* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
0fb0cc75 6# 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
97030eea 566f:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
578f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
580v:int:cannot_step_breakpoint:::0:0::0
581v:int:have_nonsteppable_watchpoint:::0:0::0
582F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 585# Is a register in a group
97030eea 586m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 587# Fetch the pointer to the ith function argument.
97030eea 588F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
589
590# Return the appropriate register set for a core file section with
591# name SECT_NAME and size SECT_SIZE.
97030eea 592M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 593
959b8724
PA
594# When creating core dumps, some systems encode the PID in addition
595# to the LWP id in core file register section names. In those cases, the
596# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597# is set to true for such architectures; false if "XXX" represents an LWP
598# or thread id with no special encoding.
599v:int:core_reg_section_encodes_pid:::0:0::0
600
17ea7499
CES
601# Supported register notes in a core file.
602v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
de584861
PA
604# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605# core file into buffer READBUF with length LEN.
97030eea 606M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 607
28439f5e
PA
608# How the core_stratum layer converts a PTID from a core file to a
609# string.
610M:char *:core_pid_to_str:ptid_t ptid:ptid
611
a78c2d62
UW
612# BFD target to use when generating a core file.
613V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
0d5de010
DJ
615# If the elements of C++ vtables are in-place function descriptors rather
616# than normal function pointers (which may point to code or a descriptor),
617# set this to one.
97030eea 618v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
619
620# Set if the least significant bit of the delta is used instead of the least
621# significant bit of the pfn for pointers to virtual member functions.
97030eea 622v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
623
624# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 625F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 626
237fc4c9
PA
627# The maximum length of an instruction on this architecture.
628V:ULONGEST:max_insn_length:::0:0
629
630# Copy the instruction at FROM to TO, and make any adjustments
631# necessary to single-step it at that address.
632#
633# REGS holds the state the thread's registers will have before
634# executing the copied instruction; the PC in REGS will refer to FROM,
635# not the copy at TO. The caller should update it to point at TO later.
636#
637# Return a pointer to data of the architecture's choice to be passed
638# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639# the instruction's effects have been completely simulated, with the
640# resulting state written back to REGS.
641#
642# For a general explanation of displaced stepping and how GDB uses it,
643# see the comments in infrun.c.
644#
645# The TO area is only guaranteed to have space for
646# gdbarch_max_insn_length (arch) bytes, so this function must not
647# write more bytes than that to that area.
648#
649# If you do not provide this function, GDB assumes that the
650# architecture does not support displaced stepping.
651#
652# If your architecture doesn't need to adjust instructions before
653# single-stepping them, consider using simple_displaced_step_copy_insn
654# here.
655M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
657# Fix up the state resulting from successfully single-stepping a
658# displaced instruction, to give the result we would have gotten from
659# stepping the instruction in its original location.
660#
661# REGS is the register state resulting from single-stepping the
662# displaced instruction.
663#
664# CLOSURE is the result from the matching call to
665# gdbarch_displaced_step_copy_insn.
666#
667# If you provide gdbarch_displaced_step_copy_insn.but not this
668# function, then GDB assumes that no fixup is needed after
669# single-stepping the instruction.
670#
671# For a general explanation of displaced stepping and how GDB uses it,
672# see the comments in infrun.c.
673M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
674
675# Free a closure returned by gdbarch_displaced_step_copy_insn.
676#
677# If you provide gdbarch_displaced_step_copy_insn, you must provide
678# this function as well.
679#
680# If your architecture uses closures that don't need to be freed, then
681# you can use simple_displaced_step_free_closure here.
682#
683# For a general explanation of displaced stepping and how GDB uses it,
684# see the comments in infrun.c.
685m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
686
687# Return the address of an appropriate place to put displaced
688# instructions while we step over them. There need only be one such
689# place, since we're only stepping one thread over a breakpoint at a
690# time.
691#
692# For a general explanation of displaced stepping and how GDB uses it,
693# see the comments in infrun.c.
694m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
695
1c772458 696# Refresh overlay mapped state for section OSECT.
97030eea 697F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 698
97030eea 699M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
700
701# Handle special encoding of static variables in stabs debug info.
97030eea 702F:char *:static_transform_name:char *name:name
203c3895 703# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 704v:int:sofun_address_maybe_missing:::0:0::0
1cded358 705
0508c3ec
HZ
706# Parse the instruction at ADDR storing in the record execution log
707# the registers REGCACHE and memory ranges that will be affected when
708# the instruction executes, along with their current values.
709# Return -1 if something goes wrong, 0 otherwise.
710M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
711
1cded358
AR
712# Signal translation: translate inferior's signal (host's) number into
713# GDB's representation.
714m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
715# Signal translation: translate GDB's signal number into inferior's host
716# signal number.
717m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 718
4aa995e1
PA
719# Extra signal info inspection.
720#
721# Return a type suitable to inspect extra signal information.
722M:struct type *:get_siginfo_type:void:
723
60c5725c
DJ
724# Record architecture-specific information from the symbol table.
725M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf
PA
726
727# True if the list of shared libraries is one and only for all
728# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
729# This usually means that all processes, although may or may not share
730# an address space, will see the same set of symbols at the same
731# addresses.
50c71eaf 732v:int:has_global_solist:::0:0::0
2567c7d9
PA
733
734# On some targets, even though each inferior has its own private
735# address space, the debug interface takes care of making breakpoints
736# visible to all address spaces automatically. For such cases,
737# this property should be set to true.
738v:int:has_global_breakpoints:::0:0::0
104c1213 739EOF
104c1213
JM
740}
741
0b8f9e4d
AC
742#
743# The .log file
744#
745exec > new-gdbarch.log
34620563 746function_list | while do_read
0b8f9e4d
AC
747do
748 cat <<EOF
2f9b146e 749${class} ${returntype} ${function} ($formal)
104c1213 750EOF
3d9a5942
AC
751 for r in ${read}
752 do
753 eval echo \"\ \ \ \ ${r}=\${${r}}\"
754 done
f0d4cc9e 755 if class_is_predicate_p && fallback_default_p
0b8f9e4d 756 then
66d659b1 757 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
758 kill $$
759 exit 1
760 fi
72e74a21 761 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
762 then
763 echo "Error: postdefault is useless when invalid_p=0" 1>&2
764 kill $$
765 exit 1
766 fi
a72293e2
AC
767 if class_is_multiarch_p
768 then
769 if class_is_predicate_p ; then :
770 elif test "x${predefault}" = "x"
771 then
2f9b146e 772 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
773 kill $$
774 exit 1
775 fi
776 fi
3d9a5942 777 echo ""
0b8f9e4d
AC
778done
779
780exec 1>&2
781compare_new gdbarch.log
782
104c1213
JM
783
784copyright ()
785{
786cat <<EOF
59233f88
AC
787/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
788
104c1213 789/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 790
50efebf8 791 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
424163ea 792 Free Software Foundation, Inc.
