while do_read
0b8f9e4d
AC
663do
664 cat <<EOF
104c1213
JM
665${class} ${macro}(${actual})
666 ${returntype} ${function} ($formal)${attrib}
104c1213 667EOF
3d9a5942
AC
668 for r in ${read}
669 do
670 eval echo \"\ \ \ \ ${r}=\${${r}}\"
671 done
672# #fallbackdefault=${fallbackdefault}
673# #valid_p=${valid_p}
674#EOF
f0d4cc9e 675 if class_is_predicate_p && fallback_default_p
0b8f9e4d 676 then
66b43ecb 677 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
678 kill $$
679 exit 1
680 fi
72e74a21 681 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
682 then
683 echo "Error: postdefault is useless when invalid_p=0" 1>&2
684 kill $$
685 exit 1
686 fi
a72293e2
AC
687 if class_is_multiarch_p
688 then
689 if class_is_predicate_p ; then :
690 elif test "x${predefault}" = "x"
691 then
692 echo "Error: pure multi-arch function must have a predefault" 1>&2
693 kill $$
694 exit 1
695 fi
696 fi
3d9a5942 697 echo ""
0b8f9e4d
AC
698done
699
700exec 1>&2
701compare_new gdbarch.log
702
104c1213
JM
703
704copyright ()
705{
706cat <<EOF
59233f88
AC
707/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
708
104c1213 709/* Dynamic architecture support for GDB, the GNU debugger.
181c1381 710 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
104c1213
JM
711
712 This file is part of GDB.
713
714 This program is free software; you can redistribute it and/or modify
715 it under the terms of the GNU General Public License as published by
716 the Free Software Foundation; either version 2 of the License, or
717 (at your option) any later version.
718
719 This program is distributed in the hope that it will be useful,
720 but WITHOUT ANY WARRANTY; without even the implied warranty of
721 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
722 GNU General Public License for more details.
723
724 You should have received a copy of the GNU General Public License
725 along with this program; if not, write to the Free Software
726 Foundation, Inc., 59 Temple Place - Suite 330,
727 Boston, MA 02111-1307, USA. */
728
104c1213
JM
729/* This file was created with the aid of \`\`gdbarch.sh''.
730
52204a0b 731 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
732 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
733 against the existing \`\`gdbarch.[hc]''. Any differences found
734 being reported.
735
736 If editing this file, please also run gdbarch.sh and merge any
52204a0b 737 changes into that script. Conversely, when making sweeping changes
104c1213
JM
738 to this file, modifying gdbarch.sh and using its output may prove
739 easier. */
740
741EOF
742}
743
744#
745# The .h file
746#
747
748exec > new-gdbarch.h
749copyright
750cat <<EOF
751#ifndef GDBARCH_H
752#define GDBARCH_H
753
2bf0cb65 754#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
fd0407d6 755#if !GDB_MULTI_ARCH
67a2b77e 756/* Pull in function declarations refered to, indirectly, via macros. */
fd0407d6 757#include "value.h" /* For default_coerce_float_to_double which is referenced by a macro. */
67a2b77e 758#include "inferior.h" /* For unsigned_address_to_pointer(). */
fd0407d6 759#endif
2bf0cb65 760
104c1213
JM
761struct frame_info;
762struct value;
b6af0555 763struct objfile;
a2cf933a 764struct minimal_symbol;
104c1213 765
104c1213
JM
766extern struct gdbarch *current_gdbarch;
767
768
104c1213
JM
769/* If any of the following are defined, the target wasn't correctly
770 converted. */
771
104c1213
JM
772#if GDB_MULTI_ARCH
773#if defined (EXTRA_FRAME_INFO)
774#error "EXTRA_FRAME_INFO: replaced by struct frame_extra_info"
775#endif
776#endif
777
778#if GDB_MULTI_ARCH
779#if defined (FRAME_FIND_SAVED_REGS)
780#error "FRAME_FIND_SAVED_REGS: replaced by FRAME_INIT_SAVED_REGS"
781#endif
782#endif
83905903
AC
783
784#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
785#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
786#endif
104c1213
JM
787EOF
788
789# function typedef's
3d9a5942
AC
790printf "\n"
791printf "\n"
792printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 793function_list | while do_read
104c1213 794do
2ada493a
AC
795 if class_is_info_p
796 then
3d9a5942
AC
797 printf "\n"
798 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
799 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 800 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
801 printf "#error \"Non multi-arch definition of ${macro}\"\n"
802 printf "#endif\n"
3d9a5942 803 printf "#if GDB_MULTI_ARCH\n"
028c194b 804 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
3d9a5942
AC
805 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
806 printf "#endif\n"
807 printf "#endif\n"
2ada493a 808 fi
104c1213
JM
809done
810
811# function typedef's
3d9a5942
AC
812printf "\n"
813printf "\n"
814printf "/* The following are initialized by the target dependent code. */\n"
34620563 815function_list | while do_read
104c1213 816do
72e74a21 817 if [ -n "${comment}" ]
34620563
AC
818 then
819 echo "${comment}" | sed \
820 -e '2 s,#,/*,' \
821 -e '3,$ s,#, ,' \
822 -e '$ s,$, */,'
823 fi
b77be6cf 824 if class_is_multiarch_p
2ada493a 825 then
b77be6cf
AC
826 if class_is_predicate_p
827 then
828 printf "\n"
829 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
830 fi
831 else
832 if class_is_predicate_p
833 then
834 printf "\n"
835 printf "#if defined (${macro})\n"
836 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
837 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 838 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
839 printf "#define ${macro}_P() (1)\n"
840 printf "#endif\n"
eee30e78 841 printf "#endif\n"
b77be6cf
AC
842 printf "\n"
843 printf "/* Default predicate for non- multi-arch targets. */\n"
844 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
845 printf "#define ${macro}_P() (0)\n"
846 printf "#endif\n"
847 printf "\n"
848 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 849 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
850 printf "#error \"Non multi-arch definition of ${macro}\"\n"
851 printf "#endif\n"
028c194b 852 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
853 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
854 printf "#endif\n"
855 fi
4a5c6a1d 856 fi
2ada493a
AC
857 if class_is_variable_p
858 then
f0d4cc9e 859 if fallback_default_p || class_is_predicate_p
33489c5b 860 then
3d9a5942
AC
861 printf "\n"
862 printf "/* Default (value) for non- multi-arch platforms. */\n"
863 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
f0d4cc9e
AC
864 echo "#define ${macro} (${fallbackdefault})" \
865 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
3d9a5942 866 printf "#endif\n"
33489c5b 867 fi
3d9a5942
AC
868 printf "\n"
869 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
870 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 871 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
872 printf "#error \"Non multi-arch definition of ${macro}\"\n"
873 printf "#endif\n"
3d9a5942 874 printf "#if GDB_MULTI_ARCH\n"
028c194b 875 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
3d9a5942
AC
876 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
877 printf "#endif\n"
878 printf "#endif\n"
2ada493a
AC
879 fi
880 if class_is_function_p
881 then
b77be6cf
AC
882 if class_is_multiarch_p ; then :
883 elif fallback_default_p || class_is_predicate_p
33489c5b 884 then
3d9a5942
AC
885 printf "\n"
886 printf "/* Default (function) for non- multi-arch platforms. */\n"
887 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
72e74a21 888 if [ "x${fallbackdefault}" = "x0" ]
33489c5b 889 then
8e65ff28 890 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
33489c5b 891 else
f0d4cc9e
AC
892 # FIXME: Should be passing current_gdbarch through!
