bfd/
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6# 2008, 2009, 2010 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532 24# environment.
0e05dfcb
DJ
25LANG=C ; export LANG
26LC_ALL=C ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
489# Return the adjusted address and kind to use for Z0/Z1 packets.
490# KIND is usually the memory length of the breakpoint, but may have a
491# different target-specific meaning.
0e05dfcb 492m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 493M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
494m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 496v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
497
498# A function can be addressed by either it's "pointer" (possibly a
499# descriptor address) or "entry point" (first executable instruction).
500# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 501# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
502# a simplified subset of that functionality - the function's address
503# corresponds to the "function pointer" and the function's start
504# corresponds to the "function entry point" - and hence is redundant.
505
97030eea 506v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 507
123dc839
DJ
508# Return the remote protocol register number associated with this
509# register. Normally the identity mapping.
97030eea 510m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 511
b2756930 512# Fetch the target specific address used to represent a load module.
97030eea 513F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 514#
97030eea
UW
515v:CORE_ADDR:frame_args_skip:::0:::0
516M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
518# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519# frame-base. Enable frame-base before frame-unwind.
97030eea 520F:int:frame_num_args:struct frame_info *frame:frame
104c1213 521#
97030eea
UW
522M:CORE_ADDR:frame_align:CORE_ADDR address:address
523m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524v:int:frame_red_zone_size
f0d4cc9e 525#
97030eea 526m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
527# On some machines there are bits in addresses which are not really
528# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 529# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
530# we get a "real" address such as one would find in a symbol table.
531# This is used only for addresses of instructions, and even then I'm
532# not sure it's used in all contexts. It exists to deal with there
533# being a few stray bits in the PC which would mislead us, not as some
534# sort of generic thing to handle alignment or segmentation (it's
535# possible it should be in TARGET_READ_PC instead).
24568a2c 536m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 537# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 538# gdbarch_addr_bits_remove.
24568a2c 539m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
540
541# FIXME/cagney/2001-01-18: This should be split in two. A target method that
542# indicates if the target needs software single step. An ISA method to
543# implement it.
544#
545# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546# breakpoints using the breakpoint system instead of blatting memory directly
547# (as with rs6000).
64c4637f 548#
e6590a1b
UW
549# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550# target can single step. If not, then implement single step using breakpoints.
64c4637f 551#
e6590a1b
UW
552# A return value of 1 means that the software_single_step breakpoints
553# were inserted; 0 means they were not.
97030eea 554F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 555
3352ef37
AC
556# Return non-zero if the processor is executing a delay slot and a
557# further single-step is needed before the instruction finishes.
97030eea 558M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 559# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 560# disassembler. Perhaps objdump can handle it?
97030eea
UW
561f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
563
564
cfd8ab24 565# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
566# evaluates non-zero, this is the address where the debugger will place
567# a step-resume breakpoint to get us past the dynamic linker.
97030eea 568m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 569# Some systems also have trampoline code for returning from shared libs.
e17a4113 570m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 571
c12260ac
CV
572# A target might have problems with watchpoints as soon as the stack
573# frame of the current function has been destroyed. This mostly happens
574# as the first action in a funtion's epilogue. in_function_epilogue_p()
575# is defined to return a non-zero value if either the given addr is one
576# instruction after the stack destroying instruction up to the trailing
577# return instruction or if we can figure out that the stack frame has
578# already been invalidated regardless of the value of addr. Targets
579# which don't suffer from that problem could just let this functionality
580# untouched.
97030eea 581m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
582f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
584v:int:cannot_step_breakpoint:::0:0::0
585v:int:have_nonsteppable_watchpoint:::0:0::0
586F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 589# Is a register in a group
97030eea 590m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 591# Fetch the pointer to the ith function argument.
97030eea 592F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
593
594# Return the appropriate register set for a core file section with
595# name SECT_NAME and size SECT_SIZE.
97030eea 596M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 597
959b8724
PA
598# When creating core dumps, some systems encode the PID in addition
599# to the LWP id in core file register section names. In those cases, the
600# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601# is set to true for such architectures; false if "XXX" represents an LWP
602# or thread id with no special encoding.
603v:int:core_reg_section_encodes_pid:::0:0::0
604
17ea7499
CES
605# Supported register notes in a core file.
606v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
de584861
PA
608# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609# core file into buffer READBUF with length LEN.
97030eea 610M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 611
28439f5e
PA
612# How the core_stratum layer converts a PTID from a core file to a
613# string.
614M:char *:core_pid_to_str:ptid_t ptid:ptid
615
a78c2d62
UW
616# BFD target to use when generating a core file.
617V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
0d5de010
DJ
619# If the elements of C++ vtables are in-place function descriptors rather
620# than normal function pointers (which may point to code or a descriptor),
621# set this to one.
97030eea 622v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
623
624# Set if the least significant bit of the delta is used instead of the least
625# significant bit of the pfn for pointers to virtual member functions.
97030eea 626v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
627
628# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 629F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 630
237fc4c9
PA
631# The maximum length of an instruction on this architecture.
632V:ULONGEST:max_insn_length:::0:0
633
634# Copy the instruction at FROM to TO, and make any adjustments
635# necessary to single-step it at that address.
636#
637# REGS holds the state the thread's registers will have before
638# executing the copied instruction; the PC in REGS will refer to FROM,
639# not the copy at TO. The caller should update it to point at TO later.
640#
641# Return a pointer to data of the architecture's choice to be passed
642# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643# the instruction's effects have been completely simulated, with the
644# resulting state written back to REGS.
645#
646# For a general explanation of displaced stepping and how GDB uses it,
647# see the comments in infrun.c.
648#
649# The TO area is only guaranteed to have space for
650# gdbarch_max_insn_length (arch) bytes, so this function must not
651# write more bytes than that to that area.
652#
653# If you do not provide this function, GDB assumes that the
654# architecture does not support displaced stepping.
655#
656# If your architecture doesn't need to adjust instructions before
657# single-stepping them, consider using simple_displaced_step_copy_insn
658# here.
659M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
99e40580
UW
661# Return true if GDB should use hardware single-stepping to execute
662# the displaced instruction identified by CLOSURE. If false,
663# GDB will simply restart execution at the displaced instruction
664# location, and it is up to the target to ensure GDB will receive
665# control again (e.g. by placing a software breakpoint instruction
666# into the displaced instruction buffer).
667#
668# The default implementation returns false on all targets that
669# provide a gdbarch_software_single_step routine, and true otherwise.
670m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
237fc4c9
PA
672# Fix up the state resulting from successfully single-stepping a
673# displaced instruction, to give the result we would have gotten from
674# stepping the instruction in its original location.
675#
676# REGS is the register state resulting from single-stepping the
677# displaced instruction.
