Add fast tracepoints.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6# 2008, 2009, 2010 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
97030eea 489M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
490m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
491m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 492v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
493
494# A function can be addressed by either it's "pointer" (possibly a
495# descriptor address) or "entry point" (first executable instruction).
496# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 497# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
498# a simplified subset of that functionality - the function's address
499# corresponds to the "function pointer" and the function's start
500# corresponds to the "function entry point" - and hence is redundant.
501
97030eea 502v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 503
123dc839
DJ
504# Return the remote protocol register number associated with this
505# register. Normally the identity mapping.
97030eea 506m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 507
b2756930 508# Fetch the target specific address used to represent a load module.
97030eea 509F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 510#
97030eea
UW
511v:CORE_ADDR:frame_args_skip:::0:::0
512M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
513M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
514# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
515# frame-base. Enable frame-base before frame-unwind.
97030eea 516F:int:frame_num_args:struct frame_info *frame:frame
104c1213 517#
97030eea
UW
518M:CORE_ADDR:frame_align:CORE_ADDR address:address
519m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
520v:int:frame_red_zone_size
f0d4cc9e 521#
97030eea 522m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
523# On some machines there are bits in addresses which are not really
524# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 525# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
526# we get a "real" address such as one would find in a symbol table.
527# This is used only for addresses of instructions, and even then I'm
528# not sure it's used in all contexts. It exists to deal with there
529# being a few stray bits in the PC which would mislead us, not as some
530# sort of generic thing to handle alignment or segmentation (it's
531# possible it should be in TARGET_READ_PC instead).
24568a2c 532m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 533# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 534# gdbarch_addr_bits_remove.
24568a2c 535m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
536
537# FIXME/cagney/2001-01-18: This should be split in two. A target method that
538# indicates if the target needs software single step. An ISA method to
539# implement it.
540#
541# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
542# breakpoints using the breakpoint system instead of blatting memory directly
543# (as with rs6000).
64c4637f 544#
e6590a1b
UW
545# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
546# target can single step. If not, then implement single step using breakpoints.
64c4637f 547#
e6590a1b
UW
548# A return value of 1 means that the software_single_step breakpoints
549# were inserted; 0 means they were not.
97030eea 550F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 551
3352ef37
AC
552# Return non-zero if the processor is executing a delay slot and a
553# further single-step is needed before the instruction finishes.
97030eea 554M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 555# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 556# disassembler. Perhaps objdump can handle it?
97030eea
UW
557f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
558f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
559
560
cfd8ab24 561# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
562# evaluates non-zero, this is the address where the debugger will place
563# a step-resume breakpoint to get us past the dynamic linker.
97030eea 564m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 565# Some systems also have trampoline code for returning from shared libs.
e17a4113 566m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 567
c12260ac
CV
568# A target might have problems with watchpoints as soon as the stack
569# frame of the current function has been destroyed. This mostly happens
570# as the first action in a funtion's epilogue. in_function_epilogue_p()
571# is defined to return a non-zero value if either the given addr is one
572# instruction after the stack destroying instruction up to the trailing
573# return instruction or if we can figure out that the stack frame has
574# already been invalidated regardless of the value of addr. Targets
575# which don't suffer from that problem could just let this functionality
576# untouched.
97030eea 577m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
578f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
579f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
580v:int:cannot_step_breakpoint:::0:0::0
581v:int:have_nonsteppable_watchpoint:::0:0::0
582F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
583M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
584M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 585# Is a register in a group
97030eea 586m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 587# Fetch the pointer to the ith function argument.
97030eea 588F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
589
590# Return the appropriate register set for a core file section with
591# name SECT_NAME and size SECT_SIZE.
97030eea 592M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 593
959b8724
PA
594# When creating core dumps, some systems encode the PID in addition
595# to the LWP id in core file register section names. In those cases, the
596# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
597# is set to true for such architectures; false if "XXX" represents an LWP
598# or thread id with no special encoding.
599v:int:core_reg_section_encodes_pid:::0:0::0
600
17ea7499
CES
601# Supported register notes in a core file.
602v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
603
de584861
PA
604# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
605# core file into buffer READBUF with length LEN.
97030eea 606M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 607
28439f5e
PA
608# How the core_stratum layer converts a PTID from a core file to a
609# string.
610M:char *:core_pid_to_str:ptid_t ptid:ptid
611
a78c2d62
UW
612# BFD target to use when generating a core file.
613V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
614
0d5de010
DJ
615# If the elements of C++ vtables are in-place function descriptors rather
616# than normal function pointers (which may point to code or a descriptor),
617# set this to one.
97030eea 618v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
619
620# Set if the least significant bit of the delta is used instead of the least
621# significant bit of the pfn for pointers to virtual member functions.
97030eea 622v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
623
624# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 625F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 626
237fc4c9
PA
627# The maximum length of an instruction on this architecture.
628V:ULONGEST:max_insn_length:::0:0
629
630# Copy the instruction at FROM to TO, and make any adjustments
631# necessary to single-step it at that address.
632#
633# REGS holds the state the thread's registers will have before
634# executing the copied instruction; the PC in REGS will refer to FROM,
635# not the copy at TO. The caller should update it to point at TO later.
636#
637# Return a pointer to data of the architecture's choice to be passed
638# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
639# the instruction's effects have been completely simulated, with the
640# resulting state written back to REGS.
641#
642# For a general explanation of displaced stepping and how GDB uses it,
643# see the comments in infrun.c.
644#
645# The TO area is only guaranteed to have space for
646# gdbarch_max_insn_length (arch) bytes, so this function must not
647# write more bytes than that to that area.
648#
649# If you do not provide this function, GDB assumes that the
650# architecture does not support displaced stepping.
651#
652# If your architecture doesn't need to adjust instructions before
653# single-stepping them, consider using simple_displaced_step_copy_insn
654# here.
655M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
656
99e40580
UW
657# Return true if GDB should use hardware single-stepping to execute
658# the displaced instruction identified by CLOSURE. If false,
659# GDB will simply restart execution at the displaced instruction
660# location, and it is up to the target to ensure GDB will receive
661# control again (e.g. by placing a software breakpoint instruction
662# into the displaced instruction buffer).
663#
664# The default implementation returns false on all targets that
665# provide a gdbarch_software_single_step routine, and true otherwise.
666m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
667
237fc4c9
PA
668# Fix up the state resulting from successfully single-stepping a
669# displaced instruction, to give the result we would have gotten from
670# stepping the instruction in its original location.
