PowerPC64 ELFv2 ABI: skip global entry point code
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
502# Construct a value representing the contents of register REGNUM in
503# frame FRAME, interpreted as type TYPE. The routine needs to
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
97030eea 506f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
638f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
639f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
640v:int:cannot_step_breakpoint:::0:0::0
641v:int:have_nonsteppable_watchpoint:::0:0::0
642F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
643M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
644
645# Return the appropriate type_flags for the supplied address class.
646# This function should return 1 if the address class was recognized and
647# type_flags was set, zero otherwise.
97030eea 648M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 649# Is a register in a group
97030eea 650m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 651# Fetch the pointer to the ith function argument.
97030eea 652F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
653
654# Return the appropriate register set for a core file section with
655# name SECT_NAME and size SECT_SIZE.
97030eea 656M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 657
17ea7499
CES
658# Supported register notes in a core file.
659v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
660
6432734d
UW
661# Create core file notes
662M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
663
b3ac9c77
SDJ
664# The elfcore writer hook to use to write Linux prpsinfo notes to core
665# files. Most Linux architectures use the same prpsinfo32 or
666# prpsinfo64 layouts, and so won't need to provide this hook, as we
667# call the Linux generic routines in bfd to write prpsinfo notes by
668# default.
669F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
670
35c2fab7
UW
671# Find core file memory regions
672M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
673
de584861
PA
674# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
675# core file into buffer READBUF with length LEN.
7ec1862d 676M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 677
356a5233
JB
678# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
679# libraries list from core file into buffer READBUF with length LEN.
7ec1862d 680M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 681
c0edd9ed 682# How the core target converts a PTID from a core file to a string.
28439f5e
PA
683M:char *:core_pid_to_str:ptid_t ptid:ptid
684
a78c2d62 685# BFD target to use when generating a core file.
86ba1042 686V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 687
0d5de010
DJ
688# If the elements of C++ vtables are in-place function descriptors rather
689# than normal function pointers (which may point to code or a descriptor),
690# set this to one.
97030eea 691v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
692
693# Set if the least significant bit of the delta is used instead of the least
694# significant bit of the pfn for pointers to virtual member functions.
97030eea 695v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
696
697# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 698F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 699
1668ae25 700# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
701V:ULONGEST:max_insn_length:::0:0
702
703# Copy the instruction at FROM to TO, and make any adjustments
704# necessary to single-step it at that address.
705#
706# REGS holds the state the thread's registers will have before
707# executing the copied instruction; the PC in REGS will refer to FROM,
708# not the copy at TO. The caller should update it to point at TO later.
709#
710# Return a pointer to data of the architecture's choice to be passed
711# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
712# the instruction's effects have been completely simulated, with the
713# resulting state written back to REGS.
714#
715# For a general explanation of displaced stepping and how GDB uses it,
716# see the comments in infrun.c.
717#
718# The TO area is only guaranteed to have space for
719# gdbarch_max_insn_length (arch) bytes, so this function must not
720# write more bytes than that to that area.
721#
722# If you do not provide this function, GDB assumes that the
723# architecture does not support displaced stepping.
724#
725# If your architecture doesn't need to adjust instructions before
726# single-stepping them, consider using simple_displaced_step_copy_insn
727# here.
728M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
729
99e40580
UW
730# Return true if GDB should use hardware single-stepping to execute
731# the displaced instruction identified by CLOSURE. If false,
732# GDB will simply restart execution at the displaced instruction
733# location, and it is up to the target to ensure GDB will receive
734# control again (e.g. by placing a software breakpoint instruction
735# into the displaced instruction buffer).
736#
737# The default implementation returns false on all targets that
738# provide a gdbarch_software_single_step routine, and true otherwise.
739m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
740
237fc4c9
PA
741# Fix up the state resulting from successfully single-stepping a
742# displaced instruction, to give the result we would have gotten from
743# stepping the instruction in its original location.
744#
745# REGS is the register state resulting from single-stepping the
746# displaced instruction.
747#
748# CLOSURE is the result from the matching call to
749# gdbarch_displaced_step_copy_insn.
750#
751# If you provide gdbarch_displaced_step_copy_insn.but not this
752# function, then GDB assumes that no fixup is needed after
753# single-stepping the instruction.
754#
755# For a general explanation of displaced stepping and how GDB uses it,
756# see the comments in infrun.c.
757M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
758
759# Free a closure returned by gdbarch_displaced_step_copy_insn.
760#
761# If you provide gdbarch_displaced_step_copy_insn, you must provide
762# this function as well.
763#
764# If your architecture uses closures that don't need to be freed, then
765# you can use simple_displaced_step_free_closure here.
766#
767# For a general explanation of displaced stepping and how GDB uses it,
768# see the comments in infrun.c.
769m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
770
771# Return the address of an appropriate place to put displaced
772# instructions while we step over them. There need only be one such
773# place, since we're only stepping one thread over a breakpoint at a
774# time.
775#
776# For a general explanation of displaced stepping and how GDB uses it,
777# see the comments in infrun.c.
778m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
779
dde08ee1
PA
780# Relocate an instruction to execute at a different address. OLDLOC
781# is the address in the inferior memory where the instruction to
782# relocate is currently at. On input, TO points to the destination
783# where we want the instruction to be copied (and possibly adjusted)
784# to. On output, it points to one past the end of the resulting
785# instruction(s). The effect of executing the instruction at TO shall
786# be the same as if executing it at FROM. For example, call
787# instructions that implicitly push the return address on the stack
788# should be adjusted to return to the instruction after OLDLOC;
789# relative branches, and other PC-relative instructions need the
790# offset adjusted; etc.
791M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
792
1c772458 793# Refresh overlay mapped state for section OSECT.
97030eea 794F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 795
97030eea 796M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
797
798# Handle special encoding of static variables in stabs debug info.
0d5cff50 799F:const char *:static_transform_name:const char *name:name
203c3895 800# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 801v:int:sofun_address_maybe_missing:::0:0::0
1cded358 802
0508c3ec
HZ
803# Parse the instruction at ADDR storing in the record execution log
804# the registers REGCACHE and memory ranges that will be affected when
805# the instruction executes, along with their current values.
806# Return -1 if something goes wrong, 0 otherwise.
807M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
808
3846b520
HZ
809# Save process state after a signal.
810# Return -1 if something goes wrong, 0 otherwise.
2ea28649 811M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 812
22203bbf 813# Signal translation: translate inferior's signal (target's) number
86b49880
PA
814# into GDB's representation. The implementation of this method must
815# be host independent. IOW, don't rely on symbols of the NAT_FILE
816# header (the nm-*.h files), the host <signal.h> header, or similar
817# headers. This is mainly used when cross-debugging core files ---
818# "Live" targets hide the translation behind the target interface
1f8cf220
PA
819# (target_wait, target_resume, etc.).
820M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 821
eb14d406
SDJ
822# Signal translation: translate the GDB's internal signal number into
823# the inferior's signal (target's) representation. The implementation
824# of this method must be host independent. IOW, don't rely on symbols
825# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
826# header, or similar headers.
827# Return the target signal number if found, or -1 if the GDB internal
828# signal number is invalid.
829M:int:gdb_signal_to_target:enum gdb_signal signal:signal
830
4aa995e1
PA
831# Extra signal info inspection.
