btrace: uppercase btrace_read_type
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
ecd75fc8 5# Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
502# Construct a value representing the contents of register REGNUM in
503# frame FRAME, interpreted as type TYPE. The routine needs to
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
97030eea 506f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 533f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 534m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
535# Return the adjusted address and kind to use for Z0/Z1 packets.
536# KIND is usually the memory length of the breakpoint, but may have a
537# different target-specific meaning.
0e05dfcb 538m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 539M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
540m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
541m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 542v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
543
544# A function can be addressed by either it's "pointer" (possibly a
545# descriptor address) or "entry point" (first executable instruction).
546# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 547# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
548# a simplified subset of that functionality - the function's address
549# corresponds to the "function pointer" and the function's start
550# corresponds to the "function entry point" - and hence is redundant.
551
97030eea 552v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 553
123dc839
DJ
554# Return the remote protocol register number associated with this
555# register. Normally the identity mapping.
97030eea 556m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 557
b2756930 558# Fetch the target specific address used to represent a load module.
97030eea 559F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 560#
97030eea
UW
561v:CORE_ADDR:frame_args_skip:::0:::0
562M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
563M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
564# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
565# frame-base. Enable frame-base before frame-unwind.
97030eea 566F:int:frame_num_args:struct frame_info *frame:frame
104c1213 567#
97030eea
UW
568M:CORE_ADDR:frame_align:CORE_ADDR address:address
569m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
570v:int:frame_red_zone_size
f0d4cc9e 571#
97030eea 572m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
573# On some machines there are bits in addresses which are not really
574# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 575# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
576# we get a "real" address such as one would find in a symbol table.
577# This is used only for addresses of instructions, and even then I'm
578# not sure it's used in all contexts. It exists to deal with there
579# being a few stray bits in the PC which would mislead us, not as some
580# sort of generic thing to handle alignment or segmentation (it's
581# possible it should be in TARGET_READ_PC instead).
24568a2c 582m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
583
584# FIXME/cagney/2001-01-18: This should be split in two. A target method that
585# indicates if the target needs software single step. An ISA method to
586# implement it.
587#
588# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
589# breakpoints using the breakpoint system instead of blatting memory directly
590# (as with rs6000).
64c4637f 591#
e6590a1b
UW
592# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
593# target can single step. If not, then implement single step using breakpoints.
64c4637f 594#
6f112b18 595# A return value of 1 means that the software_single_step breakpoints
e6590a1b 596# were inserted; 0 means they were not.
97030eea 597F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 598
3352ef37
AC
599# Return non-zero if the processor is executing a delay slot and a
600# further single-step is needed before the instruction finishes.
97030eea 601M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 602# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 603# disassembler. Perhaps objdump can handle it?
97030eea
UW
604f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
605f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
606
607
cfd8ab24 608# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
609# evaluates non-zero, this is the address where the debugger will place
610# a step-resume breakpoint to get us past the dynamic linker.
97030eea 611m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 612# Some systems also have trampoline code for returning from shared libs.
2c02bd72 613m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 614
c12260ac
CV
615# A target might have problems with watchpoints as soon as the stack
616# frame of the current function has been destroyed. This mostly happens
617# as the first action in a funtion's epilogue. in_function_epilogue_p()
618# is defined to return a non-zero value if either the given addr is one
619# instruction after the stack destroying instruction up to the trailing
620# return instruction or if we can figure out that the stack frame has
621# already been invalidated regardless of the value of addr. Targets
622# which don't suffer from that problem could just let this functionality
623# untouched.
97030eea 624m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
625f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
626f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
627v:int:cannot_step_breakpoint:::0:0::0
628v:int:have_nonsteppable_watchpoint:::0:0::0
629F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
630M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
631M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 632# Is a register in a group
97030eea 633m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 634# Fetch the pointer to the ith function argument.
97030eea 635F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
636
637# Return the appropriate register set for a core file section with
638# name SECT_NAME and size SECT_SIZE.
97030eea 639M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 640
17ea7499
CES
641# Supported register notes in a core file.
642v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
643
6432734d
UW
644# Create core file notes
645M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
646
b3ac9c77
SDJ
647# The elfcore writer hook to use to write Linux prpsinfo notes to core
648# files. Most Linux architectures use the same prpsinfo32 or
649# prpsinfo64 layouts, and so won't need to provide this hook, as we
650# call the Linux generic routines in bfd to write prpsinfo notes by
651# default.
652F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
653
35c2fab7
UW
654# Find core file memory regions
655M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
656
de584861
PA
657# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
658# core file into buffer READBUF with length LEN.
7ec1862d 659M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 660
356a5233
JB
661# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
662# libraries list from core file into buffer READBUF with length LEN.
7ec1862d 663M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 664
c0edd9ed 665# How the core target converts a PTID from a core file to a string.
28439f5e
PA
666M:char *:core_pid_to_str:ptid_t ptid:ptid
667
a78c2d62 668# BFD target to use when generating a core file.
86ba1042 669V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 670
0d5de010
DJ
671# If the elements of C++ vtables are in-place function descriptors rather
672# than normal function pointers (which may point to code or a descriptor),
673# set this to one.
97030eea 674v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
675
676# Set if the least significant bit of the delta is used instead of the least
677# significant bit of the pfn for pointers to virtual member functions.
97030eea 678v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
679
680# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 681F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 682
1668ae25 683# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
684V:ULONGEST:max_insn_length:::0:0
685
686# Copy the instruction at FROM to TO, and make any adjustments
687# necessary to single-step it at that address.
688#
689# REGS holds the state the thread's registers will have before
690# executing the copied instruction; the PC in REGS will refer to FROM,
691# not the copy at TO. The caller should update it to point at TO later.
692#
693# Return a pointer to data of the architecture's choice to be passed
694# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
695# the instruction's effects have been completely simulated, with the
696# resulting state written back to REGS.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700#
701# The TO area is only guaranteed to have space for
702# gdbarch_max_insn_length (arch) bytes, so this function must not
703# write more bytes than that to that area.
704#
705# If you do not provide this function, GDB assumes that the
706# architecture does not support displaced stepping.
707#
708# If your architecture doesn't need to adjust instructions before
709# single-stepping them, consider using simple_displaced_step_copy_insn
710# here.
711M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
712
99e40580
UW
713# Return true if GDB should use hardware single-stepping to execute
714# the displaced instruction identified by CLOSURE. If false,
715# GDB will simply restart execution at the displaced instruction
716# location, and it is up to the target to ensure GDB will receive
717# control again (e.g. by placing a software breakpoint instruction
718# into the displaced instruction buffer).
719#
720# The default implementation returns false on all targets that
721# provide a gdbarch_software_single_step routine, and true otherwise.
722m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
723
237fc4c9
PA
724# Fix up the state resulting from successfully single-stepping a
725# displaced instruction, to give the result we would have gotten from
726# stepping the instruction in its original location.
727#
728# REGS is the register state resulting from single-stepping the
729# displaced instruction.
730#
731# CLOSURE is the result from the matching call to
732# gdbarch_displaced_step_copy_insn.
733#
734# If you provide gdbarch_displaced_step_copy_insn.but not this
735# function, then GDB assumes that no fixup is needed after
736# single-stepping the instruction.
737#
738# For a general explanation of displaced stepping and how GDB uses it,
739# see the comments in infrun.c.
740M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
741
742# Free a closure returned by gdbarch_displaced_step_copy_insn.
743#
744# If you provide gdbarch_displaced_step_copy_insn, you must provide
745# this function as well.
746#
747# If your architecture uses closures that don't need to be freed, then
748# you can use simple_displaced_step_free_closure here.
749#
750# For a general explanation of displaced stepping and how GDB uses it,
751# see the comments in infrun.c.