671#
672# REGS is the register state resulting from single-stepping the
673# displaced instruction.
674#
675# CLOSURE is the result from the matching call to
676# gdbarch_displaced_step_copy_insn.
677#
678# If you provide gdbarch_displaced_step_copy_insn.but not this
679# function, then GDB assumes that no fixup is needed after
680# single-stepping the instruction.
681#
682# For a general explanation of displaced stepping and how GDB uses it,
683# see the comments in infrun.c.
684M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
685
686# Free a closure returned by gdbarch_displaced_step_copy_insn.
687#
688# If you provide gdbarch_displaced_step_copy_insn, you must provide
689# this function as well.
690#
691# If your architecture uses closures that don't need to be freed, then
692# you can use simple_displaced_step_free_closure here.
693#
694# For a general explanation of displaced stepping and how GDB uses it,
695# see the comments in infrun.c.
696m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
697
698# Return the address of an appropriate place to put displaced
699# instructions while we step over them. There need only be one such
700# place, since we're only stepping one thread over a breakpoint at a
701# time.
702#
703# For a general explanation of displaced stepping and how GDB uses it,
704# see the comments in infrun.c.
705m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
706
1c772458 707# Refresh overlay mapped state for section OSECT.
97030eea 708F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 709
97030eea 710M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
711
712# Handle special encoding of static variables in stabs debug info.
97030eea 713F:char *:static_transform_name:char *name:name
203c3895 714# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 715v:int:sofun_address_maybe_missing:::0:0::0
1cded358 716
0508c3ec
HZ
717# Parse the instruction at ADDR storing in the record execution log
718# the registers REGCACHE and memory ranges that will be affected when
719# the instruction executes, along with their current values.
720# Return -1 if something goes wrong, 0 otherwise.
721M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
722
3846b520
HZ
723# Save process state after a signal.
724# Return -1 if something goes wrong, 0 otherwise.
725M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
726
1cded358
AR
727# Signal translation: translate inferior's signal (host's) number into
728# GDB's representation.
729m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
730# Signal translation: translate GDB's signal number into inferior's host
731# signal number.
732m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 733
4aa995e1
PA
734# Extra signal info inspection.
735#
736# Return a type suitable to inspect extra signal information.
737M:struct type *:get_siginfo_type:void:
738
60c5725c
DJ
739# Record architecture-specific information from the symbol table.
740M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 741
a96d9b2e
SDJ
742# Function for the 'catch syscall' feature.
743
744# Get architecture-specific system calls information from registers.
745M:LONGEST:get_syscall_number:ptid_t ptid:ptid
746
50c71eaf
PA
747# True if the list of shared libraries is one and only for all
748# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
749# This usually means that all processes, although may or may not share
750# an address space, will see the same set of symbols at the same
751# addresses.
50c71eaf 752v:int:has_global_solist:::0:0::0
2567c7d9
PA
753
754# On some targets, even though each inferior has its own private
755# address space, the debug interface takes care of making breakpoints
756# visible to all address spaces automatically. For such cases,
757# this property should be set to true.
758v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
759
760# True if inferiors share an address space (e.g., uClinux).
761m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
762
763# True if a fast tracepoint can be set at an address.
764m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
104c1213 765EOF
104c1213
JM
766}
767
0b8f9e4d
AC
768#
769# The .log file
770#
771exec > new-gdbarch.log
34620563 772function_list | while do_read
0b8f9e4d
AC
773do
774 cat <<EOF
2f9b146e 775${class} ${returntype} ${function} ($formal)
104c1213 776EOF
3d9a5942
AC
777 for r in ${read}
778 do
779 eval echo \"\ \ \ \ ${r}=\${${r}}\"
780 done
f0d4cc9e 781 if class_is_predicate_p && fallback_default_p
0b8f9e4d 782 then
66d659b1 783 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
784 kill $$
785 exit 1
786 fi
72e74a21 787 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
788 then
789 echo "Error: postdefault is useless when invalid_p=0" 1>&2
790 kill $$
791 exit 1
792 fi
a72293e2
AC
793 if class_is_multiarch_p
794 then
795 if class_is_predicate_p ; then :
796 elif test "x${predefault}" = "x"
797 then
2f9b146e 798 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
799 kill $$
800 exit 1
801 fi
802 fi
3d9a5942 803 echo ""
0b8f9e4d
AC
804done
805
806exec 1>&2
807compare_new gdbarch.log
808
104c1213
JM
809
810copyright ()
811{
812cat <<EOF
59233f88
AC
813/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
814
104c1213 815/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 816
f801e1e0
MS
817 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
818 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
819
820 This file is part of GDB.
821
822 This program is free software; you can redistribute it and/or modify
823 it under the terms of the GNU General Public License as published by
50efebf8 824 the Free Software Foundation; either version 3 of the License, or
104c1213 825 (at your option) any later version.
50efebf8 826
104c1213
JM
827 This program is distributed in the hope that it will be useful,
828 but WITHOUT ANY WARRANTY; without even the implied warranty of
829 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
830 GNU General Public License for more details.
50efebf8 831
104c1213 832 You should have received a copy of the GNU General Public License
50efebf8 833 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 834
104c1213
JM
835/* This file was created with the aid of \`\`gdbarch.sh''.
836
52204a0b 837 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
838 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
839 against the existing \`\`gdbarch.[hc]''. Any differences found
840 being reported.
841
842 If editing this file, please also run gdbarch.sh and merge any
52204a0b 843 changes into that script. Conversely, when making sweeping changes
104c1213
JM
844 to this file, modifying gdbarch.sh and using its output may prove
845 easier. */
846
847EOF
848}
849
850#
851# The .h file
852#
853
854exec > new-gdbarch.h
855copyright
856cat <<EOF
857#ifndef GDBARCH_H
858#define GDBARCH_H
859
da3331ec
AC
860struct floatformat;
861struct ui_file;
104c1213
JM
862struct frame_info;
863struct value;
b6af0555 864struct objfile;
1c772458 865struct obj_section;
a2cf933a 866struct minimal_symbol;
049ee0e4 867struct regcache;
b59ff9d5 868struct reggroup;
6ce6d90f 869struct regset;
a89aa300 870struct disassemble_info;
e2d0e7eb 871struct target_ops;
030f20e1 872struct obstack;
8181d85f 873struct bp_target_info;
424163ea 874struct target_desc;
237fc4c9 875struct displaced_step_closure;
17ea7499 876struct core_regset_section;
a96d9b2e 877struct syscall;
104c1213 878
9e2ace22
JB
879/* The architecture associated with the connection to the target.