893 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
894 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
33489c5b 895 fi
3d9a5942 896 printf "#endif\n"
33489c5b 897 fi
3d9a5942 898 printf "\n"
72e74a21 899 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
900 then
901 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
902 elif class_is_multiarch_p
903 then
904 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
905 else
906 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
907 fi
72e74a21 908 if [ "x${formal}" = "xvoid" ]
104c1213 909 then
3d9a5942 910 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 911 else
3d9a5942 912 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 913 fi
3d9a5942 914 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
915 if class_is_multiarch_p ; then :
916 else
028c194b 917 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
918 printf "#error \"Non multi-arch definition of ${macro}\"\n"
919 printf "#endif\n"
4a5c6a1d 920 printf "#if GDB_MULTI_ARCH\n"
028c194b 921 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro})\n"
72e74a21 922 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
923 then
924 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 925 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
926 then
927 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
928 else
929 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
930 fi
931 printf "#endif\n"
932 printf "#endif\n"
104c1213 933 fi
2ada493a 934 fi
104c1213
JM
935done
936
937# close it off
938cat <<EOF
939
940extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
941
942
943/* Mechanism for co-ordinating the selection of a specific
944 architecture.
945
946 GDB targets (*-tdep.c) can register an interest in a specific
947 architecture. Other GDB components can register a need to maintain
948 per-architecture data.
949
950 The mechanisms below ensures that there is only a loose connection
951 between the set-architecture command and the various GDB
0fa6923a 952 components. Each component can independently register their need
104c1213
JM
953 to maintain architecture specific data with gdbarch.
954
955 Pragmatics:
956
957 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
958 didn't scale.
959
960 The more traditional mega-struct containing architecture specific
961 data for all the various GDB components was also considered. Since
0fa6923a 962 GDB is built from a variable number of (fairly independent)
104c1213
JM
963 components it was determined that the global aproach was not
964 applicable. */
965
966
967/* Register a new architectural family with GDB.
968
969 Register support for the specified ARCHITECTURE with GDB. When
970 gdbarch determines that the specified architecture has been
971 selected, the corresponding INIT function is called.
972
973 --
974
975 The INIT function takes two parameters: INFO which contains the
976 information available to gdbarch about the (possibly new)
977 architecture; ARCHES which is a list of the previously created
978 \`\`struct gdbarch'' for this architecture.
979
0f79675b
AC
980 The INFO parameter is, as far as possible, be pre-initialized with
981 information obtained from INFO.ABFD or the previously selected
982 architecture.
983
984 The ARCHES parameter is a linked list (sorted most recently used)
985 of all the previously created architures for this architecture
986 family. The (possibly NULL) ARCHES->gdbarch can used to access
987 values from the previously selected architecture for this
988 architecture family. The global \`\`current_gdbarch'' shall not be
989 used.
104c1213
JM
990
991 The INIT function shall return any of: NULL - indicating that it
ec3d358c 992 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
993 gdbarch'' from the ARCHES list - indicating that the new
994 architecture is just a synonym for an earlier architecture (see
995 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
996 - that describes the selected architecture (see gdbarch_alloc()).
997
998 The DUMP_TDEP function shall print out all target specific values.
999 Care should be taken to ensure that the function works in both the
1000 multi-arch and non- multi-arch cases. */
104c1213
JM
1001
1002struct gdbarch_list
1003{
1004 struct gdbarch *gdbarch;
1005 struct gdbarch_list *next;
1006};
1007
1008struct gdbarch_info
1009{
104c1213
JM
1010 /* Use default: NULL (ZERO). */
1011 const struct bfd_arch_info *bfd_arch_info;
1012
428721aa 1013 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1014 int byte_order;
1015
1016 /* Use default: NULL (ZERO). */
1017 bfd *abfd;
1018
1019 /* Use default: NULL (ZERO). */
1020 struct gdbarch_tdep_info *tdep_info;
1021};
1022
1023typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1024typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1025
4b9b3959 1026/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1027extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1028
4b9b3959
AC
1029extern void gdbarch_register (enum bfd_architecture architecture,
1030 gdbarch_init_ftype *,
1031 gdbarch_dump_tdep_ftype *);
1032
104c1213 1033
b4a20239
AC
1034/* Return a freshly allocated, NULL terminated, array of the valid
1035 architecture names. Since architectures are registered during the
1036 _initialize phase this function only returns useful information
1037 once initialization has been completed. */
1038
1039extern const char **gdbarch_printable_names (void);
1040
1041
104c1213
JM
1042/* Helper function. Search the list of ARCHES for a GDBARCH that
1043 matches the information provided by INFO. */
1044
1045extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1046
1047
1048/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1049 basic initialization using values obtained from the INFO andTDEP
1050 parameters. set_gdbarch_*() functions are called to complete the
1051 initialization of the object. */
1052
1053extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1054
1055
4b9b3959
AC
1056/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1057 It is assumed that the caller freeds the \`\`struct
1058 gdbarch_tdep''. */
1059
058f20d5
JB
1060extern void gdbarch_free (struct gdbarch *);
1061
1062
b732d07d 1063/* Helper function. Force an update of the current architecture.
104c1213 1064
b732d07d
AC
1065 The actual architecture selected is determined by INFO, \`\`(gdb) set
1066 architecture'' et.al., the existing architecture and BFD's default
1067 architecture. INFO should be initialized to zero and then selected
1068 fields should be updated.
104c1213 1069
16f33e29
AC
1070 Returns non-zero if the update succeeds */
1071
1072extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1073
1074
1075
1076/* Register per-architecture data-pointer.
1077
1078 Reserve space for a per-architecture data-pointer. An identifier
1079 for the reserved data-pointer is returned. That identifer should
95160752 1080 be saved in a local static variable.
104c1213 1081
95160752
AC
1082 The per-architecture data-pointer can be initialized in one of two
1083 ways: The value can be set explicitly using a call to
1084 set_gdbarch_data(); the value can be set implicitly using the value
1085 returned by a non-NULL INIT() callback. INIT(), when non-NULL is
1086 called after the basic architecture vector has been created.
104c1213 1087
95160752
AC
1088 When a previously created architecture is re-selected, the
1089 per-architecture data-pointer for that previous architecture is
1090 restored. INIT() is not called.
1091
1092 During initialization, multiple assignments of the data-pointer are
1093 allowed, non-NULL values are deleted by calling FREE(). If the
1094 architecture is deleted using gdbarch_free() all non-NULL data
1095 pointers are also deleted using FREE().
104c1213
JM
1096
1097 Multiple registrarants for any architecture are allowed (and
1098 strongly encouraged). */
1099
95160752 1100struct gdbarch_data;
104c1213 1101
95160752
AC
1102typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1103typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1104 void *pointer);
1105extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1106 gdbarch_data_free_ftype *free);
1107extern void set_gdbarch_data (struct gdbarch *gdbarch,
1108 struct gdbarch_data *data,
1109 void *pointer);
104c1213 1110
451fbdda 1111extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1112
1113
104c1213
JM
1114/* Register per-architecture memory region.
