2012-06-04 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
0b302171 5# Copyright (C) 1998-2012 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
283354d8
AC
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
3d9a5942
AC
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
06b25f14 97
ae45cd16
AC
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
34620563 101 "" )
f7968451 102 if test -n "${predefault}"
34620563
AC
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 105 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
34620563
AC
112 fi
113 ;;
ae45cd16 114 * )
1e9f55d0 115 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
116 kill $$
117 exit 1
118 ;;
119 esac
34620563
AC
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
72e74a21 129 if [ -n "${postdefault}" ]
34620563
AC
130 then
131 fallbackdefault="${postdefault}"
72e74a21 132 elif [ -n "${predefault}" ]
34620563
AC
133 then
134 fallbackdefault="${predefault}"
135 else
73d3c16e 136 fallbackdefault="0"
34620563
AC
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
f0d4cc9e 143 fi
34620563 144 done
72e74a21 145 if [ -n "${class}" ]
34620563
AC
146 then
147 true
c0e8c252
AC
148 else
149 false
150 fi
151}
152
104c1213 153
f0d4cc9e
AC
154fallback_default_p ()
155{
72e74a21
JB
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
158}
159
160class_is_variable_p ()
161{
4a5c6a1d
AC
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
f0d4cc9e
AC
166}
167
168class_is_function_p ()
169{
4a5c6a1d
AC
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174}
175
176class_is_multiarch_p ()
177{
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
f0d4cc9e
AC
182}
183
184class_is_predicate_p ()
185{
4a5c6a1d
AC
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
f0d4cc9e
AC
190}
191
192class_is_info_p ()
193{
4a5c6a1d
AC
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
f0d4cc9e
AC
198}
199
200
cff3e48b
JM
201# dump out/verify the doco
202for field in ${read}
203do
204 case ${field} in
205
206 class ) : ;;
c4093a6a 207
c0e8c252
AC
208 # # -> line disable
209 # f -> function
210 # hiding a function
2ada493a
AC
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
c0e8c252
AC
213 # v -> variable
214 # hiding a variable
2ada493a
AC
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
c0e8c252
AC
217 # i -> set from info
218 # hiding something from the ``struct info'' object
4a5c6a1d
AC
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
cff3e48b 223
cff3e48b
JM
224 returntype ) : ;;
225
c0e8c252 226 # For functions, the return type; for variables, the data type
cff3e48b
JM
227
228 function ) : ;;
229
c0e8c252
AC
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
233
234 formal ) : ;;
235
c0e8c252
AC
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
cff3e48b
JM
240
241 actual ) : ;;
242
c0e8c252
AC
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
cff3e48b 246
0b8f9e4d 247 staticdefault ) : ;;
c0e8c252
AC
248
249 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
cff3e48b 253
0b8f9e4d 254 # If STATICDEFAULT is empty, zero is used.
c0e8c252 255
0b8f9e4d 256 predefault ) : ;;
cff3e48b 257
10312cc4
AC
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
cff3e48b 262
0b8f9e4d
AC
263 # If PREDEFAULT is empty, zero is used.
264
10312cc4
AC
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
f0d4cc9e
AC
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
0b8f9e4d
AC
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
10312cc4
AC
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
f0d4cc9e
AC
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
be7811ad 294 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
295 # will contain the current architecture. Care should be
296 # taken.
cff3e48b 297
c4093a6a 298 invalid_p ) : ;;
cff3e48b 299
0b8f9e4d 300 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 301 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
f0d4cc9e
AC
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
312
313 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 314
cff3e48b
JM
315 print ) : ;;
316
2f9b146e
AC
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
c0e8c252 319
0b1553bc
UW
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
cff3e48b 322
283354d8 323 garbage_at_eol ) : ;;
0b8f9e4d 324
283354d8 325 # Catches stray fields.
cff3e48b 326
50248794
AC
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
cff3e48b
JM
330 esac
331done
332
cff3e48b 333
104c1213
JM
334function_list ()
335{
cff3e48b 336 # See below (DOCO) for description of each field
34620563 337 cat <<EOF
be7811ad 338i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 339#
97030eea 340i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 341i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 342#
97030eea 343i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 344#
30737ed9 345i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
346
347# The bit byte-order has to do just with numbering of bits in debugging symbols
348# and such. Conceptually, it's quite separate from byte/word byte order.
349v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
66b43ecb
AC
351# Number of bits in a char or unsigned char for the target machine.
352# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 353# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
354#
355# Number of bits in a short or unsigned short for the target machine.
97030eea 356v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 357# Number of bits in an int or unsigned int for the target machine.
97030eea 358v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 359# Number of bits in a long or unsigned long for the target machine.
97030eea 360v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
361# Number of bits in a long long or unsigned long long for the target
362# machine.
be7811ad 363v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
364# Alignment of a long long or unsigned long long for the target
365# machine.
366v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 367
f9e9243a
UW
368# The ABI default bit-size and format for "half", "float", "double", and
369# "long double". These bit/format pairs should eventually be combined
370# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
371# Each format describes both the big and little endian layouts (if
372# useful).
456fcf94 373
f9e9243a
UW
374v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 376v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 378v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 379v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 380v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 381v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 382
52204a0b
DT
383# For most targets, a pointer on the target and its representation as an
384# address in GDB have the same size and "look the same". For such a
17a912b6 385# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
386# / addr_bit will be set from it.
387#
17a912b6 388# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
389# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390# gdbarch_address_to_pointer as well.
52204a0b
DT
391#
392# ptr_bit is the size of a pointer on the target
be7811ad 393v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 394# addr_bit is the size of a target address as represented in gdb
be7811ad 395v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 396#
8da614df
CV
397# dwarf2_addr_size is the target address size as used in the Dwarf debug
398# info. For .debug_frame FDEs, this is supposed to be the target address
399# size from the associated CU header, and which is equivalent to the
400# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401# Unfortunately there is no good way to determine this value. Therefore
402# dwarf2_addr_size simply defaults to the target pointer size.
403#
404# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405# defined using the target's pointer size so far.
406#
407# Note that dwarf2_addr_size only needs to be redefined by a target if the
408# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409# and if Dwarf versions < 4 need to be supported.
410v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411#
4e409299 412# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 413v:int:char_signed:::1:-1:1
4e409299 414#
97030eea
UW
415F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
417# Function for getting target's idea of a frame pointer. FIXME: GDB's
418# whole scheme for dealing with "frames" and "frame pointers" needs a
419# serious shakedown.
a54fba4c 420m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 421#
05d1431c 422M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
423# Read a register into a new struct value. If the register is wholly
424# or partly unavailable, this should call mark_value_bytes_unavailable
425# as appropriate. If this is defined, then pseudo_register_read will
426# never be called.
427M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 428M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 429#
97030eea 430v:int:num_regs:::0:-1
0aba1244
EZ
431# This macro gives the number of pseudo-registers that live in the
432# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
433# These pseudo-registers may be aliases for other registers,
434# combinations of other registers, or they may be computed by GDB.
97030eea 435v:int:num_pseudo_regs:::0:0::0
c2169756 436
175ff332
HZ
437# Assemble agent expression bytecode to collect pseudo-register REG.
438# Return -1 if something goes wrong, 0 otherwise.
439M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441# Assemble agent expression bytecode to push the value of pseudo-register
442# REG on the interpreter stack.
443# Return -1 if something goes wrong, 0 otherwise.
444M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
c2169756
AC
446# GDB's standard (or well known) register numbers. These can map onto
447# a real register or a pseudo (computed) register or not be defined at
1200cd6e 448# all (-1).
3e8c568d 449# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
450v:int:sp_regnum:::-1:-1::0
451v:int:pc_regnum:::-1:-1::0
452v:int:ps_regnum:::-1:-1::0
453v:int:fp0_regnum:::0:-1::0
88c72b7d 454# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 455m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 456# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 457m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 458# Convert from an sdb register number to an internal gdb register number.
d3f73121 459m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 460# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 461m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 462m:const char *:register_name:int regnr:regnr::0
9c04cab7 463
7b9ee6a8
DJ
464# Return the type of a register specified by the architecture. Only
465# the register cache should call this function directly; others should
466# use "register_type".
97030eea 467M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 468
f3be58bc 469# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
470M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 472# deprecated_fp_regnum.
97030eea 473v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 474
a86c5fc9 475# See gdbint.texinfo. See infcall.c.