880
881 The architecture vector provides some information that is really
882 a property of the target: The layout of certain packets, for instance;
883 or the solib_ops vector. Etc. To differentiate architecture accesses
884 to per-target properties from per-thread/per-frame/per-objfile properties,
885 accesses to per-target properties should be made through target_gdbarch.
886
887 Eventually, when support for multiple targets is implemented in
888 GDB, this global should be made target-specific. */
1cf3db46 889extern struct gdbarch *target_gdbarch;
104c1213
JM
890EOF
891
892# function typedef's
3d9a5942
AC
893printf "\n"
894printf "\n"
895printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 896function_list | while do_read
104c1213 897do
2ada493a
AC
898 if class_is_info_p
899 then
3d9a5942
AC
900 printf "\n"
901 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
902 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 903 fi
104c1213
JM
904done
905
906# function typedef's
3d9a5942
AC
907printf "\n"
908printf "\n"
909printf "/* The following are initialized by the target dependent code. */\n"
34620563 910function_list | while do_read
104c1213 911do
72e74a21 912 if [ -n "${comment}" ]
34620563
AC
913 then
914 echo "${comment}" | sed \
915 -e '2 s,#,/*,' \
916 -e '3,$ s,#, ,' \
917 -e '$ s,$, */,'
918 fi
412d5987
AC
919
920 if class_is_predicate_p
2ada493a 921 then
412d5987
AC
922 printf "\n"
923 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 924 fi
2ada493a
AC
925 if class_is_variable_p
926 then
3d9a5942
AC
927 printf "\n"
928 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
929 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
930 fi
931 if class_is_function_p
932 then
3d9a5942 933 printf "\n"
72e74a21 934 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
935 then
936 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
937 elif class_is_multiarch_p
938 then
939 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
940 else
941 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
942 fi
72e74a21 943 if [ "x${formal}" = "xvoid" ]
104c1213 944 then
3d9a5942 945 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 946 else
3d9a5942 947 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 948 fi
3d9a5942 949 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 950 fi
104c1213
JM
951done
952
953# close it off
954cat <<EOF
955
a96d9b2e
SDJ
956/* Definition for an unknown syscall, used basically in error-cases. */
957#define UNKNOWN_SYSCALL (-1)
958
104c1213
JM
959extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
960
961
962/* Mechanism for co-ordinating the selection of a specific
963 architecture.
964
965 GDB targets (*-tdep.c) can register an interest in a specific
966 architecture. Other GDB components can register a need to maintain
967 per-architecture data.
968
969 The mechanisms below ensures that there is only a loose connection
970 between the set-architecture command and the various GDB
0fa6923a 971 components. Each component can independently register their need
104c1213
JM
972 to maintain architecture specific data with gdbarch.
973
974 Pragmatics:
975
976 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
977 didn't scale.
978
979 The more traditional mega-struct containing architecture specific
980 data for all the various GDB components was also considered. Since
0fa6923a 981 GDB is built from a variable number of (fairly independent)
104c1213
JM
982 components it was determined that the global aproach was not
983 applicable. */
984
985
986/* Register a new architectural family with GDB.
987
988 Register support for the specified ARCHITECTURE with GDB. When
989 gdbarch determines that the specified architecture has been
990 selected, the corresponding INIT function is called.
991
992 --
993
994 The INIT function takes two parameters: INFO which contains the
995 information available to gdbarch about the (possibly new)
996 architecture; ARCHES which is a list of the previously created
997 \`\`struct gdbarch'' for this architecture.
998
0f79675b 999 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1000 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1001
1002 The ARCHES parameter is a linked list (sorted most recently used)
1003 of all the previously created architures for this architecture
1004 family. The (possibly NULL) ARCHES->gdbarch can used to access
1005 values from the previously selected architecture for this
59837fe0 1006 architecture family.
104c1213
JM
1007
1008 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1009 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1010 gdbarch'' from the ARCHES list - indicating that the new
1011 architecture is just a synonym for an earlier architecture (see
1012 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1013 - that describes the selected architecture (see gdbarch_alloc()).
1014
1015 The DUMP_TDEP function shall print out all target specific values.
1016 Care should be taken to ensure that the function works in both the
1017 multi-arch and non- multi-arch cases. */
104c1213
JM
1018
1019struct gdbarch_list
1020{
1021 struct gdbarch *gdbarch;
1022 struct gdbarch_list *next;
1023};
1024
1025struct gdbarch_info
1026{
104c1213
JM
1027 /* Use default: NULL (ZERO). */
1028 const struct bfd_arch_info *bfd_arch_info;
1029
428721aa 1030 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1031 int byte_order;
1032
9d4fde75
SS
1033 int byte_order_for_code;
1034
104c1213
JM
1035 /* Use default: NULL (ZERO). */
1036 bfd *abfd;
1037
1038 /* Use default: NULL (ZERO). */
1039 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1040
1041 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1042 enum gdb_osabi osabi;
424163ea
DJ
1043
1044 /* Use default: NULL (ZERO). */
1045 const struct target_desc *target_desc;
104c1213
JM
1046};
1047
1048typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1049typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1050
4b9b3959 1051/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1052extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1053
4b9b3959
AC
1054extern void gdbarch_register (enum bfd_architecture architecture,
1055 gdbarch_init_ftype *,
1056 gdbarch_dump_tdep_ftype *);
1057
104c1213 1058
b4a20239
AC
1059/* Return a freshly allocated, NULL terminated, array of the valid
1060 architecture names. Since architectures are registered during the
1061 _initialize phase this function only returns useful information
1062 once initialization has been completed. */
1063
1064extern const char **gdbarch_printable_names (void);
1065
1066
104c1213
JM
1067/* Helper function. Search the list of ARCHES for a GDBARCH that
1068 matches the information provided by INFO. */
1069
424163ea 1070extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1071
1072
1073/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1074 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1075 parameters. set_gdbarch_*() functions are called to complete the
1076 initialization of the object. */
1077
1078extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1079
1080
4b9b3959
AC
1081/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1082 It is assumed that the caller freeds the \`\`struct
1083 gdbarch_tdep''. */
1084
058f20d5
JB
1085extern void gdbarch_free (struct gdbarch *);
1086
1087
aebd7893
AC
1088/* Helper function. Allocate memory from the \`\`struct gdbarch''
1089 obstack. The memory is freed when the corresponding architecture
1090 is also freed. */
1091
1092extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1093#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1094#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1095
1096
b732d07d 1097/* Helper function. Force an update of the current architecture.