678#
679# CLOSURE is the result from the matching call to
680# gdbarch_displaced_step_copy_insn.
681#
682# If you provide gdbarch_displaced_step_copy_insn.but not this
683# function, then GDB assumes that no fixup is needed after
684# single-stepping the instruction.
685#
686# For a general explanation of displaced stepping and how GDB uses it,
687# see the comments in infrun.c.
688M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690# Free a closure returned by gdbarch_displaced_step_copy_insn.
691#
692# If you provide gdbarch_displaced_step_copy_insn, you must provide
693# this function as well.
694#
695# If your architecture uses closures that don't need to be freed, then
696# you can use simple_displaced_step_free_closure here.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702# Return the address of an appropriate place to put displaced
703# instructions while we step over them. There need only be one such
704# place, since we're only stepping one thread over a breakpoint at a
705# time.
706#
707# For a general explanation of displaced stepping and how GDB uses it,
708# see the comments in infrun.c.
709m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
dde08ee1
PA
711# Relocate an instruction to execute at a different address. OLDLOC
712# is the address in the inferior memory where the instruction to
713# relocate is currently at. On input, TO points to the destination
714# where we want the instruction to be copied (and possibly adjusted)
715# to. On output, it points to one past the end of the resulting
716# instruction(s). The effect of executing the instruction at TO shall
717# be the same as if executing it at FROM. For example, call
718# instructions that implicitly push the return address on the stack
719# should be adjusted to return to the instruction after OLDLOC;
720# relative branches, and other PC-relative instructions need the
721# offset adjusted; etc.
722M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
723
1c772458 724# Refresh overlay mapped state for section OSECT.
97030eea 725F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 726
97030eea 727M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
728
729# Handle special encoding of static variables in stabs debug info.
97030eea 730F:char *:static_transform_name:char *name:name
203c3895 731# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 732v:int:sofun_address_maybe_missing:::0:0::0
1cded358 733
0508c3ec
HZ
734# Parse the instruction at ADDR storing in the record execution log
735# the registers REGCACHE and memory ranges that will be affected when
736# the instruction executes, along with their current values.
737# Return -1 if something goes wrong, 0 otherwise.
738M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
739
3846b520
HZ
740# Save process state after a signal.
741# Return -1 if something goes wrong, 0 otherwise.
742M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
743
1cded358
AR
744# Signal translation: translate inferior's signal (host's) number into
745# GDB's representation.
746m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
747# Signal translation: translate GDB's signal number into inferior's host
748# signal number.
749m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 750
4aa995e1
PA
751# Extra signal info inspection.
752#
753# Return a type suitable to inspect extra signal information.
754M:struct type *:get_siginfo_type:void:
755
60c5725c
DJ
756# Record architecture-specific information from the symbol table.
757M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 758
a96d9b2e
SDJ
759# Function for the 'catch syscall' feature.
760
761# Get architecture-specific system calls information from registers.
762M:LONGEST:get_syscall_number:ptid_t ptid:ptid
763
50c71eaf
PA
764# True if the list of shared libraries is one and only for all
765# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
766# This usually means that all processes, although may or may not share
767# an address space, will see the same set of symbols at the same
768# addresses.
50c71eaf 769v:int:has_global_solist:::0:0::0
2567c7d9
PA
770
771# On some targets, even though each inferior has its own private
772# address space, the debug interface takes care of making breakpoints
773# visible to all address spaces automatically. For such cases,
774# this property should be set to true.
775v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
776
777# True if inferiors share an address space (e.g., uClinux).
778m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
779
780# True if a fast tracepoint can be set at an address.
781m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 782
f870a310
TT
783# Return the "auto" target charset.
784f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
785# Return the "auto" target wide charset.
786f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
787
788# If non-empty, this is a file extension that will be opened in place
789# of the file extension reported by the shared library list.
790#
791# This is most useful for toolchains that use a post-linker tool,
792# where the names of the files run on the target differ in extension
793# compared to the names of the files GDB should load for debug info.
794v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
795
796# If true, the target OS has DOS-based file system semantics. That
797# is, absolute paths include a drive name, and the backslash is
798# considered a directory separator.
799v:int:has_dos_based_file_system:::0:0::0
104c1213 800EOF
104c1213
JM
801}
802
0b8f9e4d
AC
803#
804# The .log file
805#
806exec > new-gdbarch.log
34620563 807function_list | while do_read
0b8f9e4d
AC
808do
809 cat <<EOF
2f9b146e 810${class} ${returntype} ${function} ($formal)
104c1213 811EOF
3d9a5942
AC
812 for r in ${read}
813 do
814 eval echo \"\ \ \ \ ${r}=\${${r}}\"
815 done
f0d4cc9e 816 if class_is_predicate_p && fallback_default_p
0b8f9e4d 817 then
66d659b1 818 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
819 kill $$
820 exit 1
821 fi
72e74a21 822 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
823 then
824 echo "Error: postdefault is useless when invalid_p=0" 1>&2
825 kill $$
826 exit 1
827 fi
a72293e2
AC
828 if class_is_multiarch_p
829 then
830 if class_is_predicate_p ; then :
831 elif test "x${predefault}" = "x"
832 then
2f9b146e 833 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
834 kill $$
835 exit 1
836 fi
837 fi
3d9a5942 838 echo ""
0b8f9e4d
AC
839done
840
841exec 1>&2
842compare_new gdbarch.log
843
104c1213
JM
844
845copyright ()
846{
847cat <<EOF
59233f88
AC
848/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
849
104c1213 850/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 851
f801e1e0
MS
852 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
853 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
854
855 This file is part of GDB.
856
857 This program is free software; you can redistribute it and/or modify
858 it under the terms of the GNU General Public License as published by
50efebf8 859 the Free Software Foundation; either version 3 of the License, or
104c1213 860 (at your option) any later version.
50efebf8 861
104c1213
JM
862 This program is distributed in the hope that it will be useful,
863 but WITHOUT ANY WARRANTY; without even the implied warranty of
864 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
865 GNU General Public License for more details.
50efebf8 866
104c1213 867 You should have received a copy of the GNU General Public License
50efebf8 868 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 869
104c1213
JM
870/* This file was created with the aid of \`\`gdbarch.sh''.
871
52204a0b 872 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
873 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
874 against the existing \`\`gdbarch.[hc]''. Any differences found
875 being reported.
