New python script adding pretty printers for types defined in GDB.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6# 2008, 2009, 2010 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
e17a4113 566m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
578f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
580v:int:cannot_step_breakpoint:::0:0::0
581v:int:have_nonsteppable_watchpoint:::0:0::0
582F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 585# Is a register in a group
97030eea 586m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 587# Fetch the pointer to the ith function argument.
97030eea 588F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
589
590# Return the appropriate register set for a core file section with
591# name SECT_NAME and size SECT_SIZE.
97030eea 592M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 593
959b8724
PA
594# When creating core dumps, some systems encode the PID in addition
595# to the LWP id in core file register section names. In those cases, the
596# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597# is set to true for such architectures; false if "XXX" represents an LWP
598# or thread id with no special encoding.
599v:int:core_reg_section_encodes_pid:::0:0::0
600
17ea7499
CES
601# Supported register notes in a core file.
602v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
de584861
PA
604# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605# core file into buffer READBUF with length LEN.
97030eea 606M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 607
28439f5e
PA
608# How the core_stratum layer converts a PTID from a core file to a
609# string.
610M:char *:core_pid_to_str:ptid_t ptid:ptid
611
a78c2d62
UW
612# BFD target to use when generating a core file.
613V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
0d5de010
DJ
615# If the elements of C++ vtables are in-place function descriptors rather
616# than normal function pointers (which may point to code or a descriptor),
617# set this to one.
97030eea 618v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
619
620# Set if the least significant bit of the delta is used instead of the least
621# significant bit of the pfn for pointers to virtual member functions.
97030eea 622v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
623
624# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 625F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 626
237fc4c9
PA
627# The maximum length of an instruction on this architecture.
628V:ULONGEST:max_insn_length:::0:0
629
630# Copy the instruction at FROM to TO, and make any adjustments
631# necessary to single-step it at that address.
632#
633# REGS holds the state the thread's registers will have before
634# executing the copied instruction; the PC in REGS will refer to FROM,
635# not the copy at TO. The caller should update it to point at TO later.
636#
637# Return a pointer to data of the architecture's choice to be passed
638# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639# the instruction's effects have been completely simulated, with the
640# resulting state written back to REGS.
641#
642# For a general explanation of displaced stepping and how GDB uses it,
643# see the comments in infrun.c.
644#
645# The TO area is only guaranteed to have space for
646# gdbarch_max_insn_length (arch) bytes, so this function must not
647# write more bytes than that to that area.
648#
649# If you do not provide this function, GDB assumes that the
650# architecture does not support displaced stepping.
651#
652# If your architecture doesn't need to adjust instructions before
653# single-stepping them, consider using simple_displaced_step_copy_insn
654# here.
655M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
99e40580
UW
657# Return true if GDB should use hardware single-stepping to execute
658# the displaced instruction identified by CLOSURE. If false,
659# GDB will simply restart execution at the displaced instruction
660# location, and it is up to the target to ensure GDB will receive
661# control again (e.g. by placing a software breakpoint instruction
662# into the displaced instruction buffer).
663#
664# The default implementation returns false on all targets that
665# provide a gdbarch_software_single_step routine, and true otherwise.
666m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
667
237fc4c9
PA
668# Fix up the state resulting from successfully single-stepping a
669# displaced instruction, to give the result we would have gotten from
670# stepping the instruction in its original location.
671#
672# REGS is the register state resulting from single-stepping the
673# displaced instruction.
674#
675# CLOSURE is the result from the matching call to
676# gdbarch_displaced_step_copy_insn.
677#
678# If you provide gdbarch_displaced_step_copy_insn.but not this
679# function, then GDB assumes that no fixup is needed after
680# single-stepping the instruction.
681#
682# For a general explanation of displaced stepping and how GDB uses it,
683# see the comments in infrun.c.
684M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
685
686# Free a closure returned by gdbarch_displaced_step_copy_insn.
687#
688# If you provide gdbarch_displaced_step_copy_insn, you must provide
689# this function as well.
690#
691# If your architecture uses closures that don't need to be freed, then
692# you can use simple_displaced_step_free_closure here.
693#
694# For a general explanation of displaced stepping and how GDB uses it,
695# see the comments in infrun.c.
696m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
697
698# Return the address of an appropriate place to put displaced
699# instructions while we step over them. There need only be one such
700# place, since we're only stepping one thread over a breakpoint at a
701# time.
702#
703# For a general explanation of displaced stepping and how GDB uses it,
704# see the comments in infrun.c.
705m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
706
1c772458 707# Refresh overlay mapped state for section OSECT.
97030eea 708F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 709
97030eea 710M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
711
712# Handle special encoding of static variables in stabs debug info.
97030eea 713F:char *:static_transform_name:char *name:name
203c3895 714# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 715v:int:sofun_address_maybe_missing:::0:0::0
1cded358 716
0508c3ec
HZ
717# Parse the instruction at ADDR storing in the record execution log
718# the registers REGCACHE and memory ranges that will be affected when
719# the instruction executes, along with their current values.
720# Return -1 if something goes wrong, 0 otherwise.
721M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
722
3846b520
HZ
723# Save process state after a signal.
724# Return -1 if something goes wrong, 0 otherwise.
725M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
726
1cded358
AR
727# Signal translation: translate inferior's signal (host's) number into
728# GDB's representation.
729m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
730# Signal translation: translate GDB's signal number into inferior's host
731# signal number.
732m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 733
4aa995e1
PA
734# Extra signal info inspection.
735#
736# Return a type suitable to inspect extra signal information.
737M:struct type *:get_siginfo_type:void:
738
60c5725c
DJ
739# Record architecture-specific information from the symbol table.
740M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 741
a96d9b2e
SDJ
742# Function for the 'catch syscall' feature.
743
744# Get architecture-specific system calls information from registers.
745M:LONGEST:get_syscall_number:ptid_t ptid:ptid
746
50c71eaf
PA
747# True if the list of shared libraries is one and only for all
748# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
749# This usually means that all processes, although may or may not share
750# an address space, will see the same set of symbols at the same
751# addresses.