104c1213 1098
b732d07d
AC
1099 The actual architecture selected is determined by INFO, \`\`(gdb) set
1100 architecture'' et.al., the existing architecture and BFD's default
1101 architecture. INFO should be initialized to zero and then selected
1102 fields should be updated.
104c1213 1103
16f33e29
AC
1104 Returns non-zero if the update succeeds */
1105
1106extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1107
1108
ebdba546
AC
1109/* Helper function. Find an architecture matching info.
1110
1111 INFO should be initialized using gdbarch_info_init, relevant fields
1112 set, and then finished using gdbarch_info_fill.
1113
1114 Returns the corresponding architecture, or NULL if no matching
59837fe0 1115 architecture was found. */
ebdba546
AC
1116
1117extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1118
1119
59837fe0 1120/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1121
1122 FIXME: kettenis/20031124: Of the functions that follow, only
1123 gdbarch_from_bfd is supposed to survive. The others will
1124 dissappear since in the future GDB will (hopefully) be truly
1125 multi-arch. However, for now we're still stuck with the concept of
1126 a single active architecture. */
1127
59837fe0 1128extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1129
104c1213
JM
1130
1131/* Register per-architecture data-pointer.
1132
1133 Reserve space for a per-architecture data-pointer. An identifier
1134 for the reserved data-pointer is returned. That identifer should
95160752 1135 be saved in a local static variable.
104c1213 1136
fcc1c85c
AC
1137 Memory for the per-architecture data shall be allocated using
1138 gdbarch_obstack_zalloc. That memory will be deleted when the
1139 corresponding architecture object is deleted.
104c1213 1140
95160752
AC
1141 When a previously created architecture is re-selected, the
1142 per-architecture data-pointer for that previous architecture is
76860b5f 1143 restored. INIT() is not re-called.
104c1213
JM
1144
1145 Multiple registrarants for any architecture are allowed (and
1146 strongly encouraged). */
1147
95160752 1148struct gdbarch_data;
104c1213 1149
030f20e1
AC
1150typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1151extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1152typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1153extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1154extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1155 struct gdbarch_data *data,
1156 void *pointer);
104c1213 1157
451fbdda 1158extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1159
1160
0fa6923a 1161/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1162 byte-order, ...) using information found in the BFD */
1163
1164extern void set_gdbarch_from_file (bfd *);
1165
1166
e514a9d6
JM
1167/* Initialize the current architecture to the "first" one we find on
1168 our list. */
1169
1170extern void initialize_current_architecture (void);
1171
104c1213
JM
1172/* gdbarch trace variable */
1173extern int gdbarch_debug;
1174
4b9b3959 1175extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1176
1177#endif
1178EOF
1179exec 1>&2
1180#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1181compare_new gdbarch.h
104c1213
JM
1182
1183
1184#
1185# C file
1186#
1187
1188exec > new-gdbarch.c
1189copyright
1190cat <<EOF
1191
1192#include "defs.h"
7355ddba 1193#include "arch-utils.h"
104c1213 1194
104c1213 1195#include "gdbcmd.h"
faaf634c 1196#include "inferior.h"
104c1213
JM
1197#include "symcat.h"
1198
f0d4cc9e 1199#include "floatformat.h"
104c1213 1200
95160752 1201#include "gdb_assert.h"
b66d6d2e 1202#include "gdb_string.h"
b59ff9d5 1203#include "reggroups.h"
4be87837 1204#include "osabi.h"
aebd7893 1205#include "gdb_obstack.h"
383f836e 1206#include "observer.h"
a3ecef73 1207#include "regcache.h"
95160752 1208
104c1213
JM
1209/* Static function declarations */
1210
b3cc3077 1211static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1212
104c1213
JM
1213/* Non-zero if we want to trace architecture code. */
1214
1215#ifndef GDBARCH_DEBUG
1216#define GDBARCH_DEBUG 0
1217#endif
1218int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1219static void
1220show_gdbarch_debug (struct ui_file *file, int from_tty,
1221 struct cmd_list_element *c, const char *value)
1222{
1223 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1224}
104c1213 1225
456fcf94 1226static const char *
8da61cc4 1227pformat (const struct floatformat **format)
456fcf94
AC
1228{
1229 if (format == NULL)
1230 return "(null)";
1231 else
8da61cc4
DJ
1232 /* Just print out one of them - this is only for diagnostics. */
1233 return format[0]->name;
456fcf94
AC
1234}
1235
104c1213
JM
1236EOF
1237
1238# gdbarch open the gdbarch object
3d9a5942
AC
1239printf "\n"
1240printf "/* Maintain the struct gdbarch object */\n"
1241printf "\n"
1242printf "struct gdbarch\n"
1243printf "{\n"
76860b5f
AC
1244printf " /* Has this architecture been fully initialized? */\n"
1245printf " int initialized_p;\n"
aebd7893
AC
1246printf "\n"
1247printf " /* An obstack bound to the lifetime of the architecture. */\n"
1248printf " struct obstack *obstack;\n"
1249printf "\n"
3d9a5942 1250printf " /* basic architectural information */\n"
34620563 1251function_list | while do_read
104c1213 1252do
2ada493a
AC
1253 if class_is_info_p
1254 then
3d9a5942 1255 printf " ${returntype} ${function};\n"
2ada493a 1256 fi
104c1213 1257done
3d9a5942
AC
1258printf "\n"
1259printf " /* target specific vector. */\n"
1260printf " struct gdbarch_tdep *tdep;\n"
1261printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1262printf "\n"
1263printf " /* per-architecture data-pointers */\n"
95160752 1264printf " unsigned nr_data;\n"
3d9a5942
AC
1265printf " void **data;\n"
1266printf "\n"
1267printf " /* per-architecture swap-regions */\n"
1268printf " struct gdbarch_swap *swap;\n"
1269printf "\n"
104c1213
JM
1270cat <<EOF
1271 /* Multi-arch values.
1272
1273 When extending this structure you must:
1274
1275 Add the field below.
1276
1277 Declare set/get functions and define the corresponding
1278 macro in gdbarch.h.
1279
1280 gdbarch_alloc(): If zero/NULL is not a suitable default,
1281 initialize the new field.
1282
1283 verify_gdbarch(): Confirm that the target updated the field
1284 correctly.
1285
7e73cedf 1286 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1287 field is dumped out
1288
c0e8c252 1289 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1290 variable (base values on the host's c-type system).
1291
1292 get_gdbarch(): Implement the set/get functions (probably using
1293 the macro's as shortcuts).