104c1213
JM
793
794 This file is part of GDB.
795
796 This program is free software; you can redistribute it and/or modify
797 it under the terms of the GNU General Public License as published by
50efebf8 798 the Free Software Foundation; either version 3 of the License, or
104c1213 799 (at your option) any later version.
50efebf8 800
104c1213
JM
801 This program is distributed in the hope that it will be useful,
802 but WITHOUT ANY WARRANTY; without even the implied warranty of
803 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
804 GNU General Public License for more details.
50efebf8 805
104c1213 806 You should have received a copy of the GNU General Public License
50efebf8 807 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 808
104c1213
JM
809/* This file was created with the aid of \`\`gdbarch.sh''.
810
52204a0b 811 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
812 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
813 against the existing \`\`gdbarch.[hc]''. Any differences found
814 being reported.
815
816 If editing this file, please also run gdbarch.sh and merge any
52204a0b 817 changes into that script. Conversely, when making sweeping changes
104c1213
JM
818 to this file, modifying gdbarch.sh and using its output may prove
819 easier. */
820
821EOF
822}
823
824#
825# The .h file
826#
827
828exec > new-gdbarch.h
829copyright
830cat <<EOF
831#ifndef GDBARCH_H
832#define GDBARCH_H
833
da3331ec
AC
834struct floatformat;
835struct ui_file;
104c1213
JM
836struct frame_info;
837struct value;
b6af0555 838struct objfile;
1c772458 839struct obj_section;
a2cf933a 840struct minimal_symbol;
049ee0e4 841struct regcache;
b59ff9d5 842struct reggroup;
6ce6d90f 843struct regset;
a89aa300 844struct disassemble_info;
e2d0e7eb 845struct target_ops;
030f20e1 846struct obstack;
8181d85f 847struct bp_target_info;
424163ea 848struct target_desc;
237fc4c9 849struct displaced_step_closure;
17ea7499 850struct core_regset_section;
104c1213 851
104c1213 852extern struct gdbarch *current_gdbarch;
9e2ace22
JB
853
854/* The architecture associated with the connection to the target.
855
856 The architecture vector provides some information that is really
857 a property of the target: The layout of certain packets, for instance;
858 or the solib_ops vector. Etc. To differentiate architecture accesses
859 to per-target properties from per-thread/per-frame/per-objfile properties,
860 accesses to per-target properties should be made through target_gdbarch.
861
862 Eventually, when support for multiple targets is implemented in
863 GDB, this global should be made target-specific. */
1cf3db46 864extern struct gdbarch *target_gdbarch;
104c1213
JM
865EOF
866
867# function typedef's
3d9a5942
AC
868printf "\n"
869printf "\n"
870printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 871function_list | while do_read
104c1213 872do
2ada493a
AC
873 if class_is_info_p
874 then
3d9a5942
AC
875 printf "\n"
876 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
877 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 878 fi
104c1213
JM
879done
880
881# function typedef's
3d9a5942
AC
882printf "\n"
883printf "\n"
884printf "/* The following are initialized by the target dependent code. */\n"
34620563 885function_list | while do_read
104c1213 886do
72e74a21 887 if [ -n "${comment}" ]
34620563
AC
888 then
889 echo "${comment}" | sed \
890 -e '2 s,#,/*,' \
891 -e '3,$ s,#, ,' \
892 -e '$ s,$, */,'
893 fi
412d5987
AC
894
895 if class_is_predicate_p
2ada493a 896 then
412d5987
AC
897 printf "\n"
898 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 899 fi
2ada493a
AC
900 if class_is_variable_p
901 then
3d9a5942
AC
902 printf "\n"
903 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
904 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
905 fi
906 if class_is_function_p
907 then
3d9a5942 908 printf "\n"
72e74a21 909 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
910 then
911 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
912 elif class_is_multiarch_p
913 then
914 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
915 else
916 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
917 fi
72e74a21 918 if [ "x${formal}" = "xvoid" ]
104c1213 919 then
3d9a5942 920 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 921 else
3d9a5942 922 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 923 fi
3d9a5942 924 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 925 fi
104c1213
JM
926done
927
928# close it off
929cat <<EOF
930
931extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
932
933
934/* Mechanism for co-ordinating the selection of a specific
935 architecture.
936
937 GDB targets (*-tdep.c) can register an interest in a specific
938 architecture. Other GDB components can register a need to maintain
939 per-architecture data.
940
941 The mechanisms below ensures that there is only a loose connection
942 between the set-architecture command and the various GDB
0fa6923a 943 components. Each component can independently register their need
104c1213
JM
944 to maintain architecture specific data with gdbarch.
945
946 Pragmatics:
947
948 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
949 didn't scale.
950
951 The more traditional mega-struct containing architecture specific
952 data for all the various GDB components was also considered. Since
0fa6923a 953 GDB is built from a variable number of (fairly independent)
104c1213
JM
954 components it was determined that the global aproach was not
955 applicable. */
956
957
958/* Register a new architectural family with GDB.
959
960 Register support for the specified ARCHITECTURE with GDB. When
961 gdbarch determines that the specified architecture has been
962 selected, the corresponding INIT function is called.
963
964 --
965
966 The INIT function takes two parameters: INFO which contains the
967 information available to gdbarch about the (possibly new)
968 architecture; ARCHES which is a list of the previously created
969 \`\`struct gdbarch'' for this architecture.
970
0f79675b 971 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 972 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
973
974 The ARCHES parameter is a linked list (sorted most recently used)
975 of all the previously created architures for this architecture
976 family. The (possibly NULL) ARCHES->gdbarch can used to access
977 values from the previously selected architecture for this
978 architecture family. The global \`\`current_gdbarch'' shall not be
979 used.