50c71eaf 752v:int:has_global_solist:::0:0::0
2567c7d9
PA
753
754# On some targets, even though each inferior has its own private
755# address space, the debug interface takes care of making breakpoints
756# visible to all address spaces automatically. For such cases,
757# this property should be set to true.
758v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
759
760# True if inferiors share an address space (e.g., uClinux).
761m:int:has_shared_address_space:void:::default_has_shared_address_space::0
104c1213 762EOF
104c1213
JM
763}
764
0b8f9e4d
AC
765#
766# The .log file
767#
768exec > new-gdbarch.log
34620563 769function_list | while do_read
0b8f9e4d
AC
770do
771 cat <<EOF
2f9b146e 772${class} ${returntype} ${function} ($formal)
104c1213 773EOF
3d9a5942
AC
774 for r in ${read}
775 do
776 eval echo \"\ \ \ \ ${r}=\${${r}}\"
777 done
f0d4cc9e 778 if class_is_predicate_p && fallback_default_p
0b8f9e4d 779 then
66d659b1 780 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
781 kill $$
782 exit 1
783 fi
72e74a21 784 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
785 then
786 echo "Error: postdefault is useless when invalid_p=0" 1>&2
787 kill $$
788 exit 1
789 fi
a72293e2
AC
790 if class_is_multiarch_p
791 then
792 if class_is_predicate_p ; then :
793 elif test "x${predefault}" = "x"
794 then
2f9b146e 795 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
796 kill $$
797 exit 1
798 fi
799 fi
3d9a5942 800 echo ""
0b8f9e4d
AC
801done
802
803exec 1>&2
804compare_new gdbarch.log
805
104c1213
JM
806
807copyright ()
808{
809cat <<EOF
59233f88
AC
810/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
811
104c1213 812/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 813
f801e1e0
MS
814 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
815 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
816
817 This file is part of GDB.
818
819 This program is free software; you can redistribute it and/or modify
820 it under the terms of the GNU General Public License as published by
50efebf8 821 the Free Software Foundation; either version 3 of the License, or
104c1213 822 (at your option) any later version.
50efebf8 823
104c1213
JM
824 This program is distributed in the hope that it will be useful,
825 but WITHOUT ANY WARRANTY; without even the implied warranty of
826 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
827 GNU General Public License for more details.
50efebf8 828
104c1213 829 You should have received a copy of the GNU General Public License
50efebf8 830 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 831
104c1213
JM
832/* This file was created with the aid of \`\`gdbarch.sh''.
833
52204a0b 834 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
835 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
836 against the existing \`\`gdbarch.[hc]''. Any differences found
837 being reported.
838
839 If editing this file, please also run gdbarch.sh and merge any
52204a0b 840 changes into that script. Conversely, when making sweeping changes
104c1213
JM
841 to this file, modifying gdbarch.sh and using its output may prove
842 easier. */
843
844EOF
845}
846
847#
848# The .h file
849#
850
851exec > new-gdbarch.h
852copyright
853cat <<EOF
854#ifndef GDBARCH_H
855#define GDBARCH_H
856
da3331ec
AC
857struct floatformat;
858struct ui_file;
104c1213
JM
859struct frame_info;
860struct value;
b6af0555 861struct objfile;
1c772458 862struct obj_section;
a2cf933a 863struct minimal_symbol;
049ee0e4 864struct regcache;
b59ff9d5 865struct reggroup;
6ce6d90f 866struct regset;
a89aa300 867struct disassemble_info;
e2d0e7eb 868struct target_ops;
030f20e1 869struct obstack;
8181d85f 870struct bp_target_info;
424163ea 871struct target_desc;
237fc4c9 872struct displaced_step_closure;
17ea7499 873struct core_regset_section;
a96d9b2e 874struct syscall;
104c1213 875
9e2ace22
JB
876/* The architecture associated with the connection to the target.
877
878 The architecture vector provides some information that is really
879 a property of the target: The layout of certain packets, for instance;
880 or the solib_ops vector. Etc. To differentiate architecture accesses
881 to per-target properties from per-thread/per-frame/per-objfile properties,
882 accesses to per-target properties should be made through target_gdbarch.
883
884 Eventually, when support for multiple targets is implemented in
885 GDB, this global should be made target-specific. */
1cf3db46 886extern struct gdbarch *target_gdbarch;
104c1213
JM
887EOF
888
889# function typedef's
3d9a5942
AC
890printf "\n"
891printf "\n"
892printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 893function_list | while do_read
104c1213 894do
2ada493a
AC
895 if class_is_info_p
896 then
3d9a5942
AC
897 printf "\n"
898 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
899 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 900 fi
104c1213
JM
901done
902
903# function typedef's
3d9a5942
AC
904printf "\n"
905printf "\n"
906printf "/* The following are initialized by the target dependent code. */\n"
34620563 907function_list | while do_read
104c1213 908do
72e74a21 909 if [ -n "${comment}" ]
34620563
AC
910 then
911 echo "${comment}" | sed \
912 -e '2 s,#,/*,' \
913 -e '3,$ s,#, ,' \
914 -e '$ s,$, */,'
915 fi
412d5987
AC
916
917 if class_is_predicate_p
2ada493a 918 then
412d5987
AC
919 printf "\n"
920 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 921 fi
2ada493a
AC
922 if class_is_variable_p
923 then
3d9a5942
AC
924 printf "\n"
925 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
926 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
927 fi
928 if class_is_function_p
929 then
3d9a5942 930 printf "\n"
72e74a21 931 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
932 then
933 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
934 elif class_is_multiarch_p
935 then
936 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
937 else
938 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
939 fi
72e74a21 940 if [ "x${formal}" = "xvoid" ]
104c1213 941 then
3d9a5942 942 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 943 else
3d9a5942 944 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 945 fi
3d9a5942 946 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 947 fi
104c1213
JM
948done
949
950# close it off
951cat <<EOF
952
a96d9b2e
SDJ
953/* Definition for an unknown syscall, used basically in error-cases. */
954#define UNKNOWN_SYSCALL (-1)
955
104c1213
JM
956extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
957
958
959/* Mechanism for co-ordinating the selection of a specific
960 architecture.