1294
1295 */
1296
1297EOF
34620563 1298function_list | while do_read
104c1213 1299do
2ada493a
AC
1300 if class_is_variable_p
1301 then
3d9a5942 1302 printf " ${returntype} ${function};\n"
2ada493a
AC
1303 elif class_is_function_p
1304 then
2f9b146e 1305 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1306 fi
104c1213 1307done
3d9a5942 1308printf "};\n"
104c1213
JM
1309
1310# A pre-initialized vector
3d9a5942
AC
1311printf "\n"
1312printf "\n"
104c1213
JM
1313cat <<EOF
1314/* The default architecture uses host values (for want of a better
1315 choice). */
1316EOF
3d9a5942
AC
1317printf "\n"
1318printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1319printf "\n"
1320printf "struct gdbarch startup_gdbarch =\n"
1321printf "{\n"
76860b5f 1322printf " 1, /* Always initialized. */\n"
aebd7893 1323printf " NULL, /* The obstack. */\n"
3d9a5942 1324printf " /* basic architecture information */\n"
4b9b3959 1325function_list | while do_read
104c1213 1326do
2ada493a
AC
1327 if class_is_info_p
1328 then
ec5cbaec 1329 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1330 fi
104c1213
JM
1331done
1332cat <<EOF
4b9b3959
AC
1333 /* target specific vector and its dump routine */
1334 NULL, NULL,
104c1213
JM
1335 /*per-architecture data-pointers and swap regions */
1336 0, NULL, NULL,
1337 /* Multi-arch values */
1338EOF
34620563 1339function_list | while do_read
104c1213 1340do
2ada493a
AC
1341 if class_is_function_p || class_is_variable_p
1342 then
ec5cbaec 1343 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1344 fi
104c1213
JM
1345done
1346cat <<EOF
c0e8c252 1347 /* startup_gdbarch() */
104c1213 1348};
4b9b3959 1349
1cf3db46 1350struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1351EOF
1352
1353# Create a new gdbarch struct
104c1213 1354cat <<EOF
7de2341d 1355
66b43ecb 1356/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1357 \`\`struct gdbarch_info''. */
1358EOF
3d9a5942 1359printf "\n"
104c1213
JM
1360cat <<EOF
1361struct gdbarch *
1362gdbarch_alloc (const struct gdbarch_info *info,
1363 struct gdbarch_tdep *tdep)
1364{
be7811ad 1365 struct gdbarch *gdbarch;
aebd7893
AC
1366
1367 /* Create an obstack for allocating all the per-architecture memory,
1368 then use that to allocate the architecture vector. */
1369 struct obstack *obstack = XMALLOC (struct obstack);
1370 obstack_init (obstack);
be7811ad
MD
1371 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1372 memset (gdbarch, 0, sizeof (*gdbarch));
1373 gdbarch->obstack = obstack;
85de9627 1374
be7811ad 1375 alloc_gdbarch_data (gdbarch);
85de9627 1376
be7811ad 1377 gdbarch->tdep = tdep;
104c1213 1378EOF
3d9a5942 1379printf "\n"
34620563 1380function_list | while do_read
104c1213 1381do
2ada493a
AC
1382 if class_is_info_p
1383 then
be7811ad 1384 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1385 fi
104c1213 1386done
3d9a5942
AC
1387printf "\n"
1388printf " /* Force the explicit initialization of these. */\n"
34620563 1389function_list | while do_read
104c1213 1390do
2ada493a
AC
1391 if class_is_function_p || class_is_variable_p
1392 then
72e74a21 1393 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1394 then
be7811ad 1395 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1396 fi
2ada493a 1397 fi
104c1213
JM
1398done
1399cat <<EOF
1400 /* gdbarch_alloc() */
1401
be7811ad 1402 return gdbarch;
104c1213
JM
1403}
1404EOF
1405
058f20d5 1406# Free a gdbarch struct.
3d9a5942
AC
1407printf "\n"
1408printf "\n"
058f20d5 1409cat <<EOF
aebd7893
AC
1410/* Allocate extra space using the per-architecture obstack. */
1411
1412void *
1413gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1414{
1415 void *data = obstack_alloc (arch->obstack, size);
1416 memset (data, 0, size);
1417 return data;
1418}
1419
1420
058f20d5
JB
1421/* Free a gdbarch struct. This should never happen in normal
1422 operation --- once you've created a gdbarch, you keep it around.
1423 However, if an architecture's init function encounters an error
1424 building the structure, it may need to clean up a partially
1425 constructed gdbarch. */
4b9b3959 1426
058f20d5
JB
1427void
1428gdbarch_free (struct gdbarch *arch)
1429{
aebd7893 1430 struct obstack *obstack;
95160752 1431 gdb_assert (arch != NULL);
aebd7893
AC
1432 gdb_assert (!arch->initialized_p);
1433 obstack = arch->obstack;
1434 obstack_free (obstack, 0); /* Includes the ARCH. */
1435 xfree (obstack);
058f20d5
JB
1436}
1437EOF
1438
104c1213 1439# verify a new architecture
104c1213 1440cat <<EOF
db446970
AC
1441
1442
1443/* Ensure that all values in a GDBARCH are reasonable. */
1444
104c1213 1445static void
be7811ad 1446verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1447{
f16a1923
AC
1448 struct ui_file *log;
1449 struct cleanup *cleanups;
759ef836 1450 long length;
f16a1923 1451 char *buf;
f16a1923
AC
1452 log = mem_fileopen ();
1453 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1454 /* fundamental */
be7811ad 1455 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1456 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1457 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1458 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1459 /* Check those that need to be defined for the given multi-arch level. */
1460EOF
34620563 1461function_list | while do_read
104c1213 1462do
2ada493a
AC
1463 if class_is_function_p || class_is_variable_p
1464 then
72e74a21 1465 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1466 then
3d9a5942 1467 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1468 elif class_is_predicate_p
1469 then
3d9a5942 1470 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1471 # FIXME: See do_read for potential simplification
72e74a21 1472 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1473 then
3d9a5942 1474 printf " if (${invalid_p})\n"
be7811ad 1475 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1476 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1477 then
be7811ad
MD
1478 printf " if (gdbarch->${function} == ${predefault})\n"
1479 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1480 elif [ -n "${postdefault}" ]
f0d4cc9e 1481 then
be7811ad
MD
1482 printf " if (gdbarch->${function} == 0)\n"
1483 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1484 elif [ -n "${invalid_p}" ]
104c1213 1485 then
4d60522e 1486 printf " if (${invalid_p})\n"
f16a1923 1487 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1488 elif [ -n "${predefault}" ]
104c1213 1489 then
be7811ad 1490 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1491 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1492 fi
2ada493a 1493 fi
104c1213
JM
1494done
1495cat <<EOF
759ef836 1496 buf = ui_file_xstrdup (log, &length);
f16a1923 1497 make_cleanup (xfree, buf);
759ef836 1498 if (length > 0)
f16a1923 1499 internal_error (__FILE__, __LINE__,
85c07804 1500 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1501 buf);
1502 do_cleanups (cleanups);
104c1213
JM
1503}
1504EOF
1505
1506# dump the structure
3d9a5942
AC
1507printf "\n"
1508printf "\n"
104c1213 1509cat <<EOF
4b9b3959
AC
1510/* Print out the details of the current architecture. */
1511
104c1213 1512void
be7811ad 1513gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1514{
b78960be 1515 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1516#if defined (GDB_NM_FILE)
1517 gdb_nm_file = GDB_NM_FILE;
1518#endif
1519 fprintf_unfiltered (file,
1520 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1521 gdb_nm_file);
104c1213 1522EOF
97030eea 1523function_list | sort -t: -k 3 | while do_read
104c1213 1524do
1e9f55d0
AC
1525 # First the predicate
1526 if class_is_predicate_p
1527 then
7996bcec 1528 printf " fprintf_unfiltered (file,\n"
48f7351b 1529 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1530 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1531 fi
48f7351b 1532 # Print the corresponding value.