752m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
753
754# Return the address of an appropriate place to put displaced
755# instructions while we step over them. There need only be one such
756# place, since we're only stepping one thread over a breakpoint at a
757# time.
758#
759# For a general explanation of displaced stepping and how GDB uses it,
760# see the comments in infrun.c.
761m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
762
dde08ee1
PA
763# Relocate an instruction to execute at a different address. OLDLOC
764# is the address in the inferior memory where the instruction to
765# relocate is currently at. On input, TO points to the destination
766# where we want the instruction to be copied (and possibly adjusted)
767# to. On output, it points to one past the end of the resulting
768# instruction(s). The effect of executing the instruction at TO shall
769# be the same as if executing it at FROM. For example, call
770# instructions that implicitly push the return address on the stack
771# should be adjusted to return to the instruction after OLDLOC;
772# relative branches, and other PC-relative instructions need the
773# offset adjusted; etc.
774M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
775
1c772458 776# Refresh overlay mapped state for section OSECT.
97030eea 777F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 778
97030eea 779M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
780
781# Handle special encoding of static variables in stabs debug info.
0d5cff50 782F:const char *:static_transform_name:const char *name:name
203c3895 783# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 784v:int:sofun_address_maybe_missing:::0:0::0
1cded358 785
0508c3ec
HZ
786# Parse the instruction at ADDR storing in the record execution log
787# the registers REGCACHE and memory ranges that will be affected when
788# the instruction executes, along with their current values.
789# Return -1 if something goes wrong, 0 otherwise.
790M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
791
3846b520
HZ
792# Save process state after a signal.
793# Return -1 if something goes wrong, 0 otherwise.
2ea28649 794M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 795
22203bbf 796# Signal translation: translate inferior's signal (target's) number
86b49880
PA
797# into GDB's representation. The implementation of this method must
798# be host independent. IOW, don't rely on symbols of the NAT_FILE
799# header (the nm-*.h files), the host <signal.h> header, or similar
800# headers. This is mainly used when cross-debugging core files ---
801# "Live" targets hide the translation behind the target interface
1f8cf220
PA
802# (target_wait, target_resume, etc.).
803M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 804
eb14d406
SDJ
805# Signal translation: translate the GDB's internal signal number into
806# the inferior's signal (target's) representation. The implementation
807# of this method must be host independent. IOW, don't rely on symbols
808# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
809# header, or similar headers.
810# Return the target signal number if found, or -1 if the GDB internal
811# signal number is invalid.
812M:int:gdb_signal_to_target:enum gdb_signal signal:signal
813
4aa995e1
PA
814# Extra signal info inspection.
815#
816# Return a type suitable to inspect extra signal information.
817M:struct type *:get_siginfo_type:void:
818
60c5725c
DJ
819# Record architecture-specific information from the symbol table.
820M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 821
a96d9b2e
SDJ
822# Function for the 'catch syscall' feature.
823
824# Get architecture-specific system calls information from registers.
825M:LONGEST:get_syscall_number:ptid_t ptid:ptid
826
55aa24fb
SDJ
827# SystemTap related fields and functions.
828
05c0465e
SDJ
829# A NULL-terminated array of prefixes used to mark an integer constant
830# on the architecture's assembly.
55aa24fb
SDJ
831# For example, on x86 integer constants are written as:
832#
833# \$10 ;; integer constant 10
834#
835# in this case, this prefix would be the character \`\$\'.
05c0465e 836v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 837
05c0465e
SDJ
838# A NULL-terminated array of suffixes used to mark an integer constant
839# on the architecture's assembly.
840v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 841
05c0465e
SDJ
842# A NULL-terminated array of prefixes used to mark a register name on
843# the architecture's assembly.
55aa24fb
SDJ
844# For example, on x86 the register name is written as:
845#
846# \%eax ;; register eax
847#
848# in this case, this prefix would be the character \`\%\'.
05c0465e 849v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 850
05c0465e
SDJ
851# A NULL-terminated array of suffixes used to mark a register name on
852# the architecture's assembly.
853v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 854
05c0465e
SDJ
855# A NULL-terminated array of prefixes used to mark a register
856# indirection on the architecture's assembly.
55aa24fb
SDJ
857# For example, on x86 the register indirection is written as:
858#
859# \(\%eax\) ;; indirecting eax
860#
861# in this case, this prefix would be the charater \`\(\'.
862#
863# Please note that we use the indirection prefix also for register
864# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 865v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 866
05c0465e
SDJ
867# A NULL-terminated array of suffixes used to mark a register
868# indirection on the architecture's assembly.
55aa24fb
SDJ
869# For example, on x86 the register indirection is written as:
870#
871# \(\%eax\) ;; indirecting eax
872#
873# in this case, this prefix would be the charater \`\)\'.
874#
875# Please note that we use the indirection suffix also for register
876# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 877v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 878
05c0465e 879# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
880#
881# For example, on PPC a register is represented by a number in the assembly
882# language (e.g., \`10\' is the 10th general-purpose register). However,
883# inside GDB this same register has an \`r\' appended to its name, so the 10th
884# register would be represented as \`r10\' internally.
08af7a40 885v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
886
887# Suffix used to name a register using GDB's nomenclature.
08af7a40 888v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
889
890# Check if S is a single operand.
891#
892# Single operands can be:
893# \- Literal integers, e.g. \`\$10\' on x86
894# \- Register access, e.g. \`\%eax\' on x86
895# \- Register indirection, e.g. \`\(\%eax\)\' on x86
896# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
897#
898# This function should check for these patterns on the string
899# and return 1 if some were found, or zero otherwise. Please try to match
900# as much info as you can from the string, i.e., if you have to match
901# something like \`\(\%\', do not match just the \`\(\'.
902M:int:stap_is_single_operand:const char *s:s
903
904# Function used to handle a "special case" in the parser.
905#
906# A "special case" is considered to be an unknown token, i.e., a token
907# that the parser does not know how to parse. A good example of special
908# case would be ARM's register displacement syntax:
909#
910# [R0, #4] ;; displacing R0 by 4
911#
912# Since the parser assumes that a register displacement is of the form:
913#
914# <number> <indirection_prefix> <register_name> <indirection_suffix>
915#
916# it means that it will not be able to recognize and parse this odd syntax.
917# Therefore, we should add a special case function that will handle this token.
918#
919# This function should generate the proper expression form of the expression
920# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
921# and so on). It should also return 1 if the parsing was successful, or zero
922# if the token was not recognized as a special token (in this case, returning
923# zero means that the special parser is deferring the parsing to the generic
924# parser), and should advance the buffer pointer (p->arg).
925M:int:stap_parse_special_token:struct stap_parse_info *p:p
926
927
50c71eaf
PA
928# True if the list of shared libraries is one and only for all
929# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
930# This usually means that all processes, although may or may not share
931# an address space, will see the same set of symbols at the same
932# addresses.
50c71eaf 933v:int:has_global_solist:::0:0::0
2567c7d9
PA
934
935# On some targets, even though each inferior has its own private
936# address space, the debug interface takes care of making breakpoints
937# visible to all address spaces automatically. For such cases,
938# this property should be set to true.
939v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
940
941# True if inferiors share an address space (e.g., uClinux).
942m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
943
944# True if a fast tracepoint can be set at an address.
945m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 946
f870a310
TT
947# Return the "auto" target charset.
948f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
949# Return the "auto" target wide charset.
950f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
951
952# If non-empty, this is a file extension that will be opened in place
953# of the file extension reported by the shared library list.
954#
955# This is most useful for toolchains that use a post-linker tool,
956# where the names of the files run on the target differ in extension
957# compared to the names of the files GDB should load for debug info.