104c1213
JM
980
981 The INIT function shall return any of: NULL - indicating that it
ec3d358c 982 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
983 gdbarch'' from the ARCHES list - indicating that the new
984 architecture is just a synonym for an earlier architecture (see
985 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
986 - that describes the selected architecture (see gdbarch_alloc()).
987
988 The DUMP_TDEP function shall print out all target specific values.
989 Care should be taken to ensure that the function works in both the
990 multi-arch and non- multi-arch cases. */
104c1213
JM
991
992struct gdbarch_list
993{
994 struct gdbarch *gdbarch;
995 struct gdbarch_list *next;
996};
997
998struct gdbarch_info
999{
104c1213
JM
1000 /* Use default: NULL (ZERO). */
1001 const struct bfd_arch_info *bfd_arch_info;
1002
428721aa 1003 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1004 int byte_order;
1005
9d4fde75
SS
1006 int byte_order_for_code;
1007
104c1213
JM
1008 /* Use default: NULL (ZERO). */
1009 bfd *abfd;
1010
1011 /* Use default: NULL (ZERO). */
1012 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1013
1014 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1015 enum gdb_osabi osabi;
424163ea
DJ
1016
1017 /* Use default: NULL (ZERO). */
1018 const struct target_desc *target_desc;
104c1213
JM
1019};
1020
1021typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1022typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1023
4b9b3959 1024/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1025extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1026
4b9b3959
AC
1027extern void gdbarch_register (enum bfd_architecture architecture,
1028 gdbarch_init_ftype *,
1029 gdbarch_dump_tdep_ftype *);
1030
104c1213 1031
b4a20239
AC
1032/* Return a freshly allocated, NULL terminated, array of the valid
1033 architecture names. Since architectures are registered during the
1034 _initialize phase this function only returns useful information
1035 once initialization has been completed. */
1036
1037extern const char **gdbarch_printable_names (void);
1038
1039
104c1213
JM
1040/* Helper function. Search the list of ARCHES for a GDBARCH that
1041 matches the information provided by INFO. */
1042
424163ea 1043extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1044
1045
1046/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1047 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1048 parameters. set_gdbarch_*() functions are called to complete the
1049 initialization of the object. */
1050
1051extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1052
1053
4b9b3959
AC
1054/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1055 It is assumed that the caller freeds the \`\`struct
1056 gdbarch_tdep''. */
1057
058f20d5
JB
1058extern void gdbarch_free (struct gdbarch *);
1059
1060
aebd7893
AC
1061/* Helper function. Allocate memory from the \`\`struct gdbarch''
1062 obstack. The memory is freed when the corresponding architecture
1063 is also freed. */
1064
1065extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1066#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1067#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1068
1069
b732d07d 1070/* Helper function. Force an update of the current architecture.
104c1213 1071
b732d07d
AC
1072 The actual architecture selected is determined by INFO, \`\`(gdb) set
1073 architecture'' et.al., the existing architecture and BFD's default
1074 architecture. INFO should be initialized to zero and then selected
1075 fields should be updated.
104c1213 1076
16f33e29
AC
1077 Returns non-zero if the update succeeds */
1078
1079extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1080
1081
ebdba546
AC
1082/* Helper function. Find an architecture matching info.
1083
1084 INFO should be initialized using gdbarch_info_init, relevant fields
1085 set, and then finished using gdbarch_info_fill.
1086
1087 Returns the corresponding architecture, or NULL if no matching
1088 architecture was found. "current_gdbarch" is not updated. */
1089
1090extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1091
1092
1093/* Helper function. Set the global "current_gdbarch" to "gdbarch".
1094
1095 FIXME: kettenis/20031124: Of the functions that follow, only
1096 gdbarch_from_bfd is supposed to survive. The others will
1097 dissappear since in the future GDB will (hopefully) be truly
1098 multi-arch. However, for now we're still stuck with the concept of
1099 a single active architecture. */
1100
1101extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1102
104c1213
JM
1103
1104/* Register per-architecture data-pointer.
1105
1106 Reserve space for a per-architecture data-pointer. An identifier
1107 for the reserved data-pointer is returned. That identifer should
95160752 1108 be saved in a local static variable.
104c1213 1109
fcc1c85c
AC
1110 Memory for the per-architecture data shall be allocated using
1111 gdbarch_obstack_zalloc. That memory will be deleted when the
1112 corresponding architecture object is deleted.
104c1213 1113
95160752
AC
1114 When a previously created architecture is re-selected, the
1115 per-architecture data-pointer for that previous architecture is
76860b5f 1116 restored. INIT() is not re-called.
