gdb/
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
0b302171 5# Copyright (C) 1998-2012 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
283354d8
AC
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
3d9a5942
AC
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
06b25f14 97
ae45cd16
AC
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
34620563 101 "" )
f7968451 102 if test -n "${predefault}"
34620563
AC
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 105 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
34620563
AC
112 fi
113 ;;
ae45cd16 114 * )
1e9f55d0 115 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
116 kill $$
117 exit 1
118 ;;
119 esac
34620563
AC
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
72e74a21 129 if [ -n "${postdefault}" ]
34620563
AC
130 then
131 fallbackdefault="${postdefault}"
72e74a21 132 elif [ -n "${predefault}" ]
34620563
AC
133 then
134 fallbackdefault="${predefault}"
135 else
73d3c16e 136 fallbackdefault="0"
34620563
AC
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
f0d4cc9e 143 fi
34620563 144 done
72e74a21 145 if [ -n "${class}" ]
34620563
AC
146 then
147 true
c0e8c252
AC
148 else
149 false
150 fi
151}
152
104c1213 153
f0d4cc9e
AC
154fallback_default_p ()
155{
72e74a21
JB
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
158}
159
160class_is_variable_p ()
161{
4a5c6a1d
AC
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
f0d4cc9e
AC
166}
167
168class_is_function_p ()
169{
4a5c6a1d
AC
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174}
175
176class_is_multiarch_p ()
177{
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
f0d4cc9e
AC
182}
183
184class_is_predicate_p ()
185{
4a5c6a1d
AC
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
f0d4cc9e
AC
190}
191
192class_is_info_p ()
193{
4a5c6a1d
AC
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
f0d4cc9e
AC
198}
199
200
cff3e48b
JM
201# dump out/verify the doco
202for field in ${read}
203do
204 case ${field} in
205
206 class ) : ;;
c4093a6a 207
c0e8c252
AC
208 # # -> line disable
209 # f -> function
210 # hiding a function
2ada493a
AC
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
c0e8c252
AC
213 # v -> variable
214 # hiding a variable
2ada493a
AC
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
c0e8c252
AC
217 # i -> set from info
218 # hiding something from the ``struct info'' object
4a5c6a1d
AC
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
cff3e48b 223
cff3e48b
JM
224 returntype ) : ;;
225
c0e8c252 226 # For functions, the return type; for variables, the data type
cff3e48b
JM
227
228 function ) : ;;
229
c0e8c252
AC
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
233
234 formal ) : ;;
235
c0e8c252
AC
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
cff3e48b
JM
240
241 actual ) : ;;
242
c0e8c252
AC
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
cff3e48b 246
0b8f9e4d 247 staticdefault ) : ;;
c0e8c252
AC
248
249 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
cff3e48b 253
0b8f9e4d 254 # If STATICDEFAULT is empty, zero is used.
c0e8c252 255
0b8f9e4d 256 predefault ) : ;;
cff3e48b 257
10312cc4
AC
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
cff3e48b 262
0b8f9e4d
AC
263 # If PREDEFAULT is empty, zero is used.
264
10312cc4
AC
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
f0d4cc9e
AC
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
0b8f9e4d
AC
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
10312cc4
AC
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
f0d4cc9e
AC
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
be7811ad 294 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
295 # will contain the current architecture. Care should be
296 # taken.
cff3e48b 297
c4093a6a 298 invalid_p ) : ;;
cff3e48b 299
0b8f9e4d 300 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 301 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
f0d4cc9e
AC
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
312
313 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 314
cff3e48b
JM
315 print ) : ;;
316
2f9b146e
AC
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
c0e8c252 319
0b1553bc
UW
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
cff3e48b 322
283354d8 323 garbage_at_eol ) : ;;
0b8f9e4d 324
283354d8 325 # Catches stray fields.
cff3e48b 326
50248794
AC
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
cff3e48b
JM
330 esac
331done
332
cff3e48b 333
104c1213
JM
334function_list ()
335{
cff3e48b 336 # See below (DOCO) for description of each field
34620563 337 cat <<EOF
be7811ad 338i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 339#
97030eea 340i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 341i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 342#
97030eea 343i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 344#
30737ed9 345i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
346
347# The bit byte-order has to do just with numbering of bits in debugging symbols
348# and such. Conceptually, it's quite separate from byte/word byte order.
349v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
66b43ecb
AC
351# Number of bits in a char or unsigned char for the target machine.
352# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 353# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
354#
355# Number of bits in a short or unsigned short for the target machine.
97030eea 356v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 357# Number of bits in an int or unsigned int for the target machine.
97030eea 358v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 359# Number of bits in a long or unsigned long for the target machine.
97030eea 360v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
361# Number of bits in a long long or unsigned long long for the target
362# machine.
be7811ad 363v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
364# Alignment of a long long or unsigned long long for the target
365# machine.
366v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 367
f9e9243a
UW
368# The ABI default bit-size and format for "half", "float", "double", and
369# "long double". These bit/format pairs should eventually be combined
370# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
371# Each format describes both the big and little endian layouts (if
372# useful).
456fcf94 373
f9e9243a
UW
374v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 376v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 378v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 379v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 380v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 381v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 382
52204a0b
DT
383# For most targets, a pointer on the target and its representation as an
384# address in GDB have the same size and "look the same". For such a
17a912b6 385# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
386# / addr_bit will be set from it.
387#
17a912b6 388# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
389# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390# gdbarch_address_to_pointer as well.
52204a0b
DT
391#
392# ptr_bit is the size of a pointer on the target
be7811ad 393v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 394# addr_bit is the size of a target address as represented in gdb
be7811ad 395v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 396#
8da614df
CV
397# dwarf2_addr_size is the target address size as used in the Dwarf debug
398# info. For .debug_frame FDEs, this is supposed to be the target address
399# size from the associated CU header, and which is equivalent to the
400# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401# Unfortunately there is no good way to determine this value. Therefore
402# dwarf2_addr_size simply defaults to the target pointer size.
403#
404# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405# defined using the target's pointer size so far.
406#
407# Note that dwarf2_addr_size only needs to be redefined by a target if the
408# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409# and if Dwarf versions < 4 need to be supported.
410v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411#
4e409299 412# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 413v:int:char_signed:::1:-1:1
4e409299 414#
97030eea
UW
415F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
417# Function for getting target's idea of a frame pointer. FIXME: GDB's
418# whole scheme for dealing with "frames" and "frame pointers" needs a
419# serious shakedown.
a54fba4c 420m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 421#
05d1431c 422M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
423# Read a register into a new struct value. If the register is wholly
424# or partly unavailable, this should call mark_value_bytes_unavailable
425# as appropriate. If this is defined, then pseudo_register_read will
426# never be called.
427M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 428M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 429#
97030eea 430v:int:num_regs:::0:-1
0aba1244
EZ
431# This macro gives the number of pseudo-registers that live in the
432# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
433# These pseudo-registers may be aliases for other registers,
434# combinations of other registers, or they may be computed by GDB.
97030eea 435v:int:num_pseudo_regs:::0:0::0
c2169756 436
175ff332
HZ
437# Assemble agent expression bytecode to collect pseudo-register REG.
438# Return -1 if something goes wrong, 0 otherwise.
439M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441# Assemble agent expression bytecode to push the value of pseudo-register
442# REG on the interpreter stack.
443# Return -1 if something goes wrong, 0 otherwise.
444M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
c2169756
AC
446# GDB's standard (or well known) register numbers. These can map onto
447# a real register or a pseudo (computed) register or not be defined at
1200cd6e 448# all (-1).
3e8c568d 449# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
450v:int:sp_regnum:::-1:-1::0
451v:int:pc_regnum:::-1:-1::0
452v:int:ps_regnum:::-1:-1::0
453v:int:fp0_regnum:::0:-1::0
88c72b7d 454# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 455m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 456# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 457m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 458# Convert from an sdb register number to an internal gdb register number.
d3f73121 459m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 460# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 461m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 462m:const char *:register_name:int regnr:regnr::0
9c04cab7 463
7b9ee6a8
DJ
464# Return the type of a register specified by the architecture. Only
465# the register cache should call this function directly; others should
466# use "register_type".
97030eea 467M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 468
f3be58bc 469# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
470M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 472# deprecated_fp_regnum.
97030eea 473v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 474
a86c5fc9 475# See gdbint.texinfo. See infcall.c.