961
962 GDB targets (*-tdep.c) can register an interest in a specific
963 architecture. Other GDB components can register a need to maintain
964 per-architecture data.
965
966 The mechanisms below ensures that there is only a loose connection
967 between the set-architecture command and the various GDB
0fa6923a 968 components. Each component can independently register their need
104c1213
JM
969 to maintain architecture specific data with gdbarch.
970
971 Pragmatics:
972
973 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
974 didn't scale.
975
976 The more traditional mega-struct containing architecture specific
977 data for all the various GDB components was also considered. Since
0fa6923a 978 GDB is built from a variable number of (fairly independent)
104c1213
JM
979 components it was determined that the global aproach was not
980 applicable. */
981
982
983/* Register a new architectural family with GDB.
984
985 Register support for the specified ARCHITECTURE with GDB. When
986 gdbarch determines that the specified architecture has been
987 selected, the corresponding INIT function is called.
988
989 --
990
991 The INIT function takes two parameters: INFO which contains the
992 information available to gdbarch about the (possibly new)
993 architecture; ARCHES which is a list of the previously created
994 \`\`struct gdbarch'' for this architecture.
995
0f79675b 996 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 997 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
998
999 The ARCHES parameter is a linked list (sorted most recently used)
1000 of all the previously created architures for this architecture
1001 family. The (possibly NULL) ARCHES->gdbarch can used to access
1002 values from the previously selected architecture for this
59837fe0 1003 architecture family.
104c1213
JM
1004
1005 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1006 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1007 gdbarch'' from the ARCHES list - indicating that the new
1008 architecture is just a synonym for an earlier architecture (see
1009 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1010 - that describes the selected architecture (see gdbarch_alloc()).
1011
1012 The DUMP_TDEP function shall print out all target specific values.
1013 Care should be taken to ensure that the function works in both the
1014 multi-arch and non- multi-arch cases. */
104c1213
JM
1015
1016struct gdbarch_list
1017{
1018 struct gdbarch *gdbarch;
1019 struct gdbarch_list *next;
1020};
1021
1022struct gdbarch_info
1023{
104c1213
JM
1024 /* Use default: NULL (ZERO). */
1025 const struct bfd_arch_info *bfd_arch_info;
1026
428721aa 1027 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1028 int byte_order;
1029
9d4fde75
SS
1030 int byte_order_for_code;
1031
104c1213
JM
1032 /* Use default: NULL (ZERO). */
1033 bfd *abfd;
1034
1035 /* Use default: NULL (ZERO). */
1036 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1037
1038 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1039 enum gdb_osabi osabi;
424163ea
DJ
1040
1041 /* Use default: NULL (ZERO). */
1042 const struct target_desc *target_desc;
104c1213
JM
1043};
1044
1045typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1046typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1047
4b9b3959 1048/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1049extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1050
4b9b3959
AC
1051extern void gdbarch_register (enum bfd_architecture architecture,
1052 gdbarch_init_ftype *,
1053 gdbarch_dump_tdep_ftype *);
1054
104c1213 1055
b4a20239
AC
1056/* Return a freshly allocated, NULL terminated, array of the valid
1057 architecture names. Since architectures are registered during the
1058 _initialize phase this function only returns useful information
1059 once initialization has been completed. */
1060
1061extern const char **gdbarch_printable_names (void);
1062
1063
104c1213
JM
1064/* Helper function. Search the list of ARCHES for a GDBARCH that
1065 matches the information provided by INFO. */
1066
424163ea 1067extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1068
1069
1070/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1071 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1072 parameters. set_gdbarch_*() functions are called to complete the
1073 initialization of the object. */
1074
1075extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1076
1077
4b9b3959
AC
1078/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1079 It is assumed that the caller freeds the \`\`struct
1080 gdbarch_tdep''. */
1081
058f20d5
JB
1082extern void gdbarch_free (struct gdbarch *);
1083
1084
aebd7893
AC
1085/* Helper function. Allocate memory from the \`\`struct gdbarch''
1086 obstack. The memory is freed when the corresponding architecture
1087 is also freed. */
1088
1089extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1090#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1091#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1092
1093
b732d07d 1094/* Helper function. Force an update of the current architecture.
104c1213 1095
b732d07d
AC
1096 The actual architecture selected is determined by INFO, \`\`(gdb) set
1097 architecture'' et.al., the existing architecture and BFD's default
1098 architecture. INFO should be initialized to zero and then selected
1099 fields should be updated.
104c1213 1100
16f33e29
AC
1101 Returns non-zero if the update succeeds */
1102
1103extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1104
1105
ebdba546
AC
1106/* Helper function. Find an architecture matching info.
1107
1108 INFO should be initialized using gdbarch_info_init, relevant fields
1109 set, and then finished using gdbarch_info_fill.
1110
1111 Returns the corresponding architecture, or NULL if no matching
59837fe0 1112 architecture was found. */
ebdba546
AC
1113
1114extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1115
1116
59837fe0 1117/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1118
1119 FIXME: kettenis/20031124: Of the functions that follow, only
1120 gdbarch_from_bfd is supposed to survive. The others will
1121 dissappear since in the future GDB will (hopefully) be truly
1122 multi-arch. However, for now we're still stuck with the concept of
1123 a single active architecture. */
1124
59837fe0 1125extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1126
104c1213
JM
1127
1128/* Register per-architecture data-pointer.
1129
1130 Reserve space for a per-architecture data-pointer. An identifier
1131 for the reserved data-pointer is returned. That identifer should
95160752 1132 be saved in a local static variable.
104c1213 1133
fcc1c85c
AC
1134 Memory for the per-architecture data shall be allocated using
1135 gdbarch_obstack_zalloc. That memory will be deleted when the
1136 corresponding architecture object is deleted.
104c1213 1137
95160752
AC
1138 When a previously created architecture is re-selected, the
1139 per-architecture data-pointer for that previous architecture is
76860b5f 1140 restored. INIT() is not re-called.