104c1213
JM
1117
1118 Multiple registrarants for any architecture are allowed (and
1119 strongly encouraged). */
1120
95160752 1121struct gdbarch_data;
104c1213 1122
030f20e1
AC
1123typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1124extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1125typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1126extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1127extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1128 struct gdbarch_data *data,
1129 void *pointer);
104c1213 1130
451fbdda 1131extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1132
1133
0fa6923a 1134/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1135 byte-order, ...) using information found in the BFD */
1136
1137extern void set_gdbarch_from_file (bfd *);
1138
1139
e514a9d6
JM
1140/* Initialize the current architecture to the "first" one we find on
1141 our list. */
1142
1143extern void initialize_current_architecture (void);
1144
104c1213
JM
1145/* gdbarch trace variable */
1146extern int gdbarch_debug;
1147
4b9b3959 1148extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1149
1150#endif
1151EOF
1152exec 1>&2
1153#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1154compare_new gdbarch.h
104c1213
JM
1155
1156
1157#
1158# C file
1159#
1160
1161exec > new-gdbarch.c
1162copyright
1163cat <<EOF
1164
1165#include "defs.h"
7355ddba 1166#include "arch-utils.h"
104c1213 1167
104c1213 1168#include "gdbcmd.h"
faaf634c 1169#include "inferior.h"
104c1213
JM
1170#include "symcat.h"
1171
f0d4cc9e 1172#include "floatformat.h"
104c1213 1173
95160752 1174#include "gdb_assert.h"
b66d6d2e 1175#include "gdb_string.h"
b59ff9d5 1176#include "reggroups.h"
4be87837 1177#include "osabi.h"
aebd7893 1178#include "gdb_obstack.h"
383f836e 1179#include "observer.h"
a3ecef73 1180#include "regcache.h"
95160752 1181
104c1213
JM
1182/* Static function declarations */
1183
b3cc3077 1184static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1185
104c1213
JM
1186/* Non-zero if we want to trace architecture code. */
1187
1188#ifndef GDBARCH_DEBUG
1189#define GDBARCH_DEBUG 0
1190#endif
1191int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1192static void
1193show_gdbarch_debug (struct ui_file *file, int from_tty,
1194 struct cmd_list_element *c, const char *value)
1195{
1196 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1197}
104c1213 1198
456fcf94 1199static const char *
8da61cc4 1200pformat (const struct floatformat **format)
456fcf94
AC
1201{
1202 if (format == NULL)
1203 return "(null)";
1204 else
8da61cc4
DJ
1205 /* Just print out one of them - this is only for diagnostics. */
1206 return format[0]->name;
456fcf94
AC
1207}
1208
104c1213
JM
1209EOF
1210
1211# gdbarch open the gdbarch object
3d9a5942
AC
1212printf "\n"
1213printf "/* Maintain the struct gdbarch object */\n"
1214printf "\n"
1215printf "struct gdbarch\n"
1216printf "{\n"
76860b5f
AC
1217printf " /* Has this architecture been fully initialized? */\n"
1218printf " int initialized_p;\n"
aebd7893
AC
1219printf "\n"
1220printf " /* An obstack bound to the lifetime of the architecture. */\n"
1221printf " struct obstack *obstack;\n"
1222printf "\n"
3d9a5942 1223printf " /* basic architectural information */\n"
34620563 1224function_list | while do_read
104c1213 1225do
2ada493a
AC
1226 if class_is_info_p
1227 then
3d9a5942 1228 printf " ${returntype} ${function};\n"
2ada493a 1229 fi
104c1213 1230done
3d9a5942
AC
1231printf "\n"
1232printf " /* target specific vector. */\n"
1233printf " struct gdbarch_tdep *tdep;\n"
1234printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1235printf "\n"
1236printf " /* per-architecture data-pointers */\n"
95160752 1237printf " unsigned nr_data;\n"
3d9a5942
AC
1238printf " void **data;\n"
1239printf "\n"
1240printf " /* per-architecture swap-regions */\n"
1241printf " struct gdbarch_swap *swap;\n"
1242printf "\n"
104c1213
JM
1243cat <<EOF
1244 /* Multi-arch values.
1245
1246 When extending this structure you must:
1247
1248 Add the field below.
1249
1250 Declare set/get functions and define the corresponding
1251 macro in gdbarch.h.
1252
1253 gdbarch_alloc(): If zero/NULL is not a suitable default,
1254 initialize the new field.
1255
1256 verify_gdbarch(): Confirm that the target updated the field
1257 correctly.
1258
7e73cedf 1259 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1260 field is dumped out
1261
c0e8c252 1262 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1263 variable (base values on the host's c-type system).
1264
1265 get_gdbarch(): Implement the set/get functions (probably using
1266 the macro's as shortcuts).
1267
1268 */
1269
1270EOF
34620563 1271function_list | while do_read
104c1213 1272do
2ada493a
AC
1273 if class_is_variable_p
1274 then
3d9a5942 1275 printf " ${returntype} ${function};\n"
2ada493a
AC
1276 elif class_is_function_p
1277 then
2f9b146e 1278 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1279 fi
104c1213 1280done
3d9a5942 1281printf "};\n"
104c1213
JM
1282
1283# A pre-initialized vector
3d9a5942
AC
1284printf "\n"
1285printf "\n"
104c1213
JM
1286cat <<EOF
1287/* The default architecture uses host values (for want of a better
1288 choice). */
1289EOF
3d9a5942
AC
1290printf "\n"
1291printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1292printf "\n"
1293printf "struct gdbarch startup_gdbarch =\n"
1294printf "{\n"
76860b5f 1295printf " 1, /* Always initialized. */\n"
aebd7893 1296printf " NULL, /* The obstack. */\n"
3d9a5942 1297printf " /* basic architecture information */\n"
4b9b3959 1298function_list | while do_read
104c1213 1299do
2ada493a
AC
1300 if class_is_info_p
1301 then
ec5cbaec 1302 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1303 fi
104c1213
JM
1304done
1305cat <<EOF
4b9b3959
AC
1306 /* target specific vector and its dump routine */
1307 NULL, NULL,
104c1213
JM
1308 /*per-architecture data-pointers and swap regions */
1309 0, NULL, NULL,
1310 /* Multi-arch values */
1311EOF
34620563 1312function_list | while do_read
104c1213 1313do
2ada493a
AC
1314 if class_is_function_p || class_is_variable_p
1315 then
ec5cbaec 1316 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1317 fi
104c1213
JM
1318done
1319cat <<EOF
c0e8c252 1320 /* startup_gdbarch() */
104c1213 1321};
4b9b3959 1322
c0e8c252 1323struct gdbarch *current_gdbarch = &startup_gdbarch;
1cf3db46 1324struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1325EOF
1326
1327# Create a new gdbarch struct
104c1213 1328cat <<EOF
7de2341d 1329
66b43ecb 1330/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1331 \`\`struct gdbarch_info''. */
1332EOF
3d9a5942 1333printf "\n"
104c1213
JM
1334cat <<EOF
1335struct gdbarch *
1336gdbarch_alloc (const struct gdbarch_info *info,
1337 struct gdbarch_tdep *tdep)
1338{
be7811ad 1339 struct gdbarch *gdbarch;
aebd7893
AC
1340
1341 /* Create an obstack for allocating all the per-architecture memory,
1342 then use that to allocate the architecture vector. */
1343 struct obstack *obstack = XMALLOC (struct obstack);
1344 obstack_init (obstack);
be7811ad
MD
1345 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1346 memset (gdbarch, 0, sizeof (*gdbarch));
1347 gdbarch->obstack = obstack;
85de9627 1348
be7811ad 1349 alloc_gdbarch_data (gdbarch);
85de9627 1350
be7811ad 1351 gdbarch->tdep = tdep;
104c1213 1352EOF
3d9a5942 1353printf "\n"
34620563 1354function_list | while do_read
104c1213 1355do
2ada493a
AC
1356 if class_is_info_p
1357 then
be7811ad 1358 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1359 fi
104c1213 1360done
3d9a5942
AC
1361printf "\n"
1362printf " /* Force the explicit initialization of these. */\n"
34620563 1363function_list | while do_read
104c1213 1364do
2ada493a
AC
1365 if class_is_function_p || class_is_variable_p
1366 then
72e74a21 1367 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1368 then
be7811ad 1369 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1370 fi
2ada493a 1371 fi
104c1213
JM
1372done
1373cat <<EOF
1374 /* gdbarch_alloc() */
1375
be7811ad 1376 return gdbarch;
104c1213
JM
1377}
1378EOF
1379
058f20d5 1380# Free a gdbarch struct.