1115
1116 Provide a memory-region swap mechanism. Per-architecture memory
1117 region are created. These memory regions are swapped whenever the
1118 architecture is changed. For a new architecture, the memory region
1119 is initialized with zero (0) and the INIT function is called.
1120
1121 Memory regions are swapped / initialized in the order that they are
1122 registered. NULL DATA and/or INIT values can be specified.
1123
1124 New code should use register_gdbarch_data(). */
1125
1126typedef void (gdbarch_swap_ftype) (void);
1127extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1128#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1129
1130
1131
0fa6923a 1132/* The target-system-dependent byte order is dynamic */
104c1213 1133
104c1213 1134extern int target_byte_order;
104c1213
JM
1135#ifndef TARGET_BYTE_ORDER
1136#define TARGET_BYTE_ORDER (target_byte_order + 0)
1137#endif
1138
1139extern int target_byte_order_auto;
1140#ifndef TARGET_BYTE_ORDER_AUTO
1141#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1142#endif
1143
1144
1145
0fa6923a 1146/* The target-system-dependent BFD architecture is dynamic */
104c1213
JM
1147
1148extern int target_architecture_auto;
1149#ifndef TARGET_ARCHITECTURE_AUTO
1150#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1151#endif
1152
1153extern const struct bfd_arch_info *target_architecture;
1154#ifndef TARGET_ARCHITECTURE
1155#define TARGET_ARCHITECTURE (target_architecture + 0)
1156#endif
1157
104c1213 1158
0fa6923a 1159/* The target-system-dependent disassembler is semi-dynamic */
104c1213 1160
104c1213 1161extern int dis_asm_read_memory (bfd_vma memaddr, bfd_byte *myaddr,
ff844c8d 1162 unsigned int len, disassemble_info *info);
104c1213
JM
1163
1164extern void dis_asm_memory_error (int status, bfd_vma memaddr,
1165 disassemble_info *info);
1166
1167extern void dis_asm_print_address (bfd_vma addr,
1168 disassemble_info *info);
1169
1170extern int (*tm_print_insn) (bfd_vma, disassemble_info*);
1171extern disassemble_info tm_print_insn_info;
104c1213
JM
1172#ifndef TARGET_PRINT_INSN_INFO
1173#define TARGET_PRINT_INSN_INFO (&tm_print_insn_info)
1174#endif
1175
1176
1177
0fa6923a 1178/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1179 byte-order, ...) using information found in the BFD */
1180
1181extern void set_gdbarch_from_file (bfd *);
1182
1183
e514a9d6
JM
1184/* Initialize the current architecture to the "first" one we find on
1185 our list. */
1186
1187extern void initialize_current_architecture (void);
1188
ceaa8edf
JB
1189/* For non-multiarched targets, do any initialization of the default
1190 gdbarch object necessary after the _initialize_MODULE functions
1191 have run. */
1192extern void initialize_non_multiarch ();
104c1213
JM
1193
1194/* gdbarch trace variable */
1195extern int gdbarch_debug;
1196
4b9b3959 1197extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1198
1199#endif
1200EOF
1201exec 1>&2
1202#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1203compare_new gdbarch.h
104c1213
JM
1204
1205
1206#
1207# C file
1208#
1209
1210exec > new-gdbarch.c
1211copyright
1212cat <<EOF
1213
1214#include "defs.h"
7355ddba 1215#include "arch-utils.h"
104c1213
JM
1216
1217#if GDB_MULTI_ARCH
1218#include "gdbcmd.h"
1219#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1220#else
1221/* Just include everything in sight so that the every old definition
1222 of macro is visible. */
1223#include "gdb_string.h"
1224#include <ctype.h>
1225#include "symtab.h"
1226#include "frame.h"
1227#include "inferior.h"
1228#include "breakpoint.h"
0596389c 1229#include "gdb_wait.h"
104c1213
JM
1230#include "gdbcore.h"
1231#include "gdbcmd.h"
1232#include "target.h"
1233#include "gdbthread.h"
1234#include "annotate.h"
1235#include "symfile.h" /* for overlay functions */
fd0407d6 1236#include "value.h" /* For old tm.h/nm.h macros. */
104c1213
JM
1237#endif
1238#include "symcat.h"
1239
f0d4cc9e 1240#include "floatformat.h"
104c1213 1241
95160752 1242#include "gdb_assert.h"
67c2c32c 1243#include "gdb-events.h"
95160752 1244
104c1213
JM
1245/* Static function declarations */
1246
1247static void verify_gdbarch (struct gdbarch *gdbarch);
b3cc3077
JB
1248static void alloc_gdbarch_data (struct gdbarch *);
1249static void init_gdbarch_data (struct gdbarch *);
95160752 1250static void free_gdbarch_data (struct gdbarch *);
104c1213 1251static void init_gdbarch_swap (struct gdbarch *);
40af4b0c 1252static void clear_gdbarch_swap (struct gdbarch *);
104c1213
JM
1253static void swapout_gdbarch_swap (struct gdbarch *);
1254static void swapin_gdbarch_swap (struct gdbarch *);
1255
104c1213
JM
1256/* Non-zero if we want to trace architecture code. */
1257
1258#ifndef GDBARCH_DEBUG
1259#define GDBARCH_DEBUG 0
1260#endif
1261int gdbarch_debug = GDBARCH_DEBUG;
1262
1263EOF
1264
1265# gdbarch open the gdbarch object
3d9a5942
AC
1266printf "\n"
1267printf "/* Maintain the struct gdbarch object */\n"
1268printf "\n"
1269printf "struct gdbarch\n"
1270printf "{\n"
1271printf " /* basic architectural information */\n"
34620563 1272function_list | while do_read
104c1213 1273do
2ada493a
AC
1274 if class_is_info_p
1275 then
3d9a5942 1276 printf " ${returntype} ${function};\n"
2ada493a 1277 fi
104c1213 1278done
3d9a5942
AC
1279printf "\n"
1280printf " /* target specific vector. */\n"
1281printf " struct gdbarch_tdep *tdep;\n"
1282printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1283printf "\n"
1284printf " /* per-architecture data-pointers */\n"
95160752 1285printf " unsigned nr_data;\n"
3d9a5942
AC
1286printf " void **data;\n"
1287printf "\n"
1288printf " /* per-architecture swap-regions */\n"
1289printf " struct gdbarch_swap *swap;\n"
1290printf "\n"
104c1213
JM
1291cat <<EOF
1292 /* Multi-arch values.
1293
1294 When extending this structure you must:
1295
1296 Add the field below.
1297
1298 Declare set/get functions and define the corresponding
1299 macro in gdbarch.h.
1300
1301 gdbarch_alloc(): If zero/NULL is not a suitable default,
1302 initialize the new field.
1303
1304 verify_gdbarch(): Confirm that the target updated the field
1305 correctly.
1306
7e73cedf 1307 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1308 field is dumped out
1309
c0e8c252 1310 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1311 variable (base values on the host's c-type system).
1312
1313 get_gdbarch(): Implement the set/get functions (probably using
1314 the macro's as shortcuts).