832#
833# Return a type suitable to inspect extra signal information.
834M:struct type *:get_siginfo_type:void:
835
60c5725c
DJ
836# Record architecture-specific information from the symbol table.
837M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 838
a96d9b2e
SDJ
839# Function for the 'catch syscall' feature.
840
841# Get architecture-specific system calls information from registers.
842M:LONGEST:get_syscall_number:ptid_t ptid:ptid
843
55aa24fb
SDJ
844# SystemTap related fields and functions.
845
05c0465e
SDJ
846# A NULL-terminated array of prefixes used to mark an integer constant
847# on the architecture's assembly.
55aa24fb
SDJ
848# For example, on x86 integer constants are written as:
849#
850# \$10 ;; integer constant 10
851#
852# in this case, this prefix would be the character \`\$\'.
05c0465e 853v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 854
05c0465e
SDJ
855# A NULL-terminated array of suffixes used to mark an integer constant
856# on the architecture's assembly.
857v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 858
05c0465e
SDJ
859# A NULL-terminated array of prefixes used to mark a register name on
860# the architecture's assembly.
55aa24fb
SDJ
861# For example, on x86 the register name is written as:
862#
863# \%eax ;; register eax
864#
865# in this case, this prefix would be the character \`\%\'.
05c0465e 866v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 867
05c0465e
SDJ
868# A NULL-terminated array of suffixes used to mark a register name on
869# the architecture's assembly.
870v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 871
05c0465e
SDJ
872# A NULL-terminated array of prefixes used to mark a register
873# indirection on the architecture's assembly.
55aa24fb
SDJ
874# For example, on x86 the register indirection is written as:
875#
876# \(\%eax\) ;; indirecting eax
877#
878# in this case, this prefix would be the charater \`\(\'.
879#
880# Please note that we use the indirection prefix also for register
881# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 882v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 883
05c0465e
SDJ
884# A NULL-terminated array of suffixes used to mark a register
885# indirection on the architecture's assembly.
55aa24fb
SDJ
886# For example, on x86 the register indirection is written as:
887#
888# \(\%eax\) ;; indirecting eax
889#
890# in this case, this prefix would be the charater \`\)\'.
891#
892# Please note that we use the indirection suffix also for register
893# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 894v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 895
05c0465e 896# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
897#
898# For example, on PPC a register is represented by a number in the assembly
899# language (e.g., \`10\' is the 10th general-purpose register). However,
900# inside GDB this same register has an \`r\' appended to its name, so the 10th
901# register would be represented as \`r10\' internally.
08af7a40 902v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
903
904# Suffix used to name a register using GDB's nomenclature.
08af7a40 905v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
906
907# Check if S is a single operand.
908#
909# Single operands can be:
910# \- Literal integers, e.g. \`\$10\' on x86
911# \- Register access, e.g. \`\%eax\' on x86
912# \- Register indirection, e.g. \`\(\%eax\)\' on x86
913# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
914#
915# This function should check for these patterns on the string
916# and return 1 if some were found, or zero otherwise. Please try to match
917# as much info as you can from the string, i.e., if you have to match
918# something like \`\(\%\', do not match just the \`\(\'.
919M:int:stap_is_single_operand:const char *s:s
920
921# Function used to handle a "special case" in the parser.
922#
923# A "special case" is considered to be an unknown token, i.e., a token
924# that the parser does not know how to parse. A good example of special
925# case would be ARM's register displacement syntax:
926#
927# [R0, #4] ;; displacing R0 by 4
928#
929# Since the parser assumes that a register displacement is of the form:
930#
931# <number> <indirection_prefix> <register_name> <indirection_suffix>
932#
933# it means that it will not be able to recognize and parse this odd syntax.
934# Therefore, we should add a special case function that will handle this token.
935#
936# This function should generate the proper expression form of the expression
937# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
938# and so on). It should also return 1 if the parsing was successful, or zero
939# if the token was not recognized as a special token (in this case, returning
940# zero means that the special parser is deferring the parsing to the generic
941# parser), and should advance the buffer pointer (p->arg).
942M:int:stap_parse_special_token:struct stap_parse_info *p:p
943
944
50c71eaf
PA
945# True if the list of shared libraries is one and only for all
946# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
947# This usually means that all processes, although may or may not share
948# an address space, will see the same set of symbols at the same
949# addresses.
50c71eaf 950v:int:has_global_solist:::0:0::0
2567c7d9
PA
951
952# On some targets, even though each inferior has its own private
953# address space, the debug interface takes care of making breakpoints
954# visible to all address spaces automatically. For such cases,
955# this property should be set to true.
956v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
957
958# True if inferiors share an address space (e.g., uClinux).
959m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
960
961# True if a fast tracepoint can be set at an address.
962m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 963
f870a310
TT
964# Return the "auto" target charset.
965f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
966# Return the "auto" target wide charset.
967f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
968
969# If non-empty, this is a file extension that will be opened in place
970# of the file extension reported by the shared library list.
971#
972# This is most useful for toolchains that use a post-linker tool,
973# where the names of the files run on the target differ in extension
974# compared to the names of the files GDB should load for debug info.
975v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
976
977# If true, the target OS has DOS-based file system semantics. That
978# is, absolute paths include a drive name, and the backslash is
979# considered a directory separator.
980v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
981
982# Generate bytecodes to collect the return address in a frame.
983# Since the bytecodes run on the target, possibly with GDB not even
984# connected, the full unwinding machinery is not available, and
985# typically this function will issue bytecodes for one or more likely
986# places that the return address may be found.
987m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
988
3030c96e
UW
989# Implement the "info proc" command.
990M:void:info_proc:char *args, enum info_proc_what what:args, what
991
451b7c33
TT
992# Implement the "info proc" command for core files. Noe that there
993# are two "info_proc"-like methods on gdbarch -- one for core files,
994# one for live targets.
995M:void:core_info_proc:char *args, enum info_proc_what what:args, what
996
19630284
JB
997# Iterate over all objfiles in the order that makes the most sense
998# for the architecture to make global symbol searches.
999#
1000# CB is a callback function where OBJFILE is the objfile to be searched,
1001# and CB_DATA a pointer to user-defined data (the same data that is passed
1002# when calling this gdbarch method). The iteration stops if this function
1003# returns nonzero.
1004#
1005# CB_DATA is a pointer to some user-defined data to be passed to
1006# the callback.
1007#
1008# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1009# inspected when the symbol search was requested.
1010m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1011
7e35103a
JB
1012# Ravenscar arch-dependent ops.