3d9a5942
AC
1381printf "\n"
1382printf "\n"
058f20d5 1383cat <<EOF
aebd7893
AC
1384/* Allocate extra space using the per-architecture obstack. */
1385
1386void *
1387gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1388{
1389 void *data = obstack_alloc (arch->obstack, size);
1390 memset (data, 0, size);
1391 return data;
1392}
1393
1394
058f20d5
JB
1395/* Free a gdbarch struct. This should never happen in normal
1396 operation --- once you've created a gdbarch, you keep it around.
1397 However, if an architecture's init function encounters an error
1398 building the structure, it may need to clean up a partially
1399 constructed gdbarch. */
4b9b3959 1400
058f20d5
JB
1401void
1402gdbarch_free (struct gdbarch *arch)
1403{
aebd7893 1404 struct obstack *obstack;
95160752 1405 gdb_assert (arch != NULL);
aebd7893
AC
1406 gdb_assert (!arch->initialized_p);
1407 obstack = arch->obstack;
1408 obstack_free (obstack, 0); /* Includes the ARCH. */
1409 xfree (obstack);
058f20d5
JB
1410}
1411EOF
1412
104c1213 1413# verify a new architecture
104c1213 1414cat <<EOF
db446970
AC
1415
1416
1417/* Ensure that all values in a GDBARCH are reasonable. */
1418
104c1213 1419static void
be7811ad 1420verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1421{
f16a1923
AC
1422 struct ui_file *log;
1423 struct cleanup *cleanups;
1424 long dummy;
1425 char *buf;
f16a1923
AC
1426 log = mem_fileopen ();
1427 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1428 /* fundamental */
be7811ad 1429 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1430 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1431 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1432 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1433 /* Check those that need to be defined for the given multi-arch level. */
1434EOF
34620563 1435function_list | while do_read
104c1213 1436do
2ada493a
AC
1437 if class_is_function_p || class_is_variable_p
1438 then
72e74a21 1439 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1440 then
3d9a5942 1441 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1442 elif class_is_predicate_p
1443 then
3d9a5942 1444 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1445 # FIXME: See do_read for potential simplification
72e74a21 1446 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1447 then
3d9a5942 1448 printf " if (${invalid_p})\n"
be7811ad 1449 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1450 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1451 then
be7811ad
MD
1452 printf " if (gdbarch->${function} == ${predefault})\n"
1453 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1454 elif [ -n "${postdefault}" ]
f0d4cc9e 1455 then
be7811ad
MD
1456 printf " if (gdbarch->${function} == 0)\n"
1457 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1458 elif [ -n "${invalid_p}" ]
104c1213 1459 then
4d60522e 1460 printf " if (${invalid_p})\n"
f16a1923 1461 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1462 elif [ -n "${predefault}" ]
104c1213 1463 then
be7811ad 1464 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1465 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1466 fi
2ada493a 1467 fi
104c1213
JM
1468done
1469cat <<EOF
f16a1923
AC
1470 buf = ui_file_xstrdup (log, &dummy);
1471 make_cleanup (xfree, buf);
1472 if (strlen (buf) > 0)
1473 internal_error (__FILE__, __LINE__,
85c07804 1474 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1475 buf);
1476 do_cleanups (cleanups);
104c1213
JM
1477}
1478EOF
1479
1480# dump the structure
3d9a5942
AC
1481printf "\n"
1482printf "\n"
104c1213 1483cat <<EOF
4b9b3959
AC
1484/* Print out the details of the current architecture. */
1485
104c1213 1486void
be7811ad 1487gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1488{
b78960be 1489 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1490#if defined (GDB_NM_FILE)
1491 gdb_nm_file = GDB_NM_FILE;
1492#endif
1493 fprintf_unfiltered (file,
1494 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1495 gdb_nm_file);
104c1213 1496EOF
97030eea 1497function_list | sort -t: -k 3 | while do_read
104c1213 1498do
1e9f55d0
AC
1499 # First the predicate
1500 if class_is_predicate_p
1501 then
7996bcec 1502 printf " fprintf_unfiltered (file,\n"
48f7351b 1503 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1504 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1505 fi
48f7351b 1506 # Print the corresponding value.
283354d8 1507 if class_is_function_p
4b9b3959 1508 then
7996bcec 1509 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1510 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1511 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1512 else
48f7351b 1513 # It is a variable
2f9b146e
AC
1514 case "${print}:${returntype}" in
1515 :CORE_ADDR )
0b1553bc
UW
1516 fmt="%s"
1517 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1518 ;;
2f9b146e 1519 :* )
48f7351b 1520 fmt="%s"
623d3eb1 1521 print="plongest (gdbarch->${function})"
48f7351b
AC
1522 ;;
1523 * )
2f9b146e 1524 fmt="%s"
48f7351b
AC
1525 ;;
1526 esac
3d9a5942 1527 printf " fprintf_unfiltered (file,\n"
48f7351b 1528 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1529 printf " ${print});\n"
2ada493a 1530 fi
104c1213 1531done
381323f4 1532cat <<EOF
be7811ad
MD
1533 if (gdbarch->dump_tdep != NULL)
1534 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1535}
1536EOF
104c1213
JM
1537
1538
1539# GET/SET
3d9a5942 1540printf "\n"
104c1213
JM
1541cat <<EOF
1542struct gdbarch_tdep *
1543gdbarch_tdep (struct gdbarch *gdbarch)
1544{
1545 if (gdbarch_debug >= 2)
3d9a5942 1546 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1547 return gdbarch->tdep;
1548}
1549EOF
3d9a5942 1550printf "\n"
34620563 1551function_list | while do_read
104c1213 1552do
2ada493a
AC
1553 if class_is_predicate_p
1554 then
3d9a5942
AC
1555 printf "\n"
1556 printf "int\n"
1557 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1558 printf "{\n"
8de9bdc4 1559 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1560 printf " return ${predicate};\n"
3d9a5942 1561 printf "}\n"
2ada493a
AC
1562 fi
1563 if class_is_function_p
1564 then
3d9a5942
AC
1565 printf "\n"
1566 printf "${returntype}\n"
72e74a21 1567 if [ "x${formal}" = "xvoid" ]
104c1213 1568 then
3d9a5942 1569 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1570 else
3d9a5942 1571 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1572 fi
3d9a5942 1573 printf "{\n"
8de9bdc4 1574 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1575 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1576 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1577 then
1578 # Allow a call to a function with a predicate.