958v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
959
960# If true, the target OS has DOS-based file system semantics. That
961# is, absolute paths include a drive name, and the backslash is
962# considered a directory separator.
963v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
964
965# Generate bytecodes to collect the return address in a frame.
966# Since the bytecodes run on the target, possibly with GDB not even
967# connected, the full unwinding machinery is not available, and
968# typically this function will issue bytecodes for one or more likely
969# places that the return address may be found.
970m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
971
3030c96e
UW
972# Implement the "info proc" command.
973M:void:info_proc:char *args, enum info_proc_what what:args, what
974
451b7c33
TT
975# Implement the "info proc" command for core files. Noe that there
976# are two "info_proc"-like methods on gdbarch -- one for core files,
977# one for live targets.
978M:void:core_info_proc:char *args, enum info_proc_what what:args, what
979
19630284
JB
980# Iterate over all objfiles in the order that makes the most sense
981# for the architecture to make global symbol searches.
982#
983# CB is a callback function where OBJFILE is the objfile to be searched,
984# and CB_DATA a pointer to user-defined data (the same data that is passed
985# when calling this gdbarch method). The iteration stops if this function
986# returns nonzero.
987#
988# CB_DATA is a pointer to some user-defined data to be passed to
989# the callback.
990#
991# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
992# inspected when the symbol search was requested.
993m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
994
7e35103a
JB
995# Ravenscar arch-dependent ops.
996v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
104c1213 997EOF
104c1213
JM
998}
999
0b8f9e4d
AC
1000#
1001# The .log file
1002#
1003exec > new-gdbarch.log
34620563 1004function_list | while do_read
0b8f9e4d
AC
1005do
1006 cat <<EOF
2f9b146e 1007${class} ${returntype} ${function} ($formal)
104c1213 1008EOF
3d9a5942
AC
1009 for r in ${read}
1010 do
1011 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1012 done
f0d4cc9e 1013 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1014 then
66d659b1 1015 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1016 kill $$
1017 exit 1
1018 fi
72e74a21 1019 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1020 then
1021 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1022 kill $$
1023 exit 1
1024 fi
a72293e2
AC
1025 if class_is_multiarch_p
1026 then
1027 if class_is_predicate_p ; then :
1028 elif test "x${predefault}" = "x"
1029 then
2f9b146e 1030 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1031 kill $$
1032 exit 1
1033 fi
1034 fi
3d9a5942 1035 echo ""
0b8f9e4d
AC
1036done
1037
1038exec 1>&2
1039compare_new gdbarch.log
1040
104c1213
JM
1041
1042copyright ()
1043{
1044cat <<EOF
c4bfde41
JK
1045/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1046/* vi:set ro: */
59233f88 1047
104c1213 1048/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1049
ecd75fc8 1050 Copyright (C) 1998-2014 Free Software Foundation, Inc.
104c1213
JM
1051
1052 This file is part of GDB.
1053
1054 This program is free software; you can redistribute it and/or modify
1055 it under the terms of the GNU General Public License as published by
50efebf8 1056 the Free Software Foundation; either version 3 of the License, or
104c1213 1057 (at your option) any later version.
50efebf8 1058
104c1213
JM
1059 This program is distributed in the hope that it will be useful,
1060 but WITHOUT ANY WARRANTY; without even the implied warranty of
1061 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1062 GNU General Public License for more details.
50efebf8 1063
104c1213 1064 You should have received a copy of the GNU General Public License
50efebf8 1065 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1066
104c1213
JM
1067/* This file was created with the aid of \`\`gdbarch.sh''.
1068
52204a0b 1069 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1070 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1071 against the existing \`\`gdbarch.[hc]''. Any differences found
1072 being reported.
1073
1074 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1075 changes into that script. Conversely, when making sweeping changes
104c1213 1076 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1077 easier. */
104c1213
JM
1078
1079EOF
1080}
1081
1082#
1083# The .h file
1084#
1085
1086exec > new-gdbarch.h
1087copyright
1088cat <<EOF
1089#ifndef GDBARCH_H
1090#define GDBARCH_H
1091
da3331ec
AC
1092struct floatformat;
1093struct ui_file;
104c1213
JM
1094struct frame_info;
1095struct value;
b6af0555 1096struct objfile;
1c772458 1097struct obj_section;
a2cf933a 1098struct minimal_symbol;
049ee0e4 1099struct regcache;
b59ff9d5 1100struct reggroup;
6ce6d90f 1101struct regset;
a89aa300 1102struct disassemble_info;
e2d0e7eb 1103struct target_ops;
030f20e1 1104struct obstack;
8181d85f 1105struct bp_target_info;
424163ea 1106struct target_desc;
237fc4c9 1107struct displaced_step_closure;
17ea7499 1108struct core_regset_section;
a96d9b2e 1109struct syscall;
175ff332 1110struct agent_expr;
6710bf39 1111struct axs_value;
55aa24fb 1112struct stap_parse_info;
7e35103a 1113struct ravenscar_arch_ops;
b3ac9c77 1114struct elf_internal_linux_prpsinfo;
104c1213 1115
6ecd4729
PA
1116/* The architecture associated with the inferior through the
1117 connection to the target.
1118
1119 The architecture vector provides some information that is really a
1120 property of the inferior, accessed through a particular target:
1121 ptrace operations; the layout of certain RSP packets; the solib_ops
1122 vector; etc. To differentiate architecture accesses to
1123 per-inferior/target properties from
1124 per-thread/per-frame/per-objfile properties, accesses to
1125 per-inferior/target properties should be made through this
1126 gdbarch. */
1127
1128/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1129extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1130
1131/* The initial, default architecture. It uses host values (for want of a better
1132 choice). */
1133extern struct gdbarch startup_gdbarch;
1134
19630284
JB
1135
1136/* Callback type for the 'iterate_over_objfiles_in_search_order'
1137 gdbarch method. */
1138
1139typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1140 (struct objfile *objfile, void *cb_data);
104c1213
JM
1141EOF
1142
1143# function typedef's
3d9a5942
AC
1144printf "\n"
1145printf "\n"
0963b4bd 1146printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1147function_list | while do_read
104c1213 1148do
2ada493a
AC
1149 if class_is_info_p
1150 then
3d9a5942
AC
1151 printf "\n"
1152 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1153 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1154 fi
104c1213
JM
1155done
1156
1157# function typedef's
3d9a5942
AC
1158printf "\n"
1159printf "\n"
0963b4bd 1160printf "/* The following are initialized by the target dependent code. */\n"
34620563 1161function_list | while do_read
104c1213 1162do
72e74a21 1163 if [ -n "${comment}" ]
34620563
AC
1164 then
1165 echo "${comment}" | sed \
1166 -e '2 s,#,/*,' \
1167 -e '3,$ s,#, ,' \
1168 -e '$ s,$, */,'
1169 fi
412d5987
AC
1170
1171 if class_is_predicate_p
2ada493a 1172 then
412d5987
AC
1173 printf "\n"
1174 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1175 fi
2ada493a
AC
1176 if class_is_variable_p
1177 then
3d9a5942
AC
1178 printf "\n"
1179 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1180 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1181 fi
1182 if class_is_function_p
1183 then
3d9a5942 1184 printf "\n"
72e74a21 1185 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1186 then
1187 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1188 elif class_is_multiarch_p
1189 then
1190 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1191 else
1192 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1193 fi
72e74a21 1194 if [ "x${formal}" = "xvoid" ]
104c1213 1195 then
3d9a5942 1196 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1197 else
3d9a5942 1198 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1199 fi
3d9a5942 1200 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1201 fi
104c1213
JM
1202done
1203
1204# close it off
1205cat <<EOF
1206
a96d9b2e
SDJ
1207/* Definition for an unknown syscall, used basically in error-cases. */
1208#define UNKNOWN_SYSCALL (-1)
1209
104c1213
JM
1210extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1211
1212
1213/* Mechanism for co-ordinating the selection of a specific
1214 architecture.