283354d8 1533 if class_is_function_p
4b9b3959 1534 then
7996bcec 1535 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1536 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1537 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1538 else
48f7351b 1539 # It is a variable
2f9b146e
AC
1540 case "${print}:${returntype}" in
1541 :CORE_ADDR )
0b1553bc
UW
1542 fmt="%s"
1543 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1544 ;;
2f9b146e 1545 :* )
48f7351b 1546 fmt="%s"
623d3eb1 1547 print="plongest (gdbarch->${function})"
48f7351b
AC
1548 ;;
1549 * )
2f9b146e 1550 fmt="%s"
48f7351b
AC
1551 ;;
1552 esac
3d9a5942 1553 printf " fprintf_unfiltered (file,\n"
48f7351b 1554 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1555 printf " ${print});\n"
2ada493a 1556 fi
104c1213 1557done
381323f4 1558cat <<EOF
be7811ad
MD
1559 if (gdbarch->dump_tdep != NULL)
1560 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1561}
1562EOF
104c1213
JM
1563
1564
1565# GET/SET
3d9a5942 1566printf "\n"
104c1213
JM
1567cat <<EOF
1568struct gdbarch_tdep *
1569gdbarch_tdep (struct gdbarch *gdbarch)
1570{
1571 if (gdbarch_debug >= 2)
3d9a5942 1572 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1573 return gdbarch->tdep;
1574}
1575EOF
3d9a5942 1576printf "\n"
34620563 1577function_list | while do_read
104c1213 1578do
2ada493a
AC
1579 if class_is_predicate_p
1580 then
3d9a5942
AC
1581 printf "\n"
1582 printf "int\n"
1583 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1584 printf "{\n"
8de9bdc4 1585 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1586 printf " return ${predicate};\n"
3d9a5942 1587 printf "}\n"
2ada493a
AC
1588 fi
1589 if class_is_function_p
1590 then
3d9a5942
AC
1591 printf "\n"
1592 printf "${returntype}\n"
72e74a21 1593 if [ "x${formal}" = "xvoid" ]
104c1213 1594 then
3d9a5942 1595 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1596 else
3d9a5942 1597 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1598 fi
3d9a5942 1599 printf "{\n"
8de9bdc4 1600 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1601 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1602 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1603 then
1604 # Allow a call to a function with a predicate.
956ac328 1605 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1606 fi
3d9a5942
AC
1607 printf " if (gdbarch_debug >= 2)\n"
1608 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1609 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1610 then
1611 if class_is_multiarch_p
1612 then
1613 params="gdbarch"
1614 else
1615 params=""
1616 fi
1617 else
1618 if class_is_multiarch_p
1619 then
1620 params="gdbarch, ${actual}"
1621 else
1622 params="${actual}"
1623 fi
1624 fi
72e74a21 1625 if [ "x${returntype}" = "xvoid" ]
104c1213 1626 then
4a5c6a1d 1627 printf " gdbarch->${function} (${params});\n"
104c1213 1628 else
4a5c6a1d 1629 printf " return gdbarch->${function} (${params});\n"
104c1213 1630 fi
3d9a5942
AC
1631 printf "}\n"
1632 printf "\n"
1633 printf "void\n"
1634 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1635 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1636 printf "{\n"
1637 printf " gdbarch->${function} = ${function};\n"
1638 printf "}\n"
2ada493a
AC
1639 elif class_is_variable_p
1640 then
3d9a5942
AC
1641 printf "\n"
1642 printf "${returntype}\n"
1643 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1644 printf "{\n"
8de9bdc4 1645 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1646 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1647 then
3d9a5942 1648 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1649 elif [ -n "${invalid_p}" ]
104c1213 1650 then
956ac328
AC
1651 printf " /* Check variable is valid. */\n"
1652 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1653 elif [ -n "${predefault}" ]
104c1213 1654 then
956ac328
AC
1655 printf " /* Check variable changed from pre-default. */\n"
1656 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1657 fi
3d9a5942
AC
1658 printf " if (gdbarch_debug >= 2)\n"
1659 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1660 printf " return gdbarch->${function};\n"
1661 printf "}\n"
1662 printf "\n"
1663 printf "void\n"
1664 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1665 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1666 printf "{\n"
1667 printf " gdbarch->${function} = ${function};\n"
1668 printf "}\n"
2ada493a
AC
1669 elif class_is_info_p
1670 then
3d9a5942
AC
1671 printf "\n"
1672 printf "${returntype}\n"
1673 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1674 printf "{\n"
8de9bdc4 1675 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1676 printf " if (gdbarch_debug >= 2)\n"
1677 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1678 printf " return gdbarch->${function};\n"
1679 printf "}\n"
2ada493a 1680 fi
104c1213
JM
1681done
1682
1683# All the trailing guff
1684cat <<EOF
1685
1686
f44c642f 1687/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1688 modules. */
1689
1690struct gdbarch_data
1691{
95160752 1692 unsigned index;
76860b5f 1693 int init_p;
030f20e1
AC
1694 gdbarch_data_pre_init_ftype *pre_init;
1695 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1696};
1697
1698struct gdbarch_data_registration
1699{
104c1213
JM
1700 struct gdbarch_data *data;
1701 struct gdbarch_data_registration *next;
1702};
1703
f44c642f 1704struct gdbarch_data_registry
104c1213 1705{
95160752 1706 unsigned nr;
104c1213
JM
1707 struct gdbarch_data_registration *registrations;
1708};
1709
f44c642f 1710struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1711{
1712 0, NULL,
1713};
1714
030f20e1
AC
1715static struct gdbarch_data *
1716gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1717 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1718{
1719 struct gdbarch_data_registration **curr;
76860b5f 1720 /* Append the new registraration. */
f44c642f 1721 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1722 (*curr) != NULL;
1723 curr = &(*curr)->next);
1724 (*curr) = XMALLOC (struct gdbarch_data_registration);
1725 (*curr)->next = NULL;
104c1213 1726 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1727 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1728 (*curr)->data->pre_init = pre_init;