956ac328 1579 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1580 fi
3d9a5942
AC
1581 printf " if (gdbarch_debug >= 2)\n"
1582 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1583 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1584 then
1585 if class_is_multiarch_p
1586 then
1587 params="gdbarch"
1588 else
1589 params=""
1590 fi
1591 else
1592 if class_is_multiarch_p
1593 then
1594 params="gdbarch, ${actual}"
1595 else
1596 params="${actual}"
1597 fi
1598 fi
72e74a21 1599 if [ "x${returntype}" = "xvoid" ]
104c1213 1600 then
4a5c6a1d 1601 printf " gdbarch->${function} (${params});\n"
104c1213 1602 else
4a5c6a1d 1603 printf " return gdbarch->${function} (${params});\n"
104c1213 1604 fi
3d9a5942
AC
1605 printf "}\n"
1606 printf "\n"
1607 printf "void\n"
1608 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1609 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1610 printf "{\n"
1611 printf " gdbarch->${function} = ${function};\n"
1612 printf "}\n"
2ada493a
AC
1613 elif class_is_variable_p
1614 then
3d9a5942
AC
1615 printf "\n"
1616 printf "${returntype}\n"
1617 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1618 printf "{\n"
8de9bdc4 1619 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1620 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1621 then
3d9a5942 1622 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1623 elif [ -n "${invalid_p}" ]
104c1213 1624 then
956ac328
AC
1625 printf " /* Check variable is valid. */\n"
1626 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1627 elif [ -n "${predefault}" ]
104c1213 1628 then
956ac328
AC
1629 printf " /* Check variable changed from pre-default. */\n"
1630 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1631 fi
3d9a5942
AC
1632 printf " if (gdbarch_debug >= 2)\n"
1633 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1634 printf " return gdbarch->${function};\n"
1635 printf "}\n"
1636 printf "\n"
1637 printf "void\n"
1638 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1639 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1640 printf "{\n"
1641 printf " gdbarch->${function} = ${function};\n"
1642 printf "}\n"
2ada493a
AC
1643 elif class_is_info_p
1644 then
3d9a5942
AC
1645 printf "\n"
1646 printf "${returntype}\n"
1647 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1648 printf "{\n"
8de9bdc4 1649 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1650 printf " if (gdbarch_debug >= 2)\n"
1651 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1652 printf " return gdbarch->${function};\n"
1653 printf "}\n"
2ada493a 1654 fi
104c1213
JM
1655done
1656
1657# All the trailing guff
1658cat <<EOF
1659
1660
f44c642f 1661/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1662 modules. */
1663
1664struct gdbarch_data
1665{
95160752 1666 unsigned index;
76860b5f 1667 int init_p;
030f20e1
AC
1668 gdbarch_data_pre_init_ftype *pre_init;
1669 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1670};
1671
1672struct gdbarch_data_registration
1673{
104c1213
JM
1674 struct gdbarch_data *data;
1675 struct gdbarch_data_registration *next;
1676};
1677
f44c642f 1678struct gdbarch_data_registry
104c1213 1679{
95160752 1680 unsigned nr;
104c1213
JM
1681 struct gdbarch_data_registration *registrations;
1682};
1683
f44c642f 1684struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1685{
1686 0, NULL,
1687};
1688
030f20e1
AC
1689static struct gdbarch_data *
1690gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1691 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1692{
1693 struct gdbarch_data_registration **curr;
76860b5f 1694 /* Append the new registraration. */
f44c642f 1695 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1696 (*curr) != NULL;
1697 curr = &(*curr)->next);
1698 (*curr) = XMALLOC (struct gdbarch_data_registration);
1699 (*curr)->next = NULL;
104c1213 1700 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1701 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1702 (*curr)->data->pre_init = pre_init;
1703 (*curr)->data->post_init = post_init;
76860b5f 1704 (*curr)->data->init_p = 1;
104c1213
JM
1705 return (*curr)->data;
1706}
1707
030f20e1
AC
1708struct gdbarch_data *
1709gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1710{
1711 return gdbarch_data_register (pre_init, NULL);
1712}
1713
1714struct gdbarch_data *
1715gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1716{
1717 return gdbarch_data_register (NULL, post_init);
1718}
104c1213 1719
b3cc3077 1720/* Create/delete the gdbarch data vector. */
95160752
AC
1721
1722static void
b3cc3077 1723alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1724{
b3cc3077
JB
1725 gdb_assert (gdbarch->data == NULL);
1726 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1727 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1728}
3c875b6f 1729
76860b5f 1730/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1731 data-pointer. */
1732
95160752 1733void
030f20e1
AC
1734deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1735 struct gdbarch_data *data,
1736 void *pointer)
95160752
AC
1737{
1738 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1739 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1740 gdb_assert (data->pre_init == NULL);
95160752
AC
1741 gdbarch->data[data->index] = pointer;
1742}
1743
104c1213
JM
1744/* Return the current value of the specified per-architecture
1745 data-pointer. */
1746
1747void *
451fbdda 1748gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1749{
451fbdda 1750 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1751 if (gdbarch->data[data->index] == NULL)
76860b5f 1752 {
030f20e1
AC
1753 /* The data-pointer isn't initialized, call init() to get a
1754 value. */
1755 if (data->pre_init != NULL)
1756 /* Mid architecture creation: pass just the obstack, and not
1757 the entire architecture, as that way it isn't possible for
1758 pre-init code to refer to undefined architecture