1215
1216 GDB targets (*-tdep.c) can register an interest in a specific
1217 architecture. Other GDB components can register a need to maintain
1218 per-architecture data.
1219
1220 The mechanisms below ensures that there is only a loose connection
1221 between the set-architecture command and the various GDB
0fa6923a 1222 components. Each component can independently register their need
104c1213
JM
1223 to maintain architecture specific data with gdbarch.
1224
1225 Pragmatics:
1226
1227 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1228 didn't scale.
1229
1230 The more traditional mega-struct containing architecture specific
1231 data for all the various GDB components was also considered. Since
0fa6923a 1232 GDB is built from a variable number of (fairly independent)
104c1213 1233 components it was determined that the global aproach was not
0963b4bd 1234 applicable. */
104c1213
JM
1235
1236
1237/* Register a new architectural family with GDB.
1238
1239 Register support for the specified ARCHITECTURE with GDB. When
1240 gdbarch determines that the specified architecture has been
1241 selected, the corresponding INIT function is called.
1242
1243 --
1244
1245 The INIT function takes two parameters: INFO which contains the
1246 information available to gdbarch about the (possibly new)
1247 architecture; ARCHES which is a list of the previously created
1248 \`\`struct gdbarch'' for this architecture.
1249
0f79675b 1250 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1251 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1252
1253 The ARCHES parameter is a linked list (sorted most recently used)
1254 of all the previously created architures for this architecture
1255 family. The (possibly NULL) ARCHES->gdbarch can used to access
1256 values from the previously selected architecture for this
59837fe0 1257 architecture family.
104c1213
JM
1258
1259 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1260 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1261 gdbarch'' from the ARCHES list - indicating that the new
1262 architecture is just a synonym for an earlier architecture (see
1263 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1264 - that describes the selected architecture (see gdbarch_alloc()).
1265
1266 The DUMP_TDEP function shall print out all target specific values.
1267 Care should be taken to ensure that the function works in both the
0963b4bd 1268 multi-arch and non- multi-arch cases. */
104c1213
JM
1269
1270struct gdbarch_list
1271{
1272 struct gdbarch *gdbarch;
1273 struct gdbarch_list *next;
1274};
1275
1276struct gdbarch_info
1277{
0963b4bd 1278 /* Use default: NULL (ZERO). */
104c1213
JM
1279 const struct bfd_arch_info *bfd_arch_info;
1280
428721aa 1281 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1282 enum bfd_endian byte_order;
104c1213 1283
94123b4f 1284 enum bfd_endian byte_order_for_code;
9d4fde75 1285
0963b4bd 1286 /* Use default: NULL (ZERO). */
104c1213
JM
1287 bfd *abfd;
1288
0963b4bd 1289 /* Use default: NULL (ZERO). */
104c1213 1290 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1291
1292 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1293 enum gdb_osabi osabi;
424163ea
DJ
1294
1295 /* Use default: NULL (ZERO). */
1296 const struct target_desc *target_desc;
104c1213
JM
1297};
1298
1299typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1300typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1301
4b9b3959 1302/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1303extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1304
4b9b3959
AC
1305extern void gdbarch_register (enum bfd_architecture architecture,
1306 gdbarch_init_ftype *,
1307 gdbarch_dump_tdep_ftype *);
1308
104c1213 1309
b4a20239
AC
1310/* Return a freshly allocated, NULL terminated, array of the valid
1311 architecture names. Since architectures are registered during the
1312 _initialize phase this function only returns useful information
0963b4bd 1313 once initialization has been completed. */
b4a20239
AC
1314
1315extern const char **gdbarch_printable_names (void);
1316
1317
104c1213 1318/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1319 matches the information provided by INFO. */
104c1213 1320
424163ea 1321extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1322
1323
1324/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1325 basic initialization using values obtained from the INFO and TDEP
104c1213 1326 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1327 initialization of the object. */
104c1213
JM
1328
1329extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1330
1331
4b9b3959
AC
1332/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1333 It is assumed that the caller freeds the \`\`struct
0963b4bd 1334 gdbarch_tdep''. */
4b9b3959 1335
058f20d5
JB
1336extern void gdbarch_free (struct gdbarch *);
1337
1338
aebd7893
AC
1339/* Helper function. Allocate memory from the \`\`struct gdbarch''
1340 obstack. The memory is freed when the corresponding architecture
1341 is also freed. */
1342
1343extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1344#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1345#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1346
1347
0963b4bd 1348/* Helper function. Force an update of the current architecture.
104c1213 1349
b732d07d
AC
1350 The actual architecture selected is determined by INFO, \`\`(gdb) set
1351 architecture'' et.al., the existing architecture and BFD's default
1352 architecture. INFO should be initialized to zero and then selected
1353 fields should be updated.
104c1213 1354
0963b4bd 1355 Returns non-zero if the update succeeds. */
16f33e29
AC
1356
1357extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1358
1359
ebdba546
AC
1360/* Helper function. Find an architecture matching info.
1361
1362 INFO should be initialized using gdbarch_info_init, relevant fields
1363 set, and then finished using gdbarch_info_fill.
1364
1365 Returns the corresponding architecture, or NULL if no matching
59837fe0 1366 architecture was found. */
ebdba546
AC
1367
1368extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1369
1370
aff68abb 1371/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1372
aff68abb 1373extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1374
104c1213
JM
1375
1376/* Register per-architecture data-pointer.
1377
1378 Reserve space for a per-architecture data-pointer. An identifier
1379 for the reserved data-pointer is returned. That identifer should
95160752 1380 be saved in a local static variable.
104c1213 1381
fcc1c85c
AC
1382 Memory for the per-architecture data shall be allocated using
1383 gdbarch_obstack_zalloc. That memory will be deleted when the
1384 corresponding architecture object is deleted.
104c1213 1385
95160752
AC
1386 When a previously created architecture is re-selected, the
1387 per-architecture data-pointer for that previous architecture is
76860b5f 1388 restored. INIT() is not re-called.