1729 (*curr)->data->post_init = post_init;
76860b5f 1730 (*curr)->data->init_p = 1;
104c1213
JM
1731 return (*curr)->data;
1732}
1733
030f20e1
AC
1734struct gdbarch_data *
1735gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1736{
1737 return gdbarch_data_register (pre_init, NULL);
1738}
1739
1740struct gdbarch_data *
1741gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1742{
1743 return gdbarch_data_register (NULL, post_init);
1744}
104c1213 1745
b3cc3077 1746/* Create/delete the gdbarch data vector. */
95160752
AC
1747
1748static void
b3cc3077 1749alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1750{
b3cc3077
JB
1751 gdb_assert (gdbarch->data == NULL);
1752 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1753 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1754}
3c875b6f 1755
76860b5f 1756/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1757 data-pointer. */
1758
95160752 1759void
030f20e1
AC
1760deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1761 struct gdbarch_data *data,
1762 void *pointer)
95160752
AC
1763{
1764 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1765 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1766 gdb_assert (data->pre_init == NULL);
95160752
AC
1767 gdbarch->data[data->index] = pointer;
1768}
1769
104c1213
JM
1770/* Return the current value of the specified per-architecture
1771 data-pointer. */
1772
1773void *
451fbdda 1774gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1775{
451fbdda 1776 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1777 if (gdbarch->data[data->index] == NULL)
76860b5f 1778 {
030f20e1
AC
1779 /* The data-pointer isn't initialized, call init() to get a
1780 value. */
1781 if (data->pre_init != NULL)
1782 /* Mid architecture creation: pass just the obstack, and not
1783 the entire architecture, as that way it isn't possible for
1784 pre-init code to refer to undefined architecture
1785 fields. */
1786 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1787 else if (gdbarch->initialized_p
1788 && data->post_init != NULL)
1789 /* Post architecture creation: pass the entire architecture
1790 (as all fields are valid), but be careful to also detect
1791 recursive references. */
1792 {
1793 gdb_assert (data->init_p);
1794 data->init_p = 0;
1795 gdbarch->data[data->index] = data->post_init (gdbarch);
1796 data->init_p = 1;
1797 }
1798 else
1799 /* The architecture initialization hasn't completed - punt -
1800 hope that the caller knows what they are doing. Once
1801 deprecated_set_gdbarch_data has been initialized, this can be
1802 changed to an internal error. */
1803 return NULL;
76860b5f
AC
1804 gdb_assert (gdbarch->data[data->index] != NULL);
1805 }
451fbdda 1806 return gdbarch->data[data->index];
104c1213
JM
1807}
1808
1809
f44c642f 1810/* Keep a registry of the architectures known by GDB. */
104c1213 1811
4b9b3959 1812struct gdbarch_registration
104c1213
JM
1813{
1814 enum bfd_architecture bfd_architecture;
1815 gdbarch_init_ftype *init;
4b9b3959 1816 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1817 struct gdbarch_list *arches;
4b9b3959 1818 struct gdbarch_registration *next;
104c1213
JM
1819};
1820
f44c642f 1821static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1822
b4a20239
AC
1823static void
1824append_name (const char ***buf, int *nr, const char *name)
1825{
1826 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1827 (*buf)[*nr] = name;
1828 *nr += 1;
1829}
1830
1831const char **
1832gdbarch_printable_names (void)
1833{
7996bcec
AC
1834 /* Accumulate a list of names based on the registed list of
1835 architectures. */
1836 enum bfd_architecture a;
1837 int nr_arches = 0;
1838 const char **arches = NULL;
1839 struct gdbarch_registration *rego;
1840 for (rego = gdbarch_registry;
1841 rego != NULL;
1842 rego = rego->next)
b4a20239 1843 {
7996bcec
AC
1844 const struct bfd_arch_info *ap;
1845 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1846 if (ap == NULL)
1847 internal_error (__FILE__, __LINE__,
85c07804 1848 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1849 do
1850 {
1851 append_name (&arches, &nr_arches, ap->printable_name);
1852 ap = ap->next;
1853 }
1854 while (ap != NULL);
b4a20239 1855 }
7996bcec
AC
1856 append_name (&arches, &nr_arches, NULL);
1857 return arches;
b4a20239
AC
1858}
1859
1860
104c1213 1861void
4b9b3959
AC
1862gdbarch_register (enum bfd_architecture bfd_architecture,
1863 gdbarch_init_ftype *init,
1864 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1865{
4b9b3959 1866 struct gdbarch_registration **curr;
104c1213 1867 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1868 /* Check that BFD recognizes this architecture */
104c1213
JM
1869 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1870 if (bfd_arch_info == NULL)
1871 {
8e65ff28 1872 internal_error (__FILE__, __LINE__,
85c07804 1873 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1874 bfd_architecture);
104c1213
JM
1875 }
1876 /* Check that we haven't seen this architecture before */
f44c642f 1877 for (curr = &gdbarch_registry;
104c1213
JM
1878 (*curr) != NULL;
1879 curr = &(*curr)->next)
1880 {
1881 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1882 internal_error (__FILE__, __LINE__,
85c07804 1883 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1884 bfd_arch_info->printable_name);
104c1213
JM
1885 }
1886 /* log it */
1887 if (gdbarch_debug)
30737ed9 1888 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1889 bfd_arch_info->printable_name,
30737ed9 1890 host_address_to_string (init));
104c1213 1891 /* Append it */
4b9b3959 1892 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1893 (*curr)->bfd_architecture = bfd_architecture;
1894 (*curr)->init = init;
4b9b3959 1895 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1896 (*curr)->arches = NULL;
1897 (*curr)->next = NULL;
4b9b3959
AC
1898}
1899
1900void
1901register_gdbarch_init (enum bfd_architecture bfd_architecture,
1902 gdbarch_init_ftype *init)
1903{
1904 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1905}
104c1213
JM
1906
1907
424163ea 1908/* Look for an architecture using gdbarch_info. */
104c1213
JM
1909
1910struct gdbarch_list *
1911gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1912 const struct gdbarch_info *info)