97030eea
UW
476M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477v:int:call_dummy_location::::AT_ENTRY_POINT::0
478M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 479
97030eea
UW
480m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
483# MAP a GDB RAW register number onto a simulator register number. See
484# also include/...-sim.h.
e7faf938 485m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
486m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 488# setjmp/longjmp support.
97030eea 489F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 490#
97030eea 491v:int:believe_pcc_promotion:::::::
104c1213 492#
0abe36f5 493m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 494f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 495f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
496# Construct a value representing the contents of register REGNUM in
497# frame FRAME, interpreted as type TYPE. The routine needs to
498# allocate and return a struct value with all value attributes
499# (but not the value contents) filled in.
97030eea 500f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 501#
9898f801
UW
502m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 504M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 505
6a3a010b
MR
506# Return the return-value convention that will be used by FUNCTION
507# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
508# case the return convention is computed based only on VALTYPE.
509#
510# If READBUF is not NULL, extract the return value and save it in this buffer.
511#
512# If WRITEBUF is not NULL, it contains a return value which will be
513# stored into the appropriate register. This can be used when we want
514# to force the value returned by a function (see the "return" command
515# for instance).
6a3a010b 516M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 517
6093d2eb 518m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 519M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 520f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 521m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
522# Return the adjusted address and kind to use for Z0/Z1 packets.
523# KIND is usually the memory length of the breakpoint, but may have a
524# different target-specific meaning.
0e05dfcb 525m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 526M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
527m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 529v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
530
531# A function can be addressed by either it's "pointer" (possibly a
532# descriptor address) or "entry point" (first executable instruction).
533# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 534# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
535# a simplified subset of that functionality - the function's address
536# corresponds to the "function pointer" and the function's start
537# corresponds to the "function entry point" - and hence is redundant.
538
97030eea 539v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 540
123dc839
DJ
541# Return the remote protocol register number associated with this
542# register. Normally the identity mapping.
97030eea 543m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 544
b2756930 545# Fetch the target specific address used to represent a load module.
97030eea 546F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 547#
97030eea
UW
548v:CORE_ADDR:frame_args_skip:::0:::0
549M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
551# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552# frame-base. Enable frame-base before frame-unwind.
97030eea 553F:int:frame_num_args:struct frame_info *frame:frame
104c1213 554#
97030eea
UW
555M:CORE_ADDR:frame_align:CORE_ADDR address:address
556m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557v:int:frame_red_zone_size
f0d4cc9e 558#
97030eea 559m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
560# On some machines there are bits in addresses which are not really
561# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 562# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
563# we get a "real" address such as one would find in a symbol table.
564# This is used only for addresses of instructions, and even then I'm
565# not sure it's used in all contexts. It exists to deal with there
566# being a few stray bits in the PC which would mislead us, not as some
567# sort of generic thing to handle alignment or segmentation (it's
568# possible it should be in TARGET_READ_PC instead).
24568a2c 569m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 570# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 571# gdbarch_addr_bits_remove.
24568a2c 572m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
573
574# FIXME/cagney/2001-01-18: This should be split in two. A target method that
575# indicates if the target needs software single step. An ISA method to
576# implement it.
577#
578# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579# breakpoints using the breakpoint system instead of blatting memory directly
580# (as with rs6000).
64c4637f 581#
e6590a1b
UW
582# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583# target can single step. If not, then implement single step using breakpoints.
64c4637f 584#
e6590a1b
UW
585# A return value of 1 means that the software_single_step breakpoints
586# were inserted; 0 means they were not.
97030eea 587F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 588
3352ef37
AC
589# Return non-zero if the processor is executing a delay slot and a
590# further single-step is needed before the instruction finishes.
97030eea 591M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 592# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 593# disassembler. Perhaps objdump can handle it?
97030eea
UW
594f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
596
597
cfd8ab24 598# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
599# evaluates non-zero, this is the address where the debugger will place
600# a step-resume breakpoint to get us past the dynamic linker.
97030eea 601m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 602# Some systems also have trampoline code for returning from shared libs.
2c02bd72 603m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 604
c12260ac
CV
605# A target might have problems with watchpoints as soon as the stack
606# frame of the current function has been destroyed. This mostly happens
607# as the first action in a funtion's epilogue. in_function_epilogue_p()
608# is defined to return a non-zero value if either the given addr is one
609# instruction after the stack destroying instruction up to the trailing
610# return instruction or if we can figure out that the stack frame has
611# already been invalidated regardless of the value of addr. Targets
612# which don't suffer from that problem could just let this functionality
613# untouched.
97030eea 614m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
615f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
617v:int:cannot_step_breakpoint:::0:0::0
618v:int:have_nonsteppable_watchpoint:::0:0::0
619F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 622# Is a register in a group
97030eea 623m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 624# Fetch the pointer to the ith function argument.
97030eea 625F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
626
627# Return the appropriate register set for a core file section with
628# name SECT_NAME and size SECT_SIZE.
97030eea 629M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 630
17ea7499
CES
631# Supported register notes in a core file.
632v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
6432734d
UW
634# Create core file notes
635M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
636
35c2fab7
UW
637# Find core file memory regions
638M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
639
de584861
PA
640# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641# core file into buffer READBUF with length LEN.
97030eea 642M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 643
c0edd9ed 644# How the core target converts a PTID from a core file to a string.
28439f5e
PA
645M:char *:core_pid_to_str:ptid_t ptid:ptid
646
a78c2d62 647# BFD target to use when generating a core file.
86ba1042 648V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 649
0d5de010
DJ
650# If the elements of C++ vtables are in-place function descriptors rather
651# than normal function pointers (which may point to code or a descriptor),
652# set this to one.
97030eea 653v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
654
655# Set if the least significant bit of the delta is used instead of the least
656# significant bit of the pfn for pointers to virtual member functions.
97030eea 657v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
658
659# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 660F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 661
1668ae25 662# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
663V:ULONGEST:max_insn_length:::0:0
664
665# Copy the instruction at FROM to TO, and make any adjustments
666# necessary to single-step it at that address.
667#
668# REGS holds the state the thread's registers will have before
669# executing the copied instruction; the PC in REGS will refer to FROM,
670# not the copy at TO. The caller should update it to point at TO later.
671#
672# Return a pointer to data of the architecture's choice to be passed
673# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674# the instruction's effects have been completely simulated, with the
675# resulting state written back to REGS.
676#
677# For a general explanation of displaced stepping and how GDB uses it,
678# see the comments in infrun.c.
679#
680# The TO area is only guaranteed to have space for
681# gdbarch_max_insn_length (arch) bytes, so this function must not
682# write more bytes than that to that area.
683#
684# If you do not provide this function, GDB assumes that the
685# architecture does not support displaced stepping.
686#
687# If your architecture doesn't need to adjust instructions before
688# single-stepping them, consider using simple_displaced_step_copy_insn
689# here.
690M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
691
99e40580
UW
692# Return true if GDB should use hardware single-stepping to execute
693# the displaced instruction identified by CLOSURE. If false,
694# GDB will simply restart execution at the displaced instruction
695# location, and it is up to the target to ensure GDB will receive
696# control again (e.g. by placing a software breakpoint instruction
697# into the displaced instruction buffer).
698#
699# The default implementation returns false on all targets that
700# provide a gdbarch_software_single_step routine, and true otherwise.
701m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
702
237fc4c9
PA
703# Fix up the state resulting from successfully single-stepping a
704# displaced instruction, to give the result we would have gotten from
705# stepping the instruction in its original location.
706#
707# REGS is the register state resulting from single-stepping the
708# displaced instruction.
709#
710# CLOSURE is the result from the matching call to
711# gdbarch_displaced_step_copy_insn.
712#
713# If you provide gdbarch_displaced_step_copy_insn.but not this
714# function, then GDB assumes that no fixup is needed after
715# single-stepping the instruction.
716#
717# For a general explanation of displaced stepping and how GDB uses it,
718# see the comments in infrun.c.
719M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
720
721# Free a closure returned by gdbarch_displaced_step_copy_insn.
722#
723# If you provide gdbarch_displaced_step_copy_insn, you must provide
724# this function as well.
725#
726# If your architecture uses closures that don't need to be freed, then
727# you can use simple_displaced_step_free_closure here.
728#
729# For a general explanation of displaced stepping and how GDB uses it,
730# see the comments in infrun.c.
731m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
732
733# Return the address of an appropriate place to put displaced
734# instructions while we step over them. There need only be one such
735# place, since we're only stepping one thread over a breakpoint at a
736# time.