97030eea
UW
476M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477v:int:call_dummy_location::::AT_ENTRY_POINT::0
478M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 479
97030eea
UW
480m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
483# MAP a GDB RAW register number onto a simulator register number. See
484# also include/...-sim.h.
e7faf938 485m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
486m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 488# setjmp/longjmp support.
97030eea 489F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 490#
97030eea 491v:int:believe_pcc_promotion:::::::
104c1213 492#
0abe36f5 493m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 494f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 495f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
496# Construct a value representing the contents of register REGNUM in
497# frame FRAME, interpreted as type TYPE. The routine needs to
498# allocate and return a struct value with all value attributes
499# (but not the value contents) filled in.
97030eea 500f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 501#
9898f801
UW
502m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 504M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 505
6a3a010b
MR
506# Return the return-value convention that will be used by FUNCTION
507# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
508# case the return convention is computed based only on VALTYPE.
509#
510# If READBUF is not NULL, extract the return value and save it in this buffer.
511#
512# If WRITEBUF is not NULL, it contains a return value which will be
513# stored into the appropriate register. This can be used when we want
514# to force the value returned by a function (see the "return" command
515# for instance).
6a3a010b 516M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 517
6093d2eb 518m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 519M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 520f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 521m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
522# Return the adjusted address and kind to use for Z0/Z1 packets.
523# KIND is usually the memory length of the breakpoint, but may have a
524# different target-specific meaning.
0e05dfcb 525m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 526M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
527m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 529v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
530
531# A function can be addressed by either it's "pointer" (possibly a
532# descriptor address) or "entry point" (first executable instruction).
533# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 534# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
535# a simplified subset of that functionality - the function's address
536# corresponds to the "function pointer" and the function's start
537# corresponds to the "function entry point" - and hence is redundant.
538
97030eea 539v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 540
123dc839
DJ
541# Return the remote protocol register number associated with this
542# register. Normally the identity mapping.
97030eea 543m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 544
b2756930 545# Fetch the target specific address used to represent a load module.
97030eea 546F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 547#
97030eea
UW
548v:CORE_ADDR:frame_args_skip:::0:::0
549M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
551# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552# frame-base. Enable frame-base before frame-unwind.
97030eea 553F:int:frame_num_args:struct frame_info *frame:frame
104c1213 554#
97030eea
UW
555M:CORE_ADDR:frame_align:CORE_ADDR address:address
556m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557v:int:frame_red_zone_size
f0d4cc9e 558#
97030eea 559m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
560# On some machines there are bits in addresses which are not really
561# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 562# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
563# we get a "real" address such as one would find in a symbol table.
564# This is used only for addresses of instructions, and even then I'm
565# not sure it's used in all contexts. It exists to deal with there
566# being a few stray bits in the PC which would mislead us, not as some
567# sort of generic thing to handle alignment or segmentation (it's
568# possible it should be in TARGET_READ_PC instead).
24568a2c 569m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 570# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 571# gdbarch_addr_bits_remove.
24568a2c 572m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
573
574# FIXME/cagney/2001-01-18: This should be split in two. A target method that
575# indicates if the target needs software single step. An ISA method to
576# implement it.
577#
578# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579# breakpoints using the breakpoint system instead of blatting memory directly
580# (as with rs6000).
64c4637f 581#
e6590a1b
UW
582# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583# target can single step. If not, then implement single step using breakpoints.
64c4637f 584#
e6590a1b
UW
585# A return value of 1 means that the software_single_step breakpoints
586# were inserted; 0 means they were not.
97030eea 587F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 588
3352ef37
AC
589# Return non-zero if the processor is executing a delay slot and a
590# further single-step is needed before the instruction finishes.
97030eea 591M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 592# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 593# disassembler. Perhaps objdump can handle it?
97030eea
UW
594f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
596
597
cfd8ab24 598# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
599# evaluates non-zero, this is the address where the debugger will place
600# a step-resume breakpoint to get us past the dynamic linker.
97030eea 601m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 602# Some systems also have trampoline code for returning from shared libs.
2c02bd72 603m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 604
c12260ac
CV
605# A target might have problems with watchpoints as soon as the stack
606# frame of the current function has been destroyed. This mostly happens
607# as the first action in a funtion's epilogue. in_function_epilogue_p()
608# is defined to return a non-zero value if either the given addr is one
609# instruction after the stack destroying instruction up to the trailing
610# return instruction or if we can figure out that the stack frame has
611# already been invalidated regardless of the value of addr. Targets
612# which don't suffer from that problem could just let this functionality
613# untouched.
97030eea 614m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
615f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
617v:int:cannot_step_breakpoint:::0:0::0
618v:int:have_nonsteppable_watchpoint:::0:0::0
619F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 622# Is a register in a group
97030eea 623m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 624# Fetch the pointer to the ith function argument.
97030eea 625F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
626
627# Return the appropriate register set for a core file section with
628# name SECT_NAME and size SECT_SIZE.
97030eea 629M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 630
17ea7499
CES
631# Supported register notes in a core file.
632v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
6432734d
UW
634# Create core file notes
635M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
636
35c2fab7
UW
637# Find core file memory regions
638M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
639
de584861
PA
640# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641# core file into buffer READBUF with length LEN.
97030eea 642M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 643
c0edd9ed 644# How the core target converts a PTID from a core file to a string.
28439f5e
PA
645M:char *:core_pid_to_str:ptid_t ptid:ptid
646
a78c2d62 647# BFD target to use when generating a core file.
86ba1042 648V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 649
0d5de010
DJ
650# If the elements of C++ vtables are in-place function descriptors rather
651# than normal function pointers (which may point to code or a descriptor),
652# set this to one.
97030eea 653v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
654
655# Set if the least significant bit of the delta is used instead of the least
656# significant bit of the pfn for pointers to virtual member functions.
97030eea 657v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
658
659# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 660F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 661
1668ae25 662# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
663V:ULONGEST:max_insn_length:::0:0
664
665# Copy the instruction at FROM to TO, and make any adjustments
666# necessary to single-step it at that address.
667#
668# REGS holds the state the thread's registers will have before
669# executing the copied instruction; the PC in REGS will refer to FROM,
670# not the copy at TO. The caller should update it to point at TO later.
671#
672# Return a pointer to data of the architecture's choice to be passed
673# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674# the instruction's effects have been completely simulated, with the
675# resulting state written back to REGS.
676#
677# For a general explanation of displaced stepping and how GDB uses it,
678# see the comments in infrun.c.
679#
680# The TO area is only guaranteed to have space for
681# gdbarch_max_insn_length (arch) bytes, so this function must not
682# write more bytes than that to that area.
683#
684# If you do not provide this function, GDB assumes that the
685# architecture does not support displaced stepping.
686#
687# If your architecture doesn't need to adjust instructions before
688# single-stepping them, consider using simple_displaced_step_copy_insn
689# here.
690M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
691
99e40580
UW
692# Return true if GDB should use hardware single-stepping to execute
693# the displaced instruction identified by CLOSURE. If false,
694# GDB will simply restart execution at the displaced instruction
695# location, and it is up to the target to ensure GDB will receive
696# control again (e.g. by placing a software breakpoint instruction
697# into the displaced instruction buffer).
698#
699# The default implementation returns false on all targets that
700# provide a gdbarch_software_single_step routine, and true otherwise.
701m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
702
237fc4c9
PA
703# Fix up the state resulting from successfully single-stepping a
704# displaced instruction, to give the result we would have gotten from
705# stepping the instruction in its original location.
706#
707# REGS is the register state resulting from single-stepping the
708# displaced instruction.
709#
710# CLOSURE is the result from the matching call to
711# gdbarch_displaced_step_copy_insn.
712#
713# If you provide gdbarch_displaced_step_copy_insn.but not this
714# function, then GDB assumes that no fixup is needed after
715# single-stepping the instruction.
716#
717# For a general explanation of displaced stepping and how GDB uses it,
718# see the comments in infrun.c.
719M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
720
721# Free a closure returned by gdbarch_displaced_step_copy_insn.
722#
723# If you provide gdbarch_displaced_step_copy_insn, you must provide
724# this function as well.
725#
726# If your architecture uses closures that don't need to be freed, then
727# you can use simple_displaced_step_free_closure here.
728#
729# For a general explanation of displaced stepping and how GDB uses it,
730# see the comments in infrun.c.
731m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
732
733# Return the address of an appropriate place to put displaced
734# instructions while we step over them. There need only be one such
735# place, since we're only stepping one thread over a breakpoint at a
736# time.
737#
738# For a general explanation of displaced stepping and how GDB uses it,
739# see the comments in infrun.c.