104c1213
JM
1389
1390 Multiple registrarants for any architecture are allowed (and
1391 strongly encouraged). */
1392
95160752 1393struct gdbarch_data;
104c1213 1394
030f20e1
AC
1395typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1396extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1397typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1398extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1399extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1400 struct gdbarch_data *data,
1401 void *pointer);
104c1213 1402
451fbdda 1403extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1404
1405
0fa6923a 1406/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1407 byte-order, ...) using information found in the BFD. */
104c1213
JM
1408
1409extern void set_gdbarch_from_file (bfd *);
1410
1411
e514a9d6
JM
1412/* Initialize the current architecture to the "first" one we find on
1413 our list. */
1414
1415extern void initialize_current_architecture (void);
1416
104c1213 1417/* gdbarch trace variable */
ccce17b0 1418extern unsigned int gdbarch_debug;
104c1213 1419
4b9b3959 1420extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1421
1422#endif
1423EOF
1424exec 1>&2
1425#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1426compare_new gdbarch.h
104c1213
JM
1427
1428
1429#
1430# C file
1431#
1432
1433exec > new-gdbarch.c
1434copyright
1435cat <<EOF
1436
1437#include "defs.h"
7355ddba 1438#include "arch-utils.h"
104c1213 1439
104c1213 1440#include "gdbcmd.h"
faaf634c 1441#include "inferior.h"
104c1213
JM
1442#include "symcat.h"
1443
f0d4cc9e 1444#include "floatformat.h"
104c1213 1445
95160752 1446#include "gdb_assert.h"
e7b12392 1447#include <string.h>
b59ff9d5 1448#include "reggroups.h"
4be87837 1449#include "osabi.h"
aebd7893 1450#include "gdb_obstack.h"
383f836e 1451#include "observer.h"
a3ecef73 1452#include "regcache.h"
19630284 1453#include "objfiles.h"
95160752 1454
104c1213
JM
1455/* Static function declarations */
1456
b3cc3077 1457static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1458
104c1213
JM
1459/* Non-zero if we want to trace architecture code. */
1460
1461#ifndef GDBARCH_DEBUG
1462#define GDBARCH_DEBUG 0
1463#endif
ccce17b0 1464unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1465static void
1466show_gdbarch_debug (struct ui_file *file, int from_tty,
1467 struct cmd_list_element *c, const char *value)
1468{
1469 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1470}
104c1213 1471
456fcf94 1472static const char *
8da61cc4 1473pformat (const struct floatformat **format)
456fcf94
AC
1474{
1475 if (format == NULL)
1476 return "(null)";
1477 else
8da61cc4
DJ
1478 /* Just print out one of them - this is only for diagnostics. */
1479 return format[0]->name;
456fcf94
AC
1480}
1481
08105857
PA
1482static const char *
1483pstring (const char *string)
1484{
1485 if (string == NULL)
1486 return "(null)";
1487 return string;
05c0465e
SDJ
1488}
1489
1490/* Helper function to print a list of strings, represented as "const
1491 char *const *". The list is printed comma-separated. */
1492
1493static char *
1494pstring_list (const char *const *list)
1495{
1496 static char ret[100];
1497 const char *const *p;
1498 size_t offset = 0;
1499
1500 if (list == NULL)
1501 return "(null)";
1502
1503 ret[0] = '\0';
1504 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1505 {
1506 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1507 offset += 2 + s;
1508 }
1509
1510 if (offset > 0)
1511 {
1512 gdb_assert (offset - 2 < sizeof (ret));
1513 ret[offset - 2] = '\0';
1514 }
1515
1516 return ret;
08105857
PA
1517}
1518
104c1213
JM
1519EOF
1520
1521# gdbarch open the gdbarch object
3d9a5942 1522printf "\n"
0963b4bd 1523printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1524printf "\n"
1525printf "struct gdbarch\n"
1526printf "{\n"
76860b5f
AC
1527printf " /* Has this architecture been fully initialized? */\n"
1528printf " int initialized_p;\n"
aebd7893
AC
1529printf "\n"
1530printf " /* An obstack bound to the lifetime of the architecture. */\n"
1531printf " struct obstack *obstack;\n"
1532printf "\n"
0963b4bd 1533printf " /* basic architectural information. */\n"
34620563 1534function_list | while do_read
104c1213 1535do
2ada493a
AC
1536 if class_is_info_p
1537 then
3d9a5942 1538 printf " ${returntype} ${function};\n"
2ada493a 1539 fi
104c1213 1540done
3d9a5942 1541printf "\n"
0963b4bd 1542printf " /* target specific vector. */\n"
3d9a5942
AC
1543printf " struct gdbarch_tdep *tdep;\n"
1544printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1545printf "\n"
0963b4bd 1546printf " /* per-architecture data-pointers. */\n"
95160752 1547printf " unsigned nr_data;\n"
3d9a5942
AC
1548printf " void **data;\n"
1549printf "\n"
104c1213
JM
1550cat <<EOF
1551 /* Multi-arch values.
1552
1553 When extending this structure you must:
1554
1555 Add the field below.
1556
1557 Declare set/get functions and define the corresponding
1558 macro in gdbarch.h.
1559
1560 gdbarch_alloc(): If zero/NULL is not a suitable default,
1561 initialize the new field.
1562
1563 verify_gdbarch(): Confirm that the target updated the field
1564 correctly.
1565
7e73cedf 1566 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1567 field is dumped out
1568
c0e8c252 1569 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1570 variable (base values on the host's c-type system).
1571
1572 get_gdbarch(): Implement the set/get functions (probably using
1573 the macro's as shortcuts).
1574
1575 */
1576
1577EOF
34620563 1578function_list | while do_read
104c1213 1579do
2ada493a
AC
1580 if class_is_variable_p
1581 then
3d9a5942 1582 printf " ${returntype} ${function};\n"
2ada493a
AC
1583 elif class_is_function_p
1584 then
2f9b146e 1585 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1586 fi
104c1213 1587done
3d9a5942 1588printf "};\n"
104c1213
JM
1589
1590# A pre-initialized vector
3d9a5942
AC
1591printf "\n"
1592printf "\n"
104c1213
JM
1593cat <<EOF
1594/* The default architecture uses host values (for want of a better
0963b4bd 1595 choice). */
104c1213 1596EOF
3d9a5942
AC
1597printf "\n"
1598printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1599printf "\n"
1600printf "struct gdbarch startup_gdbarch =\n"
1601printf "{\n"
76860b5f 1602printf " 1, /* Always initialized. */\n"
aebd7893 1603printf " NULL, /* The obstack. */\n"
0963b4bd 1604printf " /* basic architecture information. */\n"
4b9b3959 1605function_list | while do_read
104c1213 1606do
2ada493a
AC
1607 if class_is_info_p
1608 then
ec5cbaec 1609 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1610 fi
104c1213
JM
1611done
1612cat <<EOF
0963b4bd 1613 /* target specific vector and its dump routine. */
4b9b3959 1614 NULL, NULL,
c66fb220
TT
1615 /*per-architecture data-pointers. */
1616 0, NULL,
104c1213
JM
1617 /* Multi-arch values */
1618EOF
34620563 1619function_list | while do_read
104c1213 1620do
2ada493a
AC
1621 if class_is_function_p || class_is_variable_p
1622 then
ec5cbaec 1623 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1624 fi
104c1213
JM
1625done
1626cat <<EOF
c0e8c252 1627 /* startup_gdbarch() */
104c1213 1628};
4b9b3959 1629
104c1213
JM
1630EOF
1631
1632# Create a new gdbarch struct
104c1213 1633cat <<EOF
7de2341d 1634
66b43ecb 1635/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1636 \`\`struct gdbarch_info''. */
104c1213 1637EOF
3d9a5942 1638printf "\n"
104c1213
JM
1639cat <<EOF
1640struct gdbarch *
1641gdbarch_alloc (const struct gdbarch_info *info,
1642 struct gdbarch_tdep *tdep)
1643{
be7811ad 1644 struct gdbarch *gdbarch;
aebd7893
AC
1645
1646 /* Create an obstack for allocating all the per-architecture memory,
1647 then use that to allocate the architecture vector. */
70ba0933 1648 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1649 obstack_init (obstack);
be7811ad
MD
1650 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1651 memset (gdbarch, 0, sizeof (*gdbarch));
1652 gdbarch->obstack = obstack;
85de9627 1653
be7811ad 1654 alloc_gdbarch_data (gdbarch);
85de9627 1655
be7811ad 1656 gdbarch->tdep = tdep;
104c1213 1657EOF
3d9a5942 1658printf "\n"
34620563 1659function_list | while do_read
104c1213 1660do
2ada493a
AC
1661 if class_is_info_p
1662 then
be7811ad 1663 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1664 fi
104c1213 1665done
3d9a5942 1666printf "\n"
0963b4bd 1667printf " /* Force the explicit initialization of these. */\n"
34620563 1668function_list | while do_read
104c1213 1669do
2ada493a
AC
1670 if class_is_function_p || class_is_variable_p
1671 then
72e74a21 1672 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1673 then
be7811ad 1674 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1675 fi
2ada493a 1676 fi
104c1213
JM
1677done
1678cat <<EOF
1679 /* gdbarch_alloc() */
1680
be7811ad 1681 return gdbarch;
104c1213
JM
1682}
1683EOF
1684
058f20d5 1685# Free a gdbarch struct.