737#
738# For a general explanation of displaced stepping and how GDB uses it,
739# see the comments in infrun.c.
740m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
741
dde08ee1
PA
742# Relocate an instruction to execute at a different address. OLDLOC
743# is the address in the inferior memory where the instruction to
744# relocate is currently at. On input, TO points to the destination
745# where we want the instruction to be copied (and possibly adjusted)
746# to. On output, it points to one past the end of the resulting
747# instruction(s). The effect of executing the instruction at TO shall
748# be the same as if executing it at FROM. For example, call
749# instructions that implicitly push the return address on the stack
750# should be adjusted to return to the instruction after OLDLOC;
751# relative branches, and other PC-relative instructions need the
752# offset adjusted; etc.
753M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
754
1c772458 755# Refresh overlay mapped state for section OSECT.
97030eea 756F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 757
97030eea 758M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
759
760# Handle special encoding of static variables in stabs debug info.
0d5cff50 761F:const char *:static_transform_name:const char *name:name
203c3895 762# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 763v:int:sofun_address_maybe_missing:::0:0::0
1cded358 764
0508c3ec
HZ
765# Parse the instruction at ADDR storing in the record execution log
766# the registers REGCACHE and memory ranges that will be affected when
767# the instruction executes, along with their current values.
768# Return -1 if something goes wrong, 0 otherwise.
769M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
770
3846b520
HZ
771# Save process state after a signal.
772# Return -1 if something goes wrong, 0 otherwise.
2ea28649 773M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 774
1cded358
AR
775# Signal translation: translate inferior's signal (host's) number into
776# GDB's representation.
2ea28649 777m:enum gdb_signal:gdb_signal_from_host:int signo:signo::default_gdb_signal_from_host::0
60c5725c 778
4aa995e1
PA
779# Extra signal info inspection.
780#
781# Return a type suitable to inspect extra signal information.
782M:struct type *:get_siginfo_type:void:
783
60c5725c
DJ
784# Record architecture-specific information from the symbol table.
785M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 786
a96d9b2e
SDJ
787# Function for the 'catch syscall' feature.
788
789# Get architecture-specific system calls information from registers.
790M:LONGEST:get_syscall_number:ptid_t ptid:ptid
791
55aa24fb
SDJ
792# SystemTap related fields and functions.
793
794# Prefix used to mark an integer constant on the architecture's assembly
795# For example, on x86 integer constants are written as:
796#
797# \$10 ;; integer constant 10
798#
799# in this case, this prefix would be the character \`\$\'.
800v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
801
802# Suffix used to mark an integer constant on the architecture's assembly.
803v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
804
805# Prefix used to mark a register name on the architecture's assembly.
806# For example, on x86 the register name is written as:
807#
808# \%eax ;; register eax
809#
810# in this case, this prefix would be the character \`\%\'.
811v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
812
813# Suffix used to mark a register name on the architecture's assembly
814v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
815
816# Prefix used to mark a register indirection on the architecture's assembly.
817# For example, on x86 the register indirection is written as:
818#
819# \(\%eax\) ;; indirecting eax
820#
821# in this case, this prefix would be the charater \`\(\'.
822#
823# Please note that we use the indirection prefix also for register
824# displacement, e.g., \`4\(\%eax\)\' on x86.
825v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
826
827# Suffix used to mark a register indirection on the architecture's assembly.
828# For example, on x86 the register indirection is written as:
829#
830# \(\%eax\) ;; indirecting eax
831#
832# in this case, this prefix would be the charater \`\)\'.
833#
834# Please note that we use the indirection suffix also for register
835# displacement, e.g., \`4\(\%eax\)\' on x86.
836v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
837
838# Prefix used to name a register using GDB's nomenclature.
839#
840# For example, on PPC a register is represented by a number in the assembly
841# language (e.g., \`10\' is the 10th general-purpose register). However,
842# inside GDB this same register has an \`r\' appended to its name, so the 10th
843# register would be represented as \`r10\' internally.
844v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
845
846# Suffix used to name a register using GDB's nomenclature.
847v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
848
849# Check if S is a single operand.
850#
851# Single operands can be:
852# \- Literal integers, e.g. \`\$10\' on x86
853# \- Register access, e.g. \`\%eax\' on x86
854# \- Register indirection, e.g. \`\(\%eax\)\' on x86
855# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
856#
857# This function should check for these patterns on the string
858# and return 1 if some were found, or zero otherwise. Please try to match
859# as much info as you can from the string, i.e., if you have to match
860# something like \`\(\%\', do not match just the \`\(\'.
861M:int:stap_is_single_operand:const char *s:s
862
863# Function used to handle a "special case" in the parser.
864#
865# A "special case" is considered to be an unknown token, i.e., a token
866# that the parser does not know how to parse. A good example of special
867# case would be ARM's register displacement syntax:
868#
869# [R0, #4] ;; displacing R0 by 4
870#
871# Since the parser assumes that a register displacement is of the form:
872#
873# <number> <indirection_prefix> <register_name> <indirection_suffix>
874#
875# it means that it will not be able to recognize and parse this odd syntax.
876# Therefore, we should add a special case function that will handle this token.
877#
878# This function should generate the proper expression form of the expression
879# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
880# and so on). It should also return 1 if the parsing was successful, or zero
881# if the token was not recognized as a special token (in this case, returning
882# zero means that the special parser is deferring the parsing to the generic
883# parser), and should advance the buffer pointer (p->arg).
884M:int:stap_parse_special_token:struct stap_parse_info *p:p
885
886
50c71eaf
PA
887# True if the list of shared libraries is one and only for all
888# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
889# This usually means that all processes, although may or may not share
890# an address space, will see the same set of symbols at the same
891# addresses.
50c71eaf 892v:int:has_global_solist:::0:0::0
2567c7d9
PA
893
894# On some targets, even though each inferior has its own private
895# address space, the debug interface takes care of making breakpoints
896# visible to all address spaces automatically. For such cases,
897# this property should be set to true.
898v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
899
900# True if inferiors share an address space (e.g., uClinux).
901m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
902
903# True if a fast tracepoint can be set at an address.
904m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 905
f870a310
TT
906# Return the "auto" target charset.
907f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
908# Return the "auto" target wide charset.
909f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
910
911# If non-empty, this is a file extension that will be opened in place
912# of the file extension reported by the shared library list.
913#
914# This is most useful for toolchains that use a post-linker tool,
915# where the names of the files run on the target differ in extension
916# compared to the names of the files GDB should load for debug info.
917v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
918
919# If true, the target OS has DOS-based file system semantics. That
920# is, absolute paths include a drive name, and the backslash is
921# considered a directory separator.
922v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
923
924# Generate bytecodes to collect the return address in a frame.
925# Since the bytecodes run on the target, possibly with GDB not even
926# connected, the full unwinding machinery is not available, and
927# typically this function will issue bytecodes for one or more likely
928# places that the return address may be found.
929m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
930
3030c96e
UW
931# Implement the "info proc" command.
932M:void:info_proc:char *args, enum info_proc_what what:args, what
933
104c1213 934EOF
104c1213
JM
935}
936
0b8f9e4d
AC
937#
938# The .log file
939#
940exec > new-gdbarch.log
34620563 941function_list | while do_read
0b8f9e4d
AC
942do
943 cat <<EOF
2f9b146e 944${class} ${returntype} ${function} ($formal)
104c1213 945EOF
3d9a5942
AC
946 for r in ${read}
947 do
948 eval echo \"\ \ \ \ ${r}=\${${r}}\"
949 done
f0d4cc9e 950 if class_is_predicate_p && fallback_default_p
0b8f9e4d 951 then
66d659b1 952 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
953 kill $$
954 exit 1
955 fi
72e74a21 956 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
957 then
958 echo "Error: postdefault is useless when invalid_p=0" 1>&2
959 kill $$
960 exit 1
961 fi
a72293e2
AC
962 if class_is_multiarch_p
963 then
964 if class_is_predicate_p ; then :
965 elif test "x${predefault}" = "x"
966 then
2f9b146e 967 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
968 kill $$
969 exit 1
970 fi
971 fi
3d9a5942 972 echo ""
0b8f9e4d
AC
973done
974
975exec 1>&2
976compare_new gdbarch.log
977
104c1213
JM
978
979copyright ()
980{
981cat <<EOF
59233f88
AC
982/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
983
104c1213 984/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 985
f801e1e0
MS
986 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
987 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
988
989 This file is part of GDB.
990
991 This program is free software; you can redistribute it and/or modify
992 it under the terms of the GNU General Public License as published by
50efebf8 993 the Free Software Foundation; either version 3 of the License, or
104c1213 994 (at your option) any later version.