740m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
741
dde08ee1
PA
742# Relocate an instruction to execute at a different address. OLDLOC
743# is the address in the inferior memory where the instruction to
744# relocate is currently at. On input, TO points to the destination
745# where we want the instruction to be copied (and possibly adjusted)
746# to. On output, it points to one past the end of the resulting
747# instruction(s). The effect of executing the instruction at TO shall
748# be the same as if executing it at FROM. For example, call
749# instructions that implicitly push the return address on the stack
750# should be adjusted to return to the instruction after OLDLOC;
751# relative branches, and other PC-relative instructions need the
752# offset adjusted; etc.
753M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
754
1c772458 755# Refresh overlay mapped state for section OSECT.
97030eea 756F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 757
97030eea 758M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
759
760# Handle special encoding of static variables in stabs debug info.
0d5cff50 761F:const char *:static_transform_name:const char *name:name
203c3895 762# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 763v:int:sofun_address_maybe_missing:::0:0::0
1cded358 764
0508c3ec
HZ
765# Parse the instruction at ADDR storing in the record execution log
766# the registers REGCACHE and memory ranges that will be affected when
767# the instruction executes, along with their current values.
768# Return -1 if something goes wrong, 0 otherwise.
769M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
770
3846b520
HZ
771# Save process state after a signal.
772# Return -1 if something goes wrong, 0 otherwise.
2ea28649 773M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 774
22203bbf 775# Signal translation: translate inferior's signal (target's) number
86b49880
PA
776# into GDB's representation. The implementation of this method must
777# be host independent. IOW, don't rely on symbols of the NAT_FILE
778# header (the nm-*.h files), the host <signal.h> header, or similar
779# headers. This is mainly used when cross-debugging core files ---
780# "Live" targets hide the translation behind the target interface
781# (target_wait, target_resume, etc.). The default is to do the
782# translation using host signal numbers.
22203bbf 783m:enum gdb_signal:gdb_signal_from_target:int signo:signo::default_gdb_signal_from_target::0
60c5725c 784
4aa995e1
PA
785# Extra signal info inspection.
786#
787# Return a type suitable to inspect extra signal information.
788M:struct type *:get_siginfo_type:void:
789
60c5725c
DJ
790# Record architecture-specific information from the symbol table.
791M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 792
a96d9b2e
SDJ
793# Function for the 'catch syscall' feature.
794
795# Get architecture-specific system calls information from registers.
796M:LONGEST:get_syscall_number:ptid_t ptid:ptid
797
55aa24fb
SDJ
798# SystemTap related fields and functions.
799
800# Prefix used to mark an integer constant on the architecture's assembly
801# For example, on x86 integer constants are written as:
802#
803# \$10 ;; integer constant 10
804#
805# in this case, this prefix would be the character \`\$\'.
806v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
807
808# Suffix used to mark an integer constant on the architecture's assembly.
809v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
810
811# Prefix used to mark a register name on the architecture's assembly.
812# For example, on x86 the register name is written as:
813#
814# \%eax ;; register eax
815#
816# in this case, this prefix would be the character \`\%\'.
817v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
818
819# Suffix used to mark a register name on the architecture's assembly
820v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
821
822# Prefix used to mark a register indirection on the architecture's assembly.
823# For example, on x86 the register indirection is written as:
824#
825# \(\%eax\) ;; indirecting eax
826#
827# in this case, this prefix would be the charater \`\(\'.
828#
829# Please note that we use the indirection prefix also for register
830# displacement, e.g., \`4\(\%eax\)\' on x86.
831v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
832
833# Suffix used to mark a register indirection on the architecture's assembly.
834# For example, on x86 the register indirection is written as:
835#
836# \(\%eax\) ;; indirecting eax
837#
838# in this case, this prefix would be the charater \`\)\'.
839#
840# Please note that we use the indirection suffix also for register
841# displacement, e.g., \`4\(\%eax\)\' on x86.
842v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
843
844# Prefix used to name a register using GDB's nomenclature.
845#
846# For example, on PPC a register is represented by a number in the assembly
847# language (e.g., \`10\' is the 10th general-purpose register). However,
848# inside GDB this same register has an \`r\' appended to its name, so the 10th
849# register would be represented as \`r10\' internally.
850v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
851
852# Suffix used to name a register using GDB's nomenclature.
853v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
854
855# Check if S is a single operand.
856#
857# Single operands can be:
858# \- Literal integers, e.g. \`\$10\' on x86
859# \- Register access, e.g. \`\%eax\' on x86
860# \- Register indirection, e.g. \`\(\%eax\)\' on x86
861# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
862#
863# This function should check for these patterns on the string
864# and return 1 if some were found, or zero otherwise. Please try to match
865# as much info as you can from the string, i.e., if you have to match
866# something like \`\(\%\', do not match just the \`\(\'.
867M:int:stap_is_single_operand:const char *s:s
868
869# Function used to handle a "special case" in the parser.
870#
871# A "special case" is considered to be an unknown token, i.e., a token
872# that the parser does not know how to parse. A good example of special
873# case would be ARM's register displacement syntax:
874#
875# [R0, #4] ;; displacing R0 by 4
876#
877# Since the parser assumes that a register displacement is of the form:
878#
879# <number> <indirection_prefix> <register_name> <indirection_suffix>
880#
881# it means that it will not be able to recognize and parse this odd syntax.
882# Therefore, we should add a special case function that will handle this token.
883#
884# This function should generate the proper expression form of the expression
885# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
886# and so on). It should also return 1 if the parsing was successful, or zero
887# if the token was not recognized as a special token (in this case, returning
888# zero means that the special parser is deferring the parsing to the generic
889# parser), and should advance the buffer pointer (p->arg).
890M:int:stap_parse_special_token:struct stap_parse_info *p:p
891
892
50c71eaf
PA
893# True if the list of shared libraries is one and only for all
894# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
895# This usually means that all processes, although may or may not share
896# an address space, will see the same set of symbols at the same
897# addresses.
50c71eaf 898v:int:has_global_solist:::0:0::0
2567c7d9
PA
899
900# On some targets, even though each inferior has its own private
901# address space, the debug interface takes care of making breakpoints
902# visible to all address spaces automatically. For such cases,
903# this property should be set to true.
904v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
905
906# True if inferiors share an address space (e.g., uClinux).
907m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
908
909# True if a fast tracepoint can be set at an address.
910m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 911
f870a310
TT
912# Return the "auto" target charset.
913f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
914# Return the "auto" target wide charset.
915f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
916
917# If non-empty, this is a file extension that will be opened in place
918# of the file extension reported by the shared library list.
919#
920# This is most useful for toolchains that use a post-linker tool,
921# where the names of the files run on the target differ in extension
922# compared to the names of the files GDB should load for debug info.
923v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
924
925# If true, the target OS has DOS-based file system semantics. That
926# is, absolute paths include a drive name, and the backslash is
927# considered a directory separator.
928v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
929
930# Generate bytecodes to collect the return address in a frame.
931# Since the bytecodes run on the target, possibly with GDB not even
932# connected, the full unwinding machinery is not available, and
933# typically this function will issue bytecodes for one or more likely
934# places that the return address may be found.
935m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
936
3030c96e
UW
937# Implement the "info proc" command.
938M:void:info_proc:char *args, enum info_proc_what what:args, what
939
104c1213 940EOF
104c1213
JM
941}
942
0b8f9e4d
AC
943#
944# The .log file
945#
946exec > new-gdbarch.log
34620563 947function_list | while do_read
0b8f9e4d
AC
948do
949 cat <<EOF
2f9b146e 950${class} ${returntype} ${function} ($formal)
104c1213 951EOF
3d9a5942
AC
952 for r in ${read}
953 do
954 eval echo \"\ \ \ \ ${r}=\${${r}}\"
955 done
f0d4cc9e 956 if class_is_predicate_p && fallback_default_p
0b8f9e4d 957 then
66d659b1 958 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
959 kill $$
960 exit 1
961 fi
72e74a21 962 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
963 then
964 echo "Error: postdefault is useless when invalid_p=0" 1>&2
965 kill $$
966 exit 1
967 fi
a72293e2
AC
968 if class_is_multiarch_p
969 then
970 if class_is_predicate_p ; then :
971 elif test "x${predefault}" = "x"
972 then
2f9b146e 973 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
974 kill $$
975 exit 1
976 fi
977 fi
3d9a5942 978 echo ""
0b8f9e4d
AC
979done
980
981exec 1>&2
982compare_new gdbarch.log
983
104c1213
JM
984
985copyright ()
986{
987cat <<EOF
59233f88
AC
988/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
989
104c1213 990/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 991
f801e1e0
MS
992 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
993 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
994
995 This file is part of GDB.
996
997 This program is free software; you can redistribute it and/or modify
998 it under the terms of the GNU General Public License as published by
50efebf8 999 the Free Software Foundation; either version 3 of the License, or
104c1213 1000 (at your option) any later version.