3d9a5942
AC
1686printf "\n"
1687printf "\n"
058f20d5 1688cat <<EOF
aebd7893
AC
1689/* Allocate extra space using the per-architecture obstack. */
1690
1691void *
1692gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1693{
1694 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1695
aebd7893
AC
1696 memset (data, 0, size);
1697 return data;
1698}
1699
1700
058f20d5
JB
1701/* Free a gdbarch struct. This should never happen in normal
1702 operation --- once you've created a gdbarch, you keep it around.
1703 However, if an architecture's init function encounters an error
1704 building the structure, it may need to clean up a partially
1705 constructed gdbarch. */
4b9b3959 1706
058f20d5
JB
1707void
1708gdbarch_free (struct gdbarch *arch)
1709{
aebd7893 1710 struct obstack *obstack;
05c547f6 1711
95160752 1712 gdb_assert (arch != NULL);
aebd7893
AC
1713 gdb_assert (!arch->initialized_p);
1714 obstack = arch->obstack;
1715 obstack_free (obstack, 0); /* Includes the ARCH. */
1716 xfree (obstack);
058f20d5
JB
1717}
1718EOF
1719
104c1213 1720# verify a new architecture
104c1213 1721cat <<EOF
db446970
AC
1722
1723
1724/* Ensure that all values in a GDBARCH are reasonable. */
1725
104c1213 1726static void
be7811ad 1727verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1728{
f16a1923
AC
1729 struct ui_file *log;
1730 struct cleanup *cleanups;
759ef836 1731 long length;
f16a1923 1732 char *buf;
05c547f6 1733
f16a1923
AC
1734 log = mem_fileopen ();
1735 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1736 /* fundamental */
be7811ad 1737 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1738 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1739 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1740 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1741 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1742EOF
34620563 1743function_list | while do_read
104c1213 1744do
2ada493a
AC
1745 if class_is_function_p || class_is_variable_p
1746 then
72e74a21 1747 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1748 then
3d9a5942 1749 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1750 elif class_is_predicate_p
1751 then
0963b4bd 1752 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1753 # FIXME: See do_read for potential simplification
72e74a21 1754 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1755 then
3d9a5942 1756 printf " if (${invalid_p})\n"
be7811ad 1757 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1758 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1759 then
be7811ad
MD
1760 printf " if (gdbarch->${function} == ${predefault})\n"
1761 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1762 elif [ -n "${postdefault}" ]
f0d4cc9e 1763 then
be7811ad
MD
1764 printf " if (gdbarch->${function} == 0)\n"
1765 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1766 elif [ -n "${invalid_p}" ]
104c1213 1767 then
4d60522e 1768 printf " if (${invalid_p})\n"
f16a1923 1769 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1770 elif [ -n "${predefault}" ]
104c1213 1771 then
be7811ad 1772 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1773 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1774 fi
2ada493a 1775 fi
104c1213
JM
1776done
1777cat <<EOF
759ef836 1778 buf = ui_file_xstrdup (log, &length);
f16a1923 1779 make_cleanup (xfree, buf);
759ef836 1780 if (length > 0)
f16a1923 1781 internal_error (__FILE__, __LINE__,
85c07804 1782 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1783 buf);
1784 do_cleanups (cleanups);
104c1213
JM
1785}
1786EOF
1787
1788# dump the structure
3d9a5942
AC
1789printf "\n"
1790printf "\n"
104c1213 1791cat <<EOF
0963b4bd 1792/* Print out the details of the current architecture. */
4b9b3959 1793
104c1213 1794void
be7811ad 1795gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1796{
b78960be 1797 const char *gdb_nm_file = "<not-defined>";
05c547f6 1798
b78960be
AC
1799#if defined (GDB_NM_FILE)
1800 gdb_nm_file = GDB_NM_FILE;
1801#endif
1802 fprintf_unfiltered (file,
1803 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1804 gdb_nm_file);
104c1213 1805EOF
97030eea 1806function_list | sort -t: -k 3 | while do_read
104c1213 1807do
1e9f55d0
AC
1808 # First the predicate
1809 if class_is_predicate_p
1810 then
7996bcec 1811 printf " fprintf_unfiltered (file,\n"
48f7351b 1812 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1813 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1814 fi
48f7351b 1815 # Print the corresponding value.
283354d8 1816 if class_is_function_p
4b9b3959 1817 then
7996bcec 1818 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1819 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1820 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1821 else
48f7351b 1822 # It is a variable
2f9b146e
AC
1823 case "${print}:${returntype}" in
1824 :CORE_ADDR )
0b1553bc
UW
1825 fmt="%s"
1826 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1827 ;;
2f9b146e 1828 :* )
48f7351b 1829 fmt="%s"
623d3eb1 1830 print="plongest (gdbarch->${function})"
48f7351b
AC
1831 ;;
1832 * )
2f9b146e 1833 fmt="%s"
48f7351b
AC
1834 ;;
1835 esac
3d9a5942 1836 printf " fprintf_unfiltered (file,\n"
48f7351b 1837 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1838 printf " ${print});\n"
2ada493a 1839 fi
104c1213 1840done
381323f4 1841cat <<EOF
be7811ad
MD
1842 if (gdbarch->dump_tdep != NULL)
1843 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1844}
1845EOF
104c1213
JM
1846
1847
1848# GET/SET
3d9a5942 1849printf "\n"
104c1213
JM
1850cat <<EOF
1851struct gdbarch_tdep *
1852gdbarch_tdep (struct gdbarch *gdbarch)
1853{
1854 if (gdbarch_debug >= 2)
3d9a5942 1855 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1856 return gdbarch->tdep;
1857}
1858EOF
3d9a5942 1859printf "\n"
34620563 1860function_list | while do_read
104c1213 1861do
2ada493a
AC
1862 if class_is_predicate_p
1863 then
3d9a5942
AC
1864 printf "\n"
1865 printf "int\n"
1866 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1867 printf "{\n"
8de9bdc4 1868 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1869 printf " return ${predicate};\n"
3d9a5942 1870 printf "}\n"
2ada493a
AC
1871 fi
1872 if class_is_function_p
1873 then
3d9a5942
AC
1874 printf "\n"
1875 printf "${returntype}\n"
72e74a21 1876 if [ "x${formal}" = "xvoid" ]
104c1213 1877 then
3d9a5942 1878 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1879 else
3d9a5942 1880 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1881 fi
3d9a5942 1882 printf "{\n"
8de9bdc4 1883 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1884 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1885 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1886 then
1887 # Allow a call to a function with a predicate.