1013v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1014
1015# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1016m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1017
1018# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1019m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1020
1021# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1022m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
104c1213 1023EOF
104c1213
JM
1024}
1025
0b8f9e4d
AC
1026#
1027# The .log file
1028#
1029exec > new-gdbarch.log
34620563 1030function_list | while do_read
0b8f9e4d
AC
1031do
1032 cat <<EOF
2f9b146e 1033${class} ${returntype} ${function} ($formal)
104c1213 1034EOF
3d9a5942
AC
1035 for r in ${read}
1036 do
1037 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1038 done
f0d4cc9e 1039 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1040 then
66d659b1 1041 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1042 kill $$
1043 exit 1
1044 fi
72e74a21 1045 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1046 then
1047 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1048 kill $$
1049 exit 1
1050 fi
a72293e2
AC
1051 if class_is_multiarch_p
1052 then
1053 if class_is_predicate_p ; then :
1054 elif test "x${predefault}" = "x"
1055 then
2f9b146e 1056 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1057 kill $$
1058 exit 1
1059 fi
1060 fi
3d9a5942 1061 echo ""
0b8f9e4d
AC
1062done
1063
1064exec 1>&2
1065compare_new gdbarch.log
1066
104c1213
JM
1067
1068copyright ()
1069{
1070cat <<EOF
c4bfde41
JK
1071/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1072/* vi:set ro: */
59233f88 1073
104c1213 1074/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1075
ecd75fc8 1076 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1077
1078 This file is part of GDB.
1079
1080 This program is free software; you can redistribute it and/or modify
1081 it under the terms of the GNU General Public License as published by
50efebf8 1082 the Free Software Foundation; either version 3 of the License, or
104c1213 1083 (at your option) any later version.
50efebf8 1084
104c1213
JM
1085 This program is distributed in the hope that it will be useful,
1086 but WITHOUT ANY WARRANTY; without even the implied warranty of
1087 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1088 GNU General Public License for more details.
50efebf8 1089
104c1213 1090 You should have received a copy of the GNU General Public License
50efebf8 1091 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1092
104c1213
JM
1093/* This file was created with the aid of \`\`gdbarch.sh''.
1094
52204a0b 1095 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1096 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1097 against the existing \`\`gdbarch.[hc]''. Any differences found
1098 being reported.
1099
1100 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1101 changes into that script. Conversely, when making sweeping changes
104c1213 1102 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1103 easier. */
104c1213
JM
1104
1105EOF
1106}
1107
1108#
1109# The .h file
1110#
1111
1112exec > new-gdbarch.h
1113copyright
1114cat <<EOF
1115#ifndef GDBARCH_H
1116#define GDBARCH_H
1117
da3331ec
AC
1118struct floatformat;
1119struct ui_file;
104c1213
JM
1120struct frame_info;
1121struct value;
b6af0555 1122struct objfile;
1c772458 1123struct obj_section;
a2cf933a 1124struct minimal_symbol;
049ee0e4 1125struct regcache;
b59ff9d5 1126struct reggroup;
6ce6d90f 1127struct regset;
a89aa300 1128struct disassemble_info;
e2d0e7eb 1129struct target_ops;
030f20e1 1130struct obstack;
8181d85f 1131struct bp_target_info;
424163ea 1132struct target_desc;
237fc4c9 1133struct displaced_step_closure;
17ea7499 1134struct core_regset_section;
a96d9b2e 1135struct syscall;
175ff332 1136struct agent_expr;
6710bf39 1137struct axs_value;
55aa24fb 1138struct stap_parse_info;
7e35103a 1139struct ravenscar_arch_ops;
b3ac9c77 1140struct elf_internal_linux_prpsinfo;
104c1213 1141
6ecd4729
PA
1142/* The architecture associated with the inferior through the
1143 connection to the target.
1144
1145 The architecture vector provides some information that is really a
1146 property of the inferior, accessed through a particular target:
1147 ptrace operations; the layout of certain RSP packets; the solib_ops
1148 vector; etc. To differentiate architecture accesses to
1149 per-inferior/target properties from
1150 per-thread/per-frame/per-objfile properties, accesses to
1151 per-inferior/target properties should be made through this
1152 gdbarch. */
1153
1154/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1155extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1156
1157/* The initial, default architecture. It uses host values (for want of a better
1158 choice). */
1159extern struct gdbarch startup_gdbarch;
1160
19630284
JB
1161
1162/* Callback type for the 'iterate_over_objfiles_in_search_order'
1163 gdbarch method. */
1164
1165typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1166 (struct objfile *objfile, void *cb_data);
104c1213
JM
1167EOF
1168
1169# function typedef's
3d9a5942
AC
1170printf "\n"
1171printf "\n"
0963b4bd 1172printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1173function_list | while do_read
104c1213 1174do
2ada493a
AC
1175 if class_is_info_p
1176 then
3d9a5942
AC
1177 printf "\n"
1178 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1179 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1180 fi
104c1213
JM
1181done
1182
1183# function typedef's
3d9a5942
AC
1184printf "\n"
1185printf "\n"
0963b4bd 1186printf "/* The following are initialized by the target dependent code. */\n"
34620563 1187function_list | while do_read
104c1213 1188do
72e74a21 1189 if [ -n "${comment}" ]
34620563
AC
1190 then
1191 echo "${comment}" | sed \
1192 -e '2 s,#,/*,' \
1193 -e '3,$ s,#, ,' \
1194 -e '$ s,$, */,'
1195 fi
412d5987
AC
1196
1197 if class_is_predicate_p
2ada493a 1198 then
412d5987
AC
1199 printf "\n"
1200 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1201 fi
2ada493a
AC
1202 if class_is_variable_p
1203 then
3d9a5942
AC
1204 printf "\n"
1205 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1206 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1207 fi
1208 if class_is_function_p
1209 then
3d9a5942 1210 printf "\n"
72e74a21 1211 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1212 then
1213 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1214 elif class_is_multiarch_p
1215 then
1216 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1217 else
1218 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1219 fi
72e74a21 1220 if [ "x${formal}" = "xvoid" ]
104c1213 1221 then
3d9a5942 1222 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1223 else
3d9a5942 1224 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1225 fi
3d9a5942 1226 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1227 fi
104c1213
JM
1228done
1229
1230# close it off
1231cat <<EOF
1232
a96d9b2e
SDJ
1233/* Definition for an unknown syscall, used basically in error-cases. */
1234#define UNKNOWN_SYSCALL (-1)
1235
104c1213
JM
1236extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1237
1238
1239/* Mechanism for co-ordinating the selection of a specific
1240 architecture.
1241
1242 GDB targets (*-tdep.c) can register an interest in a specific
1243 architecture. Other GDB components can register a need to maintain
1244 per-architecture data.
1245
1246 The mechanisms below ensures that there is only a loose connection
1247 between the set-architecture command and the various GDB
0fa6923a 1248 components. Each component can independently register their need
104c1213
JM
1249 to maintain architecture specific data with gdbarch.
1250
1251 Pragmatics:
1252
1253 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1254 didn't scale.
1255
1256 The more traditional mega-struct containing architecture specific
1257 data for all the various GDB components was also considered. Since
0fa6923a 1258 GDB is built from a variable number of (fairly independent)
104c1213 1259 components it was determined that the global aproach was not
0963b4bd 1260 applicable. */
104c1213
JM
1261
1262
1263/* Register a new architectural family with GDB.
1264
1265 Register support for the specified ARCHITECTURE with GDB. When
1266 gdbarch determines that the specified architecture has been
1267 selected, the corresponding INIT function is called.
1268
1269 --
1270
1271 The INIT function takes two parameters: INFO which contains the
1272 information available to gdbarch about the (possibly new)
1273 architecture; ARCHES which is a list of the previously created
1274 \`\`struct gdbarch'' for this architecture.
1275
0f79675b 1276 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1277 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1278
1279 The ARCHES parameter is a linked list (sorted most recently used)
1280 of all the previously created architures for this architecture
1281 family. The (possibly NULL) ARCHES->gdbarch can used to access
1282 values from the previously selected architecture for this
59837fe0 1283 architecture family.