1315
1316 */
1317
1318EOF
34620563 1319function_list | while do_read
104c1213 1320do
2ada493a
AC
1321 if class_is_variable_p
1322 then
3d9a5942 1323 printf " ${returntype} ${function};\n"
2ada493a
AC
1324 elif class_is_function_p
1325 then
3d9a5942 1326 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1327 fi
104c1213 1328done
3d9a5942 1329printf "};\n"
104c1213
JM
1330
1331# A pre-initialized vector
3d9a5942
AC
1332printf "\n"
1333printf "\n"
104c1213
JM
1334cat <<EOF
1335/* The default architecture uses host values (for want of a better
1336 choice). */
1337EOF
3d9a5942
AC
1338printf "\n"
1339printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1340printf "\n"
1341printf "struct gdbarch startup_gdbarch =\n"
1342printf "{\n"
1343printf " /* basic architecture information */\n"
4b9b3959 1344function_list | while do_read
104c1213 1345do
2ada493a
AC
1346 if class_is_info_p
1347 then
3d9a5942 1348 printf " ${staticdefault},\n"
2ada493a 1349 fi
104c1213
JM
1350done
1351cat <<EOF
4b9b3959
AC
1352 /* target specific vector and its dump routine */
1353 NULL, NULL,
104c1213
JM
1354 /*per-architecture data-pointers and swap regions */
1355 0, NULL, NULL,
1356 /* Multi-arch values */
1357EOF
34620563 1358function_list | while do_read
104c1213 1359do
2ada493a
AC
1360 if class_is_function_p || class_is_variable_p
1361 then
3d9a5942 1362 printf " ${staticdefault},\n"
2ada493a 1363 fi
104c1213
JM
1364done
1365cat <<EOF
c0e8c252 1366 /* startup_gdbarch() */
104c1213 1367};
4b9b3959 1368
c0e8c252 1369struct gdbarch *current_gdbarch = &startup_gdbarch;
ceaa8edf
JB
1370
1371/* Do any initialization needed for a non-multiarch configuration
1372 after the _initialize_MODULE functions have been run. */
1373void
1374initialize_non_multiarch ()
1375{
1376 alloc_gdbarch_data (&startup_gdbarch);
40af4b0c
AC
1377 /* Ensure that all swap areas are zeroed so that they again think
1378 they are starting from scratch. */
1379 clear_gdbarch_swap (&startup_gdbarch);
6c1e5d11 1380 init_gdbarch_swap (&startup_gdbarch);
ceaa8edf
JB
1381 init_gdbarch_data (&startup_gdbarch);
1382}
104c1213
JM
1383EOF
1384
1385# Create a new gdbarch struct
3d9a5942
AC
1386printf "\n"
1387printf "\n"
104c1213 1388cat <<EOF
66b43ecb 1389/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1390 \`\`struct gdbarch_info''. */
1391EOF
3d9a5942 1392printf "\n"
104c1213
JM
1393cat <<EOF
1394struct gdbarch *
1395gdbarch_alloc (const struct gdbarch_info *info,
1396 struct gdbarch_tdep *tdep)
1397{
85de9627
AC
1398 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1399 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1400 the current local architecture and not the previous global
1401 architecture. This ensures that the new architectures initial
1402 values are not influenced by the previous architecture. Once
1403 everything is parameterised with gdbarch, this will go away. */
1404 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1405 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1406
1407 alloc_gdbarch_data (current_gdbarch);
1408
1409 current_gdbarch->tdep = tdep;
104c1213 1410EOF
3d9a5942 1411printf "\n"
34620563 1412function_list | while do_read
104c1213 1413do
2ada493a
AC
1414 if class_is_info_p
1415 then
85de9627 1416 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1417 fi
104c1213 1418done
3d9a5942
AC
1419printf "\n"
1420printf " /* Force the explicit initialization of these. */\n"
34620563 1421function_list | while do_read
104c1213 1422do
2ada493a
AC
1423 if class_is_function_p || class_is_variable_p
1424 then
72e74a21 1425 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1426 then
85de9627 1427 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1428 fi
2ada493a 1429 fi
104c1213
JM
1430done
1431cat <<EOF
1432 /* gdbarch_alloc() */
1433
85de9627 1434 return current_gdbarch;
104c1213
JM
1435}
1436EOF
1437
058f20d5 1438# Free a gdbarch struct.
3d9a5942
AC
1439printf "\n"
1440printf "\n"
058f20d5
JB
1441cat <<EOF
1442/* Free a gdbarch struct. This should never happen in normal
1443 operation --- once you've created a gdbarch, you keep it around.
1444 However, if an architecture's init function encounters an error
1445 building the structure, it may need to clean up a partially
1446 constructed gdbarch. */
4b9b3959 1447
058f20d5
JB
1448void
1449gdbarch_free (struct gdbarch *arch)
1450{
95160752
AC
1451 gdb_assert (arch != NULL);
1452 free_gdbarch_data (arch);
338d7c5c 1453 xfree (arch);
058f20d5
JB
1454}
1455EOF
1456
104c1213 1457# verify a new architecture
3d9a5942
AC
1458printf "\n"
1459printf "\n"
1460printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1461printf "\n"
104c1213
JM
1462cat <<EOF
1463static void
1464verify_gdbarch (struct gdbarch *gdbarch)
1465{
f16a1923
AC
1466 struct ui_file *log;
1467 struct cleanup *cleanups;
1468 long dummy;
1469 char *buf;
104c1213 1470 /* Only perform sanity checks on a multi-arch target. */
6166d547 1471 if (!GDB_MULTI_ARCH)
104c1213 1472 return;
f16a1923
AC
1473 log = mem_fileopen ();
1474 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1475 /* fundamental */
428721aa 1476 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1477 fprintf_unfiltered (log, "\n\tbyte-order");
104c1213 1478 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1479 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1480 /* Check those that need to be defined for the given multi-arch level. */
1481EOF
34620563 1482function_list | while do_read
104c1213 1483do
2ada493a
AC
1484 if class_is_function_p || class_is_variable_p
1485 then
72e74a21 1486 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1487 then
3d9a5942 1488 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1489 elif class_is_predicate_p
1490 then
3d9a5942 1491 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1492 # FIXME: See do_read for potential simplification
72e74a21 1493 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1494 then
3d9a5942
AC
1495 printf " if (${invalid_p})\n"
1496 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1497 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1498 then
3d9a5942
AC
1499 printf " if (gdbarch->${function} == ${predefault})\n"
1500 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1501 elif [ -n "${postdefault}" ]
f0d4cc9e 1502 then
3d9a5942
AC
1503 printf " if (gdbarch->${function} == 0)\n"
1504 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1505 elif [ -n "${invalid_p}" ]
104c1213 1506 then
50248794 1507 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1508 printf " && (${invalid_p}))\n"
f16a1923 1509 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1510 elif [ -n "${predefault}" ]
104c1213 1511 then
50248794 1512 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1513 printf " && (gdbarch->${function} == ${predefault}))\n"
f16a1923 1514 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1515 fi
2ada493a 1516 fi
104c1213
JM
1517done
1518cat <<EOF
f16a1923
AC
1519 buf = ui_file_xstrdup (log, &dummy);
1520 make_cleanup (xfree, buf);
1521 if (strlen (buf) > 0)
1522 internal_error (__FILE__, __LINE__,
1523 "verify_gdbarch: the following are invalid ...%s",
1524 buf);
1525 do_cleanups (cleanups);
104c1213
JM
1526}
1527EOF
1528
1529# dump the structure
3d9a5942
AC
1530printf "\n"
1531printf "\n"
104c1213 1532cat <<EOF
4b9b3959
AC
1533/* Print out the details of the current architecture. */
1534
1535/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1536 just happens to match the global variable \`\`current_gdbarch''. That
1537 way macros refering to that variable get the local and not the global
1538 version - ulgh. Once everything is parameterised with gdbarch, this
1539 will go away. */
1540
104c1213 1541void
4b9b3959 1542gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1543{
4b9b3959
AC
1544 fprintf_unfiltered (file,
1545 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1546 GDB_MULTI_ARCH);
104c1213 1547EOF
08e45a40 1548function_list | sort -t: +2 | while do_read
104c1213 1549do
4a5c6a1d 1550 # multiarch functions don't have macros.