50efebf8 995
104c1213
JM
996 This program is distributed in the hope that it will be useful,
997 but WITHOUT ANY WARRANTY; without even the implied warranty of
998 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
999 GNU General Public License for more details.
50efebf8 1000
104c1213 1001 You should have received a copy of the GNU General Public License
50efebf8 1002 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1003
104c1213
JM
1004/* This file was created with the aid of \`\`gdbarch.sh''.
1005
52204a0b 1006 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1007 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1008 against the existing \`\`gdbarch.[hc]''. Any differences found
1009 being reported.
1010
1011 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1012 changes into that script. Conversely, when making sweeping changes
104c1213 1013 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1014 easier. */
104c1213
JM
1015
1016EOF
1017}
1018
1019#
1020# The .h file
1021#
1022
1023exec > new-gdbarch.h
1024copyright
1025cat <<EOF
1026#ifndef GDBARCH_H
1027#define GDBARCH_H
1028
da3331ec
AC
1029struct floatformat;
1030struct ui_file;
104c1213
JM
1031struct frame_info;
1032struct value;
b6af0555 1033struct objfile;
1c772458 1034struct obj_section;
a2cf933a 1035struct minimal_symbol;
049ee0e4 1036struct regcache;
b59ff9d5 1037struct reggroup;
6ce6d90f 1038struct regset;
a89aa300 1039struct disassemble_info;
e2d0e7eb 1040struct target_ops;
030f20e1 1041struct obstack;
8181d85f 1042struct bp_target_info;
424163ea 1043struct target_desc;
237fc4c9 1044struct displaced_step_closure;
17ea7499 1045struct core_regset_section;
a96d9b2e 1046struct syscall;
175ff332 1047struct agent_expr;
6710bf39 1048struct axs_value;
55aa24fb 1049struct stap_parse_info;
104c1213 1050
9e2ace22
JB
1051/* The architecture associated with the connection to the target.
1052
1053 The architecture vector provides some information that is really
1054 a property of the target: The layout of certain packets, for instance;
1055 or the solib_ops vector. Etc. To differentiate architecture accesses
1056 to per-target properties from per-thread/per-frame/per-objfile properties,
1057 accesses to per-target properties should be made through target_gdbarch.
1058
1059 Eventually, when support for multiple targets is implemented in
1060 GDB, this global should be made target-specific. */
1cf3db46 1061extern struct gdbarch *target_gdbarch;
104c1213
JM
1062EOF
1063
1064# function typedef's
3d9a5942
AC
1065printf "\n"
1066printf "\n"
0963b4bd 1067printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1068function_list | while do_read
104c1213 1069do
2ada493a
AC
1070 if class_is_info_p
1071 then
3d9a5942
AC
1072 printf "\n"
1073 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1074 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1075 fi
104c1213
JM
1076done
1077
1078# function typedef's
3d9a5942
AC
1079printf "\n"
1080printf "\n"
0963b4bd 1081printf "/* The following are initialized by the target dependent code. */\n"
34620563 1082function_list | while do_read
104c1213 1083do
72e74a21 1084 if [ -n "${comment}" ]
34620563
AC
1085 then
1086 echo "${comment}" | sed \
1087 -e '2 s,#,/*,' \
1088 -e '3,$ s,#, ,' \
1089 -e '$ s,$, */,'
1090 fi
412d5987
AC
1091
1092 if class_is_predicate_p
2ada493a 1093 then
412d5987
AC
1094 printf "\n"
1095 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1096 fi
2ada493a
AC
1097 if class_is_variable_p
1098 then
3d9a5942
AC
1099 printf "\n"
1100 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1101 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1102 fi
1103 if class_is_function_p
1104 then
3d9a5942 1105 printf "\n"
72e74a21 1106 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1107 then
1108 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1109 elif class_is_multiarch_p
1110 then
1111 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1112 else
1113 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1114 fi
72e74a21 1115 if [ "x${formal}" = "xvoid" ]
104c1213 1116 then
3d9a5942 1117 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1118 else
3d9a5942 1119 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1120 fi
3d9a5942 1121 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1122 fi
104c1213
JM
1123done
1124
1125# close it off
1126cat <<EOF
1127
a96d9b2e
SDJ
1128/* Definition for an unknown syscall, used basically in error-cases. */
1129#define UNKNOWN_SYSCALL (-1)
1130
104c1213
JM
1131extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1132
1133
1134/* Mechanism for co-ordinating the selection of a specific
1135 architecture.
1136
1137 GDB targets (*-tdep.c) can register an interest in a specific
1138 architecture. Other GDB components can register a need to maintain
1139 per-architecture data.
1140
1141 The mechanisms below ensures that there is only a loose connection
1142 between the set-architecture command and the various GDB
0fa6923a 1143 components. Each component can independently register their need
104c1213
JM
1144 to maintain architecture specific data with gdbarch.
1145
1146 Pragmatics:
1147
1148 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1149 didn't scale.
1150
1151 The more traditional mega-struct containing architecture specific
1152 data for all the various GDB components was also considered. Since
0fa6923a 1153 GDB is built from a variable number of (fairly independent)
104c1213 1154 components it was determined that the global aproach was not
0963b4bd 1155 applicable. */
104c1213
JM
1156
1157
1158/* Register a new architectural family with GDB.
1159
1160 Register support for the specified ARCHITECTURE with GDB. When
1161 gdbarch determines that the specified architecture has been
1162 selected, the corresponding INIT function is called.
1163
1164 --
1165
1166 The INIT function takes two parameters: INFO which contains the
1167 information available to gdbarch about the (possibly new)
1168 architecture; ARCHES which is a list of the previously created
1169 \`\`struct gdbarch'' for this architecture.
1170
0f79675b 1171 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1172 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1173
1174 The ARCHES parameter is a linked list (sorted most recently used)
1175 of all the previously created architures for this architecture
1176 family. The (possibly NULL) ARCHES->gdbarch can used to access
1177 values from the previously selected architecture for this
59837fe0 1178 architecture family.
104c1213
JM
1179
1180 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1181 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1182 gdbarch'' from the ARCHES list - indicating that the new
1183 architecture is just a synonym for an earlier architecture (see
1184 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1185 - that describes the selected architecture (see gdbarch_alloc()).
1186
1187 The DUMP_TDEP function shall print out all target specific values.
1188 Care should be taken to ensure that the function works in both the
0963b4bd 1189 multi-arch and non- multi-arch cases. */
104c1213
JM
1190
1191struct gdbarch_list
1192{
1193 struct gdbarch *gdbarch;
1194 struct gdbarch_list *next;
1195};
1196
1197struct gdbarch_info
1198{
0963b4bd 1199 /* Use default: NULL (ZERO). */
104c1213
JM
1200 const struct bfd_arch_info *bfd_arch_info;
1201
428721aa 1202 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1203 int byte_order;
1204
9d4fde75
SS
1205 int byte_order_for_code;
1206
0963b4bd 1207 /* Use default: NULL (ZERO). */
104c1213
JM
1208 bfd *abfd;
1209
0963b4bd 1210 /* Use default: NULL (ZERO). */
104c1213 1211 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1212
1213 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1214 enum gdb_osabi osabi;
424163ea
DJ
1215
1216 /* Use default: NULL (ZERO). */
1217 const struct target_desc *target_desc;
104c1213
JM
1218};
1219
1220typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1221typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1222
4b9b3959 1223/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1224extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1225
4b9b3959
AC
1226extern void gdbarch_register (enum bfd_architecture architecture,
1227 gdbarch_init_ftype *,
1228 gdbarch_dump_tdep_ftype *);
1229
104c1213 1230
b4a20239
AC
1231/* Return a freshly allocated, NULL terminated, array of the valid
1232 architecture names. Since architectures are registered during the
1233 _initialize phase this function only returns useful information
0963b4bd 1234 once initialization has been completed. */
b4a20239
AC
1235
1236extern const char **gdbarch_printable_names (void);
1237
1238
104c1213 1239/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1240 matches the information provided by INFO. */
104c1213 1241
424163ea 1242extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1243
1244
1245/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1246 basic initialization using values obtained from the INFO and TDEP
104c1213 1247 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1248 initialization of the object. */
104c1213
JM
1249
1250extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1251
1252
4b9b3959
AC
1253/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1254 It is assumed that the caller freeds the \`\`struct
0963b4bd 1255 gdbarch_tdep''. */
4b9b3959 1256
058f20d5
JB
1257extern void gdbarch_free (struct gdbarch *);
1258
1259
aebd7893
AC
1260/* Helper function. Allocate memory from the \`\`struct gdbarch''
1261 obstack. The memory is freed when the corresponding architecture
1262 is also freed. */
1263
1264extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1265#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1266#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1267
1268
0963b4bd 1269/* Helper function. Force an update of the current architecture.