104c1213
JM
1284
1285 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1286 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1287 gdbarch'' from the ARCHES list - indicating that the new
1288 architecture is just a synonym for an earlier architecture (see
1289 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1290 - that describes the selected architecture (see gdbarch_alloc()).
1291
1292 The DUMP_TDEP function shall print out all target specific values.
1293 Care should be taken to ensure that the function works in both the
0963b4bd 1294 multi-arch and non- multi-arch cases. */
104c1213
JM
1295
1296struct gdbarch_list
1297{
1298 struct gdbarch *gdbarch;
1299 struct gdbarch_list *next;
1300};
1301
1302struct gdbarch_info
1303{
0963b4bd 1304 /* Use default: NULL (ZERO). */
104c1213
JM
1305 const struct bfd_arch_info *bfd_arch_info;
1306
428721aa 1307 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1308 enum bfd_endian byte_order;
104c1213 1309
94123b4f 1310 enum bfd_endian byte_order_for_code;
9d4fde75 1311
0963b4bd 1312 /* Use default: NULL (ZERO). */
104c1213
JM
1313 bfd *abfd;
1314
0963b4bd 1315 /* Use default: NULL (ZERO). */
104c1213 1316 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1317
1318 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1319 enum gdb_osabi osabi;
424163ea
DJ
1320
1321 /* Use default: NULL (ZERO). */
1322 const struct target_desc *target_desc;
104c1213
JM
1323};
1324
1325typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1326typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1327
4b9b3959 1328/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1329extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1330
4b9b3959
AC
1331extern void gdbarch_register (enum bfd_architecture architecture,
1332 gdbarch_init_ftype *,
1333 gdbarch_dump_tdep_ftype *);
1334
104c1213 1335
b4a20239
AC
1336/* Return a freshly allocated, NULL terminated, array of the valid
1337 architecture names. Since architectures are registered during the
1338 _initialize phase this function only returns useful information
0963b4bd 1339 once initialization has been completed. */
b4a20239
AC
1340
1341extern const char **gdbarch_printable_names (void);
1342
1343
104c1213 1344/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1345 matches the information provided by INFO. */
104c1213 1346
424163ea 1347extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1348
1349
1350/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1351 basic initialization using values obtained from the INFO and TDEP
104c1213 1352 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1353 initialization of the object. */
104c1213
JM
1354
1355extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1356
1357
4b9b3959
AC
1358/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1359 It is assumed that the caller freeds the \`\`struct
0963b4bd 1360 gdbarch_tdep''. */
4b9b3959 1361
058f20d5
JB
1362extern void gdbarch_free (struct gdbarch *);
1363
1364
aebd7893
AC
1365/* Helper function. Allocate memory from the \`\`struct gdbarch''
1366 obstack. The memory is freed when the corresponding architecture
1367 is also freed. */
1368
1369extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1370#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1371#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1372
1373
0963b4bd 1374/* Helper function. Force an update of the current architecture.
104c1213 1375
b732d07d
AC
1376 The actual architecture selected is determined by INFO, \`\`(gdb) set
1377 architecture'' et.al., the existing architecture and BFD's default
1378 architecture. INFO should be initialized to zero and then selected
1379 fields should be updated.
104c1213 1380
0963b4bd 1381 Returns non-zero if the update succeeds. */
16f33e29
AC
1382
1383extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1384
1385
ebdba546
AC
1386/* Helper function. Find an architecture matching info.
1387
1388 INFO should be initialized using gdbarch_info_init, relevant fields
1389 set, and then finished using gdbarch_info_fill.
1390
1391 Returns the corresponding architecture, or NULL if no matching
59837fe0 1392 architecture was found. */
ebdba546
AC
1393
1394extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1395
1396
aff68abb 1397/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1398
aff68abb 1399extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1400
104c1213
JM
1401
1402/* Register per-architecture data-pointer.
1403
1404 Reserve space for a per-architecture data-pointer. An identifier
1405 for the reserved data-pointer is returned. That identifer should
95160752 1406 be saved in a local static variable.
104c1213 1407
fcc1c85c
AC
1408 Memory for the per-architecture data shall be allocated using
1409 gdbarch_obstack_zalloc. That memory will be deleted when the
1410 corresponding architecture object is deleted.
104c1213 1411
95160752
AC
1412 When a previously created architecture is re-selected, the
1413 per-architecture data-pointer for that previous architecture is
76860b5f 1414 restored. INIT() is not re-called.
104c1213
JM
1415
1416 Multiple registrarants for any architecture are allowed (and
1417 strongly encouraged). */
1418
95160752 1419struct gdbarch_data;
104c1213 1420
030f20e1
AC
1421typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1422extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1423typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1424extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1425extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1426 struct gdbarch_data *data,
1427 void *pointer);
104c1213 1428
451fbdda 1429extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1430
1431
0fa6923a 1432/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1433 byte-order, ...) using information found in the BFD. */
104c1213
JM
1434
1435extern void set_gdbarch_from_file (bfd *);
1436
1437
e514a9d6
JM
1438/* Initialize the current architecture to the "first" one we find on
1439 our list. */
1440
1441extern void initialize_current_architecture (void);
1442
104c1213 1443/* gdbarch trace variable */
ccce17b0 1444extern unsigned int gdbarch_debug;
104c1213 1445
4b9b3959 1446extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1447
1448#endif
1449EOF
1450exec 1>&2
1451#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1452compare_new gdbarch.h
104c1213
JM
1453
1454
1455#
1456# C file
1457#
1458
1459exec > new-gdbarch.c
1460copyright
1461cat <<EOF
1462
1463#include "defs.h"
7355ddba 1464#include "arch-utils.h"
104c1213 1465
104c1213 1466#include "gdbcmd.h"
faaf634c 1467#include "inferior.h"
104c1213
JM
1468#include "symcat.h"
1469
f0d4cc9e 1470#include "floatformat.h"
104c1213 1471
95160752 1472#include "gdb_assert.h"
e7b12392 1473#include <string.h>
b59ff9d5 1474#include "reggroups.h"
4be87837 1475#include "osabi.h"
aebd7893 1476#include "gdb_obstack.h"
383f836e 1477#include "observer.h"
a3ecef73 1478#include "regcache.h"
19630284 1479#include "objfiles.h"
95160752 1480
104c1213
JM
1481/* Static function declarations */
1482
b3cc3077 1483static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1484
104c1213
JM
1485/* Non-zero if we want to trace architecture code. */
1486
1487#ifndef GDBARCH_DEBUG
1488#define GDBARCH_DEBUG 0
1489#endif
ccce17b0 1490unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1491static void
1492show_gdbarch_debug (struct ui_file *file, int from_tty,
1493 struct cmd_list_element *c, const char *value)
1494{
1495 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1496}
104c1213 1497
456fcf94 1498static const char *
8da61cc4 1499pformat (const struct floatformat **format)
456fcf94
AC
1500{
1501 if (format == NULL)
1502 return "(null)";
1503 else
8da61cc4
DJ
1504 /* Just print out one of them - this is only for diagnostics. */
1505 return format[0]->name;
456fcf94
AC
1506}
1507
08105857
PA
1508static const char *
1509pstring (const char *string)
1510{
1511 if (string == NULL)
1512 return "(null)";
1513 return string;
05c0465e
SDJ
1514}
1515
1516/* Helper function to print a list of strings, represented as "const
1517 char *const *". The list is printed comma-separated. */
1518
1519static char *
1520pstring_list (const char *const *list)
1521{
1522 static char ret[100];
1523 const char *const *p;
1524 size_t offset = 0;
1525
1526 if (list == NULL)
1527 return "(null)";
1528
1529 ret[0] = '\0';
1530 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1531 {
1532 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1533 offset += 2 + s;
1534 }
1535
1536 if (offset > 0)
1537 {
1538 gdb_assert (offset - 2 < sizeof (ret));
1539 ret[offset - 2] = '\0';
1540 }
1541
1542 return ret;
08105857
PA
1543}
1544
104c1213
JM
1545EOF
1546
1547# gdbarch open the gdbarch object
3d9a5942 1548printf "\n"
0963b4bd 1549printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1550printf "\n"
1551printf "struct gdbarch\n"
1552printf "{\n"
76860b5f
AC
1553printf " /* Has this architecture been fully initialized? */\n"
1554printf " int initialized_p;\n"
aebd7893
AC
1555printf "\n"
1556printf " /* An obstack bound to the lifetime of the architecture. */\n"
1557printf " struct obstack *obstack;\n"
1558printf "\n"
0963b4bd 1559printf " /* basic architectural information. */\n"
34620563 1560function_list | while do_read
104c1213 1561do
2ada493a
AC
1562 if class_is_info_p
1563 then
3d9a5942 1564 printf " ${returntype} ${function};\n"
2ada493a 1565 fi
104c1213 1566done
3d9a5942 1567printf "\n"
0963b4bd 1568printf " /* target specific vector. */\n"
3d9a5942
AC
1569printf " struct gdbarch_tdep *tdep;\n"
1570printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1571printf "\n"
0963b4bd 1572printf " /* per-architecture data-pointers. */\n"
95160752 1573printf " unsigned nr_data;\n"
3d9a5942
AC
1574printf " void **data;\n"
1575printf "\n"
104c1213
JM
1576cat <<EOF
1577 /* Multi-arch values.