1759 fields. */
1760 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1761 else if (gdbarch->initialized_p
1762 && data->post_init != NULL)
1763 /* Post architecture creation: pass the entire architecture
1764 (as all fields are valid), but be careful to also detect
1765 recursive references. */
1766 {
1767 gdb_assert (data->init_p);
1768 data->init_p = 0;
1769 gdbarch->data[data->index] = data->post_init (gdbarch);
1770 data->init_p = 1;
1771 }
1772 else
1773 /* The architecture initialization hasn't completed - punt -
1774 hope that the caller knows what they are doing. Once
1775 deprecated_set_gdbarch_data has been initialized, this can be
1776 changed to an internal error. */
1777 return NULL;
76860b5f
AC
1778 gdb_assert (gdbarch->data[data->index] != NULL);
1779 }
451fbdda 1780 return gdbarch->data[data->index];
104c1213
JM
1781}
1782
1783
f44c642f 1784/* Keep a registry of the architectures known by GDB. */
104c1213 1785
4b9b3959 1786struct gdbarch_registration
104c1213
JM
1787{
1788 enum bfd_architecture bfd_architecture;
1789 gdbarch_init_ftype *init;
4b9b3959 1790 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1791 struct gdbarch_list *arches;
4b9b3959 1792 struct gdbarch_registration *next;
104c1213
JM
1793};
1794
f44c642f 1795static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1796
b4a20239
AC
1797static void
1798append_name (const char ***buf, int *nr, const char *name)
1799{
1800 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1801 (*buf)[*nr] = name;
1802 *nr += 1;
1803}
1804
1805const char **
1806gdbarch_printable_names (void)
1807{
7996bcec
AC
1808 /* Accumulate a list of names based on the registed list of
1809 architectures. */
1810 enum bfd_architecture a;
1811 int nr_arches = 0;
1812 const char **arches = NULL;
1813 struct gdbarch_registration *rego;
1814 for (rego = gdbarch_registry;
1815 rego != NULL;
1816 rego = rego->next)
b4a20239 1817 {
7996bcec
AC
1818 const struct bfd_arch_info *ap;
1819 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1820 if (ap == NULL)
1821 internal_error (__FILE__, __LINE__,
85c07804 1822 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1823 do
1824 {
1825 append_name (&arches, &nr_arches, ap->printable_name);
1826 ap = ap->next;
1827 }
1828 while (ap != NULL);
b4a20239 1829 }
7996bcec
AC
1830 append_name (&arches, &nr_arches, NULL);
1831 return arches;
b4a20239
AC
1832}
1833
1834
104c1213 1835void
4b9b3959
AC
1836gdbarch_register (enum bfd_architecture bfd_architecture,
1837 gdbarch_init_ftype *init,
1838 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1839{
4b9b3959 1840 struct gdbarch_registration **curr;
104c1213 1841 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1842 /* Check that BFD recognizes this architecture */
104c1213
JM
1843 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1844 if (bfd_arch_info == NULL)
1845 {
8e65ff28 1846 internal_error (__FILE__, __LINE__,
85c07804 1847 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1848 bfd_architecture);
104c1213
JM
1849 }
1850 /* Check that we haven't seen this architecture before */
f44c642f 1851 for (curr = &gdbarch_registry;
104c1213
JM
1852 (*curr) != NULL;
1853 curr = &(*curr)->next)
1854 {
1855 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1856 internal_error (__FILE__, __LINE__,
85c07804 1857 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1858 bfd_arch_info->printable_name);
104c1213
JM
1859 }
1860 /* log it */
1861 if (gdbarch_debug)
30737ed9 1862 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1863 bfd_arch_info->printable_name,
30737ed9 1864 host_address_to_string (init));
104c1213 1865 /* Append it */
4b9b3959 1866 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1867 (*curr)->bfd_architecture = bfd_architecture;
1868 (*curr)->init = init;
4b9b3959 1869 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1870 (*curr)->arches = NULL;
1871 (*curr)->next = NULL;
4b9b3959
AC
1872}
1873
1874void
1875register_gdbarch_init (enum bfd_architecture bfd_architecture,
1876 gdbarch_init_ftype *init)
1877{
1878 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1879}
104c1213
JM
1880
1881
424163ea 1882/* Look for an architecture using gdbarch_info. */
104c1213
JM
1883
1884struct gdbarch_list *
1885gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1886 const struct gdbarch_info *info)
1887{
1888 for (; arches != NULL; arches = arches->next)
1889 {
1890 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1891 continue;
1892 if (info->byte_order != arches->gdbarch->byte_order)
1893 continue;
4be87837
DJ
1894 if (info->osabi != arches->gdbarch->osabi)
1895 continue;
424163ea
DJ
1896 if (info->target_desc != arches->gdbarch->target_desc)
1897 continue;
104c1213
JM
1898 return arches;
1899 }
1900 return NULL;
1901}
1902
1903
ebdba546
AC
1904/* Find an architecture that matches the specified INFO. Create a new
1905 architecture if needed. Return that new architecture. Assumes
1906 that there is no current architecture. */
104c1213 1907
ebdba546 1908static struct gdbarch *
7a107747 1909find_arch_by_info (struct gdbarch_info info)
104c1213
JM
1910{
1911 struct gdbarch *new_gdbarch;
4b9b3959 1912 struct gdbarch_registration *rego;
104c1213 1913
ebdba546
AC
1914 /* The existing architecture has been swapped out - all this code
1915 works from a clean slate. */
1916 gdb_assert (current_gdbarch == NULL);
1917
b732d07d 1918 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1919 sources: "set ..."; INFOabfd supplied; and the global
1920 defaults. */
1921 gdbarch_info_fill (&info);
4be87837 1922
b732d07d
AC
1923 /* Must have found some sort of architecture. */
1924 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1925
1926 if (gdbarch_debug)
1927 {
1928 fprintf_unfiltered (gdb_stdlog,
ebdba546 1929 "find_arch_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1930 (info.bfd_arch_info != NULL
1931 ? info.bfd_arch_info->printable_name