08e45a40
AC
1551 if class_is_multiarch_p
1552 then
1553 printf " if (GDB_MULTI_ARCH)\n"
1554 printf " fprintf_unfiltered (file,\n"
1555 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1556 printf " (long) current_gdbarch->${function});\n"
1557 continue
1558 fi
06b25f14 1559 # Print the macro definition.
08e45a40 1560 printf "#ifdef ${macro}\n"
72e74a21 1561 if [ "x${returntype}" = "xvoid" ]
63e69063 1562 then
08e45a40 1563 printf "#if GDB_MULTI_ARCH\n"
3d9a5942 1564 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
63e69063 1565 fi
2ada493a
AC
1566 if class_is_function_p
1567 then
3d9a5942
AC
1568 printf " fprintf_unfiltered (file,\n"
1569 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1570 printf " \"${macro}(${actual})\",\n"
1571 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1572 else
3d9a5942
AC
1573 printf " fprintf_unfiltered (file,\n"
1574 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1575 printf " XSTRING (${macro}));\n"
4b9b3959 1576 fi
06b25f14 1577 # Print the architecture vector value
08e45a40 1578 if [ "x${returntype}" = "xvoid" ]
4a5c6a1d 1579 then
08e45a40 1580 printf "#endif\n"
4a5c6a1d 1581 fi
72e74a21 1582 if [ "x${print_p}" = "x()" ]
4b9b3959 1583 then
4a5c6a1d 1584 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1585 elif [ "x${print_p}" = "x0" ]
4b9b3959 1586 then
4a5c6a1d 1587 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1588 elif [ -n "${print_p}" ]
4b9b3959 1589 then
4a5c6a1d 1590 printf " if (${print_p})\n"
3d9a5942
AC
1591 printf " fprintf_unfiltered (file,\n"
1592 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1593 printf " ${print});\n"
4b9b3959
AC
1594 elif class_is_function_p
1595 then
3d9a5942
AC
1596 printf " if (GDB_MULTI_ARCH)\n"
1597 printf " fprintf_unfiltered (file,\n"
1598 printf " \"gdbarch_dump: ${macro} = 0x%%08lx\\\\n\",\n"
1599 printf " (long) current_gdbarch->${function}\n"
1600 printf " /*${macro} ()*/);\n"
4b9b3959 1601 else
3d9a5942
AC
1602 printf " fprintf_unfiltered (file,\n"
1603 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1604 printf " ${print});\n"
2ada493a 1605 fi
3d9a5942 1606 printf "#endif\n"
104c1213 1607done
381323f4 1608cat <<EOF
4b9b3959
AC
1609 if (current_gdbarch->dump_tdep != NULL)
1610 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1611}
1612EOF
104c1213
JM
1613
1614
1615# GET/SET
3d9a5942 1616printf "\n"
104c1213
JM
1617cat <<EOF
1618struct gdbarch_tdep *
1619gdbarch_tdep (struct gdbarch *gdbarch)
1620{
1621 if (gdbarch_debug >= 2)
3d9a5942 1622 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1623 return gdbarch->tdep;
1624}
1625EOF
3d9a5942 1626printf "\n"
34620563 1627function_list | while do_read
104c1213 1628do
2ada493a
AC
1629 if class_is_predicate_p
1630 then
3d9a5942
AC
1631 printf "\n"
1632 printf "int\n"
1633 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1634 printf "{\n"
8de9bdc4 1635 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1636 if [ -n "${valid_p}" ]
2ada493a 1637 then
3d9a5942 1638 printf " return ${valid_p};\n"
2ada493a 1639 else
3d9a5942 1640 printf "#error \"gdbarch_${function}_p: not defined\"\n"
2ada493a 1641 fi
3d9a5942 1642 printf "}\n"
2ada493a
AC
1643 fi
1644 if class_is_function_p
1645 then
3d9a5942
AC
1646 printf "\n"
1647 printf "${returntype}\n"
72e74a21 1648 if [ "x${formal}" = "xvoid" ]
104c1213 1649 then
3d9a5942 1650 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1651 else
3d9a5942 1652 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1653 fi
3d9a5942 1654 printf "{\n"
8de9bdc4 1655 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 1656 printf " if (gdbarch->${function} == 0)\n"
8e65ff28
AC
1657 printf " internal_error (__FILE__, __LINE__,\n"
1658 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
3d9a5942
AC
1659 printf " if (gdbarch_debug >= 2)\n"
1660 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1661 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1662 then
1663 if class_is_multiarch_p
1664 then
1665 params="gdbarch"
1666 else
1667 params=""
1668 fi
1669 else
1670 if class_is_multiarch_p
1671 then
1672 params="gdbarch, ${actual}"
1673 else
1674 params="${actual}"
1675 fi
1676 fi
72e74a21 1677 if [ "x${returntype}" = "xvoid" ]
104c1213 1678 then
4a5c6a1d 1679 printf " gdbarch->${function} (${params});\n"
104c1213 1680 else
4a5c6a1d 1681 printf " return gdbarch->${function} (${params});\n"
104c1213 1682 fi
3d9a5942
AC
1683 printf "}\n"
1684 printf "\n"
1685 printf "void\n"
1686 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1687 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1688 printf "{\n"
1689 printf " gdbarch->${function} = ${function};\n"
1690 printf "}\n"
2ada493a
AC
1691 elif class_is_variable_p
1692 then
3d9a5942
AC
1693 printf "\n"
1694 printf "${returntype}\n"
1695 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1696 printf "{\n"
8de9bdc4 1697 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1698 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1699 then
3d9a5942 1700 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1701 elif [ -n "${invalid_p}" ]
104c1213 1702 then
3d9a5942 1703 printf " if (${invalid_p})\n"
8e65ff28
AC
1704 printf " internal_error (__FILE__, __LINE__,\n"
1705 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
72e74a21 1706 elif [ -n "${predefault}" ]
104c1213 1707 then
3d9a5942 1708 printf " if (gdbarch->${function} == ${predefault})\n"
8e65ff28
AC
1709 printf " internal_error (__FILE__, __LINE__,\n"
1710 printf " \"gdbarch: gdbarch_${function} invalid\");\n"
104c1213 1711 fi
3d9a5942
AC
1712 printf " if (gdbarch_debug >= 2)\n"
1713 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1714 printf " return gdbarch->${function};\n"
1715 printf "}\n"
1716 printf "\n"
1717 printf "void\n"
1718 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1719 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1720 printf "{\n"
1721 printf " gdbarch->${function} = ${function};\n"
1722 printf "}\n"
2ada493a
AC
1723 elif class_is_info_p
1724 then
3d9a5942
AC
1725 printf "\n"
1726 printf "${returntype}\n"
1727 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1728 printf "{\n"
8de9bdc4 1729 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1730 printf " if (gdbarch_debug >= 2)\n"
1731 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1732 printf " return gdbarch->${function};\n"
1733 printf "}\n"
2ada493a 1734 fi