1578
1579 When extending this structure you must:
1580
1581 Add the field below.
1582
1583 Declare set/get functions and define the corresponding
1584 macro in gdbarch.h.
1585
1586 gdbarch_alloc(): If zero/NULL is not a suitable default,
1587 initialize the new field.
1588
1589 verify_gdbarch(): Confirm that the target updated the field
1590 correctly.
1591
7e73cedf 1592 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1593 field is dumped out
1594
c0e8c252 1595 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1596 variable (base values on the host's c-type system).
1597
1598 get_gdbarch(): Implement the set/get functions (probably using
1599 the macro's as shortcuts).
1600
1601 */
1602
1603EOF
34620563 1604function_list | while do_read
104c1213 1605do
2ada493a
AC
1606 if class_is_variable_p
1607 then
3d9a5942 1608 printf " ${returntype} ${function};\n"
2ada493a
AC
1609 elif class_is_function_p
1610 then
2f9b146e 1611 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1612 fi
104c1213 1613done
3d9a5942 1614printf "};\n"
104c1213
JM
1615
1616# A pre-initialized vector
3d9a5942
AC
1617printf "\n"
1618printf "\n"
104c1213
JM
1619cat <<EOF
1620/* The default architecture uses host values (for want of a better
0963b4bd 1621 choice). */
104c1213 1622EOF
3d9a5942
AC
1623printf "\n"
1624printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1625printf "\n"
1626printf "struct gdbarch startup_gdbarch =\n"
1627printf "{\n"
76860b5f 1628printf " 1, /* Always initialized. */\n"
aebd7893 1629printf " NULL, /* The obstack. */\n"
0963b4bd 1630printf " /* basic architecture information. */\n"
4b9b3959 1631function_list | while do_read
104c1213 1632do
2ada493a
AC
1633 if class_is_info_p
1634 then
ec5cbaec 1635 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1636 fi
104c1213
JM
1637done
1638cat <<EOF
0963b4bd 1639 /* target specific vector and its dump routine. */
4b9b3959 1640 NULL, NULL,
c66fb220
TT
1641 /*per-architecture data-pointers. */
1642 0, NULL,
104c1213
JM
1643 /* Multi-arch values */
1644EOF
34620563 1645function_list | while do_read
104c1213 1646do
2ada493a
AC
1647 if class_is_function_p || class_is_variable_p
1648 then
ec5cbaec 1649 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1650 fi
104c1213
JM
1651done
1652cat <<EOF
c0e8c252 1653 /* startup_gdbarch() */
104c1213 1654};
4b9b3959 1655
104c1213
JM
1656EOF
1657
1658# Create a new gdbarch struct
104c1213 1659cat <<EOF
7de2341d 1660
66b43ecb 1661/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1662 \`\`struct gdbarch_info''. */
104c1213 1663EOF
3d9a5942 1664printf "\n"
104c1213
JM
1665cat <<EOF
1666struct gdbarch *
1667gdbarch_alloc (const struct gdbarch_info *info,
1668 struct gdbarch_tdep *tdep)
1669{
be7811ad 1670 struct gdbarch *gdbarch;
aebd7893
AC
1671
1672 /* Create an obstack for allocating all the per-architecture memory,
1673 then use that to allocate the architecture vector. */
70ba0933 1674 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1675 obstack_init (obstack);
be7811ad
MD
1676 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1677 memset (gdbarch, 0, sizeof (*gdbarch));
1678 gdbarch->obstack = obstack;
85de9627 1679
be7811ad 1680 alloc_gdbarch_data (gdbarch);
85de9627 1681
be7811ad 1682 gdbarch->tdep = tdep;
104c1213 1683EOF
3d9a5942 1684printf "\n"
34620563 1685function_list | while do_read
104c1213 1686do
2ada493a
AC
1687 if class_is_info_p
1688 then
be7811ad 1689 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1690 fi
104c1213 1691done
3d9a5942 1692printf "\n"
0963b4bd 1693printf " /* Force the explicit initialization of these. */\n"
34620563 1694function_list | while do_read
104c1213 1695do
2ada493a
AC
1696 if class_is_function_p || class_is_variable_p
1697 then
72e74a21 1698 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1699 then
be7811ad 1700 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1701 fi
2ada493a 1702 fi
104c1213
JM
1703done
1704cat <<EOF
1705 /* gdbarch_alloc() */
1706
be7811ad 1707 return gdbarch;
104c1213
JM
1708}
1709EOF
1710
058f20d5 1711# Free a gdbarch struct.
3d9a5942
AC
1712printf "\n"
1713printf "\n"
058f20d5 1714cat <<EOF
aebd7893
AC
1715/* Allocate extra space using the per-architecture obstack. */
1716
1717void *
1718gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1719{
1720 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1721
aebd7893
AC
1722 memset (data, 0, size);
1723 return data;
1724}
1725
1726
058f20d5
JB
1727/* Free a gdbarch struct. This should never happen in normal
1728 operation --- once you've created a gdbarch, you keep it around.