876
877 If editing this file, please also run gdbarch.sh and merge any
52204a0b 878 changes into that script. Conversely, when making sweeping changes
104c1213
JM
879 to this file, modifying gdbarch.sh and using its output may prove
880 easier. */
881
882EOF
883}
884
885#
886# The .h file
887#
888
889exec > new-gdbarch.h
890copyright
891cat <<EOF
892#ifndef GDBARCH_H
893#define GDBARCH_H
894
da3331ec
AC
895struct floatformat;
896struct ui_file;
104c1213
JM
897struct frame_info;
898struct value;
b6af0555 899struct objfile;
1c772458 900struct obj_section;
a2cf933a 901struct minimal_symbol;
049ee0e4 902struct regcache;
b59ff9d5 903struct reggroup;
6ce6d90f 904struct regset;
a89aa300 905struct disassemble_info;
e2d0e7eb 906struct target_ops;
030f20e1 907struct obstack;
8181d85f 908struct bp_target_info;
424163ea 909struct target_desc;
237fc4c9 910struct displaced_step_closure;
17ea7499 911struct core_regset_section;
a96d9b2e 912struct syscall;
104c1213 913
9e2ace22
JB
914/* The architecture associated with the connection to the target.
915
916 The architecture vector provides some information that is really
917 a property of the target: The layout of certain packets, for instance;
918 or the solib_ops vector. Etc. To differentiate architecture accesses
919 to per-target properties from per-thread/per-frame/per-objfile properties,
920 accesses to per-target properties should be made through target_gdbarch.
921
922 Eventually, when support for multiple targets is implemented in
923 GDB, this global should be made target-specific. */
1cf3db46 924extern struct gdbarch *target_gdbarch;
104c1213
JM
925EOF
926
927# function typedef's
3d9a5942
AC
928printf "\n"
929printf "\n"
930printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 931function_list | while do_read
104c1213 932do
2ada493a
AC
933 if class_is_info_p
934 then
3d9a5942
AC
935 printf "\n"
936 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
937 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 938 fi
104c1213
JM
939done
940
941# function typedef's
3d9a5942
AC
942printf "\n"
943printf "\n"
944printf "/* The following are initialized by the target dependent code. */\n"
34620563 945function_list | while do_read
104c1213 946do
72e74a21 947 if [ -n "${comment}" ]
34620563
AC
948 then
949 echo "${comment}" | sed \
950 -e '2 s,#,/*,' \
951 -e '3,$ s,#, ,' \
952 -e '$ s,$, */,'
953 fi
412d5987
AC
954
955 if class_is_predicate_p
2ada493a 956 then
412d5987
AC
957 printf "\n"
958 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 959 fi
2ada493a
AC
960 if class_is_variable_p
961 then
3d9a5942
AC
962 printf "\n"
963 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
964 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
965 fi
966 if class_is_function_p
967 then
3d9a5942 968 printf "\n"
72e74a21 969 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
970 then
971 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
972 elif class_is_multiarch_p
973 then
974 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
975 else
976 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
977 fi
72e74a21 978 if [ "x${formal}" = "xvoid" ]
104c1213 979 then
3d9a5942 980 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 981 else
3d9a5942 982 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 983 fi
3d9a5942 984 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 985 fi
104c1213
JM
986done
987
988# close it off
989cat <<EOF
990
a96d9b2e
SDJ
991/* Definition for an unknown syscall, used basically in error-cases. */
992#define UNKNOWN_SYSCALL (-1)
993
104c1213
JM
994extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
995
996
997/* Mechanism for co-ordinating the selection of a specific
998 architecture.
999
1000 GDB targets (*-tdep.c) can register an interest in a specific
1001 architecture. Other GDB components can register a need to maintain
1002 per-architecture data.
1003
1004 The mechanisms below ensures that there is only a loose connection
1005 between the set-architecture command and the various GDB
0fa6923a 1006 components. Each component can independently register their need
104c1213
JM
1007 to maintain architecture specific data with gdbarch.
1008
1009 Pragmatics:
1010
1011 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1012 didn't scale.
1013
1014 The more traditional mega-struct containing architecture specific
1015 data for all the various GDB components was also considered. Since
0fa6923a 1016 GDB is built from a variable number of (fairly independent)
104c1213
JM
1017 components it was determined that the global aproach was not
1018 applicable. */
1019
1020
1021/* Register a new architectural family with GDB.
1022
1023 Register support for the specified ARCHITECTURE with GDB. When
1024 gdbarch determines that the specified architecture has been
1025 selected, the corresponding INIT function is called.
1026
1027 --
1028
1029 The INIT function takes two parameters: INFO which contains the
1030 information available to gdbarch about the (possibly new)
1031 architecture; ARCHES which is a list of the previously created
1032 \`\`struct gdbarch'' for this architecture.
1033
0f79675b 1034 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1035 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1036
1037 The ARCHES parameter is a linked list (sorted most recently used)
1038 of all the previously created architures for this architecture
1039 family. The (possibly NULL) ARCHES->gdbarch can used to access
1040 values from the previously selected architecture for this
59837fe0 1041 architecture family.
104c1213
JM
1042
1043 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1044 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1045 gdbarch'' from the ARCHES list - indicating that the new
1046 architecture is just a synonym for an earlier architecture (see
1047 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1048 - that describes the selected architecture (see gdbarch_alloc()).
1049
1050 The DUMP_TDEP function shall print out all target specific values.
1051 Care should be taken to ensure that the function works in both the
1052 multi-arch and non- multi-arch cases. */
104c1213
JM
1053
1054struct gdbarch_list
1055{
1056 struct gdbarch *gdbarch;
1057 struct gdbarch_list *next;
1058};
1059
1060struct gdbarch_info
1061{
104c1213
JM
1062 /* Use default: NULL (ZERO). */
1063 const struct bfd_arch_info *bfd_arch_info;
1064
428721aa 1065 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1066 int byte_order;
1067
9d4fde75
SS
1068 int byte_order_for_code;
1069
104c1213
JM
1070 /* Use default: NULL (ZERO). */
1071 bfd *abfd;
1072
1073 /* Use default: NULL (ZERO). */
1074 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1075
1076 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1077 enum gdb_osabi osabi;
424163ea
DJ
1078
1079 /* Use default: NULL (ZERO). */
1080 const struct target_desc *target_desc;
104c1213
JM
1081};
1082
1083typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1084typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1085
4b9b3959 1086/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1087extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1088
4b9b3959
AC
1089extern void gdbarch_register (enum bfd_architecture architecture,
1090 gdbarch_init_ftype *,
1091 gdbarch_dump_tdep_ftype *);
1092
104c1213 1093
b4a20239
AC
1094/* Return a freshly allocated, NULL terminated, array of the valid
1095 architecture names. Since architectures are registered during the
1096 _initialize phase this function only returns useful information
1097 once initialization has been completed. */
1098
1099extern const char **gdbarch_printable_names (void);
1100
1101
104c1213
JM
1102/* Helper function. Search the list of ARCHES for a GDBARCH that
1103 matches the information provided by INFO. */
1104
424163ea 1105extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1106
1107
1108/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1109 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1110 parameters. set_gdbarch_*() functions are called to complete the
1111 initialization of the object. */
1112
1113extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1114
1115
4b9b3959
AC
1116/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1117 It is assumed that the caller freeds the \`\`struct
1118 gdbarch_tdep''. */
1119
058f20d5
JB
1120extern void gdbarch_free (struct gdbarch *);
1121
1122
aebd7893
AC
1123/* Helper function. Allocate memory from the \`\`struct gdbarch''
1124 obstack. The memory is freed when the corresponding architecture
1125 is also freed. */
1126
1127extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1128#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1129#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1130
1131
b732d07d 1132/* Helper function. Force an update of the current architecture.