104c1213 1270
b732d07d
AC
1271 The actual architecture selected is determined by INFO, \`\`(gdb) set
1272 architecture'' et.al., the existing architecture and BFD's default
1273 architecture. INFO should be initialized to zero and then selected
1274 fields should be updated.
104c1213 1275
0963b4bd 1276 Returns non-zero if the update succeeds. */
16f33e29
AC
1277
1278extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1279
1280
ebdba546
AC
1281/* Helper function. Find an architecture matching info.
1282
1283 INFO should be initialized using gdbarch_info_init, relevant fields
1284 set, and then finished using gdbarch_info_fill.
1285
1286 Returns the corresponding architecture, or NULL if no matching
59837fe0 1287 architecture was found. */
ebdba546
AC
1288
1289extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1290
1291
59837fe0 1292/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1293
1294 FIXME: kettenis/20031124: Of the functions that follow, only
1295 gdbarch_from_bfd is supposed to survive. The others will
1296 dissappear since in the future GDB will (hopefully) be truly
1297 multi-arch. However, for now we're still stuck with the concept of
1298 a single active architecture. */
1299
59837fe0 1300extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1301
104c1213
JM
1302
1303/* Register per-architecture data-pointer.
1304
1305 Reserve space for a per-architecture data-pointer. An identifier
1306 for the reserved data-pointer is returned. That identifer should
95160752 1307 be saved in a local static variable.
104c1213 1308
fcc1c85c
AC
1309 Memory for the per-architecture data shall be allocated using
1310 gdbarch_obstack_zalloc. That memory will be deleted when the
1311 corresponding architecture object is deleted.
104c1213 1312
95160752
AC
1313 When a previously created architecture is re-selected, the
1314 per-architecture data-pointer for that previous architecture is
76860b5f 1315 restored. INIT() is not re-called.
104c1213
JM
1316
1317 Multiple registrarants for any architecture are allowed (and
1318 strongly encouraged). */
1319
95160752 1320struct gdbarch_data;
104c1213 1321
030f20e1
AC
1322typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1323extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1324typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1325extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1326extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1327 struct gdbarch_data *data,
1328 void *pointer);
104c1213 1329
451fbdda 1330extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1331
1332
0fa6923a 1333/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1334 byte-order, ...) using information found in the BFD. */
104c1213
JM
1335
1336extern void set_gdbarch_from_file (bfd *);
1337
1338
e514a9d6
JM
1339/* Initialize the current architecture to the "first" one we find on
1340 our list. */
1341
1342extern void initialize_current_architecture (void);
1343
104c1213
JM
1344/* gdbarch trace variable */
1345extern int gdbarch_debug;
1346
4b9b3959 1347extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1348
1349#endif
1350EOF
1351exec 1>&2
1352#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1353compare_new gdbarch.h
104c1213
JM
1354
1355
1356#
1357# C file
1358#
1359
1360exec > new-gdbarch.c
1361copyright
1362cat <<EOF
1363
1364#include "defs.h"
7355ddba 1365#include "arch-utils.h"
104c1213 1366
104c1213 1367#include "gdbcmd.h"
faaf634c 1368#include "inferior.h"
104c1213
JM
1369#include "symcat.h"
1370
f0d4cc9e 1371#include "floatformat.h"
104c1213 1372
95160752 1373#include "gdb_assert.h"
b66d6d2e 1374#include "gdb_string.h"
b59ff9d5 1375#include "reggroups.h"
4be87837 1376#include "osabi.h"
aebd7893 1377#include "gdb_obstack.h"
383f836e 1378#include "observer.h"
a3ecef73 1379#include "regcache.h"
95160752 1380
104c1213
JM
1381/* Static function declarations */
1382
b3cc3077 1383static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1384
104c1213
JM
1385/* Non-zero if we want to trace architecture code. */
1386
1387#ifndef GDBARCH_DEBUG
1388#define GDBARCH_DEBUG 0
1389#endif
1390int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1391static void
1392show_gdbarch_debug (struct ui_file *file, int from_tty,
1393 struct cmd_list_element *c, const char *value)
1394{
1395 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1396}
104c1213 1397
456fcf94 1398static const char *
8da61cc4 1399pformat (const struct floatformat **format)
456fcf94
AC
1400{
1401 if (format == NULL)
1402 return "(null)";
1403 else
8da61cc4
DJ
1404 /* Just print out one of them - this is only for diagnostics. */
1405 return format[0]->name;
456fcf94
AC
1406}
1407
08105857
PA
1408static const char *
1409pstring (const char *string)
1410{
1411 if (string == NULL)
1412 return "(null)";
1413 return string;
1414}
1415
104c1213
JM
1416EOF
1417
1418# gdbarch open the gdbarch object
3d9a5942 1419printf "\n"
0963b4bd 1420printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1421printf "\n"
1422printf "struct gdbarch\n"
1423printf "{\n"
76860b5f
AC
1424printf " /* Has this architecture been fully initialized? */\n"
1425printf " int initialized_p;\n"
aebd7893
AC
1426printf "\n"
1427printf " /* An obstack bound to the lifetime of the architecture. */\n"
1428printf " struct obstack *obstack;\n"
1429printf "\n"
0963b4bd 1430printf " /* basic architectural information. */\n"
34620563 1431function_list | while do_read
104c1213 1432do
2ada493a
AC
1433 if class_is_info_p
1434 then
3d9a5942 1435 printf " ${returntype} ${function};\n"
2ada493a 1436 fi
104c1213 1437done
3d9a5942 1438printf "\n"
0963b4bd 1439printf " /* target specific vector. */\n"
3d9a5942
AC
1440printf " struct gdbarch_tdep *tdep;\n"
1441printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1442printf "\n"
0963b4bd 1443printf " /* per-architecture data-pointers. */\n"
95160752 1444printf " unsigned nr_data;\n"
3d9a5942
AC
1445printf " void **data;\n"
1446printf "\n"
0963b4bd 1447printf " /* per-architecture swap-regions. */\n"
3d9a5942
AC
1448printf " struct gdbarch_swap *swap;\n"
1449printf "\n"
104c1213
JM
1450cat <<EOF
1451 /* Multi-arch values.
1452
1453 When extending this structure you must:
1454
1455 Add the field below.
1456
1457 Declare set/get functions and define the corresponding
1458 macro in gdbarch.h.
1459
1460 gdbarch_alloc(): If zero/NULL is not a suitable default,
1461 initialize the new field.
1462
1463 verify_gdbarch(): Confirm that the target updated the field
1464 correctly.
1465
7e73cedf 1466 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1467 field is dumped out
1468
c0e8c252 1469 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1470 variable (base values on the host's c-type system).
1471
1472 get_gdbarch(): Implement the set/get functions (probably using
1473 the macro's as shortcuts).