1932 : "(null)"));
1933 fprintf_unfiltered (gdb_stdlog,
ebdba546 1934 "find_arch_by_info: info.byte_order %d (%s)\n",
104c1213 1935 info.byte_order,
d7449b42 1936 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1937 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1938 : "default"));
4be87837 1939 fprintf_unfiltered (gdb_stdlog,
ebdba546 1940 "find_arch_by_info: info.osabi %d (%s)\n",
4be87837 1941 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1942 fprintf_unfiltered (gdb_stdlog,
30737ed9
JB
1943 "find_arch_by_info: info.abfd %s\n",
1944 host_address_to_string (info.abfd));
104c1213 1945 fprintf_unfiltered (gdb_stdlog,
30737ed9
JB
1946 "find_arch_by_info: info.tdep_info %s\n",
1947 host_address_to_string (info.tdep_info));
104c1213
JM
1948 }
1949
ebdba546 1950 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1951 for (rego = gdbarch_registry;
1952 rego != NULL;
1953 rego = rego->next)
1954 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1955 break;
1956 if (rego == NULL)
1957 {
1958 if (gdbarch_debug)
ebdba546
AC
1959 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1960 "No matching architecture\n");
b732d07d
AC
1961 return 0;
1962 }
1963
ebdba546 1964 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1965 new_gdbarch = rego->init (info, rego->arches);
1966
ebdba546
AC
1967 /* Did the tdep code like it? No. Reject the change and revert to
1968 the old architecture. */
104c1213
JM
1969 if (new_gdbarch == NULL)
1970 {
1971 if (gdbarch_debug)
ebdba546
AC
1972 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1973 "Target rejected architecture\n");
1974 return NULL;
104c1213
JM
1975 }
1976
ebdba546
AC
1977 /* Is this a pre-existing architecture (as determined by already
1978 being initialized)? Move it to the front of the architecture
1979 list (keeping the list sorted Most Recently Used). */
1980 if (new_gdbarch->initialized_p)
104c1213 1981 {
ebdba546
AC
1982 struct gdbarch_list **list;
1983 struct gdbarch_list *this;
104c1213 1984 if (gdbarch_debug)
ebdba546 1985 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
30737ed9
JB
1986 "Previous architecture %s (%s) selected\n",
1987 host_address_to_string (new_gdbarch),
104c1213 1988 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
1989 /* Find the existing arch in the list. */
1990 for (list = &rego->arches;
1991 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
1992 list = &(*list)->next);
1993 /* It had better be in the list of architectures. */
1994 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
1995 /* Unlink THIS. */
1996 this = (*list);
1997 (*list) = this->next;
1998 /* Insert THIS at the front. */
1999 this->next = rego->arches;
2000 rego->arches = this;
2001 /* Return it. */
2002 return new_gdbarch;
104c1213
JM
2003 }
2004
ebdba546
AC
2005 /* It's a new architecture. */
2006 if (gdbarch_debug)
2007 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
30737ed9
JB
2008 "New architecture %s (%s) selected\n",
2009 host_address_to_string (new_gdbarch),
ebdba546
AC
2010 new_gdbarch->bfd_arch_info->printable_name);
2011
2012 /* Insert the new architecture into the front of the architecture
2013 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2014 {
2015 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2016 this->next = rego->arches;
2017 this->gdbarch = new_gdbarch;
2018 rego->arches = this;
2019 }
104c1213 2020
4b9b3959
AC
2021 /* Check that the newly installed architecture is valid. Plug in
2022 any post init values. */
2023 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2024 verify_gdbarch (new_gdbarch);
ebdba546 2025 new_gdbarch->initialized_p = 1;
104c1213 2026
4b9b3959 2027 if (gdbarch_debug)
ebdba546
AC
2028 gdbarch_dump (new_gdbarch, gdb_stdlog);
2029
2030 return new_gdbarch;
2031}
2032
2033struct gdbarch *
2034gdbarch_find_by_info (struct gdbarch_info info)
2035{
e487cc15
UW
2036 struct gdbarch *new_gdbarch;
2037
ebdba546
AC
2038 /* Save the previously selected architecture, setting the global to
2039 NULL. This stops things like gdbarch->init() trying to use the
2040 previous architecture's configuration. The previous architecture
2041 may not even be of the same architecture family. The most recent
2042 architecture of the same family is found at the head of the
2043 rego->arches list. */
e487cc15
UW
2044 struct gdbarch *old_gdbarch = current_gdbarch;
2045 current_gdbarch = NULL;
ebdba546
AC
2046
2047 /* Find the specified architecture. */
e487cc15 2048 new_gdbarch = find_arch_by_info (info);
ebdba546
AC
2049
2050 /* Restore the existing architecture. */
2051 gdb_assert (current_gdbarch == NULL);
e487cc15 2052 current_gdbarch = old_gdbarch;
4b9b3959 2053
ebdba546 2054 return new_gdbarch;
104c1213
JM
2055}
2056
e487cc15 2057/* Make the specified architecture current. */
ebdba546
AC
2058
2059void
2060deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2061{
2062 gdb_assert (new_gdbarch != NULL);
2063 gdb_assert (current_gdbarch != NULL);
2064 gdb_assert (new_gdbarch->initialized_p);
e487cc15 2065 current_gdbarch = new_gdbarch;
1cf3db46 2066 target_gdbarch = new_gdbarch;
383f836e 2067 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2068 registers_changed ();
ebdba546 2069}
104c1213 2070
104c1213 2071extern void _initialize_gdbarch (void);
b4a20239 2072
104c1213 2073void
34620563 2074_initialize_gdbarch (void)
104c1213 2075{
59233f88
AC
2076 struct cmd_list_element *c;
2077
85c07804
AC
2078 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2079Set architecture debugging."), _("\\
2080Show architecture debugging."), _("\\
2081When non-zero, architecture debugging is enabled."),
2082 NULL,
920d2a44 2083 show_gdbarch_debug,
85c07804 2084 &setdebuglist, &showdebuglist);
104c1213
JM
2085}
2086EOF
2087
2088# close things off
2089exec 1>&2
2090#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2091compare_new gdbarch.c
This page took 0.846408 seconds and 4 git commands to generate.