50efebf8 1001
104c1213
JM
1002 This program is distributed in the hope that it will be useful,
1003 but WITHOUT ANY WARRANTY; without even the implied warranty of
1004 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1005 GNU General Public License for more details.
50efebf8 1006
104c1213 1007 You should have received a copy of the GNU General Public License
50efebf8 1008 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1009
104c1213
JM
1010/* This file was created with the aid of \`\`gdbarch.sh''.
1011
52204a0b 1012 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1013 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1014 against the existing \`\`gdbarch.[hc]''. Any differences found
1015 being reported.
1016
1017 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1018 changes into that script. Conversely, when making sweeping changes
104c1213 1019 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1020 easier. */
104c1213
JM
1021
1022EOF
1023}
1024
1025#
1026# The .h file
1027#
1028
1029exec > new-gdbarch.h
1030copyright
1031cat <<EOF
1032#ifndef GDBARCH_H
1033#define GDBARCH_H
1034
da3331ec
AC
1035struct floatformat;
1036struct ui_file;
104c1213
JM
1037struct frame_info;
1038struct value;
b6af0555 1039struct objfile;
1c772458 1040struct obj_section;
a2cf933a 1041struct minimal_symbol;
049ee0e4 1042struct regcache;
b59ff9d5 1043struct reggroup;
6ce6d90f 1044struct regset;
a89aa300 1045struct disassemble_info;
e2d0e7eb 1046struct target_ops;
030f20e1 1047struct obstack;
8181d85f 1048struct bp_target_info;
424163ea 1049struct target_desc;
237fc4c9 1050struct displaced_step_closure;
17ea7499 1051struct core_regset_section;
a96d9b2e 1052struct syscall;
175ff332 1053struct agent_expr;
6710bf39 1054struct axs_value;
55aa24fb 1055struct stap_parse_info;
104c1213 1056
9e2ace22
JB
1057/* The architecture associated with the connection to the target.
1058
1059 The architecture vector provides some information that is really
1060 a property of the target: The layout of certain packets, for instance;
1061 or the solib_ops vector. Etc. To differentiate architecture accesses
1062 to per-target properties from per-thread/per-frame/per-objfile properties,
1063 accesses to per-target properties should be made through target_gdbarch.
1064
1065 Eventually, when support for multiple targets is implemented in
1066 GDB, this global should be made target-specific. */
1cf3db46 1067extern struct gdbarch *target_gdbarch;
104c1213
JM
1068EOF
1069
1070# function typedef's
3d9a5942
AC
1071printf "\n"
1072printf "\n"
0963b4bd 1073printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1074function_list | while do_read
104c1213 1075do
2ada493a
AC
1076 if class_is_info_p
1077 then
3d9a5942
AC
1078 printf "\n"
1079 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1080 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1081 fi
104c1213
JM
1082done
1083
1084# function typedef's
3d9a5942
AC
1085printf "\n"
1086printf "\n"
0963b4bd 1087printf "/* The following are initialized by the target dependent code. */\n"
34620563 1088function_list | while do_read
104c1213 1089do
72e74a21 1090 if [ -n "${comment}" ]
34620563
AC
1091 then
1092 echo "${comment}" | sed \
1093 -e '2 s,#,/*,' \
1094 -e '3,$ s,#, ,' \
1095 -e '$ s,$, */,'
1096 fi
412d5987
AC
1097
1098 if class_is_predicate_p
2ada493a 1099 then
412d5987
AC
1100 printf "\n"
1101 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1102 fi
2ada493a
AC
1103 if class_is_variable_p
1104 then
3d9a5942
AC
1105 printf "\n"
1106 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1107 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1108 fi
1109 if class_is_function_p
1110 then
3d9a5942 1111 printf "\n"
72e74a21 1112 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1113 then
1114 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1115 elif class_is_multiarch_p
1116 then
1117 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1118 else
1119 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1120 fi
72e74a21 1121 if [ "x${formal}" = "xvoid" ]
104c1213 1122 then
3d9a5942 1123 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1124 else
3d9a5942 1125 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1126 fi
3d9a5942 1127 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1128 fi
104c1213
JM
1129done
1130
1131# close it off
1132cat <<EOF
1133
a96d9b2e
SDJ
1134/* Definition for an unknown syscall, used basically in error-cases. */
1135#define UNKNOWN_SYSCALL (-1)
1136
104c1213
JM
1137extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1138
1139
1140/* Mechanism for co-ordinating the selection of a specific
1141 architecture.
1142
1143 GDB targets (*-tdep.c) can register an interest in a specific
1144 architecture. Other GDB components can register a need to maintain
1145 per-architecture data.
1146
1147 The mechanisms below ensures that there is only a loose connection
1148 between the set-architecture command and the various GDB
0fa6923a 1149 components. Each component can independently register their need
104c1213
JM
1150 to maintain architecture specific data with gdbarch.
1151
1152 Pragmatics:
1153
1154 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1155 didn't scale.
1156
1157 The more traditional mega-struct containing architecture specific
1158 data for all the various GDB components was also considered. Since
0fa6923a 1159 GDB is built from a variable number of (fairly independent)
104c1213 1160 components it was determined that the global aproach was not
0963b4bd 1161 applicable. */
104c1213
JM
1162
1163
1164/* Register a new architectural family with GDB.
1165
1166 Register support for the specified ARCHITECTURE with GDB. When
1167 gdbarch determines that the specified architecture has been
1168 selected, the corresponding INIT function is called.
1169
1170 --
1171
1172 The INIT function takes two parameters: INFO which contains the
1173 information available to gdbarch about the (possibly new)
1174 architecture; ARCHES which is a list of the previously created
1175 \`\`struct gdbarch'' for this architecture.
1176
0f79675b 1177 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1178 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1179
1180 The ARCHES parameter is a linked list (sorted most recently used)
1181 of all the previously created architures for this architecture
1182 family. The (possibly NULL) ARCHES->gdbarch can used to access
1183 values from the previously selected architecture for this
59837fe0 1184 architecture family.
104c1213
JM
1185
1186 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1187 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1188 gdbarch'' from the ARCHES list - indicating that the new
1189 architecture is just a synonym for an earlier architecture (see
1190 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1191 - that describes the selected architecture (see gdbarch_alloc()).
1192
1193 The DUMP_TDEP function shall print out all target specific values.
1194 Care should be taken to ensure that the function works in both the
0963b4bd 1195 multi-arch and non- multi-arch cases. */
104c1213
JM
1196
1197struct gdbarch_list
1198{
1199 struct gdbarch *gdbarch;
1200 struct gdbarch_list *next;
1201};
1202
1203struct gdbarch_info
1204{
0963b4bd 1205 /* Use default: NULL (ZERO). */
104c1213
JM
1206 const struct bfd_arch_info *bfd_arch_info;
1207
428721aa 1208 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1209 int byte_order;
1210
9d4fde75
SS
1211 int byte_order_for_code;
1212
0963b4bd 1213 /* Use default: NULL (ZERO). */
104c1213
JM
1214 bfd *abfd;
1215
0963b4bd 1216 /* Use default: NULL (ZERO). */
104c1213 1217 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1218
1219 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1220 enum gdb_osabi osabi;
424163ea
DJ
1221
1222 /* Use default: NULL (ZERO). */
1223 const struct target_desc *target_desc;
104c1213
JM
1224};
1225
1226typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1227typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1228
4b9b3959 1229/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1230extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1231
4b9b3959
AC
1232extern void gdbarch_register (enum bfd_architecture architecture,
1233 gdbarch_init_ftype *,
1234 gdbarch_dump_tdep_ftype *);
1235
104c1213 1236
b4a20239
AC
1237/* Return a freshly allocated, NULL terminated, array of the valid
1238 architecture names. Since architectures are registered during the
1239 _initialize phase this function only returns useful information
0963b4bd 1240 once initialization has been completed. */
b4a20239
AC
1241
1242extern const char **gdbarch_printable_names (void);
1243
1244
104c1213 1245/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1246 matches the information provided by INFO. */
104c1213 1247
424163ea 1248extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1249
1250
1251/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1252 basic initialization using values obtained from the INFO and TDEP
104c1213 1253 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1254 initialization of the object. */
104c1213
JM
1255
1256extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1257
1258
4b9b3959
AC
1259/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1260 It is assumed that the caller freeds the \`\`struct
0963b4bd 1261 gdbarch_tdep''. */
4b9b3959 1262
058f20d5
JB
1263extern void gdbarch_free (struct gdbarch *);
1264
1265
aebd7893
AC
1266/* Helper function. Allocate memory from the \`\`struct gdbarch''
1267 obstack. The memory is freed when the corresponding architecture
1268 is also freed. */
1269
1270extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1271#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1272#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1273
1274
0963b4bd 1275/* Helper function. Force an update of the current architecture.