1729 However, if an architecture's init function encounters an error
1730 building the structure, it may need to clean up a partially
1731 constructed gdbarch. */
4b9b3959 1732
058f20d5
JB
1733void
1734gdbarch_free (struct gdbarch *arch)
1735{
aebd7893 1736 struct obstack *obstack;
05c547f6 1737
95160752 1738 gdb_assert (arch != NULL);
aebd7893
AC
1739 gdb_assert (!arch->initialized_p);
1740 obstack = arch->obstack;
1741 obstack_free (obstack, 0); /* Includes the ARCH. */
1742 xfree (obstack);
058f20d5
JB
1743}
1744EOF
1745
104c1213 1746# verify a new architecture
104c1213 1747cat <<EOF
db446970
AC
1748
1749
1750/* Ensure that all values in a GDBARCH are reasonable. */
1751
104c1213 1752static void
be7811ad 1753verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1754{
f16a1923
AC
1755 struct ui_file *log;
1756 struct cleanup *cleanups;
759ef836 1757 long length;
f16a1923 1758 char *buf;
05c547f6 1759
f16a1923
AC
1760 log = mem_fileopen ();
1761 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1762 /* fundamental */
be7811ad 1763 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1764 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1765 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1766 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1767 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1768EOF
34620563 1769function_list | while do_read
104c1213 1770do
2ada493a
AC
1771 if class_is_function_p || class_is_variable_p
1772 then
72e74a21 1773 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1774 then
3d9a5942 1775 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1776 elif class_is_predicate_p
1777 then
0963b4bd 1778 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1779 # FIXME: See do_read for potential simplification
72e74a21 1780 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1781 then
3d9a5942 1782 printf " if (${invalid_p})\n"
be7811ad 1783 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1784 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1785 then
be7811ad
MD
1786 printf " if (gdbarch->${function} == ${predefault})\n"
1787 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1788 elif [ -n "${postdefault}" ]
f0d4cc9e 1789 then
be7811ad
MD
1790 printf " if (gdbarch->${function} == 0)\n"
1791 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1792 elif [ -n "${invalid_p}" ]
104c1213 1793 then
4d60522e 1794 printf " if (${invalid_p})\n"
f16a1923 1795 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1796 elif [ -n "${predefault}" ]
104c1213 1797 then
be7811ad 1798 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1799 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1800 fi
2ada493a 1801 fi
104c1213
JM
1802done
1803cat <<EOF
759ef836 1804 buf = ui_file_xstrdup (log, &length);
f16a1923 1805 make_cleanup (xfree, buf);
759ef836 1806 if (length > 0)
f16a1923 1807 internal_error (__FILE__, __LINE__,
85c07804 1808 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1809 buf);
1810 do_cleanups (cleanups);
104c1213
JM
1811}
1812EOF
1813
1814# dump the structure
3d9a5942
AC
1815printf "\n"
1816printf "\n"
104c1213 1817cat <<EOF
0963b4bd 1818/* Print out the details of the current architecture. */
4b9b3959 1819
104c1213 1820void
be7811ad 1821gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1822{
b78960be 1823 const char *gdb_nm_file = "<not-defined>";
05c547f6 1824
b78960be
AC
1825#if defined (GDB_NM_FILE)
1826 gdb_nm_file = GDB_NM_FILE;
1827#endif
1828 fprintf_unfiltered (file,
1829 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1830 gdb_nm_file);
104c1213 1831EOF
97030eea 1832function_list | sort -t: -k 3 | while do_read
104c1213 1833do
1e9f55d0
AC
1834 # First the predicate
1835 if class_is_predicate_p
1836 then
7996bcec 1837 printf " fprintf_unfiltered (file,\n"
48f7351b 1838 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1839 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1840 fi
48f7351b 1841 # Print the corresponding value.
283354d8 1842 if class_is_function_p
4b9b3959 1843 then
7996bcec 1844 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1845 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1846 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1847 else
48f7351b 1848 # It is a variable
2f9b146e
AC
1849 case "${print}:${returntype}" in
1850 :CORE_ADDR )
0b1553bc
UW
1851 fmt="%s"
1852 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1853 ;;
2f9b146e 1854 :* )
48f7351b 1855 fmt="%s"
623d3eb1 1856 print="plongest (gdbarch->${function})"
48f7351b
AC
1857 ;;
1858 * )
2f9b146e 1859 fmt="%s"
48f7351b
AC
1860 ;;
1861 esac
3d9a5942 1862 printf " fprintf_unfiltered (file,\n"
48f7351b 1863 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1864 printf " ${print});\n"
2ada493a 1865 fi
104c1213 1866done
381323f4 1867cat <<EOF
be7811ad
MD
1868 if (gdbarch->dump_tdep != NULL)
1869 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1870}
1871EOF
104c1213
JM
1872
1873
1874# GET/SET
3d9a5942 1875printf "\n"
104c1213
JM
1876cat <<EOF
1877struct gdbarch_tdep *
1878gdbarch_tdep (struct gdbarch *gdbarch)
1879{
1880 if (gdbarch_debug >= 2)
3d9a5942 1881 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1882 return gdbarch->tdep;
1883}
1884EOF
3d9a5942 1885printf "\n"
34620563 1886function_list | while do_read
104c1213 1887do
2ada493a
AC
1888 if class_is_predicate_p
1889 then
3d9a5942
AC
1890 printf "\n"
1891 printf "int\n"
1892 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1893 printf "{\n"
8de9bdc4 1894 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1895 printf " return ${predicate};\n"
3d9a5942 1896 printf "}\n"
2ada493a
AC
1897 fi
1898 if class_is_function_p
1899 then
3d9a5942
AC
1900 printf "\n"
1901 printf "${returntype}\n"
72e74a21 1902 if [ "x${formal}" = "xvoid" ]
104c1213 1903 then
3d9a5942 1904 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1905 else
3d9a5942 1906 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1907 fi
3d9a5942 1908 printf "{\n"
8de9bdc4 1909 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1910 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1911 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1912 then
1913 # Allow a call to a function with a predicate.