104c1213
JM
1141
1142 Multiple registrarants for any architecture are allowed (and
1143 strongly encouraged). */
1144
95160752 1145struct gdbarch_data;
104c1213 1146
030f20e1
AC
1147typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1148extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1149typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1150extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1151extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1152 struct gdbarch_data *data,
1153 void *pointer);
104c1213 1154
451fbdda 1155extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1156
1157
0fa6923a 1158/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1159 byte-order, ...) using information found in the BFD */
1160
1161extern void set_gdbarch_from_file (bfd *);
1162
1163
e514a9d6
JM
1164/* Initialize the current architecture to the "first" one we find on
1165 our list. */
1166
1167extern void initialize_current_architecture (void);
1168
104c1213
JM
1169/* gdbarch trace variable */
1170extern int gdbarch_debug;
1171
4b9b3959 1172extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1173
1174#endif
1175EOF
1176exec 1>&2
1177#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1178compare_new gdbarch.h
104c1213
JM
1179
1180
1181#
1182# C file
1183#
1184
1185exec > new-gdbarch.c
1186copyright
1187cat <<EOF
1188
1189#include "defs.h"
7355ddba 1190#include "arch-utils.h"
104c1213 1191
104c1213 1192#include "gdbcmd.h"
faaf634c 1193#include "inferior.h"
104c1213
JM
1194#include "symcat.h"
1195
f0d4cc9e 1196#include "floatformat.h"
104c1213 1197
95160752 1198#include "gdb_assert.h"
b66d6d2e 1199#include "gdb_string.h"
b59ff9d5 1200#include "reggroups.h"
4be87837 1201#include "osabi.h"
aebd7893 1202#include "gdb_obstack.h"
383f836e 1203#include "observer.h"
a3ecef73 1204#include "regcache.h"
95160752 1205
104c1213
JM
1206/* Static function declarations */
1207
b3cc3077 1208static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1209
104c1213
JM
1210/* Non-zero if we want to trace architecture code. */
1211
1212#ifndef GDBARCH_DEBUG
1213#define GDBARCH_DEBUG 0
1214#endif
1215int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1216static void
1217show_gdbarch_debug (struct ui_file *file, int from_tty,
1218 struct cmd_list_element *c, const char *value)
1219{
1220 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1221}
104c1213 1222
456fcf94 1223static const char *
8da61cc4 1224pformat (const struct floatformat **format)
456fcf94
AC
1225{
1226 if (format == NULL)
1227 return "(null)";
1228 else
8da61cc4
DJ
1229 /* Just print out one of them - this is only for diagnostics. */
1230 return format[0]->name;
456fcf94
AC
1231}
1232
104c1213
JM
1233EOF
1234
1235# gdbarch open the gdbarch object
3d9a5942
AC
1236printf "\n"
1237printf "/* Maintain the struct gdbarch object */\n"
1238printf "\n"
1239printf "struct gdbarch\n"
1240printf "{\n"
76860b5f
AC
1241printf " /* Has this architecture been fully initialized? */\n"
1242printf " int initialized_p;\n"
aebd7893
AC
1243printf "\n"
1244printf " /* An obstack bound to the lifetime of the architecture. */\n"
1245printf " struct obstack *obstack;\n"
1246printf "\n"
3d9a5942 1247printf " /* basic architectural information */\n"
34620563 1248function_list | while do_read
104c1213 1249do
2ada493a
AC
1250 if class_is_info_p
1251 then
3d9a5942 1252 printf " ${returntype} ${function};\n"
2ada493a 1253 fi
104c1213 1254done
3d9a5942
AC
1255printf "\n"
1256printf " /* target specific vector. */\n"
1257printf " struct gdbarch_tdep *tdep;\n"
1258printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1259printf "\n"
1260printf " /* per-architecture data-pointers */\n"
95160752 1261printf " unsigned nr_data;\n"
3d9a5942
AC
1262printf " void **data;\n"
1263printf "\n"
1264printf " /* per-architecture swap-regions */\n"
1265printf " struct gdbarch_swap *swap;\n"
1266printf "\n"
104c1213
JM
1267cat <<EOF
1268 /* Multi-arch values.
1269
1270 When extending this structure you must:
1271
1272 Add the field below.
1273
1274 Declare set/get functions and define the corresponding
1275 macro in gdbarch.h.
1276
1277 gdbarch_alloc(): If zero/NULL is not a suitable default,
1278 initialize the new field.
1279
1280 verify_gdbarch(): Confirm that the target updated the field
1281 correctly.
1282
7e73cedf 1283 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1284 field is dumped out
1285
c0e8c252 1286 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1287 variable (base values on the host's c-type system).
1288
1289 get_gdbarch(): Implement the set/get functions (probably using
1290 the macro's as shortcuts).