104c1213 1276
b732d07d
AC
1277 The actual architecture selected is determined by INFO, \`\`(gdb) set
1278 architecture'' et.al., the existing architecture and BFD's default
1279 architecture. INFO should be initialized to zero and then selected
1280 fields should be updated.
104c1213 1281
0963b4bd 1282 Returns non-zero if the update succeeds. */
16f33e29
AC
1283
1284extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1285
1286
ebdba546
AC
1287/* Helper function. Find an architecture matching info.
1288
1289 INFO should be initialized using gdbarch_info_init, relevant fields
1290 set, and then finished using gdbarch_info_fill.
1291
1292 Returns the corresponding architecture, or NULL if no matching
59837fe0 1293 architecture was found. */
ebdba546
AC
1294
1295extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1296
1297
59837fe0 1298/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1299
1300 FIXME: kettenis/20031124: Of the functions that follow, only
1301 gdbarch_from_bfd is supposed to survive. The others will
1302 dissappear since in the future GDB will (hopefully) be truly
1303 multi-arch. However, for now we're still stuck with the concept of
1304 a single active architecture. */
1305
59837fe0 1306extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1307
104c1213
JM
1308
1309/* Register per-architecture data-pointer.
1310
1311 Reserve space for a per-architecture data-pointer. An identifier
1312 for the reserved data-pointer is returned. That identifer should
95160752 1313 be saved in a local static variable.
104c1213 1314
fcc1c85c
AC
1315 Memory for the per-architecture data shall be allocated using
1316 gdbarch_obstack_zalloc. That memory will be deleted when the
1317 corresponding architecture object is deleted.
104c1213 1318
95160752
AC
1319 When a previously created architecture is re-selected, the
1320 per-architecture data-pointer for that previous architecture is
76860b5f 1321 restored. INIT() is not re-called.
104c1213
JM
1322
1323 Multiple registrarants for any architecture are allowed (and
1324 strongly encouraged). */
1325
95160752 1326struct gdbarch_data;
104c1213 1327
030f20e1
AC
1328typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1329extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1330typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1331extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1332extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1333 struct gdbarch_data *data,
1334 void *pointer);
104c1213 1335
451fbdda 1336extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1337
1338
0fa6923a 1339/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1340 byte-order, ...) using information found in the BFD. */
104c1213
JM
1341
1342extern void set_gdbarch_from_file (bfd *);
1343
1344
e514a9d6
JM
1345/* Initialize the current architecture to the "first" one we find on
1346 our list. */
1347
1348extern void initialize_current_architecture (void);
1349
104c1213
JM
1350/* gdbarch trace variable */
1351extern int gdbarch_debug;
1352
4b9b3959 1353extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1354
1355#endif
1356EOF
1357exec 1>&2
1358#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1359compare_new gdbarch.h
104c1213
JM
1360
1361
1362#
1363# C file
1364#
1365
1366exec > new-gdbarch.c
1367copyright
1368cat <<EOF
1369
1370#include "defs.h"
7355ddba 1371#include "arch-utils.h"
104c1213 1372
104c1213 1373#include "gdbcmd.h"
faaf634c 1374#include "inferior.h"
104c1213
JM
1375#include "symcat.h"
1376
f0d4cc9e 1377#include "floatformat.h"
104c1213 1378
95160752 1379#include "gdb_assert.h"
b66d6d2e 1380#include "gdb_string.h"
b59ff9d5 1381#include "reggroups.h"
4be87837 1382#include "osabi.h"
aebd7893 1383#include "gdb_obstack.h"
383f836e 1384#include "observer.h"
a3ecef73 1385#include "regcache.h"
95160752 1386
104c1213
JM
1387/* Static function declarations */
1388
b3cc3077 1389static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1390
104c1213
JM
1391/* Non-zero if we want to trace architecture code. */
1392
1393#ifndef GDBARCH_DEBUG
1394#define GDBARCH_DEBUG 0
1395#endif
1396int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1397static void
1398show_gdbarch_debug (struct ui_file *file, int from_tty,
1399 struct cmd_list_element *c, const char *value)
1400{
1401 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1402}
104c1213 1403
456fcf94 1404static const char *
8da61cc4 1405pformat (const struct floatformat **format)
456fcf94
AC
1406{
1407 if (format == NULL)
1408 return "(null)";
1409 else
8da61cc4
DJ
1410 /* Just print out one of them - this is only for diagnostics. */
1411 return format[0]->name;
456fcf94
AC
1412}
1413
08105857
PA
1414static const char *
1415pstring (const char *string)
1416{
1417 if (string == NULL)
1418 return "(null)";
1419 return string;
1420}
1421
104c1213
JM
1422EOF
1423
1424# gdbarch open the gdbarch object
3d9a5942 1425printf "\n"
0963b4bd 1426printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1427printf "\n"
1428printf "struct gdbarch\n"
1429printf "{\n"
76860b5f
AC
1430printf " /* Has this architecture been fully initialized? */\n"
1431printf " int initialized_p;\n"
aebd7893
AC
1432printf "\n"
1433printf " /* An obstack bound to the lifetime of the architecture. */\n"
1434printf " struct obstack *obstack;\n"
1435printf "\n"
0963b4bd 1436printf " /* basic architectural information. */\n"
34620563 1437function_list | while do_read
104c1213 1438do
2ada493a
AC
1439 if class_is_info_p
1440 then
3d9a5942 1441 printf " ${returntype} ${function};\n"
2ada493a 1442 fi
104c1213 1443done
3d9a5942 1444printf "\n"
0963b4bd 1445printf " /* target specific vector. */\n"
3d9a5942
AC
1446printf " struct gdbarch_tdep *tdep;\n"
1447printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1448printf "\n"
0963b4bd 1449printf " /* per-architecture data-pointers. */\n"
95160752 1450printf " unsigned nr_data;\n"
3d9a5942
AC
1451printf " void **data;\n"
1452printf "\n"
0963b4bd 1453printf " /* per-architecture swap-regions. */\n"
3d9a5942
AC
1454printf " struct gdbarch_swap *swap;\n"
1455printf "\n"
104c1213
JM
1456cat <<EOF
1457 /* Multi-arch values.
1458
1459 When extending this structure you must:
1460
1461 Add the field below.
1462
1463 Declare set/get functions and define the corresponding
1464 macro in gdbarch.h.
1465
1466 gdbarch_alloc(): If zero/NULL is not a suitable default,
1467 initialize the new field.
1468
1469 verify_gdbarch(): Confirm that the target updated the field
1470 correctly.
1471
7e73cedf 1472 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1473 field is dumped out
1474
c0e8c252 1475 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1476 variable (base values on the host's c-type system).
1477
1478 get_gdbarch(): Implement the set/get functions (probably using
1479 the macro's as shortcuts).