104c1213
JM
1735done
1736
1737# All the trailing guff
1738cat <<EOF
1739
1740
f44c642f 1741/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1742 modules. */
1743
1744struct gdbarch_data
1745{
95160752
AC
1746 unsigned index;
1747 gdbarch_data_init_ftype *init;
1748 gdbarch_data_free_ftype *free;
104c1213
JM
1749};
1750
1751struct gdbarch_data_registration
1752{
104c1213
JM
1753 struct gdbarch_data *data;
1754 struct gdbarch_data_registration *next;
1755};
1756
f44c642f 1757struct gdbarch_data_registry
104c1213 1758{
95160752 1759 unsigned nr;
104c1213
JM
1760 struct gdbarch_data_registration *registrations;
1761};
1762
f44c642f 1763struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1764{
1765 0, NULL,
1766};
1767
1768struct gdbarch_data *
95160752
AC
1769register_gdbarch_data (gdbarch_data_init_ftype *init,
1770 gdbarch_data_free_ftype *free)
104c1213
JM
1771{
1772 struct gdbarch_data_registration **curr;
f44c642f 1773 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1774 (*curr) != NULL;
1775 curr = &(*curr)->next);
1776 (*curr) = XMALLOC (struct gdbarch_data_registration);
1777 (*curr)->next = NULL;
104c1213 1778 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1779 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752
AC
1780 (*curr)->data->init = init;
1781 (*curr)->data->free = free;
104c1213
JM
1782 return (*curr)->data;
1783}
1784
1785
b3cc3077 1786/* Walk through all the registered users initializing each in turn. */
104c1213
JM
1787
1788static void
b3cc3077 1789init_gdbarch_data (struct gdbarch *gdbarch)
104c1213 1790{
b3cc3077
JB
1791 struct gdbarch_data_registration *rego;
1792 for (rego = gdbarch_data_registry.registrations;
1793 rego != NULL;
1794 rego = rego->next)
104c1213 1795 {
b3cc3077
JB
1796 struct gdbarch_data *data = rego->data;
1797 gdb_assert (data->index < gdbarch->nr_data);
1798 if (data->init != NULL)
95160752 1799 {
b3cc3077
JB
1800 void *pointer = data->init (gdbarch);
1801 set_gdbarch_data (gdbarch, data, pointer);
95160752
AC
1802 }
1803 }
1804}
1805
b3cc3077 1806/* Create/delete the gdbarch data vector. */
95160752
AC
1807
1808static void
b3cc3077 1809alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1810{
b3cc3077
JB
1811 gdb_assert (gdbarch->data == NULL);
1812 gdbarch->nr_data = gdbarch_data_registry.nr;
1813 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1814}
3c875b6f 1815
b3cc3077
JB
1816static void
1817free_gdbarch_data (struct gdbarch *gdbarch)
1818{
1819 struct gdbarch_data_registration *rego;
1820 gdb_assert (gdbarch->data != NULL);
1821 for (rego = gdbarch_data_registry.registrations;
1822 rego != NULL;
1823 rego = rego->next)
95160752 1824 {
b3cc3077
JB
1825 struct gdbarch_data *data = rego->data;
1826 gdb_assert (data->index < gdbarch->nr_data);
1827 if (data->free != NULL && gdbarch->data[data->index] != NULL)
95160752 1828 {
b3cc3077
JB
1829 data->free (gdbarch, gdbarch->data[data->index]);
1830 gdbarch->data[data->index] = NULL;
95160752 1831 }
104c1213 1832 }
b3cc3077
JB
1833 xfree (gdbarch->data);
1834 gdbarch->data = NULL;
104c1213
JM
1835}
1836
1837
b3cc3077
JB
1838/* Initialize the current value of thee specified per-architecture
1839 data-pointer. */
1840
95160752
AC
1841void
1842set_gdbarch_data (struct gdbarch *gdbarch,
1843 struct gdbarch_data *data,
1844 void *pointer)
1845{
1846 gdb_assert (data->index < gdbarch->nr_data);
1847 if (data->free != NULL && gdbarch->data[data->index] != NULL)
1848 data->free (gdbarch, gdbarch->data[data->index]);
1849 gdbarch->data[data->index] = pointer;
1850}
1851
104c1213
JM
1852/* Return the current value of the specified per-architecture
1853 data-pointer. */
1854
1855void *
451fbdda 1856gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1857{
451fbdda
AC
1858 gdb_assert (data->index < gdbarch->nr_data);
1859 return gdbarch->data[data->index];
104c1213
JM
1860}
1861
1862
1863
f44c642f 1864/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1865
1866struct gdbarch_swap
1867{
1868 void *swap;
1869 struct gdbarch_swap_registration *source;
1870 struct gdbarch_swap *next;
1871};
1872
1873struct gdbarch_swap_registration
1874{
1875 void *data;
1876 unsigned long sizeof_data;
1877 gdbarch_swap_ftype *init;
1878 struct gdbarch_swap_registration *next;
1879};
1880
f44c642f 1881struct gdbarch_swap_registry
104c1213
JM
1882{
1883 int nr;
1884 struct gdbarch_swap_registration *registrations;
1885};
1886
f44c642f 1887struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1888{
1889 0, NULL,
1890};
1891
1892void
1893register_gdbarch_swap (void *data,
1894 unsigned long sizeof_data,
1895 gdbarch_swap_ftype *init)
1896{
1897 struct gdbarch_swap_registration **rego;
f44c642f 1898 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1899 (*rego) != NULL;
1900 rego = &(*rego)->next);
1901 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1902 (*rego)->next = NULL;
1903 (*rego)->init = init;
1904 (*rego)->data = data;
1905 (*rego)->sizeof_data = sizeof_data;
1906}
1907
40af4b0c
AC
1908static void
1909clear_gdbarch_swap (struct gdbarch *gdbarch)
1910{
1911 struct gdbarch_swap *curr;
1912 for (curr = gdbarch->swap;
1913 curr != NULL;
1914 curr = curr->next)
1915 {
1916 memset (curr->source->data, 0, curr->source->sizeof_data);
1917 }
1918}
104c1213
JM
1919
1920static void
1921init_gdbarch_swap (struct gdbarch *gdbarch)
1922{
1923 struct gdbarch_swap_registration *rego;
1924 struct gdbarch_swap **curr = &gdbarch->swap;
f44c642f 1925 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
1926 rego != NULL;
1927 rego = rego->next)
1928 {
1929 if (rego->data != NULL)
1930 {
1931 (*curr) = XMALLOC (struct gdbarch_swap);
1932 (*curr)->source = rego;
1933 (*curr)->swap = xmalloc (rego->sizeof_data);
1934 (*curr)->next = NULL;
104c1213
JM
1935 curr = &(*curr)->next;
1936 }
1937 if (rego->init != NULL)
1938 rego->init ();
1939 }
1940}
1941
1942static void
1943swapout_gdbarch_swap (struct gdbarch *gdbarch)
1944{
1945 struct gdbarch_swap *curr;
1946 for (curr = gdbarch->swap;
1947 curr != NULL;
1948 curr = curr->next)
1949 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1950}
1951
1952static void
1953swapin_gdbarch_swap (struct gdbarch *gdbarch)
1954{
1955 struct gdbarch_swap *curr;
1956 for (curr = gdbarch->swap;
1957 curr != NULL;
1958 curr = curr->next)
1959 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1960}
1961
1962
f44c642f 1963/* Keep a registry of the architectures known by GDB. */