104c1213 1133
b732d07d
AC
1134 The actual architecture selected is determined by INFO, \`\`(gdb) set
1135 architecture'' et.al., the existing architecture and BFD's default
1136 architecture. INFO should be initialized to zero and then selected
1137 fields should be updated.
104c1213 1138
16f33e29
AC
1139 Returns non-zero if the update succeeds */
1140
1141extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1142
1143
ebdba546
AC
1144/* Helper function. Find an architecture matching info.
1145
1146 INFO should be initialized using gdbarch_info_init, relevant fields
1147 set, and then finished using gdbarch_info_fill.
1148
1149 Returns the corresponding architecture, or NULL if no matching
59837fe0 1150 architecture was found. */
ebdba546
AC
1151
1152extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1153
1154
59837fe0 1155/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1156
1157 FIXME: kettenis/20031124: Of the functions that follow, only
1158 gdbarch_from_bfd is supposed to survive. The others will
1159 dissappear since in the future GDB will (hopefully) be truly
1160 multi-arch. However, for now we're still stuck with the concept of
1161 a single active architecture. */
1162
59837fe0 1163extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1164
104c1213
JM
1165
1166/* Register per-architecture data-pointer.
1167
1168 Reserve space for a per-architecture data-pointer. An identifier
1169 for the reserved data-pointer is returned. That identifer should
95160752 1170 be saved in a local static variable.
104c1213 1171
fcc1c85c
AC
1172 Memory for the per-architecture data shall be allocated using
1173 gdbarch_obstack_zalloc. That memory will be deleted when the
1174 corresponding architecture object is deleted.
104c1213 1175
95160752
AC
1176 When a previously created architecture is re-selected, the
1177 per-architecture data-pointer for that previous architecture is
76860b5f 1178 restored. INIT() is not re-called.
104c1213
JM
1179
1180 Multiple registrarants for any architecture are allowed (and
1181 strongly encouraged). */
1182
95160752 1183struct gdbarch_data;
104c1213 1184
030f20e1
AC
1185typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1186extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1187typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1188extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1189extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1190 struct gdbarch_data *data,
1191 void *pointer);
104c1213 1192
451fbdda 1193extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1194
1195
0fa6923a 1196/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1197 byte-order, ...) using information found in the BFD */
1198
1199extern void set_gdbarch_from_file (bfd *);
1200
1201
e514a9d6
JM
1202/* Initialize the current architecture to the "first" one we find on
1203 our list. */
1204
1205extern void initialize_current_architecture (void);
1206
104c1213
JM
1207/* gdbarch trace variable */
1208extern int gdbarch_debug;
1209
4b9b3959 1210extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1211
1212#endif
1213EOF
1214exec 1>&2
1215#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1216compare_new gdbarch.h
104c1213
JM
1217
1218
1219#
1220# C file
1221#
1222
1223exec > new-gdbarch.c
1224copyright
1225cat <<EOF
1226
1227#include "defs.h"
7355ddba 1228#include "arch-utils.h"
104c1213 1229
104c1213 1230#include "gdbcmd.h"
faaf634c 1231#include "inferior.h"
104c1213
JM
1232#include "symcat.h"
1233
f0d4cc9e 1234#include "floatformat.h"
104c1213 1235
95160752 1236#include "gdb_assert.h"
b66d6d2e 1237#include "gdb_string.h"
b59ff9d5 1238#include "reggroups.h"
4be87837 1239#include "osabi.h"
aebd7893 1240#include "gdb_obstack.h"
383f836e 1241#include "observer.h"
a3ecef73 1242#include "regcache.h"
95160752 1243
104c1213
JM
1244/* Static function declarations */
1245
b3cc3077 1246static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1247
104c1213
JM
1248/* Non-zero if we want to trace architecture code. */
1249
1250#ifndef GDBARCH_DEBUG
1251#define GDBARCH_DEBUG 0
1252#endif
1253int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1254static void
1255show_gdbarch_debug (struct ui_file *file, int from_tty,
1256 struct cmd_list_element *c, const char *value)
1257{
1258 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1259}
104c1213 1260
456fcf94 1261static const char *
8da61cc4 1262pformat (const struct floatformat **format)
456fcf94
AC
1263{
1264 if (format == NULL)
1265 return "(null)";
1266 else
8da61cc4
DJ
1267 /* Just print out one of them - this is only for diagnostics. */
1268 return format[0]->name;
456fcf94
AC
1269}
1270
08105857
PA
1271static const char *
1272pstring (const char *string)
1273{
1274 if (string == NULL)
1275 return "(null)";
1276 return string;
1277}
1278
104c1213
JM
1279EOF
1280
1281# gdbarch open the gdbarch object
3d9a5942
AC
1282printf "\n"
1283printf "/* Maintain the struct gdbarch object */\n"
1284printf "\n"
1285printf "struct gdbarch\n"
1286printf "{\n"
76860b5f
AC
1287printf " /* Has this architecture been fully initialized? */\n"
1288printf " int initialized_p;\n"
aebd7893
AC
1289printf "\n"
1290printf " /* An obstack bound to the lifetime of the architecture. */\n"
1291printf " struct obstack *obstack;\n"
1292printf "\n"
3d9a5942 1293printf " /* basic architectural information */\n"
34620563 1294function_list | while do_read
104c1213 1295do
2ada493a
AC
1296 if class_is_info_p
1297 then
3d9a5942 1298 printf " ${returntype} ${function};\n"
2ada493a 1299 fi
104c1213 1300done
3d9a5942
AC
1301printf "\n"
1302printf " /* target specific vector. */\n"
1303printf " struct gdbarch_tdep *tdep;\n"
1304printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1305printf "\n"
1306printf " /* per-architecture data-pointers */\n"
95160752 1307printf " unsigned nr_data;\n"
3d9a5942
AC
1308printf " void **data;\n"
1309printf "\n"
1310printf " /* per-architecture swap-regions */\n"
1311printf " struct gdbarch_swap *swap;\n"
1312printf "\n"
104c1213
JM
1313cat <<EOF
1314 /* Multi-arch values.