1480
1481 */
1482
1483EOF
34620563 1484function_list | while do_read
104c1213 1485do
2ada493a
AC
1486 if class_is_variable_p
1487 then
3d9a5942 1488 printf " ${returntype} ${function};\n"
2ada493a
AC
1489 elif class_is_function_p
1490 then
2f9b146e 1491 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1492 fi
104c1213 1493done
3d9a5942 1494printf "};\n"
104c1213
JM
1495
1496# A pre-initialized vector
3d9a5942
AC
1497printf "\n"
1498printf "\n"
104c1213
JM
1499cat <<EOF
1500/* The default architecture uses host values (for want of a better
0963b4bd 1501 choice). */
104c1213 1502EOF
3d9a5942
AC
1503printf "\n"
1504printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1505printf "\n"
1506printf "struct gdbarch startup_gdbarch =\n"
1507printf "{\n"
76860b5f 1508printf " 1, /* Always initialized. */\n"
aebd7893 1509printf " NULL, /* The obstack. */\n"
0963b4bd 1510printf " /* basic architecture information. */\n"
4b9b3959 1511function_list | while do_read
104c1213 1512do
2ada493a
AC
1513 if class_is_info_p
1514 then
ec5cbaec 1515 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1516 fi
104c1213
JM
1517done
1518cat <<EOF
0963b4bd 1519 /* target specific vector and its dump routine. */
4b9b3959 1520 NULL, NULL,
0963b4bd 1521 /*per-architecture data-pointers and swap regions. */
104c1213
JM
1522 0, NULL, NULL,
1523 /* Multi-arch values */
1524EOF
34620563 1525function_list | while do_read
104c1213 1526do
2ada493a
AC
1527 if class_is_function_p || class_is_variable_p
1528 then
ec5cbaec 1529 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1530 fi
104c1213
JM
1531done
1532cat <<EOF
c0e8c252 1533 /* startup_gdbarch() */
104c1213 1534};
4b9b3959 1535
1cf3db46 1536struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1537EOF
1538
1539# Create a new gdbarch struct
104c1213 1540cat <<EOF
7de2341d 1541
66b43ecb 1542/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1543 \`\`struct gdbarch_info''. */
104c1213 1544EOF
3d9a5942 1545printf "\n"
104c1213
JM
1546cat <<EOF
1547struct gdbarch *
1548gdbarch_alloc (const struct gdbarch_info *info,
1549 struct gdbarch_tdep *tdep)
1550{
be7811ad 1551 struct gdbarch *gdbarch;
aebd7893
AC
1552
1553 /* Create an obstack for allocating all the per-architecture memory,
1554 then use that to allocate the architecture vector. */
1555 struct obstack *obstack = XMALLOC (struct obstack);
1556 obstack_init (obstack);
be7811ad
MD
1557 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1558 memset (gdbarch, 0, sizeof (*gdbarch));
1559 gdbarch->obstack = obstack;
85de9627 1560
be7811ad 1561 alloc_gdbarch_data (gdbarch);
85de9627 1562
be7811ad 1563 gdbarch->tdep = tdep;
104c1213 1564EOF
3d9a5942 1565printf "\n"
34620563 1566function_list | while do_read
104c1213 1567do
2ada493a
AC
1568 if class_is_info_p
1569 then
be7811ad 1570 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1571 fi
104c1213 1572done
3d9a5942 1573printf "\n"
0963b4bd 1574printf " /* Force the explicit initialization of these. */\n"
34620563 1575function_list | while do_read
104c1213 1576do
2ada493a
AC
1577 if class_is_function_p || class_is_variable_p
1578 then
72e74a21 1579 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1580 then
be7811ad 1581 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1582 fi
2ada493a 1583 fi
104c1213
JM
1584done
1585cat <<EOF
1586 /* gdbarch_alloc() */
1587
be7811ad 1588 return gdbarch;
104c1213
JM
1589}
1590EOF
1591
058f20d5 1592# Free a gdbarch struct.
3d9a5942
AC
1593printf "\n"
1594printf "\n"
058f20d5 1595cat <<EOF
aebd7893
AC
1596/* Allocate extra space using the per-architecture obstack. */
1597
1598void *
1599gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1600{
1601 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1602
aebd7893
AC
1603 memset (data, 0, size);
1604 return data;
1605}
1606
1607
058f20d5
JB
1608/* Free a gdbarch struct. This should never happen in normal
1609 operation --- once you've created a gdbarch, you keep it around.
1610 However, if an architecture's init function encounters an error
1611 building the structure, it may need to clean up a partially
1612 constructed gdbarch. */
4b9b3959 1613
058f20d5
JB
1614void
1615gdbarch_free (struct gdbarch *arch)
1616{
aebd7893 1617 struct obstack *obstack;
05c547f6 1618
95160752 1619 gdb_assert (arch != NULL);
aebd7893
AC
1620 gdb_assert (!arch->initialized_p);
1621 obstack = arch->obstack;
1622 obstack_free (obstack, 0); /* Includes the ARCH. */
1623 xfree (obstack);
058f20d5
JB
1624}
1625EOF
1626
104c1213 1627# verify a new architecture
104c1213 1628cat <<EOF
db446970
AC
1629
1630
1631/* Ensure that all values in a GDBARCH are reasonable. */
1632
104c1213 1633static void
be7811ad 1634verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1635{
f16a1923
AC
1636 struct ui_file *log;
1637 struct cleanup *cleanups;
759ef836 1638 long length;
f16a1923 1639 char *buf;
05c547f6 1640
f16a1923
AC
1641 log = mem_fileopen ();
1642 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1643 /* fundamental */
be7811ad 1644 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1645 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1646 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1647 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1648 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1649EOF
34620563 1650function_list | while do_read
104c1213 1651do
2ada493a
AC
1652 if class_is_function_p || class_is_variable_p
1653 then
72e74a21 1654 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1655 then
3d9a5942 1656 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1657 elif class_is_predicate_p
1658 then
0963b4bd 1659 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1660 # FIXME: See do_read for potential simplification
72e74a21 1661 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1662 then
3d9a5942 1663 printf " if (${invalid_p})\n"
be7811ad 1664 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1665 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1666 then
be7811ad
MD
1667 printf " if (gdbarch->${function} == ${predefault})\n"
1668 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1669 elif [ -n "${postdefault}" ]
f0d4cc9e 1670 then
be7811ad
MD
1671 printf " if (gdbarch->${function} == 0)\n"
1672 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1673 elif [ -n "${invalid_p}" ]
104c1213 1674 then
4d60522e 1675 printf " if (${invalid_p})\n"
f16a1923 1676 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1677 elif [ -n "${predefault}" ]
104c1213 1678 then
be7811ad 1679 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1680 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1681 fi
2ada493a 1682 fi
104c1213
JM
1683done
1684cat <<EOF
759ef836 1685 buf = ui_file_xstrdup (log, &length);
f16a1923 1686 make_cleanup (xfree, buf);
759ef836 1687 if (length > 0)
f16a1923 1688 internal_error (__FILE__, __LINE__,
85c07804 1689 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1690 buf);
1691 do_cleanups (cleanups);
104c1213
JM
1692}
1693EOF
1694
1695# dump the structure
3d9a5942
AC
1696printf "\n"
1697printf "\n"
104c1213 1698cat <<EOF
0963b4bd 1699/* Print out the details of the current architecture. */
4b9b3959 1700
104c1213 1701void
be7811ad 1702gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1703{
b78960be 1704 const char *gdb_nm_file = "<not-defined>";
05c547f6 1705
b78960be
AC
1706#if defined (GDB_NM_FILE)
1707 gdb_nm_file = GDB_NM_FILE;
1708#endif
1709 fprintf_unfiltered (file,
1710 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1711 gdb_nm_file);
104c1213 1712EOF
97030eea 1713function_list | sort -t: -k 3 | while do_read
104c1213 1714do
1e9f55d0
AC
1715 # First the predicate
1716 if class_is_predicate_p
1717 then
7996bcec 1718 printf " fprintf_unfiltered (file,\n"
48f7351b 1719 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1720 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1721 fi
48f7351b 1722 # Print the corresponding value.
283354d8 1723 if class_is_function_p
4b9b3959 1724 then
7996bcec 1725 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1726 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1727 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1728 else
48f7351b 1729 # It is a variable
2f9b146e
AC
1730 case "${print}:${returntype}" in
1731 :CORE_ADDR )
0b1553bc
UW
1732 fmt="%s"
1733 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1734 ;;
2f9b146e 1735 :* )
48f7351b 1736 fmt="%s"
623d3eb1 1737 print="plongest (gdbarch->${function})"
48f7351b
AC
1738 ;;
1739 * )
2f9b146e 1740 fmt="%s"
48f7351b
AC
1741 ;;
1742 esac
3d9a5942 1743 printf " fprintf_unfiltered (file,\n"
48f7351b 1744 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1745 printf " ${print});\n"
2ada493a 1746 fi
104c1213 1747done
381323f4 1748cat <<EOF
be7811ad
MD
1749 if (gdbarch->dump_tdep != NULL)
1750 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1751}
1752EOF
104c1213
JM
1753
1754
1755# GET/SET
3d9a5942 1756printf "\n"
104c1213
JM
1757cat <<EOF
1758struct gdbarch_tdep *
1759gdbarch_tdep (struct gdbarch *gdbarch)
1760{
1761 if (gdbarch_debug >= 2)
3d9a5942 1762 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1763 return gdbarch->tdep;
1764}
1765EOF
3d9a5942 1766printf "\n"
34620563 1767function_list | while do_read
104c1213 1768do
2ada493a
AC
1769 if class_is_predicate_p
1770 then
3d9a5942
AC
1771 printf "\n"
1772 printf "int\n"
1773 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1774 printf "{\n"
8de9bdc4 1775 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1776 printf " return ${predicate};\n"
3d9a5942 1777 printf "}\n"
2ada493a
AC
1778 fi
1779 if class_is_function_p
1780 then
3d9a5942
AC
1781 printf "\n"
1782 printf "${returntype}\n"
72e74a21 1783 if [ "x${formal}" = "xvoid" ]
104c1213 1784 then
3d9a5942 1785 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1786 else
3d9a5942 1787 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1788 fi
3d9a5942 1789 printf "{\n"
8de9bdc4 1790 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1791 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1792 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1793 then
1794 # Allow a call to a function with a predicate.