104c1213 1964
4b9b3959 1965struct gdbarch_registration
104c1213
JM
1966{
1967 enum bfd_architecture bfd_architecture;
1968 gdbarch_init_ftype *init;
4b9b3959 1969 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1970 struct gdbarch_list *arches;
4b9b3959 1971 struct gdbarch_registration *next;
104c1213
JM
1972};
1973
f44c642f 1974static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1975
b4a20239
AC
1976static void
1977append_name (const char ***buf, int *nr, const char *name)
1978{
1979 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1980 (*buf)[*nr] = name;
1981 *nr += 1;
1982}
1983
1984const char **
1985gdbarch_printable_names (void)
1986{
1987 if (GDB_MULTI_ARCH)
1988 {
1989 /* Accumulate a list of names based on the registed list of
1990 architectures. */
1991 enum bfd_architecture a;
1992 int nr_arches = 0;
1993 const char **arches = NULL;
4b9b3959 1994 struct gdbarch_registration *rego;
f44c642f 1995 for (rego = gdbarch_registry;
b4a20239
AC
1996 rego != NULL;
1997 rego = rego->next)
1998 {
1999 const struct bfd_arch_info *ap;
2000 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2001 if (ap == NULL)
8e65ff28
AC
2002 internal_error (__FILE__, __LINE__,
2003 "gdbarch_architecture_names: multi-arch unknown");
b4a20239
AC
2004 do
2005 {
2006 append_name (&arches, &nr_arches, ap->printable_name);
2007 ap = ap->next;
2008 }
2009 while (ap != NULL);
2010 }
2011 append_name (&arches, &nr_arches, NULL);
2012 return arches;
2013 }
2014 else
2015 /* Just return all the architectures that BFD knows. Assume that
2016 the legacy architecture framework supports them. */
2017 return bfd_arch_list ();
2018}
2019
2020
104c1213 2021void
4b9b3959
AC
2022gdbarch_register (enum bfd_architecture bfd_architecture,
2023 gdbarch_init_ftype *init,
2024 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2025{
4b9b3959 2026 struct gdbarch_registration **curr;
104c1213 2027 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2028 /* Check that BFD recognizes this architecture */
104c1213
JM
2029 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2030 if (bfd_arch_info == NULL)
2031 {
8e65ff28
AC
2032 internal_error (__FILE__, __LINE__,
2033 "gdbarch: Attempt to register unknown architecture (%d)",
2034 bfd_architecture);
104c1213
JM
2035 }
2036 /* Check that we haven't seen this architecture before */
f44c642f 2037 for (curr = &gdbarch_registry;
104c1213
JM
2038 (*curr) != NULL;
2039 curr = &(*curr)->next)
2040 {
2041 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2042 internal_error (__FILE__, __LINE__,
2043 "gdbarch: Duplicate registraration of architecture (%s)",
2044 bfd_arch_info->printable_name);
104c1213
JM
2045 }
2046 /* log it */
2047 if (gdbarch_debug)
2048 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2049 bfd_arch_info->printable_name,
2050 (long) init);
2051 /* Append it */
4b9b3959 2052 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2053 (*curr)->bfd_architecture = bfd_architecture;
2054 (*curr)->init = init;
4b9b3959 2055 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2056 (*curr)->arches = NULL;
2057 (*curr)->next = NULL;
8e1a459b
C
2058 /* When non- multi-arch, install whatever target dump routine we've
2059 been provided - hopefully that routine has been written correctly
4b9b3959
AC
2060 and works regardless of multi-arch. */
2061 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2062 && startup_gdbarch.dump_tdep == NULL)
2063 startup_gdbarch.dump_tdep = dump_tdep;
2064}
2065
2066void
2067register_gdbarch_init (enum bfd_architecture bfd_architecture,
2068 gdbarch_init_ftype *init)
2069{
2070 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2071}
104c1213
JM
2072
2073
2074/* Look for an architecture using gdbarch_info. Base search on only
2075 BFD_ARCH_INFO and BYTE_ORDER. */
2076
2077struct gdbarch_list *
2078gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2079 const struct gdbarch_info *info)
2080{
2081 for (; arches != NULL; arches = arches->next)
2082 {
2083 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2084 continue;
2085 if (info->byte_order != arches->gdbarch->byte_order)
2086 continue;
2087 return arches;
2088 }
2089 return NULL;
2090}
2091
2092
2093/* Update the current architecture. Return ZERO if the update request
2094 failed. */
2095
2096int
16f33e29 2097gdbarch_update_p (struct gdbarch_info info)
104c1213
JM
2098{
2099 struct gdbarch *new_gdbarch;
40af4b0c 2100 struct gdbarch *old_gdbarch;
4b9b3959 2101 struct gdbarch_registration *rego;
104c1213 2102
b732d07d
AC
2103 /* Fill in missing parts of the INFO struct using a number of
2104 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2105
2106 /* \`\`(gdb) set architecture ...'' */
2107 if (info.bfd_arch_info == NULL
2108 && !TARGET_ARCHITECTURE_AUTO)
2109 info.bfd_arch_info = TARGET_ARCHITECTURE;
2110 if (info.bfd_arch_info == NULL
2111 && info.abfd != NULL
2112 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2113 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2114 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
104c1213 2115 if (info.bfd_arch_info == NULL)
b732d07d
AC
2116 info.bfd_arch_info = TARGET_ARCHITECTURE;
2117
2118 /* \`\`(gdb) set byte-order ...'' */
428721aa 2119 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d
AC
2120 && !TARGET_BYTE_ORDER_AUTO)
2121 info.byte_order = TARGET_BYTE_ORDER;
2122 /* From the INFO struct. */
428721aa 2123 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d 2124 && info.abfd != NULL)
d7449b42 2125 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
778eb05e 2126 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
428721aa 2127 : BFD_ENDIAN_UNKNOWN);
b732d07d 2128 /* From the current target. */
428721aa 2129 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
b732d07d 2130 info.byte_order = TARGET_BYTE_ORDER;
104c1213 2131
b732d07d
AC
2132 /* Must have found some sort of architecture. */
2133 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2134
2135 if (gdbarch_debug)
2136 {
2137 fprintf_unfiltered (gdb_stdlog,
b732d07d 2138 "gdbarch_update: info.bfd_arch_info %s\n",
104c1213
JM
2139 (info.bfd_arch_info != NULL
2140 ? info.bfd_arch_info->printable_name
2141 : "(null)"));
2142 fprintf_unfiltered (gdb_stdlog,
b732d07d 2143 "gdbarch_update: info.byte_order %d (%s)\n",
104c1213 2144 info.byte_order,