1291
1292 */
1293
1294EOF
34620563 1295function_list | while do_read
104c1213 1296do
2ada493a
AC
1297 if class_is_variable_p
1298 then
3d9a5942 1299 printf " ${returntype} ${function};\n"
2ada493a
AC
1300 elif class_is_function_p
1301 then
2f9b146e 1302 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1303 fi
104c1213 1304done
3d9a5942 1305printf "};\n"
104c1213
JM
1306
1307# A pre-initialized vector
3d9a5942
AC
1308printf "\n"
1309printf "\n"
104c1213
JM
1310cat <<EOF
1311/* The default architecture uses host values (for want of a better
1312 choice). */
1313EOF
3d9a5942
AC
1314printf "\n"
1315printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1316printf "\n"
1317printf "struct gdbarch startup_gdbarch =\n"
1318printf "{\n"
76860b5f 1319printf " 1, /* Always initialized. */\n"
aebd7893 1320printf " NULL, /* The obstack. */\n"
3d9a5942 1321printf " /* basic architecture information */\n"
4b9b3959 1322function_list | while do_read
104c1213 1323do
2ada493a
AC
1324 if class_is_info_p
1325 then
ec5cbaec 1326 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1327 fi
104c1213
JM
1328done
1329cat <<EOF
4b9b3959
AC
1330 /* target specific vector and its dump routine */
1331 NULL, NULL,
104c1213
JM
1332 /*per-architecture data-pointers and swap regions */
1333 0, NULL, NULL,
1334 /* Multi-arch values */
1335EOF
34620563 1336function_list | while do_read
104c1213 1337do
2ada493a
AC
1338 if class_is_function_p || class_is_variable_p
1339 then
ec5cbaec 1340 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1341 fi
104c1213
JM
1342done
1343cat <<EOF
c0e8c252 1344 /* startup_gdbarch() */
104c1213 1345};
4b9b3959 1346
1cf3db46 1347struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1348EOF
1349
1350# Create a new gdbarch struct
104c1213 1351cat <<EOF
7de2341d 1352
66b43ecb 1353/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1354 \`\`struct gdbarch_info''. */
1355EOF
3d9a5942 1356printf "\n"
104c1213
JM
1357cat <<EOF
1358struct gdbarch *
1359gdbarch_alloc (const struct gdbarch_info *info,
1360 struct gdbarch_tdep *tdep)
1361{
be7811ad 1362 struct gdbarch *gdbarch;
aebd7893
AC
1363
1364 /* Create an obstack for allocating all the per-architecture memory,
1365 then use that to allocate the architecture vector. */
1366 struct obstack *obstack = XMALLOC (struct obstack);
1367 obstack_init (obstack);
be7811ad
MD
1368 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1369 memset (gdbarch, 0, sizeof (*gdbarch));
1370 gdbarch->obstack = obstack;
85de9627 1371
be7811ad 1372 alloc_gdbarch_data (gdbarch);
85de9627 1373
be7811ad 1374 gdbarch->tdep = tdep;
104c1213 1375EOF
3d9a5942 1376printf "\n"
34620563 1377function_list | while do_read
104c1213 1378do
2ada493a
AC
1379 if class_is_info_p
1380 then
be7811ad 1381 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1382 fi
104c1213 1383done
3d9a5942
AC
1384printf "\n"
1385printf " /* Force the explicit initialization of these. */\n"
34620563 1386function_list | while do_read
104c1213 1387do
2ada493a
AC
1388 if class_is_function_p || class_is_variable_p
1389 then
72e74a21 1390 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1391 then
be7811ad 1392 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1393 fi
2ada493a 1394 fi
104c1213
JM
1395done
1396cat <<EOF
1397 /* gdbarch_alloc() */
1398
be7811ad 1399 return gdbarch;
104c1213
JM
1400}
1401EOF
1402
058f20d5 1403# Free a gdbarch struct.
3d9a5942
AC
1404printf "\n"
1405printf "\n"
058f20d5 1406cat <<EOF
aebd7893
AC
1407/* Allocate extra space using the per-architecture obstack. */
1408
1409void *
1410gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1411{
1412 void *data = obstack_alloc (arch->obstack, size);
1413 memset (data, 0, size);
1414 return data;
1415}
1416
1417
058f20d5
JB
1418/* Free a gdbarch struct. This should never happen in normal
1419 operation --- once you've created a gdbarch, you keep it around.
1420 However, if an architecture's init function encounters an error
1421 building the structure, it may need to clean up a partially
1422 constructed gdbarch. */
4b9b3959 1423
058f20d5
JB
1424void
1425gdbarch_free (struct gdbarch *arch)
1426{
aebd7893 1427 struct obstack *obstack;
95160752 1428 gdb_assert (arch != NULL);
aebd7893
AC
1429 gdb_assert (!arch->initialized_p);
1430 obstack = arch->obstack;
1431 obstack_free (obstack, 0); /* Includes the ARCH. */
1432 xfree (obstack);
058f20d5
JB
1433}
1434EOF
1435
104c1213 1436# verify a new architecture
104c1213 1437cat <<EOF
db446970
AC
1438
1439
1440/* Ensure that all values in a GDBARCH are reasonable. */
1441
104c1213 1442static void
be7811ad 1443verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1444{
f16a1923
AC
1445 struct ui_file *log;
1446 struct cleanup *cleanups;
759ef836 1447 long length;
f16a1923 1448 char *buf;
f16a1923
AC
1449 log = mem_fileopen ();
1450 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1451 /* fundamental */
be7811ad 1452 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1453 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1454 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1455 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1456 /* Check those that need to be defined for the given multi-arch level. */
1457EOF
34620563 1458function_list | while do_read
104c1213 1459do
2ada493a
AC
1460 if class_is_function_p || class_is_variable_p
1461 then
72e74a21 1462 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1463 then
3d9a5942 1464 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1465 elif class_is_predicate_p
1466 then
3d9a5942 1467 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1468 # FIXME: See do_read for potential simplification
72e74a21 1469 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1470 then
3d9a5942 1471 printf " if (${invalid_p})\n"
be7811ad 1472 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1473 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1474 then
be7811ad
MD
1475 printf " if (gdbarch->${function} == ${predefault})\n"
1476 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1477 elif [ -n "${postdefault}" ]
f0d4cc9e 1478 then
be7811ad
MD
1479 printf " if (gdbarch->${function} == 0)\n"
1480 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1481 elif [ -n "${invalid_p}" ]
104c1213 1482 then
4d60522e 1483 printf " if (${invalid_p})\n"
f16a1923 1484 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1485 elif [ -n "${predefault}" ]
104c1213 1486 then
be7811ad 1487 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1488 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1489 fi
2ada493a 1490 fi
104c1213
JM
1491done
1492cat <<EOF
759ef836 1493 buf = ui_file_xstrdup (log, &length);
f16a1923 1494 make_cleanup (xfree, buf);
759ef836 1495 if (length > 0)
f16a1923 1496 internal_error (__FILE__, __LINE__,
85c07804 1497 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1498 buf);
1499 do_cleanups (cleanups);
104c1213
JM
1500}
1501EOF
1502
1503# dump the structure
3d9a5942
AC
1504printf "\n"
1505printf "\n"
104c1213 1506cat <<EOF
4b9b3959
AC
1507/* Print out the details of the current architecture. */
1508
104c1213 1509void
be7811ad 1510gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1511{
b78960be 1512 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1513#if defined (GDB_NM_FILE)
1514 gdb_nm_file = GDB_NM_FILE;
1515#endif
1516 fprintf_unfiltered (file,
1517 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1518 gdb_nm_file);
104c1213 1519EOF
97030eea 1520function_list | sort -t: -k 3 | while do_read
104c1213 1521do
1e9f55d0
AC
1522 # First the predicate
1523 if class_is_predicate_p
1524 then
7996bcec 1525 printf " fprintf_unfiltered (file,\n"
48f7351b 1526 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1527 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1528 fi
48f7351b 1529 # Print the corresponding value.