1315
1316 When extending this structure you must:
1317
1318 Add the field below.
1319
1320 Declare set/get functions and define the corresponding
1321 macro in gdbarch.h.
1322
1323 gdbarch_alloc(): If zero/NULL is not a suitable default,
1324 initialize the new field.
1325
1326 verify_gdbarch(): Confirm that the target updated the field
1327 correctly.
1328
7e73cedf 1329 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1330 field is dumped out
1331
c0e8c252 1332 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1333 variable (base values on the host's c-type system).
1334
1335 get_gdbarch(): Implement the set/get functions (probably using
1336 the macro's as shortcuts).
1337
1338 */
1339
1340EOF
34620563 1341function_list | while do_read
104c1213 1342do
2ada493a
AC
1343 if class_is_variable_p
1344 then
3d9a5942 1345 printf " ${returntype} ${function};\n"
2ada493a
AC
1346 elif class_is_function_p
1347 then
2f9b146e 1348 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1349 fi
104c1213 1350done
3d9a5942 1351printf "};\n"
104c1213
JM
1352
1353# A pre-initialized vector
3d9a5942
AC
1354printf "\n"
1355printf "\n"
104c1213
JM
1356cat <<EOF
1357/* The default architecture uses host values (for want of a better
1358 choice). */
1359EOF
3d9a5942
AC
1360printf "\n"
1361printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1362printf "\n"
1363printf "struct gdbarch startup_gdbarch =\n"
1364printf "{\n"
76860b5f 1365printf " 1, /* Always initialized. */\n"
aebd7893 1366printf " NULL, /* The obstack. */\n"
3d9a5942 1367printf " /* basic architecture information */\n"
4b9b3959 1368function_list | while do_read
104c1213 1369do
2ada493a
AC
1370 if class_is_info_p
1371 then
ec5cbaec 1372 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1373 fi
104c1213
JM
1374done
1375cat <<EOF
4b9b3959
AC
1376 /* target specific vector and its dump routine */
1377 NULL, NULL,
104c1213
JM
1378 /*per-architecture data-pointers and swap regions */
1379 0, NULL, NULL,
1380 /* Multi-arch values */
1381EOF
34620563 1382function_list | while do_read
104c1213 1383do
2ada493a
AC
1384 if class_is_function_p || class_is_variable_p
1385 then
ec5cbaec 1386 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1387 fi
104c1213
JM
1388done
1389cat <<EOF
c0e8c252 1390 /* startup_gdbarch() */
104c1213 1391};
4b9b3959 1392
1cf3db46 1393struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1394EOF
1395
1396# Create a new gdbarch struct
104c1213 1397cat <<EOF
7de2341d 1398
66b43ecb 1399/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1400 \`\`struct gdbarch_info''. */
1401EOF
3d9a5942 1402printf "\n"
104c1213
JM
1403cat <<EOF
1404struct gdbarch *
1405gdbarch_alloc (const struct gdbarch_info *info,
1406 struct gdbarch_tdep *tdep)
1407{
be7811ad 1408 struct gdbarch *gdbarch;
aebd7893
AC
1409
1410 /* Create an obstack for allocating all the per-architecture memory,
1411 then use that to allocate the architecture vector. */
1412 struct obstack *obstack = XMALLOC (struct obstack);
1413 obstack_init (obstack);
be7811ad
MD
1414 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1415 memset (gdbarch, 0, sizeof (*gdbarch));
1416 gdbarch->obstack = obstack;
85de9627 1417
be7811ad 1418 alloc_gdbarch_data (gdbarch);
85de9627 1419
be7811ad 1420 gdbarch->tdep = tdep;
104c1213 1421EOF
3d9a5942 1422printf "\n"
34620563 1423function_list | while do_read
104c1213 1424do
2ada493a
AC
1425 if class_is_info_p
1426 then
be7811ad 1427 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1428 fi
104c1213 1429done
3d9a5942
AC
1430printf "\n"
1431printf " /* Force the explicit initialization of these. */\n"
34620563 1432function_list | while do_read
104c1213 1433do
2ada493a
AC
1434 if class_is_function_p || class_is_variable_p
1435 then
72e74a21 1436 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1437 then
be7811ad 1438 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1439 fi
2ada493a 1440 fi
104c1213
JM
1441done
1442cat <<EOF
1443 /* gdbarch_alloc() */
1444
be7811ad 1445 return gdbarch;
104c1213
JM
1446}
1447EOF
1448
058f20d5 1449# Free a gdbarch struct.
3d9a5942
AC
1450printf "\n"
1451printf "\n"
058f20d5 1452cat <<EOF
aebd7893
AC
1453/* Allocate extra space using the per-architecture obstack. */
1454
1455void *
1456gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1457{
1458 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1459
aebd7893
AC
1460 memset (data, 0, size);
1461 return data;
1462}
1463
1464
058f20d5
JB
1465/* Free a gdbarch struct. This should never happen in normal
1466 operation --- once you've created a gdbarch, you keep it around.