956ac328 1795 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1796 fi
3d9a5942
AC
1797 printf " if (gdbarch_debug >= 2)\n"
1798 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1799 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1800 then
1801 if class_is_multiarch_p
1802 then
1803 params="gdbarch"
1804 else
1805 params=""
1806 fi
1807 else
1808 if class_is_multiarch_p
1809 then
1810 params="gdbarch, ${actual}"
1811 else
1812 params="${actual}"
1813 fi
1814 fi
72e74a21 1815 if [ "x${returntype}" = "xvoid" ]
104c1213 1816 then
4a5c6a1d 1817 printf " gdbarch->${function} (${params});\n"
104c1213 1818 else
4a5c6a1d 1819 printf " return gdbarch->${function} (${params});\n"
104c1213 1820 fi
3d9a5942
AC
1821 printf "}\n"
1822 printf "\n"
1823 printf "void\n"
1824 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1825 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1826 printf "{\n"
1827 printf " gdbarch->${function} = ${function};\n"
1828 printf "}\n"
2ada493a
AC
1829 elif class_is_variable_p
1830 then
3d9a5942
AC
1831 printf "\n"
1832 printf "${returntype}\n"
1833 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1834 printf "{\n"
8de9bdc4 1835 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1836 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1837 then
3d9a5942 1838 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1839 elif [ -n "${invalid_p}" ]
104c1213 1840 then
956ac328
AC
1841 printf " /* Check variable is valid. */\n"
1842 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1843 elif [ -n "${predefault}" ]
104c1213 1844 then
956ac328
AC
1845 printf " /* Check variable changed from pre-default. */\n"
1846 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1847 fi
3d9a5942
AC
1848 printf " if (gdbarch_debug >= 2)\n"
1849 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1850 printf " return gdbarch->${function};\n"
1851 printf "}\n"
1852 printf "\n"
1853 printf "void\n"
1854 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1855 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1856 printf "{\n"
1857 printf " gdbarch->${function} = ${function};\n"
1858 printf "}\n"
2ada493a
AC
1859 elif class_is_info_p
1860 then
3d9a5942
AC
1861 printf "\n"
1862 printf "${returntype}\n"
1863 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1864 printf "{\n"
8de9bdc4 1865 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1866 printf " if (gdbarch_debug >= 2)\n"
1867 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1868 printf " return gdbarch->${function};\n"
1869 printf "}\n"
2ada493a 1870 fi
104c1213
JM
1871done
1872
1873# All the trailing guff
1874cat <<EOF
1875
1876
f44c642f 1877/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1878 modules. */
104c1213
JM
1879
1880struct gdbarch_data
1881{
95160752 1882 unsigned index;
76860b5f 1883 int init_p;
030f20e1
AC
1884 gdbarch_data_pre_init_ftype *pre_init;
1885 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1886};
1887
1888struct gdbarch_data_registration
1889{
104c1213
JM
1890 struct gdbarch_data *data;
1891 struct gdbarch_data_registration *next;
1892};
1893
f44c642f 1894struct gdbarch_data_registry
104c1213 1895{
95160752 1896 unsigned nr;
104c1213
JM
1897 struct gdbarch_data_registration *registrations;
1898};
1899
f44c642f 1900struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1901{
1902 0, NULL,
1903};
1904
030f20e1
AC
1905static struct gdbarch_data *
1906gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1907 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1908{
1909 struct gdbarch_data_registration **curr;
05c547f6
MS
1910
1911 /* Append the new registration. */
f44c642f 1912 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1913 (*curr) != NULL;
1914 curr = &(*curr)->next);
1915 (*curr) = XMALLOC (struct gdbarch_data_registration);
1916 (*curr)->next = NULL;
104c1213 1917 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1918 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1919 (*curr)->data->pre_init = pre_init;
1920 (*curr)->data->post_init = post_init;
76860b5f 1921 (*curr)->data->init_p = 1;
104c1213
JM
1922 return (*curr)->data;
1923}
1924
030f20e1
AC
1925struct gdbarch_data *
1926gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1927{
1928 return gdbarch_data_register (pre_init, NULL);
1929}
1930
1931struct gdbarch_data *
1932gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1933{
1934 return gdbarch_data_register (NULL, post_init);
1935}
104c1213 1936
0963b4bd 1937/* Create/delete the gdbarch data vector. */
95160752
AC
1938
1939static void
b3cc3077 1940alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1941{
b3cc3077
JB
1942 gdb_assert (gdbarch->data == NULL);
1943 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1944 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1945}
3c875b6f 1946
76860b5f 1947/* Initialize the current value of the specified per-architecture
0963b4bd 1948 data-pointer. */
b3cc3077 1949
95160752 1950void
030f20e1
AC
1951deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1952 struct gdbarch_data *data,
1953 void *pointer)
95160752
AC
1954{
1955 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1956 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1957 gdb_assert (data->pre_init == NULL);
95160752
AC
1958 gdbarch->data[data->index] = pointer;
1959}
1960
104c1213 1961/* Return the current value of the specified per-architecture
0963b4bd 1962 data-pointer. */
104c1213
JM
1963
1964void *
451fbdda 1965gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1966{
451fbdda 1967 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1968 if (gdbarch->data[data->index] == NULL)
76860b5f 1969 {
030f20e1
AC
1970 /* The data-pointer isn't initialized, call init() to get a
1971 value. */
1972 if (data->pre_init != NULL)
1973 /* Mid architecture creation: pass just the obstack, and not
1974 the entire architecture, as that way it isn't possible for
1975 pre-init code to refer to undefined architecture
1976 fields. */
1977 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1978 else if (gdbarch->initialized_p
1979 && data->post_init != NULL)
1980 /* Post architecture creation: pass the entire architecture
1981 (as all fields are valid), but be careful to also detect
1982 recursive references. */
1983 {
1984 gdb_assert (data->init_p);
1985 data->init_p = 0;
1986 gdbarch->data[data->index] = data->post_init (gdbarch);
1987 data->init_p = 1;
1988 }
1989 else
1990 /* The architecture initialization hasn't completed - punt -
1991 hope that the caller knows what they are doing. Once
1992 deprecated_set_gdbarch_data has been initialized, this can be
1993 changed to an internal error. */
1994 return NULL;
76860b5f
AC
1995 gdb_assert (gdbarch->data[data->index] != NULL);
1996 }
451fbdda 1997 return gdbarch->data[data->index];
104c1213
JM
1998}
1999
2000
0963b4bd 2001/* Keep a registry of the architectures known by GDB. */
104c1213 2002
4b9b3959 2003struct gdbarch_registration
104c1213
JM
2004{
2005 enum bfd_architecture bfd_architecture;
2006 gdbarch_init_ftype *init;
4b9b3959 2007 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2008 struct gdbarch_list *arches;
4b9b3959 2009 struct gdbarch_registration *next;
104c1213
JM
2010};
2011
f44c642f 2012static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2013
b4a20239
AC
2014static void
2015append_name (const char ***buf, int *nr, const char *name)
2016{
2017 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2018 (*buf)[*nr] = name;
2019 *nr += 1;
2020}
2021
2022const char **
2023gdbarch_printable_names (void)
2024{
7996bcec 2025 /* Accumulate a list of names based on the registed list of
0963b4bd 2026 architectures. */
7996bcec
AC
2027 int nr_arches = 0;
2028 const char **arches = NULL;
2029 struct gdbarch_registration *rego;
05c547f6 2030
7996bcec
AC
2031 for (rego = gdbarch_registry;
2032 rego != NULL;
2033 rego = rego->next)
b4a20239 2034 {
7996bcec
AC
2035 const struct bfd_arch_info *ap;
2036 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2037 if (ap == NULL)
2038 internal_error (__FILE__, __LINE__,
85c07804 2039 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2040 do
2041 {
2042 append_name (&arches, &nr_arches, ap->printable_name);
2043 ap = ap->next;
2044 }
2045 while (ap != NULL);
b4a20239 2046 }