956ac328 1914 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1915 fi
3d9a5942
AC
1916 printf " if (gdbarch_debug >= 2)\n"
1917 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1918 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1919 then
1920 if class_is_multiarch_p
1921 then
1922 params="gdbarch"
1923 else
1924 params=""
1925 fi
1926 else
1927 if class_is_multiarch_p
1928 then
1929 params="gdbarch, ${actual}"
1930 else
1931 params="${actual}"
1932 fi
1933 fi
72e74a21 1934 if [ "x${returntype}" = "xvoid" ]
104c1213 1935 then
4a5c6a1d 1936 printf " gdbarch->${function} (${params});\n"
104c1213 1937 else
4a5c6a1d 1938 printf " return gdbarch->${function} (${params});\n"
104c1213 1939 fi
3d9a5942
AC
1940 printf "}\n"
1941 printf "\n"
1942 printf "void\n"
1943 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1944 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1945 printf "{\n"
1946 printf " gdbarch->${function} = ${function};\n"
1947 printf "}\n"
2ada493a
AC
1948 elif class_is_variable_p
1949 then
3d9a5942
AC
1950 printf "\n"
1951 printf "${returntype}\n"
1952 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1953 printf "{\n"
8de9bdc4 1954 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1955 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1956 then
3d9a5942 1957 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1958 elif [ -n "${invalid_p}" ]
104c1213 1959 then
956ac328
AC
1960 printf " /* Check variable is valid. */\n"
1961 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1962 elif [ -n "${predefault}" ]
104c1213 1963 then
956ac328
AC
1964 printf " /* Check variable changed from pre-default. */\n"
1965 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1966 fi
3d9a5942
AC
1967 printf " if (gdbarch_debug >= 2)\n"
1968 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1969 printf " return gdbarch->${function};\n"
1970 printf "}\n"
1971 printf "\n"
1972 printf "void\n"
1973 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1974 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1975 printf "{\n"
1976 printf " gdbarch->${function} = ${function};\n"
1977 printf "}\n"
2ada493a
AC
1978 elif class_is_info_p
1979 then
3d9a5942
AC
1980 printf "\n"
1981 printf "${returntype}\n"
1982 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1983 printf "{\n"
8de9bdc4 1984 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1985 printf " if (gdbarch_debug >= 2)\n"
1986 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1987 printf " return gdbarch->${function};\n"
1988 printf "}\n"
2ada493a 1989 fi
104c1213
JM
1990done
1991
1992# All the trailing guff
1993cat <<EOF
1994
1995
f44c642f 1996/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1997 modules. */
104c1213
JM
1998
1999struct gdbarch_data
2000{
95160752 2001 unsigned index;
76860b5f 2002 int init_p;
030f20e1
AC
2003 gdbarch_data_pre_init_ftype *pre_init;
2004 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2005};
2006
2007struct gdbarch_data_registration
2008{
104c1213
JM
2009 struct gdbarch_data *data;
2010 struct gdbarch_data_registration *next;
2011};
2012
f44c642f 2013struct gdbarch_data_registry
104c1213 2014{
95160752 2015 unsigned nr;
104c1213
JM
2016 struct gdbarch_data_registration *registrations;
2017};
2018
f44c642f 2019struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2020{
2021 0, NULL,
2022};
2023
030f20e1
AC
2024static struct gdbarch_data *
2025gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2026 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2027{
2028 struct gdbarch_data_registration **curr;
05c547f6
MS
2029
2030 /* Append the new registration. */
f44c642f 2031 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2032 (*curr) != NULL;
2033 curr = &(*curr)->next);
70ba0933 2034 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2035 (*curr)->next = NULL;
70ba0933 2036 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2037 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2038 (*curr)->data->pre_init = pre_init;
2039 (*curr)->data->post_init = post_init;
76860b5f 2040 (*curr)->data->init_p = 1;
104c1213
JM
2041 return (*curr)->data;
2042}
2043
030f20e1
AC
2044struct gdbarch_data *
2045gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2046{
2047 return gdbarch_data_register (pre_init, NULL);
2048}
2049
2050struct gdbarch_data *
2051gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2052{
2053 return gdbarch_data_register (NULL, post_init);
2054}
104c1213 2055
0963b4bd 2056/* Create/delete the gdbarch data vector. */
95160752
AC
2057
2058static void
b3cc3077 2059alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2060{
b3cc3077
JB
2061 gdb_assert (gdbarch->data == NULL);
2062 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2063 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2064}
3c875b6f 2065
76860b5f 2066/* Initialize the current value of the specified per-architecture
0963b4bd 2067 data-pointer. */
b3cc3077 2068
95160752 2069void
030f20e1
AC
2070deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2071 struct gdbarch_data *data,
2072 void *pointer)
95160752
AC
2073{
2074 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2075 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2076 gdb_assert (data->pre_init == NULL);
95160752
AC
2077 gdbarch->data[data->index] = pointer;
2078}
2079
104c1213 2080/* Return the current value of the specified per-architecture
0963b4bd 2081 data-pointer. */
104c1213
JM
2082
2083void *
451fbdda 2084gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2085{
451fbdda 2086 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2087 if (gdbarch->data[data->index] == NULL)
76860b5f 2088 {
030f20e1
AC
2089 /* The data-pointer isn't initialized, call init() to get a
2090 value. */
2091 if (data->pre_init != NULL)
2092 /* Mid architecture creation: pass just the obstack, and not
2093 the entire architecture, as that way it isn't possible for
2094 pre-init code to refer to undefined architecture
2095 fields. */
2096 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2097 else if (gdbarch->initialized_p
2098 && data->post_init != NULL)
2099 /* Post architecture creation: pass the entire architecture
2100 (as all fields are valid), but be careful to also detect
2101 recursive references. */
2102 {
2103 gdb_assert (data->init_p);
2104 data->init_p = 0;
2105 gdbarch->data[data->index] = data->post_init (gdbarch);
2106 data->init_p = 1;
2107 }
2108 else
2109 /* The architecture initialization hasn't completed - punt -
2110 hope that the caller knows what they are doing. Once
2111 deprecated_set_gdbarch_data has been initialized, this can be
2112 changed to an internal error. */
2113 return NULL;
76860b5f
AC
2114 gdb_assert (gdbarch->data[data->index] != NULL);
2115 }
451fbdda 2116 return gdbarch->data[data->index];
104c1213
JM
2117}
2118
2119
0963b4bd 2120/* Keep a registry of the architectures known by GDB. */
104c1213 2121
4b9b3959 2122struct gdbarch_registration
104c1213
JM
2123{
2124 enum bfd_architecture bfd_architecture;
2125 gdbarch_init_ftype *init;
4b9b3959 2126 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2127 struct gdbarch_list *arches;
4b9b3959 2128 struct gdbarch_registration *next;
104c1213
JM
2129};
2130
f44c642f 2131static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2132
b4a20239
AC
2133static void
2134append_name (const char ***buf, int *nr, const char *name)
2135{
2136 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2137 (*buf)[*nr] = name;
2138 *nr += 1;
2139}
2140
2141const char **
2142gdbarch_printable_names (void)
2143{
7996bcec 2144 /* Accumulate a list of names based on the registed list of
0963b4bd 2145 architectures. */
7996bcec
AC
2146 int nr_arches = 0;
2147 const char **arches = NULL;
2148 struct gdbarch_registration *rego;
05c547f6 2149
7996bcec
AC
2150 for (rego = gdbarch_registry;
2151 rego != NULL;
2152 rego = rego->next)
b4a20239 2153 {
7996bcec
AC
2154 const struct bfd_arch_info *ap;
2155 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2156 if (ap == NULL)
2157 internal_error (__FILE__, __LINE__,
85c07804 2158 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2159 do
2160 {
2161 append_name (&arches, &nr_arches, ap->printable_name);
2162 ap = ap->next;
2163 }
2164 while (ap != NULL);
b4a20239 2165 }
7996bcec
AC
2166 append_name (&arches, &nr_arches, NULL);
2167 return arches;
b4a20239
AC
2168}
2169
2170