956ac328 1888 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1889 fi
3d9a5942
AC
1890 printf " if (gdbarch_debug >= 2)\n"
1891 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1892 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1893 then
1894 if class_is_multiarch_p
1895 then
1896 params="gdbarch"
1897 else
1898 params=""
1899 fi
1900 else
1901 if class_is_multiarch_p
1902 then
1903 params="gdbarch, ${actual}"
1904 else
1905 params="${actual}"
1906 fi
1907 fi
72e74a21 1908 if [ "x${returntype}" = "xvoid" ]
104c1213 1909 then
4a5c6a1d 1910 printf " gdbarch->${function} (${params});\n"
104c1213 1911 else
4a5c6a1d 1912 printf " return gdbarch->${function} (${params});\n"
104c1213 1913 fi
3d9a5942
AC
1914 printf "}\n"
1915 printf "\n"
1916 printf "void\n"
1917 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1918 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1919 printf "{\n"
1920 printf " gdbarch->${function} = ${function};\n"
1921 printf "}\n"
2ada493a
AC
1922 elif class_is_variable_p
1923 then
3d9a5942
AC
1924 printf "\n"
1925 printf "${returntype}\n"
1926 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1927 printf "{\n"
8de9bdc4 1928 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1929 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1930 then
3d9a5942 1931 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1932 elif [ -n "${invalid_p}" ]
104c1213 1933 then
956ac328
AC
1934 printf " /* Check variable is valid. */\n"
1935 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1936 elif [ -n "${predefault}" ]
104c1213 1937 then
956ac328
AC
1938 printf " /* Check variable changed from pre-default. */\n"
1939 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1940 fi
3d9a5942
AC
1941 printf " if (gdbarch_debug >= 2)\n"
1942 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1943 printf " return gdbarch->${function};\n"
1944 printf "}\n"
1945 printf "\n"
1946 printf "void\n"
1947 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1948 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1949 printf "{\n"
1950 printf " gdbarch->${function} = ${function};\n"
1951 printf "}\n"
2ada493a
AC
1952 elif class_is_info_p
1953 then
3d9a5942
AC
1954 printf "\n"
1955 printf "${returntype}\n"
1956 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1957 printf "{\n"
8de9bdc4 1958 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1959 printf " if (gdbarch_debug >= 2)\n"
1960 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1961 printf " return gdbarch->${function};\n"
1962 printf "}\n"
2ada493a 1963 fi
104c1213
JM
1964done
1965
1966# All the trailing guff
1967cat <<EOF
1968
1969
f44c642f 1970/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1971 modules. */
104c1213
JM
1972
1973struct gdbarch_data
1974{
95160752 1975 unsigned index;
76860b5f 1976 int init_p;
030f20e1
AC
1977 gdbarch_data_pre_init_ftype *pre_init;
1978 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1979};
1980
1981struct gdbarch_data_registration
1982{
104c1213
JM
1983 struct gdbarch_data *data;
1984 struct gdbarch_data_registration *next;
1985};
1986
f44c642f 1987struct gdbarch_data_registry
104c1213 1988{
95160752 1989 unsigned nr;
104c1213
JM
1990 struct gdbarch_data_registration *registrations;
1991};
1992
f44c642f 1993struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1994{
1995 0, NULL,
1996};
1997
030f20e1
AC
1998static struct gdbarch_data *
1999gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2000 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2001{
2002 struct gdbarch_data_registration **curr;
05c547f6
MS
2003
2004 /* Append the new registration. */
f44c642f 2005 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2006 (*curr) != NULL;
2007 curr = &(*curr)->next);
70ba0933 2008 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2009 (*curr)->next = NULL;
70ba0933 2010 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2011 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2012 (*curr)->data->pre_init = pre_init;
2013 (*curr)->data->post_init = post_init;
76860b5f 2014 (*curr)->data->init_p = 1;
104c1213
JM
2015 return (*curr)->data;
2016}
2017
030f20e1
AC
2018struct gdbarch_data *
2019gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2020{
2021 return gdbarch_data_register (pre_init, NULL);
2022}
2023
2024struct gdbarch_data *
2025gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2026{
2027 return gdbarch_data_register (NULL, post_init);
2028}
104c1213 2029
0963b4bd 2030/* Create/delete the gdbarch data vector. */
95160752
AC
2031
2032static void
b3cc3077 2033alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2034{
b3cc3077
JB
2035 gdb_assert (gdbarch->data == NULL);
2036 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2037 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2038}
3c875b6f 2039
76860b5f 2040/* Initialize the current value of the specified per-architecture
0963b4bd 2041 data-pointer. */
b3cc3077 2042
95160752 2043void
030f20e1
AC
2044deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2045 struct gdbarch_data *data,
2046 void *pointer)
95160752
AC
2047{
2048 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2049 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2050 gdb_assert (data->pre_init == NULL);
95160752
AC
2051 gdbarch->data[data->index] = pointer;
2052}
2053
104c1213 2054/* Return the current value of the specified per-architecture
0963b4bd 2055 data-pointer. */
104c1213
JM
2056
2057void *
451fbdda 2058gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2059{
451fbdda 2060 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2061 if (gdbarch->data[data->index] == NULL)
76860b5f 2062 {
030f20e1
AC
2063 /* The data-pointer isn't initialized, call init() to get a
2064 value. */
2065 if (data->pre_init != NULL)
2066 /* Mid architecture creation: pass just the obstack, and not
2067 the entire architecture, as that way it isn't possible for
2068 pre-init code to refer to undefined architecture
2069 fields. */
2070 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2071 else if (gdbarch->initialized_p
2072 && data->post_init != NULL)
2073 /* Post architecture creation: pass the entire architecture
2074 (as all fields are valid), but be careful to also detect
2075 recursive references. */
2076 {
2077 gdb_assert (data->init_p);
2078 data->init_p = 0;
2079 gdbarch->data[data->index] = data->post_init (gdbarch);
2080 data->init_p = 1;
2081 }
2082 else
2083 /* The architecture initialization hasn't completed - punt -
2084 hope that the caller knows what they are doing. Once
2085 deprecated_set_gdbarch_data has been initialized, this can be
2086 changed to an internal error. */
2087 return NULL;
76860b5f
AC
2088 gdb_assert (gdbarch->data[data->index] != NULL);
2089 }
451fbdda 2090 return gdbarch->data[data->index];
104c1213
JM
2091}
2092
2093
0963b4bd 2094/* Keep a registry of the architectures known by GDB. */
104c1213 2095
4b9b3959 2096struct gdbarch_registration
104c1213
JM
2097{
2098 enum bfd_architecture bfd_architecture;
2099 gdbarch_init_ftype *init;
4b9b3959 2100 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2101 struct gdbarch_list *arches;
4b9b3959 2102 struct gdbarch_registration *next;
104c1213
JM
2103};
2104
f44c642f 2105static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2106
b4a20239
AC
2107static void
2108append_name (const char ***buf, int *nr, const char *name)
2109{
2110 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2111 (*buf)[*nr] = name;
2112 *nr += 1;
2113}
2114
2115const char **
2116gdbarch_printable_names (void)
2117{
7996bcec 2118 /* Accumulate a list of names based on the registed list of
0963b4bd 2119 architectures. */
7996bcec
AC
2120 int nr_arches = 0;
2121 const char **arches = NULL;
2122 struct gdbarch_registration *rego;
05c547f6 2123
7996bcec
AC
2124 for (rego = gdbarch_registry;
2125 rego != NULL;
2126 rego = rego->next)
b4a20239 2127 {
7996bcec
AC
2128 const struct bfd_arch_info *ap;
2129 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2130 if (ap == NULL)
2131 internal_error (__FILE__, __LINE__,
85c07804 2132 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2133 do
2134 {
2135 append_name (&arches, &nr_arches, ap->printable_name);
2136 ap = ap->next;
2137 }
2138 while (ap != NULL);
b4a20239 2139 }
7996bcec
AC
2140 append_name (&arches, &nr_arches, NULL);
2141 return arches;
b4a20239
AC
2142}
2143
2144
104c1213 2145void