283354d8 1530 if class_is_function_p
4b9b3959 1531 then
7996bcec 1532 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1533 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1534 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1535 else
48f7351b 1536 # It is a variable
2f9b146e
AC
1537 case "${print}:${returntype}" in
1538 :CORE_ADDR )
0b1553bc
UW
1539 fmt="%s"
1540 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1541 ;;
2f9b146e 1542 :* )
48f7351b 1543 fmt="%s"
623d3eb1 1544 print="plongest (gdbarch->${function})"
48f7351b
AC
1545 ;;
1546 * )
2f9b146e 1547 fmt="%s"
48f7351b
AC
1548 ;;
1549 esac
3d9a5942 1550 printf " fprintf_unfiltered (file,\n"
48f7351b 1551 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1552 printf " ${print});\n"
2ada493a 1553 fi
104c1213 1554done
381323f4 1555cat <<EOF
be7811ad
MD
1556 if (gdbarch->dump_tdep != NULL)
1557 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1558}
1559EOF
104c1213
JM
1560
1561
1562# GET/SET
3d9a5942 1563printf "\n"
104c1213
JM
1564cat <<EOF
1565struct gdbarch_tdep *
1566gdbarch_tdep (struct gdbarch *gdbarch)
1567{
1568 if (gdbarch_debug >= 2)
3d9a5942 1569 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1570 return gdbarch->tdep;
1571}
1572EOF
3d9a5942 1573printf "\n"
34620563 1574function_list | while do_read
104c1213 1575do
2ada493a
AC
1576 if class_is_predicate_p
1577 then
3d9a5942
AC
1578 printf "\n"
1579 printf "int\n"
1580 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1581 printf "{\n"
8de9bdc4 1582 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1583 printf " return ${predicate};\n"
3d9a5942 1584 printf "}\n"
2ada493a
AC
1585 fi
1586 if class_is_function_p
1587 then
3d9a5942
AC
1588 printf "\n"
1589 printf "${returntype}\n"
72e74a21 1590 if [ "x${formal}" = "xvoid" ]
104c1213 1591 then
3d9a5942 1592 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1593 else
3d9a5942 1594 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1595 fi
3d9a5942 1596 printf "{\n"
8de9bdc4 1597 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1598 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1599 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1600 then
1601 # Allow a call to a function with a predicate.
956ac328 1602 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1603 fi
3d9a5942
AC
1604 printf " if (gdbarch_debug >= 2)\n"
1605 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1606 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1607 then
1608 if class_is_multiarch_p
1609 then
1610 params="gdbarch"
1611 else
1612 params=""
1613 fi
1614 else
1615 if class_is_multiarch_p
1616 then
1617 params="gdbarch, ${actual}"
1618 else
1619 params="${actual}"
1620 fi
1621 fi
72e74a21 1622 if [ "x${returntype}" = "xvoid" ]
104c1213 1623 then
4a5c6a1d 1624 printf " gdbarch->${function} (${params});\n"
104c1213 1625 else
4a5c6a1d 1626 printf " return gdbarch->${function} (${params});\n"
104c1213 1627 fi
3d9a5942
AC
1628 printf "}\n"
1629 printf "\n"
1630 printf "void\n"
1631 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1632 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1633 printf "{\n"
1634 printf " gdbarch->${function} = ${function};\n"
1635 printf "}\n"
2ada493a
AC
1636 elif class_is_variable_p
1637 then
3d9a5942
AC
1638 printf "\n"
1639 printf "${returntype}\n"
1640 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1641 printf "{\n"
8de9bdc4 1642 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1643 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1644 then
3d9a5942 1645 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1646 elif [ -n "${invalid_p}" ]
104c1213 1647 then
956ac328
AC
1648 printf " /* Check variable is valid. */\n"
1649 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1650 elif [ -n "${predefault}" ]
104c1213 1651 then
956ac328
AC
1652 printf " /* Check variable changed from pre-default. */\n"
1653 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1654 fi
3d9a5942
AC
1655 printf " if (gdbarch_debug >= 2)\n"
1656 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1657 printf " return gdbarch->${function};\n"
1658 printf "}\n"
1659 printf "\n"
1660 printf "void\n"
1661 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1662 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1663 printf "{\n"
1664 printf " gdbarch->${function} = ${function};\n"
1665 printf "}\n"
2ada493a
AC
1666 elif class_is_info_p
1667 then
3d9a5942
AC
1668 printf "\n"
1669 printf "${returntype}\n"
1670 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1671 printf "{\n"
8de9bdc4 1672 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1673 printf " if (gdbarch_debug >= 2)\n"
1674 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1675 printf " return gdbarch->${function};\n"
1676 printf "}\n"
2ada493a 1677 fi
104c1213
JM
1678done
1679
1680# All the trailing guff
1681cat <<EOF
1682
1683
f44c642f 1684/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1685 modules. */
1686
1687struct gdbarch_data
1688{
95160752 1689 unsigned index;
76860b5f 1690 int init_p;
030f20e1
AC
1691 gdbarch_data_pre_init_ftype *pre_init;
1692 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1693};
1694
1695struct gdbarch_data_registration
1696{
104c1213
JM
1697 struct gdbarch_data *data;
1698 struct gdbarch_data_registration *next;
1699};
1700
f44c642f 1701struct gdbarch_data_registry
104c1213 1702{
95160752 1703 unsigned nr;
104c1213
JM
1704 struct gdbarch_data_registration *registrations;
1705};
1706
f44c642f 1707struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1708{
1709 0, NULL,
1710};
1711
030f20e1
AC
1712static struct gdbarch_data *
1713gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1714 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1715{
1716 struct gdbarch_data_registration **curr;
76860b5f 1717 /* Append the new registraration. */
f44c642f 1718 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1719 (*curr) != NULL;
1720 curr = &(*curr)->next);
1721 (*curr) = XMALLOC (struct gdbarch_data_registration);
1722 (*curr)->next = NULL;
104c1213 1723 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1724 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1725 (*curr)->data->pre_init = pre_init;