1474
1475 */
1476
1477EOF
34620563 1478function_list | while do_read
104c1213 1479do
2ada493a
AC
1480 if class_is_variable_p
1481 then
3d9a5942 1482 printf " ${returntype} ${function};\n"
2ada493a
AC
1483 elif class_is_function_p
1484 then
2f9b146e 1485 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1486 fi
104c1213 1487done
3d9a5942 1488printf "};\n"
104c1213
JM
1489
1490# A pre-initialized vector
3d9a5942
AC
1491printf "\n"
1492printf "\n"
104c1213
JM
1493cat <<EOF
1494/* The default architecture uses host values (for want of a better
0963b4bd 1495 choice). */
104c1213 1496EOF
3d9a5942
AC
1497printf "\n"
1498printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1499printf "\n"
1500printf "struct gdbarch startup_gdbarch =\n"
1501printf "{\n"
76860b5f 1502printf " 1, /* Always initialized. */\n"
aebd7893 1503printf " NULL, /* The obstack. */\n"
0963b4bd 1504printf " /* basic architecture information. */\n"
4b9b3959 1505function_list | while do_read
104c1213 1506do
2ada493a
AC
1507 if class_is_info_p
1508 then
ec5cbaec 1509 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1510 fi
104c1213
JM
1511done
1512cat <<EOF
0963b4bd 1513 /* target specific vector and its dump routine. */
4b9b3959 1514 NULL, NULL,
0963b4bd 1515 /*per-architecture data-pointers and swap regions. */
104c1213
JM
1516 0, NULL, NULL,
1517 /* Multi-arch values */
1518EOF
34620563 1519function_list | while do_read
104c1213 1520do
2ada493a
AC
1521 if class_is_function_p || class_is_variable_p
1522 then
ec5cbaec 1523 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1524 fi
104c1213
JM
1525done
1526cat <<EOF
c0e8c252 1527 /* startup_gdbarch() */
104c1213 1528};
4b9b3959 1529
1cf3db46 1530struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1531EOF
1532
1533# Create a new gdbarch struct
104c1213 1534cat <<EOF
7de2341d 1535
66b43ecb 1536/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1537 \`\`struct gdbarch_info''. */
104c1213 1538EOF
3d9a5942 1539printf "\n"
104c1213
JM
1540cat <<EOF
1541struct gdbarch *
1542gdbarch_alloc (const struct gdbarch_info *info,
1543 struct gdbarch_tdep *tdep)
1544{
be7811ad 1545 struct gdbarch *gdbarch;
aebd7893
AC
1546
1547 /* Create an obstack for allocating all the per-architecture memory,
1548 then use that to allocate the architecture vector. */
1549 struct obstack *obstack = XMALLOC (struct obstack);
1550 obstack_init (obstack);
be7811ad
MD
1551 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1552 memset (gdbarch, 0, sizeof (*gdbarch));
1553 gdbarch->obstack = obstack;
85de9627 1554
be7811ad 1555 alloc_gdbarch_data (gdbarch);
85de9627 1556
be7811ad 1557 gdbarch->tdep = tdep;
104c1213 1558EOF
3d9a5942 1559printf "\n"
34620563 1560function_list | while do_read
104c1213 1561do
2ada493a
AC
1562 if class_is_info_p
1563 then
be7811ad 1564 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1565 fi
104c1213 1566done
3d9a5942 1567printf "\n"
0963b4bd 1568printf " /* Force the explicit initialization of these. */\n"
34620563 1569function_list | while do_read
104c1213 1570do
2ada493a
AC
1571 if class_is_function_p || class_is_variable_p
1572 then
72e74a21 1573 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1574 then
be7811ad 1575 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1576 fi
2ada493a 1577 fi
104c1213
JM
1578done
1579cat <<EOF
1580 /* gdbarch_alloc() */
1581
be7811ad 1582 return gdbarch;
104c1213
JM
1583}
1584EOF
1585
058f20d5 1586# Free a gdbarch struct.
3d9a5942
AC
1587printf "\n"
1588printf "\n"
058f20d5 1589cat <<EOF
aebd7893
AC
1590/* Allocate extra space using the per-architecture obstack. */
1591
1592void *
1593gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1594{
1595 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1596
aebd7893
AC
1597 memset (data, 0, size);
1598 return data;
1599}
1600
1601
058f20d5
JB
1602/* Free a gdbarch struct. This should never happen in normal
1603 operation --- once you've created a gdbarch, you keep it around.
1604 However, if an architecture's init function encounters an error
1605 building the structure, it may need to clean up a partially
1606 constructed gdbarch. */
4b9b3959 1607
058f20d5
JB
1608void
1609gdbarch_free (struct gdbarch *arch)
1610{
aebd7893 1611 struct obstack *obstack;
05c547f6 1612
95160752 1613 gdb_assert (arch != NULL);
aebd7893
AC
1614 gdb_assert (!arch->initialized_p);
1615 obstack = arch->obstack;
1616 obstack_free (obstack, 0); /* Includes the ARCH. */
1617 xfree (obstack);
058f20d5
JB
1618}
1619EOF
1620
104c1213 1621# verify a new architecture
104c1213 1622cat <<EOF
db446970
AC
1623
1624
1625/* Ensure that all values in a GDBARCH are reasonable. */
1626
104c1213 1627static void
be7811ad 1628verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1629{
f16a1923
AC
1630 struct ui_file *log;
1631 struct cleanup *cleanups;
759ef836 1632 long length;
f16a1923 1633 char *buf;
05c547f6 1634
f16a1923
AC
1635 log = mem_fileopen ();
1636 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1637 /* fundamental */
be7811ad 1638 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1639 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1640 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1641 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1642 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1643EOF
34620563 1644function_list | while do_read
104c1213 1645do
2ada493a
AC
1646 if class_is_function_p || class_is_variable_p
1647 then
72e74a21 1648 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1649 then
3d9a5942 1650 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1651 elif class_is_predicate_p
1652 then
0963b4bd 1653 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1654 # FIXME: See do_read for potential simplification
72e74a21 1655 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1656 then
3d9a5942 1657 printf " if (${invalid_p})\n"
be7811ad 1658 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1659 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1660 then
be7811ad
MD
1661 printf " if (gdbarch->${function} == ${predefault})\n"
1662 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1663 elif [ -n "${postdefault}" ]
f0d4cc9e 1664 then
be7811ad
MD
1665 printf " if (gdbarch->${function} == 0)\n"
1666 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1667 elif [ -n "${invalid_p}" ]
104c1213 1668 then
4d60522e 1669 printf " if (${invalid_p})\n"
f16a1923 1670 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1671 elif [ -n "${predefault}" ]
104c1213 1672 then
be7811ad 1673 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1674 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1675 fi
2ada493a 1676 fi
104c1213
JM
1677done
1678cat <<EOF
759ef836 1679 buf = ui_file_xstrdup (log, &length);
f16a1923 1680 make_cleanup (xfree, buf);
759ef836 1681 if (length > 0)
f16a1923 1682 internal_error (__FILE__, __LINE__,
85c07804 1683 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1684 buf);
1685 do_cleanups (cleanups);
104c1213
JM
1686}
1687EOF
1688
1689# dump the structure
3d9a5942
AC
1690printf "\n"
1691printf "\n"
104c1213 1692cat <<EOF
0963b4bd 1693/* Print out the details of the current architecture. */
4b9b3959 1694
104c1213 1695void
be7811ad 1696gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1697{
b78960be 1698 const char *gdb_nm_file = "<not-defined>";
05c547f6 1699
b78960be
AC
1700#if defined (GDB_NM_FILE)
1701 gdb_nm_file = GDB_NM_FILE;
1702#endif
1703 fprintf_unfiltered (file,
1704 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1705 gdb_nm_file);
104c1213 1706EOF
97030eea 1707function_list | sort -t: -k 3 | while do_read
104c1213 1708do
1e9f55d0
AC
1709 # First the predicate
1710 if class_is_predicate_p
1711 then
7996bcec 1712 printf " fprintf_unfiltered (file,\n"
48f7351b 1713 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1714 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1715 fi
48f7351b 1716 # Print the corresponding value.
283354d8 1717 if class_is_function_p
4b9b3959 1718 then
7996bcec 1719 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1720 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1721 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1722 else
48f7351b 1723 # It is a variable
2f9b146e
AC
1724 case "${print}:${returntype}" in
1725 :CORE_ADDR )
0b1553bc
UW
1726 fmt="%s"
1727 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1728 ;;
2f9b146e 1729 :* )
48f7351b 1730 fmt="%s"
623d3eb1 1731 print="plongest (gdbarch->${function})"
48f7351b
AC
1732 ;;
1733 * )
2f9b146e 1734 fmt="%s"
48f7351b
AC
1735 ;;
1736 esac
3d9a5942 1737 printf " fprintf_unfiltered (file,\n"
48f7351b 1738 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1739 printf " ${print});\n"
2ada493a 1740 fi
104c1213 1741done
381323f4 1742cat <<EOF
be7811ad
MD
1743 if (gdbarch->dump_tdep != NULL)
1744 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1745}
1746EOF
104c1213
JM
1747
1748
1749# GET/SET
3d9a5942 1750printf "\n"
104c1213
JM
1751cat <<EOF
1752struct gdbarch_tdep *
1753gdbarch_tdep (struct gdbarch *gdbarch)
1754{
1755 if (gdbarch_debug >= 2)
3d9a5942 1756 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1757 return gdbarch->tdep;
1758}
1759EOF
3d9a5942 1760printf "\n"
34620563 1761function_list | while do_read
104c1213 1762do
2ada493a
AC
1763 if class_is_predicate_p
1764 then
3d9a5942
AC
1765 printf "\n"
1766 printf "int\n"
1767 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1768 printf "{\n"
8de9bdc4 1769 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1770 printf " return ${predicate};\n"
3d9a5942 1771 printf "}\n"
2ada493a
AC
1772 fi
1773 if class_is_function_p
1774 then
3d9a5942
AC
1775 printf "\n"
1776 printf "${returntype}\n"
72e74a21 1777 if [ "x${formal}" = "xvoid" ]
104c1213 1778 then
3d9a5942 1779 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1780 else
3d9a5942 1781 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1782 fi
3d9a5942 1783 printf "{\n"
8de9bdc4 1784 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1785 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1786 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1787 then
1788 # Allow a call to a function with a predicate.