4b9b3959
AC
2146gdbarch_register (enum bfd_architecture bfd_architecture,
2147 gdbarch_init_ftype *init,
2148 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2149{
4b9b3959 2150 struct gdbarch_registration **curr;
104c1213 2151 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2152
ec3d358c 2153 /* Check that BFD recognizes this architecture */
104c1213
JM
2154 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2155 if (bfd_arch_info == NULL)
2156 {
8e65ff28 2157 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2158 _("gdbarch: Attempt to register "
2159 "unknown architecture (%d)"),
8e65ff28 2160 bfd_architecture);
104c1213 2161 }
0963b4bd 2162 /* Check that we haven't seen this architecture before. */
f44c642f 2163 for (curr = &gdbarch_registry;
104c1213
JM
2164 (*curr) != NULL;
2165 curr = &(*curr)->next)
2166 {
2167 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2168 internal_error (__FILE__, __LINE__,
64b9b334 2169 _("gdbarch: Duplicate registration "
0963b4bd 2170 "of architecture (%s)"),
8e65ff28 2171 bfd_arch_info->printable_name);
104c1213
JM
2172 }
2173 /* log it */
2174 if (gdbarch_debug)
30737ed9 2175 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2176 bfd_arch_info->printable_name,
30737ed9 2177 host_address_to_string (init));
104c1213 2178 /* Append it */
70ba0933 2179 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2180 (*curr)->bfd_architecture = bfd_architecture;
2181 (*curr)->init = init;
4b9b3959 2182 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2183 (*curr)->arches = NULL;
2184 (*curr)->next = NULL;
4b9b3959
AC
2185}
2186
2187void
2188register_gdbarch_init (enum bfd_architecture bfd_architecture,
2189 gdbarch_init_ftype *init)
2190{
2191 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2192}
104c1213
JM
2193
2194
424163ea 2195/* Look for an architecture using gdbarch_info. */
104c1213
JM
2196
2197struct gdbarch_list *
2198gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2199 const struct gdbarch_info *info)
2200{
2201 for (; arches != NULL; arches = arches->next)
2202 {
2203 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2204 continue;
2205 if (info->byte_order != arches->gdbarch->byte_order)
2206 continue;
4be87837
DJ
2207 if (info->osabi != arches->gdbarch->osabi)
2208 continue;
424163ea
DJ
2209 if (info->target_desc != arches->gdbarch->target_desc)
2210 continue;
104c1213
JM
2211 return arches;
2212 }
2213 return NULL;
2214}
2215
2216
ebdba546 2217/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2218 architecture if needed. Return that new architecture. */
104c1213 2219
59837fe0
UW
2220struct gdbarch *
2221gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2222{
2223 struct gdbarch *new_gdbarch;
4b9b3959 2224 struct gdbarch_registration *rego;
104c1213 2225
b732d07d 2226 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2227 sources: "set ..."; INFOabfd supplied; and the global
2228 defaults. */
2229 gdbarch_info_fill (&info);
4be87837 2230
0963b4bd 2231 /* Must have found some sort of architecture. */
b732d07d 2232 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2233
2234 if (gdbarch_debug)
2235 {
2236 fprintf_unfiltered (gdb_stdlog,
59837fe0 2237 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2238 (info.bfd_arch_info != NULL
2239 ? info.bfd_arch_info->printable_name
2240 : "(null)"));
2241 fprintf_unfiltered (gdb_stdlog,
59837fe0 2242 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2243 info.byte_order,
d7449b42 2244 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2245 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2246 : "default"));
4be87837 2247 fprintf_unfiltered (gdb_stdlog,
59837fe0 2248 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2249 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2250 fprintf_unfiltered (gdb_stdlog,
59837fe0 2251 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2252 host_address_to_string (info.abfd));
104c1213 2253 fprintf_unfiltered (gdb_stdlog,
59837fe0 2254 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2255 host_address_to_string (info.tdep_info));
104c1213
JM
2256 }
2257
ebdba546 2258 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2259 for (rego = gdbarch_registry;
2260 rego != NULL;
2261 rego = rego->next)
2262 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2263 break;
2264 if (rego == NULL)
2265 {
2266 if (gdbarch_debug)
59837fe0 2267 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2268 "No matching architecture\n");
b732d07d
AC
2269 return 0;
2270 }
2271
ebdba546 2272 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2273 new_gdbarch = rego->init (info, rego->arches);
2274
ebdba546
AC
2275 /* Did the tdep code like it? No. Reject the change and revert to
2276 the old architecture. */
104c1213
JM
2277 if (new_gdbarch == NULL)
2278 {
2279 if (gdbarch_debug)
59837fe0 2280 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2281 "Target rejected architecture\n");
2282 return NULL;
104c1213
JM
2283 }
2284
ebdba546
AC
2285 /* Is this a pre-existing architecture (as determined by already
2286 being initialized)? Move it to the front of the architecture
2287 list (keeping the list sorted Most Recently Used). */
2288 if (new_gdbarch->initialized_p)
104c1213 2289 {
ebdba546
AC
2290 struct gdbarch_list **list;
2291 struct gdbarch_list *this;
104c1213 2292 if (gdbarch_debug)
59837fe0 2293 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2294 "Previous architecture %s (%s) selected\n",
2295 host_address_to_string (new_gdbarch),
104c1213 2296 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2297 /* Find the existing arch in the list. */
2298 for (list = &rego->arches;
2299 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2300 list = &(*list)->next);
2301 /* It had better be in the list of architectures. */
2302 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2303 /* Unlink THIS. */
2304 this = (*list);
2305 (*list) = this->next;
2306 /* Insert THIS at the front. */
2307 this->next = rego->arches;
2308 rego->arches = this;
2309 /* Return it. */
2310 return new_gdbarch;
104c1213
JM
2311 }
2312
ebdba546
AC
2313 /* It's a new architecture. */
2314 if (gdbarch_debug)
59837fe0 2315 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2316 "New architecture %s (%s) selected\n",
2317 host_address_to_string (new_gdbarch),
ebdba546
AC
2318 new_gdbarch->bfd_arch_info->printable_name);
2319
2320 /* Insert the new architecture into the front of the architecture
2321 list (keep the list sorted Most Recently Used). */
0f79675b 2322 {
70ba0933 2323 struct gdbarch_list *this = XNEW (struct gdbarch_list);
0f79675b
AC
2324 this->next = rego->arches;
2325 this->gdbarch = new_gdbarch;
2326 rego->arches = this;
2327 }
104c1213 2328
4b9b3959
AC
2329 /* Check that the newly installed architecture is valid. Plug in
2330 any post init values. */
2331 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2332 verify_gdbarch (new_gdbarch);
ebdba546 2333 new_gdbarch->initialized_p = 1;
104c1213 2334
4b9b3959 2335 if (gdbarch_debug)
ebdba546
AC
2336 gdbarch_dump (new_gdbarch, gdb_stdlog);
2337
2338 return new_gdbarch;
2339}
2340
e487cc15 2341/* Make the specified architecture current. */
ebdba546
AC
2342
2343void
aff68abb 2344set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2345{
2346 gdb_assert (new_gdbarch != NULL);
ebdba546 2347 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2348 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2349 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2350 registers_changed ();
ebdba546 2351}
104c1213 2352
f5656ead 2353/* Return the current inferior's arch. */
6ecd4729
PA
2354
2355struct gdbarch *
f5656ead 2356target_gdbarch (void)
6ecd4729
PA
2357{
2358 return current_inferior ()->gdbarch;
2359}
2360
104c1213 2361extern void _initialize_gdbarch (void);
b4a20239 2362
104c1213 2363void
34620563 2364_initialize_gdbarch (void)
104c1213 2365{
ccce17b0 2366 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2367Set architecture debugging."), _("\\
2368Show architecture debugging."), _("\\
2369When non-zero, architecture debugging is enabled."),
2370 NULL,
920d2a44 2371 show_gdbarch_debug,
85c07804 2372 &setdebuglist, &showdebuglist);
104c1213
JM
2373}
2374EOF
2375
2376# close things off
2377exec 1>&2
2378#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2379compare_new gdbarch.c
This page took 1.293049 seconds and 4 git commands to generate.