1726 (*curr)->data->post_init = post_init;
76860b5f 1727 (*curr)->data->init_p = 1;
104c1213
JM
1728 return (*curr)->data;
1729}
1730
030f20e1
AC
1731struct gdbarch_data *
1732gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1733{
1734 return gdbarch_data_register (pre_init, NULL);
1735}
1736
1737struct gdbarch_data *
1738gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1739{
1740 return gdbarch_data_register (NULL, post_init);
1741}
104c1213 1742
b3cc3077 1743/* Create/delete the gdbarch data vector. */
95160752
AC
1744
1745static void
b3cc3077 1746alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1747{
b3cc3077
JB
1748 gdb_assert (gdbarch->data == NULL);
1749 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1750 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1751}
3c875b6f 1752
76860b5f 1753/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1754 data-pointer. */
1755
95160752 1756void
030f20e1
AC
1757deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1758 struct gdbarch_data *data,
1759 void *pointer)
95160752
AC
1760{
1761 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1762 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1763 gdb_assert (data->pre_init == NULL);
95160752
AC
1764 gdbarch->data[data->index] = pointer;
1765}
1766
104c1213
JM
1767/* Return the current value of the specified per-architecture
1768 data-pointer. */
1769
1770void *
451fbdda 1771gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1772{
451fbdda 1773 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1774 if (gdbarch->data[data->index] == NULL)
76860b5f 1775 {
030f20e1
AC
1776 /* The data-pointer isn't initialized, call init() to get a
1777 value. */
1778 if (data->pre_init != NULL)
1779 /* Mid architecture creation: pass just the obstack, and not
1780 the entire architecture, as that way it isn't possible for
1781 pre-init code to refer to undefined architecture
1782 fields. */
1783 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1784 else if (gdbarch->initialized_p
1785 && data->post_init != NULL)
1786 /* Post architecture creation: pass the entire architecture
1787 (as all fields are valid), but be careful to also detect
1788 recursive references. */
1789 {
1790 gdb_assert (data->init_p);
1791 data->init_p = 0;
1792 gdbarch->data[data->index] = data->post_init (gdbarch);
1793 data->init_p = 1;
1794 }
1795 else
1796 /* The architecture initialization hasn't completed - punt -
1797 hope that the caller knows what they are doing. Once
1798 deprecated_set_gdbarch_data has been initialized, this can be
1799 changed to an internal error. */
1800 return NULL;
76860b5f
AC
1801 gdb_assert (gdbarch->data[data->index] != NULL);
1802 }
451fbdda 1803 return gdbarch->data[data->index];
104c1213
JM
1804}
1805
1806
f44c642f 1807/* Keep a registry of the architectures known by GDB. */
104c1213 1808
4b9b3959 1809struct gdbarch_registration
104c1213
JM
1810{
1811 enum bfd_architecture bfd_architecture;
1812 gdbarch_init_ftype *init;
4b9b3959 1813 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1814 struct gdbarch_list *arches;
4b9b3959 1815 struct gdbarch_registration *next;
104c1213
JM
1816};
1817
f44c642f 1818static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1819
b4a20239
AC
1820static void
1821append_name (const char ***buf, int *nr, const char *name)
1822{
1823 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1824 (*buf)[*nr] = name;
1825 *nr += 1;
1826}
1827
1828const char **
1829gdbarch_printable_names (void)
1830{
7996bcec
AC
1831 /* Accumulate a list of names based on the registed list of
1832 architectures. */
1833 enum bfd_architecture a;
1834 int nr_arches = 0;
1835 const char **arches = NULL;
1836 struct gdbarch_registration *rego;
1837 for (rego = gdbarch_registry;
1838 rego != NULL;
1839 rego = rego->next)
b4a20239 1840 {
7996bcec
AC
1841 const struct bfd_arch_info *ap;
1842 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1843 if (ap == NULL)
1844 internal_error (__FILE__, __LINE__,
85c07804 1845 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1846 do
1847 {
1848 append_name (&arches, &nr_arches, ap->printable_name);
1849 ap = ap->next;
1850 }
1851 while (ap != NULL);
b4a20239 1852 }
7996bcec
AC
1853 append_name (&arches, &nr_arches, NULL);
1854 return arches;
b4a20239
AC
1855}
1856
1857
104c1213 1858void
4b9b3959
AC
1859gdbarch_register (enum bfd_architecture bfd_architecture,
1860 gdbarch_init_ftype *init,
1861 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1862{
4b9b3959 1863 struct gdbarch_registration **curr;
104c1213 1864 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1865 /* Check that BFD recognizes this architecture */
104c1213
JM
1866 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1867 if (bfd_arch_info == NULL)
1868 {
8e65ff28 1869 internal_error (__FILE__, __LINE__,
85c07804 1870 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1871 bfd_architecture);
104c1213
JM
1872 }
1873 /* Check that we haven't seen this architecture before */
f44c642f 1874 for (curr = &gdbarch_registry;
104c1213
JM
1875 (*curr) != NULL;
1876 curr = &(*curr)->next)
1877 {
1878 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1879 internal_error (__FILE__, __LINE__,
85c07804 1880 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1881 bfd_arch_info->printable_name);
104c1213
JM
1882 }
1883 /* log it */
1884 if (gdbarch_debug)
30737ed9 1885 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1886 bfd_arch_info->printable_name,
30737ed9 1887 host_address_to_string (init));
104c1213 1888 /* Append it */
4b9b3959 1889 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1890 (*curr)->bfd_architecture = bfd_architecture;
1891 (*curr)->init = init;
4b9b3959 1892 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1893 (*curr)->arches = NULL;
1894 (*curr)->next = NULL;
4b9b3959
AC
1895}
1896
1897void
1898register_gdbarch_init (enum bfd_architecture bfd_architecture,
1899 gdbarch_init_ftype *init)
1900{
1901 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1902}
104c1213
JM
1903
1904
424163ea 1905/* Look for an architecture using gdbarch_info. */
104c1213
JM
1906
1907struct gdbarch_list *
1908gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1909 const struct gdbarch_info *info)