956ac328 1789 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1790 fi
3d9a5942
AC
1791 printf " if (gdbarch_debug >= 2)\n"
1792 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1793 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1794 then
1795 if class_is_multiarch_p
1796 then
1797 params="gdbarch"
1798 else
1799 params=""
1800 fi
1801 else
1802 if class_is_multiarch_p
1803 then
1804 params="gdbarch, ${actual}"
1805 else
1806 params="${actual}"
1807 fi
1808 fi
72e74a21 1809 if [ "x${returntype}" = "xvoid" ]
104c1213 1810 then
4a5c6a1d 1811 printf " gdbarch->${function} (${params});\n"
104c1213 1812 else
4a5c6a1d 1813 printf " return gdbarch->${function} (${params});\n"
104c1213 1814 fi
3d9a5942
AC
1815 printf "}\n"
1816 printf "\n"
1817 printf "void\n"
1818 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1819 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1820 printf "{\n"
1821 printf " gdbarch->${function} = ${function};\n"
1822 printf "}\n"
2ada493a
AC
1823 elif class_is_variable_p
1824 then
3d9a5942
AC
1825 printf "\n"
1826 printf "${returntype}\n"
1827 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1828 printf "{\n"
8de9bdc4 1829 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1830 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1831 then
3d9a5942 1832 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1833 elif [ -n "${invalid_p}" ]
104c1213 1834 then
956ac328
AC
1835 printf " /* Check variable is valid. */\n"
1836 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1837 elif [ -n "${predefault}" ]
104c1213 1838 then
956ac328
AC
1839 printf " /* Check variable changed from pre-default. */\n"
1840 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1841 fi
3d9a5942
AC
1842 printf " if (gdbarch_debug >= 2)\n"
1843 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1844 printf " return gdbarch->${function};\n"
1845 printf "}\n"
1846 printf "\n"
1847 printf "void\n"
1848 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1849 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1850 printf "{\n"
1851 printf " gdbarch->${function} = ${function};\n"
1852 printf "}\n"
2ada493a
AC
1853 elif class_is_info_p
1854 then
3d9a5942
AC
1855 printf "\n"
1856 printf "${returntype}\n"
1857 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1858 printf "{\n"
8de9bdc4 1859 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1860 printf " if (gdbarch_debug >= 2)\n"
1861 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1862 printf " return gdbarch->${function};\n"
1863 printf "}\n"
2ada493a 1864 fi
104c1213
JM
1865done
1866
1867# All the trailing guff
1868cat <<EOF
1869
1870
f44c642f 1871/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1872 modules. */
104c1213
JM
1873
1874struct gdbarch_data
1875{
95160752 1876 unsigned index;
76860b5f 1877 int init_p;
030f20e1
AC
1878 gdbarch_data_pre_init_ftype *pre_init;
1879 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1880};
1881
1882struct gdbarch_data_registration
1883{
104c1213
JM
1884 struct gdbarch_data *data;
1885 struct gdbarch_data_registration *next;
1886};
1887
f44c642f 1888struct gdbarch_data_registry
104c1213 1889{
95160752 1890 unsigned nr;
104c1213
JM
1891 struct gdbarch_data_registration *registrations;
1892};
1893
f44c642f 1894struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1895{
1896 0, NULL,
1897};
1898
030f20e1
AC
1899static struct gdbarch_data *
1900gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1901 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1902{
1903 struct gdbarch_data_registration **curr;
05c547f6
MS
1904
1905 /* Append the new registration. */
f44c642f 1906 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1907 (*curr) != NULL;
1908 curr = &(*curr)->next);
1909 (*curr) = XMALLOC (struct gdbarch_data_registration);
1910 (*curr)->next = NULL;
104c1213 1911 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1912 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1913 (*curr)->data->pre_init = pre_init;
1914 (*curr)->data->post_init = post_init;
76860b5f 1915 (*curr)->data->init_p = 1;
104c1213
JM
1916 return (*curr)->data;
1917}
1918
030f20e1
AC
1919struct gdbarch_data *
1920gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1921{
1922 return gdbarch_data_register (pre_init, NULL);
1923}
1924
1925struct gdbarch_data *
1926gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1927{
1928 return gdbarch_data_register (NULL, post_init);
1929}
104c1213 1930
0963b4bd 1931/* Create/delete the gdbarch data vector. */
95160752
AC
1932
1933static void
b3cc3077 1934alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1935{
b3cc3077
JB
1936 gdb_assert (gdbarch->data == NULL);
1937 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1938 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1939}
3c875b6f 1940
76860b5f 1941/* Initialize the current value of the specified per-architecture
0963b4bd 1942 data-pointer. */
b3cc3077 1943
95160752 1944void
030f20e1
AC
1945deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1946 struct gdbarch_data *data,
1947 void *pointer)
95160752
AC
1948{
1949 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1950 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1951 gdb_assert (data->pre_init == NULL);
95160752
AC
1952 gdbarch->data[data->index] = pointer;
1953}
1954
104c1213 1955/* Return the current value of the specified per-architecture
0963b4bd 1956 data-pointer. */
104c1213
JM
1957
1958void *
451fbdda 1959gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1960{
451fbdda 1961 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1962 if (gdbarch->data[data->index] == NULL)
76860b5f 1963 {
030f20e1
AC
1964 /* The data-pointer isn't initialized, call init() to get a
1965 value. */
1966 if (data->pre_init != NULL)
1967 /* Mid architecture creation: pass just the obstack, and not
1968 the entire architecture, as that way it isn't possible for
1969 pre-init code to refer to undefined architecture
1970 fields. */
1971 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1972 else if (gdbarch->initialized_p
1973 && data->post_init != NULL)
1974 /* Post architecture creation: pass the entire architecture
1975 (as all fields are valid), but be careful to also detect
1976 recursive references. */
1977 {
1978 gdb_assert (data->init_p);
1979 data->init_p = 0;
1980 gdbarch->data[data->index] = data->post_init (gdbarch);
1981 data->init_p = 1;
1982 }
1983 else
1984 /* The architecture initialization hasn't completed - punt -
1985 hope that the caller knows what they are doing. Once
1986 deprecated_set_gdbarch_data has been initialized, this can be
1987 changed to an internal error. */
1988 return NULL;
76860b5f
AC
1989 gdb_assert (gdbarch->data[data->index] != NULL);
1990 }
451fbdda 1991 return gdbarch->data[data->index];
104c1213
JM
1992}
1993
1994
0963b4bd 1995/* Keep a registry of the architectures known by GDB. */
104c1213 1996
4b9b3959 1997struct gdbarch_registration
104c1213
JM
1998{
1999 enum bfd_architecture bfd_architecture;
2000 gdbarch_init_ftype *init;
4b9b3959 2001 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2002 struct gdbarch_list *arches;
4b9b3959 2003 struct gdbarch_registration *next;
104c1213
JM
2004};
2005
f44c642f 2006static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2007
b4a20239
AC
2008static void
2009append_name (const char ***buf, int *nr, const char *name)
2010{
2011 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2012 (*buf)[*nr] = name;
2013 *nr += 1;
2014}
2015
2016const char **
2017gdbarch_printable_names (void)
2018{
7996bcec 2019 /* Accumulate a list of names based on the registed list of
0963b4bd 2020 architectures. */
7996bcec
AC
2021 int nr_arches = 0;
2022 const char **arches = NULL;
2023 struct gdbarch_registration *rego;
05c547f6 2024
7996bcec
AC
2025 for (rego = gdbarch_registry;
2026 rego != NULL;
2027 rego = rego->next)
b4a20239 2028 {
7996bcec
AC
2029 const struct bfd_arch_info *ap;
2030 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2031 if (ap == NULL)
2032 internal_error (__FILE__, __LINE__,
85c07804 2033 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2034 do
2035 {
2036 append_name (&arches, &nr_arches, ap->printable_name);
2037 ap = ap->next;
2038 }
2039 while (ap != NULL);
b4a20239 2040 }