1467 However, if an architecture's init function encounters an error
1468 building the structure, it may need to clean up a partially
1469 constructed gdbarch. */
4b9b3959 1470
058f20d5
JB
1471void
1472gdbarch_free (struct gdbarch *arch)
1473{
aebd7893 1474 struct obstack *obstack;
05c547f6 1475
95160752 1476 gdb_assert (arch != NULL);
aebd7893
AC
1477 gdb_assert (!arch->initialized_p);
1478 obstack = arch->obstack;
1479 obstack_free (obstack, 0); /* Includes the ARCH. */
1480 xfree (obstack);
058f20d5
JB
1481}
1482EOF
1483
104c1213 1484# verify a new architecture
104c1213 1485cat <<EOF
db446970
AC
1486
1487
1488/* Ensure that all values in a GDBARCH are reasonable. */
1489
104c1213 1490static void
be7811ad 1491verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1492{
f16a1923
AC
1493 struct ui_file *log;
1494 struct cleanup *cleanups;
759ef836 1495 long length;
f16a1923 1496 char *buf;
05c547f6 1497
f16a1923
AC
1498 log = mem_fileopen ();
1499 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1500 /* fundamental */
be7811ad 1501 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1502 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1503 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1504 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1505 /* Check those that need to be defined for the given multi-arch level. */
1506EOF
34620563 1507function_list | while do_read
104c1213 1508do
2ada493a
AC
1509 if class_is_function_p || class_is_variable_p
1510 then
72e74a21 1511 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1512 then
3d9a5942 1513 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1514 elif class_is_predicate_p
1515 then
3d9a5942 1516 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1517 # FIXME: See do_read for potential simplification
72e74a21 1518 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1519 then
3d9a5942 1520 printf " if (${invalid_p})\n"
be7811ad 1521 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1522 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1523 then
be7811ad
MD
1524 printf " if (gdbarch->${function} == ${predefault})\n"
1525 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1526 elif [ -n "${postdefault}" ]
f0d4cc9e 1527 then
be7811ad
MD
1528 printf " if (gdbarch->${function} == 0)\n"
1529 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1530 elif [ -n "${invalid_p}" ]
104c1213 1531 then
4d60522e 1532 printf " if (${invalid_p})\n"
f16a1923 1533 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1534 elif [ -n "${predefault}" ]
104c1213 1535 then
be7811ad 1536 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1537 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1538 fi
2ada493a 1539 fi
104c1213
JM
1540done
1541cat <<EOF
759ef836 1542 buf = ui_file_xstrdup (log, &length);
f16a1923 1543 make_cleanup (xfree, buf);
759ef836 1544 if (length > 0)
f16a1923 1545 internal_error (__FILE__, __LINE__,
85c07804 1546 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1547 buf);
1548 do_cleanups (cleanups);
104c1213
JM
1549}
1550EOF
1551
1552# dump the structure
3d9a5942
AC
1553printf "\n"
1554printf "\n"
104c1213 1555cat <<EOF
4b9b3959
AC
1556/* Print out the details of the current architecture. */
1557
104c1213 1558void
be7811ad 1559gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1560{
b78960be 1561 const char *gdb_nm_file = "<not-defined>";
05c547f6 1562
b78960be
AC
1563#if defined (GDB_NM_FILE)
1564 gdb_nm_file = GDB_NM_FILE;
1565#endif
1566 fprintf_unfiltered (file,
1567 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1568 gdb_nm_file);
104c1213 1569EOF
97030eea 1570function_list | sort -t: -k 3 | while do_read
104c1213 1571do
1e9f55d0
AC
1572 # First the predicate
1573 if class_is_predicate_p
1574 then
7996bcec 1575 printf " fprintf_unfiltered (file,\n"
48f7351b 1576 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1577 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1578 fi
48f7351b 1579 # Print the corresponding value.
283354d8 1580 if class_is_function_p
4b9b3959 1581 then
7996bcec 1582 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1583 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1584 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1585 else
48f7351b 1586 # It is a variable
2f9b146e
AC
1587 case "${print}:${returntype}" in
1588 :CORE_ADDR )
0b1553bc
UW
1589 fmt="%s"
1590 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1591 ;;
2f9b146e 1592 :* )
48f7351b 1593 fmt="%s"
623d3eb1 1594 print="plongest (gdbarch->${function})"
48f7351b
AC
1595 ;;
1596 * )
2f9b146e 1597 fmt="%s"
48f7351b
AC
1598 ;;
1599 esac
3d9a5942 1600 printf " fprintf_unfiltered (file,\n"
48f7351b 1601 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1602 printf " ${print});\n"
2ada493a 1603 fi
104c1213 1604done
381323f4 1605cat <<EOF
be7811ad
MD
1606 if (gdbarch->dump_tdep != NULL)
1607 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1608}
1609EOF
104c1213
JM
1610
1611
1612# GET/SET
3d9a5942 1613printf "\n"
104c1213
JM
1614cat <<EOF
1615struct gdbarch_tdep *
1616gdbarch_tdep (struct gdbarch *gdbarch)
1617{
1618 if (gdbarch_debug >= 2)
3d9a5942 1619 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1620 return gdbarch->tdep;
1621}
1622EOF
3d9a5942 1623printf "\n"
34620563 1624function_list | while do_read
104c1213 1625do
2ada493a
AC
1626 if class_is_predicate_p
1627 then
3d9a5942
AC
1628 printf "\n"
1629 printf "int\n"
1630 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1631 printf "{\n"
8de9bdc4 1632 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1633 printf " return ${predicate};\n"
3d9a5942 1634 printf "}\n"
2ada493a
AC
1635 fi
1636 if class_is_function_p
1637 then
3d9a5942
AC
1638 printf "\n"
1639 printf "${returntype}\n"
72e74a21 1640 if [ "x${formal}" = "xvoid" ]
104c1213 1641 then
3d9a5942 1642 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1643 else
3d9a5942 1644 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1645 fi
3d9a5942 1646 printf "{\n"
8de9bdc4 1647 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1648 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1649 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1650 then
1651 # Allow a call to a function with a predicate.
956ac328 1652 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1653 fi
3d9a5942
AC
1654 printf " if (gdbarch_debug >= 2)\n"
1655 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1656 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1657 then
1658 if class_is_multiarch_p
1659 then
1660 params="gdbarch"
1661 else
1662 params=""
1663 fi
1664 else
1665 if class_is_multiarch_p
1666 then
1667 params="gdbarch, ${actual}"
1668 else
1669 params="${actual}"
1670 fi
1671 fi
72e74a21 1672 if [ "x${returntype}" = "xvoid" ]
104c1213 1673 then
4a5c6a1d 1674 printf " gdbarch->${function} (${params});\n"
104c1213 1675 else
4a5c6a1d 1676 printf " return gdbarch->${function} (${params});\n"
104c1213 1677 fi
3d9a5942
AC
1678 printf "}\n"
1679 printf "\n"
1680 printf "void\n"
1681 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1682 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1683 printf "{\n"
1684 printf " gdbarch->${function} = ${function};\n"
1685 printf "}\n"
2ada493a
AC
1686 elif class_is_variable_p
1687 then
3d9a5942
AC
1688 printf "\n"
1689 printf "${returntype}\n"
1690 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1691 printf "{\n"
8de9bdc4 1692 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1693 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1694 then