7996bcec
AC
2047 append_name (&arches, &nr_arches, NULL);
2048 return arches;
b4a20239
AC
2049}
2050
2051
104c1213 2052void
4b9b3959
AC
2053gdbarch_register (enum bfd_architecture bfd_architecture,
2054 gdbarch_init_ftype *init,
2055 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2056{
4b9b3959 2057 struct gdbarch_registration **curr;
104c1213 2058 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2059
ec3d358c 2060 /* Check that BFD recognizes this architecture */
104c1213
JM
2061 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2062 if (bfd_arch_info == NULL)
2063 {
8e65ff28 2064 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2065 _("gdbarch: Attempt to register "
2066 "unknown architecture (%d)"),
8e65ff28 2067 bfd_architecture);
104c1213 2068 }
0963b4bd 2069 /* Check that we haven't seen this architecture before. */
f44c642f 2070 for (curr = &gdbarch_registry;
104c1213
JM
2071 (*curr) != NULL;
2072 curr = &(*curr)->next)
2073 {
2074 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2075 internal_error (__FILE__, __LINE__,
64b9b334 2076 _("gdbarch: Duplicate registration "
0963b4bd 2077 "of architecture (%s)"),
8e65ff28 2078 bfd_arch_info->printable_name);
104c1213
JM
2079 }
2080 /* log it */
2081 if (gdbarch_debug)
30737ed9 2082 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2083 bfd_arch_info->printable_name,
30737ed9 2084 host_address_to_string (init));
104c1213 2085 /* Append it */
4b9b3959 2086 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2087 (*curr)->bfd_architecture = bfd_architecture;
2088 (*curr)->init = init;
4b9b3959 2089 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2090 (*curr)->arches = NULL;
2091 (*curr)->next = NULL;
4b9b3959
AC
2092}
2093
2094void
2095register_gdbarch_init (enum bfd_architecture bfd_architecture,
2096 gdbarch_init_ftype *init)
2097{
2098 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2099}
104c1213
JM
2100
2101
424163ea 2102/* Look for an architecture using gdbarch_info. */
104c1213
JM
2103
2104struct gdbarch_list *
2105gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2106 const struct gdbarch_info *info)
2107{
2108 for (; arches != NULL; arches = arches->next)
2109 {
2110 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2111 continue;
2112 if (info->byte_order != arches->gdbarch->byte_order)
2113 continue;
4be87837
DJ
2114 if (info->osabi != arches->gdbarch->osabi)
2115 continue;
424163ea
DJ
2116 if (info->target_desc != arches->gdbarch->target_desc)
2117 continue;
104c1213
JM
2118 return arches;
2119 }
2120 return NULL;
2121}
2122
2123
ebdba546 2124/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2125 architecture if needed. Return that new architecture. */
104c1213 2126
59837fe0
UW
2127struct gdbarch *
2128gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2129{
2130 struct gdbarch *new_gdbarch;
4b9b3959 2131 struct gdbarch_registration *rego;
104c1213 2132
b732d07d 2133 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2134 sources: "set ..."; INFOabfd supplied; and the global
2135 defaults. */
2136 gdbarch_info_fill (&info);
4be87837 2137
0963b4bd 2138 /* Must have found some sort of architecture. */
b732d07d 2139 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2140
2141 if (gdbarch_debug)
2142 {
2143 fprintf_unfiltered (gdb_stdlog,
59837fe0 2144 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2145 (info.bfd_arch_info != NULL
2146 ? info.bfd_arch_info->printable_name
2147 : "(null)"));
2148 fprintf_unfiltered (gdb_stdlog,
59837fe0 2149 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2150 info.byte_order,
d7449b42 2151 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2152 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2153 : "default"));
4be87837 2154 fprintf_unfiltered (gdb_stdlog,
59837fe0 2155 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2156 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2157 fprintf_unfiltered (gdb_stdlog,
59837fe0 2158 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2159 host_address_to_string (info.abfd));
104c1213 2160 fprintf_unfiltered (gdb_stdlog,
59837fe0 2161 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2162 host_address_to_string (info.tdep_info));
104c1213
JM
2163 }
2164
ebdba546 2165 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2166 for (rego = gdbarch_registry;
2167 rego != NULL;
2168 rego = rego->next)
2169 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2170 break;
2171 if (rego == NULL)
2172 {
2173 if (gdbarch_debug)
59837fe0 2174 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2175 "No matching architecture\n");
b732d07d
AC
2176 return 0;
2177 }
2178
ebdba546 2179 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2180 new_gdbarch = rego->init (info, rego->arches);
2181
ebdba546
AC
2182 /* Did the tdep code like it? No. Reject the change and revert to
2183 the old architecture. */
104c1213
JM
2184 if (new_gdbarch == NULL)
2185 {
2186 if (gdbarch_debug)
59837fe0 2187 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2188 "Target rejected architecture\n");
2189 return NULL;
104c1213
JM
2190 }
2191
ebdba546
AC
2192 /* Is this a pre-existing architecture (as determined by already
2193 being initialized)? Move it to the front of the architecture
2194 list (keeping the list sorted Most Recently Used). */
2195 if (new_gdbarch->initialized_p)
104c1213 2196 {
ebdba546
AC
2197 struct gdbarch_list **list;
2198 struct gdbarch_list *this;
104c1213 2199 if (gdbarch_debug)
59837fe0 2200 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2201 "Previous architecture %s (%s) selected\n",
2202 host_address_to_string (new_gdbarch),
104c1213 2203 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2204 /* Find the existing arch in the list. */
2205 for (list = &rego->arches;
2206 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2207 list = &(*list)->next);
2208 /* It had better be in the list of architectures. */
2209 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2210 /* Unlink THIS. */
2211 this = (*list);
2212 (*list) = this->next;
2213 /* Insert THIS at the front. */
2214 this->next = rego->arches;
2215 rego->arches = this;
2216 /* Return it. */
2217 return new_gdbarch;
104c1213
JM
2218 }
2219
ebdba546
AC
2220 /* It's a new architecture. */
2221 if (gdbarch_debug)
59837fe0 2222 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2223 "New architecture %s (%s) selected\n",
2224 host_address_to_string (new_gdbarch),
ebdba546
AC
2225 new_gdbarch->bfd_arch_info->printable_name);
2226
2227 /* Insert the new architecture into the front of the architecture
2228 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2229 {
2230 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2231 this->next = rego->arches;
2232 this->gdbarch = new_gdbarch;
2233 rego->arches = this;
2234 }
104c1213 2235
4b9b3959
AC
2236 /* Check that the newly installed architecture is valid. Plug in
2237 any post init values. */
2238 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2239 verify_gdbarch (new_gdbarch);
ebdba546 2240 new_gdbarch->initialized_p = 1;
104c1213 2241
4b9b3959 2242 if (gdbarch_debug)
ebdba546
AC
2243 gdbarch_dump (new_gdbarch, gdb_stdlog);
2244
2245 return new_gdbarch;
2246}
2247
e487cc15 2248/* Make the specified architecture current. */
ebdba546
AC
2249
2250void
59837fe0 2251deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2252{
2253 gdb_assert (new_gdbarch != NULL);
ebdba546 2254 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2255 target_gdbarch = new_gdbarch;
383f836e 2256 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2257 registers_changed ();
ebdba546 2258}
104c1213 2259
104c1213 2260extern void _initialize_gdbarch (void);
b4a20239 2261
104c1213 2262void
34620563 2263_initialize_gdbarch (void)
104c1213 2264{
85c07804
AC
2265 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2266Set architecture debugging."), _("\\
2267Show architecture debugging."), _("\\
2268When non-zero, architecture debugging is enabled."),
2269 NULL,
920d2a44 2270 show_gdbarch_debug,
85c07804 2271 &setdebuglist, &showdebuglist);
104c1213
JM
2272}
2273EOF
2274
2275# close things off
2276exec 1>&2
2277#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2278compare_new gdbarch.c
This page took 1.68276 seconds and 4 git commands to generate.