7996bcec
AC
2041 append_name (&arches, &nr_arches, NULL);
2042 return arches;
b4a20239
AC
2043}
2044
2045
104c1213 2046void
4b9b3959
AC
2047gdbarch_register (enum bfd_architecture bfd_architecture,
2048 gdbarch_init_ftype *init,
2049 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2050{
4b9b3959 2051 struct gdbarch_registration **curr;
104c1213 2052 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2053
ec3d358c 2054 /* Check that BFD recognizes this architecture */
104c1213
JM
2055 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2056 if (bfd_arch_info == NULL)
2057 {
8e65ff28 2058 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2059 _("gdbarch: Attempt to register "
2060 "unknown architecture (%d)"),
8e65ff28 2061 bfd_architecture);
104c1213 2062 }
0963b4bd 2063 /* Check that we haven't seen this architecture before. */
f44c642f 2064 for (curr = &gdbarch_registry;
104c1213
JM
2065 (*curr) != NULL;
2066 curr = &(*curr)->next)
2067 {
2068 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2069 internal_error (__FILE__, __LINE__,
64b9b334 2070 _("gdbarch: Duplicate registration "
0963b4bd 2071 "of architecture (%s)"),
8e65ff28 2072 bfd_arch_info->printable_name);
104c1213
JM
2073 }
2074 /* log it */
2075 if (gdbarch_debug)
30737ed9 2076 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2077 bfd_arch_info->printable_name,
30737ed9 2078 host_address_to_string (init));
104c1213 2079 /* Append it */
4b9b3959 2080 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2081 (*curr)->bfd_architecture = bfd_architecture;
2082 (*curr)->init = init;
4b9b3959 2083 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2084 (*curr)->arches = NULL;
2085 (*curr)->next = NULL;
4b9b3959
AC
2086}
2087
2088void
2089register_gdbarch_init (enum bfd_architecture bfd_architecture,
2090 gdbarch_init_ftype *init)
2091{
2092 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2093}
104c1213
JM
2094
2095
424163ea 2096/* Look for an architecture using gdbarch_info. */
104c1213
JM
2097
2098struct gdbarch_list *
2099gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2100 const struct gdbarch_info *info)
2101{
2102 for (; arches != NULL; arches = arches->next)
2103 {
2104 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2105 continue;
2106 if (info->byte_order != arches->gdbarch->byte_order)
2107 continue;
4be87837
DJ
2108 if (info->osabi != arches->gdbarch->osabi)
2109 continue;
424163ea
DJ
2110 if (info->target_desc != arches->gdbarch->target_desc)
2111 continue;
104c1213
JM
2112 return arches;
2113 }
2114 return NULL;
2115}
2116
2117
ebdba546 2118/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2119 architecture if needed. Return that new architecture. */
104c1213 2120
59837fe0
UW
2121struct gdbarch *
2122gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2123{
2124 struct gdbarch *new_gdbarch;
4b9b3959 2125 struct gdbarch_registration *rego;
104c1213 2126
b732d07d 2127 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2128 sources: "set ..."; INFOabfd supplied; and the global
2129 defaults. */
2130 gdbarch_info_fill (&info);
4be87837 2131
0963b4bd 2132 /* Must have found some sort of architecture. */
b732d07d 2133 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2134
2135 if (gdbarch_debug)
2136 {
2137 fprintf_unfiltered (gdb_stdlog,
59837fe0 2138 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2139 (info.bfd_arch_info != NULL
2140 ? info.bfd_arch_info->printable_name
2141 : "(null)"));
2142 fprintf_unfiltered (gdb_stdlog,
59837fe0 2143 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2144 info.byte_order,
d7449b42 2145 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2146 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2147 : "default"));
4be87837 2148 fprintf_unfiltered (gdb_stdlog,
59837fe0 2149 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2150 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2151 fprintf_unfiltered (gdb_stdlog,
59837fe0 2152 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2153 host_address_to_string (info.abfd));
104c1213 2154 fprintf_unfiltered (gdb_stdlog,
59837fe0 2155 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2156 host_address_to_string (info.tdep_info));
104c1213
JM
2157 }
2158
ebdba546 2159 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2160 for (rego = gdbarch_registry;
2161 rego != NULL;
2162 rego = rego->next)
2163 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2164 break;
2165 if (rego == NULL)
2166 {
2167 if (gdbarch_debug)
59837fe0 2168 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2169 "No matching architecture\n");
b732d07d
AC
2170 return 0;
2171 }
2172
ebdba546 2173 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2174 new_gdbarch = rego->init (info, rego->arches);
2175
ebdba546
AC
2176 /* Did the tdep code like it? No. Reject the change and revert to
2177 the old architecture. */
104c1213
JM
2178 if (new_gdbarch == NULL)
2179 {
2180 if (gdbarch_debug)
59837fe0 2181 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2182 "Target rejected architecture\n");
2183 return NULL;
104c1213
JM
2184 }
2185
ebdba546
AC
2186 /* Is this a pre-existing architecture (as determined by already
2187 being initialized)? Move it to the front of the architecture
2188 list (keeping the list sorted Most Recently Used). */
2189 if (new_gdbarch->initialized_p)
104c1213 2190 {
ebdba546
AC
2191 struct gdbarch_list **list;
2192 struct gdbarch_list *this;
104c1213 2193 if (gdbarch_debug)
59837fe0 2194 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2195 "Previous architecture %s (%s) selected\n",
2196 host_address_to_string (new_gdbarch),
104c1213 2197 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2198 /* Find the existing arch in the list. */
2199 for (list = &rego->arches;
2200 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2201 list = &(*list)->next);
2202 /* It had better be in the list of architectures. */
2203 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2204 /* Unlink THIS. */
2205 this = (*list);
2206 (*list) = this->next;
2207 /* Insert THIS at the front. */
2208 this->next = rego->arches;
2209 rego->arches = this;
2210 /* Return it. */
2211 return new_gdbarch;
104c1213
JM
2212 }
2213
ebdba546
AC
2214 /* It's a new architecture. */
2215 if (gdbarch_debug)
59837fe0 2216 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2217 "New architecture %s (%s) selected\n",
2218 host_address_to_string (new_gdbarch),
ebdba546
AC
2219 new_gdbarch->bfd_arch_info->printable_name);
2220
2221 /* Insert the new architecture into the front of the architecture
2222 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2223 {
2224 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2225 this->next = rego->arches;
2226 this->gdbarch = new_gdbarch;
2227 rego->arches = this;
2228 }
104c1213 2229
4b9b3959
AC
2230 /* Check that the newly installed architecture is valid. Plug in
2231 any post init values. */
2232 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2233 verify_gdbarch (new_gdbarch);
ebdba546 2234 new_gdbarch->initialized_p = 1;
104c1213 2235
4b9b3959 2236 if (gdbarch_debug)
ebdba546
AC
2237 gdbarch_dump (new_gdbarch, gdb_stdlog);
2238
2239 return new_gdbarch;
2240}
2241
e487cc15 2242/* Make the specified architecture current. */
ebdba546
AC
2243
2244void
59837fe0 2245deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2246{
2247 gdb_assert (new_gdbarch != NULL);
ebdba546 2248 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2249 target_gdbarch = new_gdbarch;
383f836e 2250 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2251 registers_changed ();
ebdba546 2252}
104c1213 2253
104c1213 2254extern void _initialize_gdbarch (void);
b4a20239 2255
104c1213 2256void
34620563 2257_initialize_gdbarch (void)
104c1213 2258{
85c07804
AC
2259 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2260Set architecture debugging."), _("\\
2261Show architecture debugging."), _("\\
2262When non-zero, architecture debugging is enabled."),
2263 NULL,
920d2a44 2264 show_gdbarch_debug,
85c07804 2265 &setdebuglist, &showdebuglist);
104c1213
JM
2266}
2267EOF
2268
2269# close things off
2270exec 1>&2
2271#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2272compare_new gdbarch.c
This page took 1.692388 seconds and 4 git commands to generate.