104c1213 2171void
4b9b3959
AC
2172gdbarch_register (enum bfd_architecture bfd_architecture,
2173 gdbarch_init_ftype *init,
2174 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2175{
4b9b3959 2176 struct gdbarch_registration **curr;
104c1213 2177 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2178
ec3d358c 2179 /* Check that BFD recognizes this architecture */
104c1213
JM
2180 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2181 if (bfd_arch_info == NULL)
2182 {
8e65ff28 2183 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2184 _("gdbarch: Attempt to register "
2185 "unknown architecture (%d)"),
8e65ff28 2186 bfd_architecture);
104c1213 2187 }
0963b4bd 2188 /* Check that we haven't seen this architecture before. */
f44c642f 2189 for (curr = &gdbarch_registry;
104c1213
JM
2190 (*curr) != NULL;
2191 curr = &(*curr)->next)
2192 {
2193 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2194 internal_error (__FILE__, __LINE__,
64b9b334 2195 _("gdbarch: Duplicate registration "
0963b4bd 2196 "of architecture (%s)"),
8e65ff28 2197 bfd_arch_info->printable_name);
104c1213
JM
2198 }
2199 /* log it */
2200 if (gdbarch_debug)
30737ed9 2201 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2202 bfd_arch_info->printable_name,
30737ed9 2203 host_address_to_string (init));
104c1213 2204 /* Append it */
70ba0933 2205 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2206 (*curr)->bfd_architecture = bfd_architecture;
2207 (*curr)->init = init;
4b9b3959 2208 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2209 (*curr)->arches = NULL;
2210 (*curr)->next = NULL;
4b9b3959
AC
2211}
2212
2213void
2214register_gdbarch_init (enum bfd_architecture bfd_architecture,
2215 gdbarch_init_ftype *init)
2216{
2217 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2218}
104c1213
JM
2219
2220
424163ea 2221/* Look for an architecture using gdbarch_info. */
104c1213
JM
2222
2223struct gdbarch_list *
2224gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2225 const struct gdbarch_info *info)
2226{
2227 for (; arches != NULL; arches = arches->next)
2228 {
2229 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2230 continue;
2231 if (info->byte_order != arches->gdbarch->byte_order)
2232 continue;
4be87837
DJ
2233 if (info->osabi != arches->gdbarch->osabi)
2234 continue;
424163ea
DJ
2235 if (info->target_desc != arches->gdbarch->target_desc)
2236 continue;
104c1213
JM
2237 return arches;
2238 }
2239 return NULL;
2240}
2241
2242
ebdba546 2243/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2244 architecture if needed. Return that new architecture. */
104c1213 2245
59837fe0
UW
2246struct gdbarch *
2247gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2248{
2249 struct gdbarch *new_gdbarch;
4b9b3959 2250 struct gdbarch_registration *rego;
104c1213 2251
b732d07d 2252 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2253 sources: "set ..."; INFOabfd supplied; and the global
2254 defaults. */
2255 gdbarch_info_fill (&info);
4be87837 2256
0963b4bd 2257 /* Must have found some sort of architecture. */
b732d07d 2258 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2259
2260 if (gdbarch_debug)
2261 {
2262 fprintf_unfiltered (gdb_stdlog,
59837fe0 2263 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2264 (info.bfd_arch_info != NULL
2265 ? info.bfd_arch_info->printable_name
2266 : "(null)"));
2267 fprintf_unfiltered (gdb_stdlog,
59837fe0 2268 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2269 info.byte_order,
d7449b42 2270 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2271 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2272 : "default"));
4be87837 2273 fprintf_unfiltered (gdb_stdlog,
59837fe0 2274 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2275 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2276 fprintf_unfiltered (gdb_stdlog,
59837fe0 2277 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2278 host_address_to_string (info.abfd));
104c1213 2279 fprintf_unfiltered (gdb_stdlog,
59837fe0 2280 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2281 host_address_to_string (info.tdep_info));
104c1213
JM
2282 }
2283
ebdba546 2284 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2285 for (rego = gdbarch_registry;
2286 rego != NULL;
2287 rego = rego->next)
2288 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2289 break;
2290 if (rego == NULL)
2291 {
2292 if (gdbarch_debug)
59837fe0 2293 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2294 "No matching architecture\n");
b732d07d
AC
2295 return 0;
2296 }
2297
ebdba546 2298 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2299 new_gdbarch = rego->init (info, rego->arches);
2300
ebdba546
AC
2301 /* Did the tdep code like it? No. Reject the change and revert to
2302 the old architecture. */
104c1213
JM
2303 if (new_gdbarch == NULL)
2304 {
2305 if (gdbarch_debug)
59837fe0 2306 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2307 "Target rejected architecture\n");
2308 return NULL;
104c1213
JM
2309 }
2310
ebdba546
AC
2311 /* Is this a pre-existing architecture (as determined by already
2312 being initialized)? Move it to the front of the architecture
2313 list (keeping the list sorted Most Recently Used). */
2314 if (new_gdbarch->initialized_p)
104c1213 2315 {
ebdba546
AC
2316 struct gdbarch_list **list;
2317 struct gdbarch_list *this;
104c1213 2318 if (gdbarch_debug)
59837fe0 2319 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2320 "Previous architecture %s (%s) selected\n",
2321 host_address_to_string (new_gdbarch),
104c1213 2322 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2323 /* Find the existing arch in the list. */
2324 for (list = &rego->arches;
2325 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2326 list = &(*list)->next);
2327 /* It had better be in the list of architectures. */
2328 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2329 /* Unlink THIS. */
2330 this = (*list);
2331 (*list) = this->next;
2332 /* Insert THIS at the front. */
2333 this->next = rego->arches;
2334 rego->arches = this;
2335 /* Return it. */
2336 return new_gdbarch;
104c1213
JM
2337 }
2338
ebdba546
AC
2339 /* It's a new architecture. */
2340 if (gdbarch_debug)
59837fe0 2341 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2342 "New architecture %s (%s) selected\n",
2343 host_address_to_string (new_gdbarch),
ebdba546
AC
2344 new_gdbarch->bfd_arch_info->printable_name);
2345
2346 /* Insert the new architecture into the front of the architecture
2347 list (keep the list sorted Most Recently Used). */
0f79675b 2348 {
70ba0933 2349 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2350 this->next = rego->arches;
2351 this->gdbarch = new_gdbarch;
2352 rego->arches = this;
2353 }
104c1213 2354
4b9b3959
AC
2355 /* Check that the newly installed architecture is valid. Plug in
2356 any post init values. */
2357 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2358 verify_gdbarch (new_gdbarch);
ebdba546 2359 new_gdbarch->initialized_p = 1;
104c1213 2360
4b9b3959 2361 if (gdbarch_debug)
ebdba546
AC
2362 gdbarch_dump (new_gdbarch, gdb_stdlog);
2363
2364 return new_gdbarch;
2365}
2366
e487cc15 2367/* Make the specified architecture current. */
ebdba546
AC
2368
2369void
aff68abb 2370set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2371{
2372 gdb_assert (new_gdbarch != NULL);
ebdba546 2373 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2374 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2375 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2376 registers_changed ();
ebdba546 2377}
104c1213 2378
f5656ead 2379/* Return the current inferior's arch. */
6ecd4729
PA
2380
2381struct gdbarch *
f5656ead 2382target_gdbarch (void)
6ecd4729
PA
2383{
2384 return current_inferior ()->gdbarch;
2385}
2386
104c1213 2387extern void _initialize_gdbarch (void);
b4a20239 2388
104c1213 2389void
34620563 2390_initialize_gdbarch (void)
104c1213 2391{
ccce17b0 2392 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2393Set architecture debugging."), _("\\
2394Show architecture debugging."), _("\\
2395When non-zero, architecture debugging is enabled."),
2396 NULL,
920d2a44 2397 show_gdbarch_debug,
85c07804 2398 &setdebuglist, &showdebuglist);
104c1213
JM
2399}
2400EOF
2401
2402# close things off
2403exec 1>&2
2404#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2405compare_new gdbarch.c
This page took 1.26318 seconds and 4 git commands to generate.