d7449b42 2145 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2146 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213
JM
2147 : "default"));
2148 fprintf_unfiltered (gdb_stdlog,
b732d07d 2149 "gdbarch_update: info.abfd 0x%lx\n",
104c1213
JM
2150 (long) info.abfd);
2151 fprintf_unfiltered (gdb_stdlog,
b732d07d 2152 "gdbarch_update: info.tdep_info 0x%lx\n",
104c1213
JM
2153 (long) info.tdep_info);
2154 }
2155
b732d07d
AC
2156 /* Find the target that knows about this architecture. */
2157 for (rego = gdbarch_registry;
2158 rego != NULL;
2159 rego = rego->next)
2160 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2161 break;
2162 if (rego == NULL)
2163 {
2164 if (gdbarch_debug)
2165 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2166 return 0;
2167 }
2168
40af4b0c
AC
2169 /* Swap the data belonging to the old target out setting the
2170 installed data to zero. This stops the ->init() function trying
2171 to refer to the previous architecture's global data structures. */
2172 swapout_gdbarch_swap (current_gdbarch);
2173 clear_gdbarch_swap (current_gdbarch);
2174
2175 /* Save the previously selected architecture, setting the global to
2176 NULL. This stops ->init() trying to use the previous
2177 architecture's configuration. The previous architecture may not
2178 even be of the same architecture family. The most recent
2179 architecture of the same family is found at the head of the
2180 rego->arches list. */
2181 old_gdbarch = current_gdbarch;
2182 current_gdbarch = NULL;
2183
104c1213
JM
2184 /* Ask the target for a replacement architecture. */
2185 new_gdbarch = rego->init (info, rego->arches);
2186
40af4b0c
AC
2187 /* Did the target like it? No. Reject the change and revert to the
2188 old architecture. */
104c1213
JM
2189 if (new_gdbarch == NULL)
2190 {
2191 if (gdbarch_debug)
3d9a5942 2192 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
40af4b0c
AC
2193 swapin_gdbarch_swap (old_gdbarch);
2194 current_gdbarch = old_gdbarch;
104c1213
JM
2195 return 0;
2196 }
2197
40af4b0c
AC
2198 /* Did the architecture change? No. Oops, put the old architecture
2199 back. */
2200 if (old_gdbarch == new_gdbarch)
104c1213
JM
2201 {
2202 if (gdbarch_debug)
3d9a5942 2203 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
104c1213
JM
2204 (long) new_gdbarch,
2205 new_gdbarch->bfd_arch_info->printable_name);
40af4b0c
AC
2206 swapin_gdbarch_swap (old_gdbarch);
2207 current_gdbarch = old_gdbarch;
104c1213
JM
2208 return 1;
2209 }
2210
0f79675b
AC
2211 /* Is this a pre-existing architecture? Yes. Move it to the front
2212 of the list of architectures (keeping the list sorted Most
2213 Recently Used) and then copy it in. */
2214 {
2215 struct gdbarch_list **list;
2216 for (list = &rego->arches;
2217 (*list) != NULL;
2218 list = &(*list)->next)
2219 {
2220 if ((*list)->gdbarch == new_gdbarch)
2221 {
2222 struct gdbarch_list *this;
2223 if (gdbarch_debug)
2224 fprintf_unfiltered (gdb_stdlog,
2225 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2226 (long) new_gdbarch,
2227 new_gdbarch->bfd_arch_info->printable_name);
2228 /* Unlink this. */
2229 this = (*list);
2230 (*list) = this->next;
2231 /* Insert in the front. */
2232 this->next = rego->arches;
2233 rego->arches = this;
2234 /* Copy the new architecture in. */
2235 current_gdbarch = new_gdbarch;
2236 swapin_gdbarch_swap (new_gdbarch);
2237 architecture_changed_event ();
2238 return 1;
2239 }
2240 }
2241 }
2242
2243 /* Prepend this new architecture to the architecture list (keep the
2244 list sorted Most Recently Used). */
2245 {
2246 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2247 this->next = rego->arches;
2248 this->gdbarch = new_gdbarch;
2249 rego->arches = this;
2250 }
104c1213
JM
2251
2252 /* Switch to this new architecture. Dump it out. */
2253 current_gdbarch = new_gdbarch;
2254 if (gdbarch_debug)
2255 {
2256 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2257 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2258 (long) new_gdbarch,
2259 new_gdbarch->bfd_arch_info->printable_name);
104c1213
JM
2260 }
2261
4b9b3959
AC
2262 /* Check that the newly installed architecture is valid. Plug in
2263 any post init values. */
2264 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213
JM
2265 verify_gdbarch (new_gdbarch);
2266
cf17c188
AC
2267 /* Initialize the per-architecture memory (swap) areas.
2268 CURRENT_GDBARCH must be update before these modules are
2269 called. */
2270 init_gdbarch_swap (new_gdbarch);
2271
2272 /* Initialize the per-architecture data-pointer of all parties that
2273 registered an interest in this architecture. CURRENT_GDBARCH
2274 must be updated before these modules are called. */
b3cc3077 2275 init_gdbarch_data (new_gdbarch);
67c2c32c
KS
2276 architecture_changed_event ();
2277
4b9b3959
AC
2278 if (gdbarch_debug)
2279 gdbarch_dump (current_gdbarch, gdb_stdlog);
2280
104c1213
JM
2281 return 1;
2282}
2283
2284
104c1213
JM
2285/* Disassembler */
2286
2287/* Pointer to the target-dependent disassembly function. */
2288int (*tm_print_insn) (bfd_vma, disassemble_info *);
2289disassemble_info tm_print_insn_info;
2290
2291
104c1213 2292extern void _initialize_gdbarch (void);
b4a20239 2293
104c1213 2294void
34620563 2295_initialize_gdbarch (void)
104c1213 2296{
59233f88
AC
2297 struct cmd_list_element *c;
2298
104c1213
JM
2299 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2300 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2301 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2302 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2303 tm_print_insn_info.print_address_func = dis_asm_print_address;
2304
59233f88 2305 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2306 class_maintenance,
2307 var_zinteger,
2308 (char *)&gdbarch_debug,
3d9a5942 2309 "Set architecture debugging.\\n\\
59233f88
AC
2310When non-zero, architecture debugging is enabled.", &setdebuglist),
2311 &showdebuglist);
2312 c = add_set_cmd ("archdebug",
2313 class_maintenance,
2314 var_zinteger,
2315 (char *)&gdbarch_debug,
3d9a5942 2316 "Set architecture debugging.\\n\\
59233f88
AC
2317When non-zero, architecture debugging is enabled.", &setlist);
2318
2319 deprecate_cmd (c, "set debug arch");
2320 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2321}
2322EOF
2323
2324# close things off
2325exec 1>&2
2326#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2327compare_new gdbarch.c
This page took 0.361389 seconds and 4 git commands to generate.