3d9a5942 1695 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1696 elif [ -n "${invalid_p}" ]
104c1213 1697 then
956ac328
AC
1698 printf " /* Check variable is valid. */\n"
1699 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1700 elif [ -n "${predefault}" ]
104c1213 1701 then
956ac328
AC
1702 printf " /* Check variable changed from pre-default. */\n"
1703 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1704 fi
3d9a5942
AC
1705 printf " if (gdbarch_debug >= 2)\n"
1706 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1707 printf " return gdbarch->${function};\n"
1708 printf "}\n"
1709 printf "\n"
1710 printf "void\n"
1711 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1712 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1713 printf "{\n"
1714 printf " gdbarch->${function} = ${function};\n"
1715 printf "}\n"
2ada493a
AC
1716 elif class_is_info_p
1717 then
3d9a5942
AC
1718 printf "\n"
1719 printf "${returntype}\n"
1720 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1721 printf "{\n"
8de9bdc4 1722 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1723 printf " if (gdbarch_debug >= 2)\n"
1724 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1725 printf " return gdbarch->${function};\n"
1726 printf "}\n"
2ada493a 1727 fi
104c1213
JM
1728done
1729
1730# All the trailing guff
1731cat <<EOF
1732
1733
f44c642f 1734/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1735 modules. */
1736
1737struct gdbarch_data
1738{
95160752 1739 unsigned index;
76860b5f 1740 int init_p;
030f20e1
AC
1741 gdbarch_data_pre_init_ftype *pre_init;
1742 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1743};
1744
1745struct gdbarch_data_registration
1746{
104c1213
JM
1747 struct gdbarch_data *data;
1748 struct gdbarch_data_registration *next;
1749};
1750
f44c642f 1751struct gdbarch_data_registry
104c1213 1752{
95160752 1753 unsigned nr;
104c1213
JM
1754 struct gdbarch_data_registration *registrations;
1755};
1756
f44c642f 1757struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1758{
1759 0, NULL,
1760};
1761
030f20e1
AC
1762static struct gdbarch_data *
1763gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1764 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1765{
1766 struct gdbarch_data_registration **curr;
05c547f6
MS
1767
1768 /* Append the new registration. */
f44c642f 1769 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1770 (*curr) != NULL;
1771 curr = &(*curr)->next);
1772 (*curr) = XMALLOC (struct gdbarch_data_registration);
1773 (*curr)->next = NULL;
104c1213 1774 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1775 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1776 (*curr)->data->pre_init = pre_init;
1777 (*curr)->data->post_init = post_init;
76860b5f 1778 (*curr)->data->init_p = 1;
104c1213
JM
1779 return (*curr)->data;
1780}
1781
030f20e1
AC
1782struct gdbarch_data *
1783gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1784{
1785 return gdbarch_data_register (pre_init, NULL);
1786}
1787
1788struct gdbarch_data *
1789gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1790{
1791 return gdbarch_data_register (NULL, post_init);
1792}
104c1213 1793
b3cc3077 1794/* Create/delete the gdbarch data vector. */
95160752
AC
1795
1796static void
b3cc3077 1797alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1798{
b3cc3077
JB
1799 gdb_assert (gdbarch->data == NULL);
1800 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1801 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1802}
3c875b6f 1803
76860b5f 1804/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1805 data-pointer. */
1806
95160752 1807void
030f20e1
AC
1808deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1809 struct gdbarch_data *data,
1810 void *pointer)
95160752
AC
1811{
1812 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1813 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1814 gdb_assert (data->pre_init == NULL);
95160752
AC
1815 gdbarch->data[data->index] = pointer;
1816}
1817
104c1213
JM
1818/* Return the current value of the specified per-architecture
1819 data-pointer. */
1820
1821void *
451fbdda 1822gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1823{
451fbdda 1824 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1825 if (gdbarch->data[data->index] == NULL)
76860b5f 1826 {
030f20e1
AC
1827 /* The data-pointer isn't initialized, call init() to get a
1828 value. */
1829 if (data->pre_init != NULL)
1830 /* Mid architecture creation: pass just the obstack, and not
1831 the entire architecture, as that way it isn't possible for
1832 pre-init code to refer to undefined architecture
1833 fields. */
1834 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1835 else if (gdbarch->initialized_p
1836 && data->post_init != NULL)
1837 /* Post architecture creation: pass the entire architecture
1838 (as all fields are valid), but be careful to also detect
1839 recursive references. */
1840 {
1841 gdb_assert (data->init_p);
1842 data->init_p = 0;
1843 gdbarch->data[data->index] = data->post_init (gdbarch);
1844 data->init_p = 1;
1845 }
1846 else
1847 /* The architecture initialization hasn't completed - punt -
1848 hope that the caller knows what they are doing. Once
1849 deprecated_set_gdbarch_data has been initialized, this can be
1850 changed to an internal error. */
1851 return NULL;
76860b5f
AC
1852 gdb_assert (gdbarch->data[data->index] != NULL);
1853 }
451fbdda 1854 return gdbarch->data[data->index];
104c1213
JM
1855}
1856
1857
f44c642f 1858/* Keep a registry of the architectures known by GDB. */
104c1213 1859
4b9b3959 1860struct gdbarch_registration
104c1213
JM
1861{
1862 enum bfd_architecture bfd_architecture;
1863 gdbarch_init_ftype *init;
4b9b3959 1864 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1865 struct gdbarch_list *arches;
4b9b3959 1866 struct gdbarch_registration *next;
104c1213
JM
1867};
1868
f44c642f 1869static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1870
b4a20239
AC
1871static void
1872append_name (const char ***buf, int *nr, const char *name)
1873{
1874 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1875 (*buf)[*nr] = name;
1876 *nr += 1;
1877}
1878
1879const char **
1880gdbarch_printable_names (void)
1881{
7996bcec
AC
1882 /* Accumulate a list of names based on the registed list of
1883 architectures. */
7996bcec
AC
1884 int nr_arches = 0;
1885 const char **arches = NULL;
1886 struct gdbarch_registration *rego;
05c547f6 1887
7996bcec
AC
1888 for (rego = gdbarch_registry;
1889 rego != NULL;
1890 rego = rego->next)
b4a20239 1891 {
7996bcec
AC
1892 const struct bfd_arch_info *ap;
1893 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1894 if (ap == NULL)
1895 internal_error (__FILE__, __LINE__,
85c07804 1896 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1897 do
1898 {
1899 append_name (&arches, &nr_arches, ap->printable_name);
1900 ap = ap->next;
1901 }
1902 while (ap != NULL);
b4a20239 1903 }
7996bcec
AC
1904 append_name (&arches, &nr_arches, NULL);
1905 return arches;
b4a20239
AC
1906}
1907
1908
104c1213 1909void
4b9b3959
AC
1910gdbarch_register (enum bfd_architecture bfd_architecture,
1911 gdbarch_init_ftype *init,
1912 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1913{
4b9b3959 1914 struct gdbarch_registration **curr;
104c1213 1915 const struct bfd_arch_info *bfd_arch_info;
05c547f6 1916
ec3d358c 1917 /* Check that BFD recognizes this architecture */
104c1213
JM
1918 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1919 if (bfd_arch_info == NULL)
1920 {
8e65ff28 1921 internal_error (__FILE__, __LINE__,