1910{
1911 for (; arches != NULL; arches = arches->next)
1912 {
1913 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1914 continue;
1915 if (info->byte_order != arches->gdbarch->byte_order)
1916 continue;
4be87837
DJ
1917 if (info->osabi != arches->gdbarch->osabi)
1918 continue;
424163ea
DJ
1919 if (info->target_desc != arches->gdbarch->target_desc)
1920 continue;
104c1213
JM
1921 return arches;
1922 }
1923 return NULL;
1924}
1925
1926
ebdba546 1927/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1928 architecture if needed. Return that new architecture. */
104c1213 1929
59837fe0
UW
1930struct gdbarch *
1931gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1932{
1933 struct gdbarch *new_gdbarch;
4b9b3959 1934 struct gdbarch_registration *rego;
104c1213 1935
b732d07d 1936 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1937 sources: "set ..."; INFOabfd supplied; and the global
1938 defaults. */
1939 gdbarch_info_fill (&info);
4be87837 1940
b732d07d
AC
1941 /* Must have found some sort of architecture. */
1942 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1943
1944 if (gdbarch_debug)
1945 {
1946 fprintf_unfiltered (gdb_stdlog,
59837fe0 1947 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1948 (info.bfd_arch_info != NULL
1949 ? info.bfd_arch_info->printable_name
1950 : "(null)"));
1951 fprintf_unfiltered (gdb_stdlog,
59837fe0 1952 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 1953 info.byte_order,
d7449b42 1954 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1955 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1956 : "default"));
4be87837 1957 fprintf_unfiltered (gdb_stdlog,
59837fe0 1958 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 1959 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1960 fprintf_unfiltered (gdb_stdlog,
59837fe0 1961 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 1962 host_address_to_string (info.abfd));
104c1213 1963 fprintf_unfiltered (gdb_stdlog,
59837fe0 1964 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 1965 host_address_to_string (info.tdep_info));
104c1213
JM
1966 }
1967
ebdba546 1968 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1969 for (rego = gdbarch_registry;
1970 rego != NULL;
1971 rego = rego->next)
1972 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1973 break;
1974 if (rego == NULL)
1975 {
1976 if (gdbarch_debug)
59837fe0 1977 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 1978 "No matching architecture\n");
b732d07d
AC
1979 return 0;
1980 }
1981
ebdba546 1982 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1983 new_gdbarch = rego->init (info, rego->arches);
1984
ebdba546
AC
1985 /* Did the tdep code like it? No. Reject the change and revert to
1986 the old architecture. */
104c1213
JM
1987 if (new_gdbarch == NULL)
1988 {
1989 if (gdbarch_debug)
59837fe0 1990 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
1991 "Target rejected architecture\n");
1992 return NULL;
104c1213
JM
1993 }
1994
ebdba546
AC
1995 /* Is this a pre-existing architecture (as determined by already
1996 being initialized)? Move it to the front of the architecture
1997 list (keeping the list sorted Most Recently Used). */
1998 if (new_gdbarch->initialized_p)
104c1213 1999 {
ebdba546
AC
2000 struct gdbarch_list **list;
2001 struct gdbarch_list *this;
104c1213 2002 if (gdbarch_debug)
59837fe0 2003 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2004 "Previous architecture %s (%s) selected\n",
2005 host_address_to_string (new_gdbarch),
104c1213 2006 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2007 /* Find the existing arch in the list. */
2008 for (list = &rego->arches;
2009 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2010 list = &(*list)->next);
2011 /* It had better be in the list of architectures. */
2012 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2013 /* Unlink THIS. */
2014 this = (*list);
2015 (*list) = this->next;
2016 /* Insert THIS at the front. */
2017 this->next = rego->arches;
2018 rego->arches = this;
2019 /* Return it. */
2020 return new_gdbarch;
104c1213
JM
2021 }
2022
ebdba546
AC
2023 /* It's a new architecture. */
2024 if (gdbarch_debug)
59837fe0 2025 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2026 "New architecture %s (%s) selected\n",
2027 host_address_to_string (new_gdbarch),
ebdba546
AC
2028 new_gdbarch->bfd_arch_info->printable_name);
2029
2030 /* Insert the new architecture into the front of the architecture
2031 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2032 {
2033 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2034 this->next = rego->arches;
2035 this->gdbarch = new_gdbarch;
2036 rego->arches = this;
2037 }
104c1213 2038
4b9b3959
AC
2039 /* Check that the newly installed architecture is valid. Plug in
2040 any post init values. */
2041 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2042 verify_gdbarch (new_gdbarch);
ebdba546 2043 new_gdbarch->initialized_p = 1;
104c1213 2044
4b9b3959 2045 if (gdbarch_debug)
ebdba546
AC
2046 gdbarch_dump (new_gdbarch, gdb_stdlog);
2047
2048 return new_gdbarch;
2049}
2050
e487cc15 2051/* Make the specified architecture current. */
ebdba546
AC
2052
2053void
59837fe0 2054deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2055{
2056 gdb_assert (new_gdbarch != NULL);
ebdba546 2057 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2058 target_gdbarch = new_gdbarch;
383f836e 2059 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2060 registers_changed ();
ebdba546 2061}
104c1213 2062
104c1213 2063extern void _initialize_gdbarch (void);
b4a20239 2064
104c1213 2065void
34620563 2066_initialize_gdbarch (void)
104c1213 2067{
59233f88
AC
2068 struct cmd_list_element *c;
2069
85c07804
AC
2070 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2071Set architecture debugging."), _("\\
2072Show architecture debugging."), _("\\
2073When non-zero, architecture debugging is enabled."),
2074 NULL,
920d2a44 2075 show_gdbarch_debug,
85c07804 2076 &setdebuglist, &showdebuglist);
104c1213
JM
2077}
2078EOF
2079
2080# close things off
2081exec 1>&2
2082#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2083compare_new gdbarch.c
This page took 1.537487 seconds and 4 git commands to generate.