1913{
1914 for (; arches != NULL; arches = arches->next)
1915 {
1916 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1917 continue;
1918 if (info->byte_order != arches->gdbarch->byte_order)
1919 continue;
4be87837
DJ
1920 if (info->osabi != arches->gdbarch->osabi)
1921 continue;
424163ea
DJ
1922 if (info->target_desc != arches->gdbarch->target_desc)
1923 continue;
104c1213
JM
1924 return arches;
1925 }
1926 return NULL;
1927}
1928
1929
ebdba546 1930/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1931 architecture if needed. Return that new architecture. */
104c1213 1932
59837fe0
UW
1933struct gdbarch *
1934gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1935{
1936 struct gdbarch *new_gdbarch;
4b9b3959 1937 struct gdbarch_registration *rego;
104c1213 1938
b732d07d 1939 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1940 sources: "set ..."; INFOabfd supplied; and the global
1941 defaults. */
1942 gdbarch_info_fill (&info);
4be87837 1943
b732d07d
AC
1944 /* Must have found some sort of architecture. */
1945 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1946
1947 if (gdbarch_debug)
1948 {
1949 fprintf_unfiltered (gdb_stdlog,
59837fe0 1950 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1951 (info.bfd_arch_info != NULL
1952 ? info.bfd_arch_info->printable_name
1953 : "(null)"));
1954 fprintf_unfiltered (gdb_stdlog,
59837fe0 1955 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 1956 info.byte_order,
d7449b42 1957 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1958 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1959 : "default"));
4be87837 1960 fprintf_unfiltered (gdb_stdlog,
59837fe0 1961 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 1962 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1963 fprintf_unfiltered (gdb_stdlog,
59837fe0 1964 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 1965 host_address_to_string (info.abfd));
104c1213 1966 fprintf_unfiltered (gdb_stdlog,
59837fe0 1967 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 1968 host_address_to_string (info.tdep_info));
104c1213
JM
1969 }
1970
ebdba546 1971 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1972 for (rego = gdbarch_registry;
1973 rego != NULL;
1974 rego = rego->next)
1975 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1976 break;
1977 if (rego == NULL)
1978 {
1979 if (gdbarch_debug)
59837fe0 1980 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 1981 "No matching architecture\n");
b732d07d
AC
1982 return 0;
1983 }
1984
ebdba546 1985 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1986 new_gdbarch = rego->init (info, rego->arches);
1987
ebdba546
AC
1988 /* Did the tdep code like it? No. Reject the change and revert to
1989 the old architecture. */
104c1213
JM
1990 if (new_gdbarch == NULL)
1991 {
1992 if (gdbarch_debug)
59837fe0 1993 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
1994 "Target rejected architecture\n");
1995 return NULL;
104c1213
JM
1996 }
1997
ebdba546
AC
1998 /* Is this a pre-existing architecture (as determined by already
1999 being initialized)? Move it to the front of the architecture
2000 list (keeping the list sorted Most Recently Used). */
2001 if (new_gdbarch->initialized_p)
104c1213 2002 {
ebdba546
AC
2003 struct gdbarch_list **list;
2004 struct gdbarch_list *this;
104c1213 2005 if (gdbarch_debug)
59837fe0 2006 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2007 "Previous architecture %s (%s) selected\n",
2008 host_address_to_string (new_gdbarch),
104c1213 2009 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2010 /* Find the existing arch in the list. */
2011 for (list = &rego->arches;
2012 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2013 list = &(*list)->next);
2014 /* It had better be in the list of architectures. */
2015 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2016 /* Unlink THIS. */
2017 this = (*list);
2018 (*list) = this->next;
2019 /* Insert THIS at the front. */
2020 this->next = rego->arches;
2021 rego->arches = this;
2022 /* Return it. */
2023 return new_gdbarch;
104c1213
JM
2024 }
2025
ebdba546
AC
2026 /* It's a new architecture. */
2027 if (gdbarch_debug)
59837fe0 2028 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2029 "New architecture %s (%s) selected\n",
2030 host_address_to_string (new_gdbarch),
ebdba546
AC
2031 new_gdbarch->bfd_arch_info->printable_name);
2032
2033 /* Insert the new architecture into the front of the architecture
2034 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2035 {
2036 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2037 this->next = rego->arches;
2038 this->gdbarch = new_gdbarch;
2039 rego->arches = this;
2040 }
104c1213 2041
4b9b3959
AC
2042 /* Check that the newly installed architecture is valid. Plug in
2043 any post init values. */
2044 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2045 verify_gdbarch (new_gdbarch);
ebdba546 2046 new_gdbarch->initialized_p = 1;
104c1213 2047
4b9b3959 2048 if (gdbarch_debug)
ebdba546
AC
2049 gdbarch_dump (new_gdbarch, gdb_stdlog);
2050
2051 return new_gdbarch;
2052}
2053
e487cc15 2054/* Make the specified architecture current. */
ebdba546
AC
2055
2056void
59837fe0 2057deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2058{
2059 gdb_assert (new_gdbarch != NULL);
ebdba546 2060 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2061 target_gdbarch = new_gdbarch;
383f836e 2062 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2063 registers_changed ();
ebdba546 2064}
104c1213 2065
104c1213 2066extern void _initialize_gdbarch (void);
b4a20239 2067
104c1213 2068void
34620563 2069_initialize_gdbarch (void)
104c1213 2070{
59233f88
AC
2071 struct cmd_list_element *c;
2072
85c07804
AC
2073 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2074Set architecture debugging."), _("\\
2075Show architecture debugging."), _("\\
2076When non-zero, architecture debugging is enabled."),
2077 NULL,
920d2a44 2078 show_gdbarch_debug,
85c07804 2079 &setdebuglist, &showdebuglist);
104c1213
JM
2080}
2081EOF
2082
2083# close things off
2084exec 1>&2
2085#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2086compare_new gdbarch.c
This page took 1.040556 seconds and 4 git commands to generate.