85c07804 1922 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1923 bfd_architecture);
104c1213
JM
1924 }
1925 /* Check that we haven't seen this architecture before */
f44c642f 1926 for (curr = &gdbarch_registry;
104c1213
JM
1927 (*curr) != NULL;
1928 curr = &(*curr)->next)
1929 {
1930 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1931 internal_error (__FILE__, __LINE__,
85c07804 1932 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1933 bfd_arch_info->printable_name);
104c1213
JM
1934 }
1935 /* log it */
1936 if (gdbarch_debug)
30737ed9 1937 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1938 bfd_arch_info->printable_name,
30737ed9 1939 host_address_to_string (init));
104c1213 1940 /* Append it */
4b9b3959 1941 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1942 (*curr)->bfd_architecture = bfd_architecture;
1943 (*curr)->init = init;
4b9b3959 1944 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1945 (*curr)->arches = NULL;
1946 (*curr)->next = NULL;
4b9b3959
AC
1947}
1948
1949void
1950register_gdbarch_init (enum bfd_architecture bfd_architecture,
1951 gdbarch_init_ftype *init)
1952{
1953 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1954}
104c1213
JM
1955
1956
424163ea 1957/* Look for an architecture using gdbarch_info. */
104c1213
JM
1958
1959struct gdbarch_list *
1960gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1961 const struct gdbarch_info *info)
1962{
1963 for (; arches != NULL; arches = arches->next)
1964 {
1965 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1966 continue;
1967 if (info->byte_order != arches->gdbarch->byte_order)
1968 continue;
4be87837
DJ
1969 if (info->osabi != arches->gdbarch->osabi)
1970 continue;
424163ea
DJ
1971 if (info->target_desc != arches->gdbarch->target_desc)
1972 continue;
104c1213
JM
1973 return arches;
1974 }
1975 return NULL;
1976}
1977
1978
ebdba546 1979/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1980 architecture if needed. Return that new architecture. */
104c1213 1981
59837fe0
UW
1982struct gdbarch *
1983gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1984{
1985 struct gdbarch *new_gdbarch;
4b9b3959 1986 struct gdbarch_registration *rego;
104c1213 1987
b732d07d 1988 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1989 sources: "set ..."; INFOabfd supplied; and the global
1990 defaults. */
1991 gdbarch_info_fill (&info);
4be87837 1992
b732d07d
AC
1993 /* Must have found some sort of architecture. */
1994 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1995
1996 if (gdbarch_debug)
1997 {
1998 fprintf_unfiltered (gdb_stdlog,
59837fe0 1999 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2000 (info.bfd_arch_info != NULL
2001 ? info.bfd_arch_info->printable_name
2002 : "(null)"));
2003 fprintf_unfiltered (gdb_stdlog,
59837fe0 2004 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2005 info.byte_order,
d7449b42 2006 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2007 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2008 : "default"));
4be87837 2009 fprintf_unfiltered (gdb_stdlog,
59837fe0 2010 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2011 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2012 fprintf_unfiltered (gdb_stdlog,
59837fe0 2013 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2014 host_address_to_string (info.abfd));
104c1213 2015 fprintf_unfiltered (gdb_stdlog,
59837fe0 2016 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2017 host_address_to_string (info.tdep_info));
104c1213
JM
2018 }
2019
ebdba546 2020 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2021 for (rego = gdbarch_registry;
2022 rego != NULL;
2023 rego = rego->next)
2024 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2025 break;
2026 if (rego == NULL)
2027 {
2028 if (gdbarch_debug)
59837fe0 2029 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2030 "No matching architecture\n");
b732d07d
AC
2031 return 0;
2032 }
2033
ebdba546 2034 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2035 new_gdbarch = rego->init (info, rego->arches);
2036
ebdba546
AC
2037 /* Did the tdep code like it? No. Reject the change and revert to
2038 the old architecture. */
104c1213
JM
2039 if (new_gdbarch == NULL)
2040 {
2041 if (gdbarch_debug)
59837fe0 2042 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2043 "Target rejected architecture\n");
2044 return NULL;
104c1213
JM
2045 }
2046
ebdba546
AC
2047 /* Is this a pre-existing architecture (as determined by already
2048 being initialized)? Move it to the front of the architecture
2049 list (keeping the list sorted Most Recently Used). */
2050 if (new_gdbarch->initialized_p)
104c1213 2051 {
ebdba546
AC
2052 struct gdbarch_list **list;
2053 struct gdbarch_list *this;
104c1213 2054 if (gdbarch_debug)
59837fe0 2055 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2056 "Previous architecture %s (%s) selected\n",
2057 host_address_to_string (new_gdbarch),
104c1213 2058 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2059 /* Find the existing arch in the list. */
2060 for (list = &rego->arches;
2061 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2062 list = &(*list)->next);
2063 /* It had better be in the list of architectures. */
2064 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2065 /* Unlink THIS. */
2066 this = (*list);
2067 (*list) = this->next;
2068 /* Insert THIS at the front. */
2069 this->next = rego->arches;
2070 rego->arches = this;
2071 /* Return it. */
2072 return new_gdbarch;
104c1213
JM
2073 }
2074
ebdba546
AC
2075 /* It's a new architecture. */
2076 if (gdbarch_debug)
59837fe0 2077 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2078 "New architecture %s (%s) selected\n",
2079 host_address_to_string (new_gdbarch),
ebdba546
AC
2080 new_gdbarch->bfd_arch_info->printable_name);
2081
2082 /* Insert the new architecture into the front of the architecture
2083 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2084 {
2085 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2086 this->next = rego->arches;
2087 this->gdbarch = new_gdbarch;
2088 rego->arches = this;
2089 }
104c1213 2090
4b9b3959
AC
2091 /* Check that the newly installed architecture is valid. Plug in
2092 any post init values. */
2093 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2094 verify_gdbarch (new_gdbarch);
ebdba546 2095 new_gdbarch->initialized_p = 1;
104c1213 2096
4b9b3959 2097 if (gdbarch_debug)
ebdba546
AC
2098 gdbarch_dump (new_gdbarch, gdb_stdlog);
2099
2100 return new_gdbarch;
2101}
2102
e487cc15 2103/* Make the specified architecture current. */
ebdba546
AC
2104
2105void
59837fe0 2106deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2107{
2108 gdb_assert (new_gdbarch != NULL);
ebdba546 2109 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2110 target_gdbarch = new_gdbarch;
383f836e 2111 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2112 registers_changed ();
ebdba546 2113}
104c1213 2114
104c1213 2115extern void _initialize_gdbarch (void);
b4a20239 2116
104c1213 2117void
34620563 2118_initialize_gdbarch (void)
104c1213 2119{
85c07804
AC
2120 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2121Set architecture debugging."), _("\\
2122Show architecture debugging."), _("\\
2123When non-zero, architecture debugging is enabled."),
2124 NULL,
920d2a44 2125 show_gdbarch_debug,
85c07804 2126 &setdebuglist, &showdebuglist);
104c1213
JM
2127}
2128EOF
2129
2130# close things off
2131exec 1>&2
2132#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2133compare_new gdbarch.c
This page took 1.427412 seconds and 4 git commands to generate.