Split size in regset section iterators
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
e2882c85 5# Copyright (C) 1998-2018 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
ea480a30 352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
32c9a795 353
66b43ecb 354# Number of bits in a short or unsigned short for the target machine.
ea480a30 355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 356# Number of bits in an int or unsigned int for the target machine.
ea480a30 357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 358# Number of bits in a long or unsigned long for the target machine.
ea480a30 359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
360# Number of bits in a long long or unsigned long long for the target
361# machine.
ea480a30 362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 363
f9e9243a
UW
364# The ABI default bit-size and format for "half", "float", "double", and
365# "long double". These bit/format pairs should eventually be combined
366# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
367# Each format describes both the big and little endian layouts (if
368# useful).
456fcf94 369
ea480a30
SM
370v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 378
53375380
PA
379# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380# starting with C++11.
ea480a30 381v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 382# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 383v;int;wchar_signed;;;1;-1;1
53375380 384
9b790ce7
UW
385# Returns the floating-point format to be used for values of length LENGTH.
386# NAME, if non-NULL, is the type name, which may be used to distinguish
387# different target formats of the same length.
ea480a30 388m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 389
52204a0b
DT
390# For most targets, a pointer on the target and its representation as an
391# address in GDB have the same size and "look the same". For such a
17a912b6 392# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
393# / addr_bit will be set from it.
394#
17a912b6 395# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
396# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397# gdbarch_address_to_pointer as well.
52204a0b
DT
398#
399# ptr_bit is the size of a pointer on the target
ea480a30 400v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 401# addr_bit is the size of a target address as represented in gdb
ea480a30 402v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 403#
8da614df
CV
404# dwarf2_addr_size is the target address size as used in the Dwarf debug
405# info. For .debug_frame FDEs, this is supposed to be the target address
406# size from the associated CU header, and which is equivalent to the
407# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408# Unfortunately there is no good way to determine this value. Therefore
409# dwarf2_addr_size simply defaults to the target pointer size.
410#
411# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412# defined using the target's pointer size so far.
413#
414# Note that dwarf2_addr_size only needs to be redefined by a target if the
415# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416# and if Dwarf versions < 4 need to be supported.
ea480a30 417v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 418#
4e409299 419# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 420v;int;char_signed;;;1;-1;1
4e409299 421#
c113ed0c 422F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 423F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
424# Function for getting target's idea of a frame pointer. FIXME: GDB's
425# whole scheme for dealing with "frames" and "frame pointers" needs a
426# serious shakedown.
ea480a30 427m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 428#
849d0ba8 429M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
430# Read a register into a new struct value. If the register is wholly
431# or partly unavailable, this should call mark_value_bytes_unavailable
432# as appropriate. If this is defined, then pseudo_register_read will
433# never be called.
849d0ba8 434M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 435M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 436#
ea480a30 437v;int;num_regs;;;0;-1
0aba1244
EZ
438# This macro gives the number of pseudo-registers that live in the
439# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
440# These pseudo-registers may be aliases for other registers,
441# combinations of other registers, or they may be computed by GDB.
ea480a30 442v;int;num_pseudo_regs;;;0;0;;0
c2169756 443
175ff332
HZ
444# Assemble agent expression bytecode to collect pseudo-register REG.
445# Return -1 if something goes wrong, 0 otherwise.
ea480a30 446M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
447
448# Assemble agent expression bytecode to push the value of pseudo-register
449# REG on the interpreter stack.
450# Return -1 if something goes wrong, 0 otherwise.
ea480a30 451M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 452
012b3a21
WT
453# Some targets/architectures can do extra processing/display of
454# segmentation faults. E.g., Intel MPX boundary faults.
455# Call the architecture dependent function to handle the fault.
456# UIOUT is the output stream where the handler will place information.
ea480a30 457M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 458
c2169756
AC
459# GDB's standard (or well known) register numbers. These can map onto
460# a real register or a pseudo (computed) register or not be defined at
1200cd6e 461# all (-1).
3e8c568d 462# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
463v;int;sp_regnum;;;-1;-1;;0
464v;int;pc_regnum;;;-1;-1;;0
465v;int;ps_regnum;;;-1;-1;;0
466v;int;fp0_regnum;;;0;-1;;0
88c72b7d 467# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 468m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 469# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 470m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 471# Convert from an sdb register number to an internal gdb register number.
ea480a30 472m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 473# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 474# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
475m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476m;const char *;register_name;int regnr;regnr;;0
9c04cab7 477
7b9ee6a8
DJ
478# Return the type of a register specified by the architecture. Only
479# the register cache should call this function directly; others should
480# use "register_type".
ea480a30 481M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 482
ea480a30 483M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
669fac23 484# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 485# deprecated_fp_regnum.
ea480a30 486v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 487
ea480a30
SM
488M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
489v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
490M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 491
7eb89530 492# Return true if the code of FRAME is writable.
ea480a30 493m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 494
ea480a30
SM
495m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
496m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
497M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
498# MAP a GDB RAW register number onto a simulator register number. See
499# also include/...-sim.h.
ea480a30
SM
500m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
501m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
502m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
503
504# Determine the address where a longjmp will land and save this address
505# in PC. Return nonzero on success.
506#
507# FRAME corresponds to the longjmp frame.
ea480a30 508F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 509
104c1213 510#
ea480a30 511v;int;believe_pcc_promotion;;;;;;;
104c1213 512#
ea480a30
SM
513m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
514f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
515f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 516# Construct a value representing the contents of register REGNUM in
2ed3c037 517# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
518# allocate and return a struct value with all value attributes
519# (but not the value contents) filled in.
ea480a30 520m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 521#
ea480a30
SM
522m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
523m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
524M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 525
6a3a010b
MR
526# Return the return-value convention that will be used by FUNCTION
527# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
528# case the return convention is computed based only on VALTYPE.
529#
530# If READBUF is not NULL, extract the return value and save it in this buffer.
531#
532# If WRITEBUF is not NULL, it contains a return value which will be
533# stored into the appropriate register. This can be used when we want
534# to force the value returned by a function (see the "return" command
535# for instance).
ea480a30 536M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 537
18648a37
YQ
538# Return true if the return value of function is stored in the first hidden
539# parameter. In theory, this feature should be language-dependent, specified
540# by language and its ABI, such as C++. Unfortunately, compiler may
541# implement it to a target-dependent feature. So that we need such hook here
542# to be aware of this in GDB.
ea480a30 543m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 544
ea480a30
SM
545m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
546M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
547# On some platforms, a single function may provide multiple entry points,
548# e.g. one that is used for function-pointer calls and a different one
549# that is used for direct function calls.
550# In order to ensure that breakpoints set on the function will trigger
551# no matter via which entry point the function is entered, a platform
552# may provide the skip_entrypoint callback. It is called with IP set
553# to the main entry point of a function (as determined by the symbol table),
554# and should return the address of the innermost entry point, where the
555# actual breakpoint needs to be set. Note that skip_entrypoint is used
556# by GDB common code even when debugging optimized code, where skip_prologue
557# is not used.
ea480a30 558M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 559
ea480a30
SM
560f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
561m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
562
563# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 564m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
565
566# Return the software breakpoint from KIND. KIND can have target
567# specific meaning like the Z0 kind parameter.
568# SIZE is set to the software breakpoint's length in memory.
ea480a30 569m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 570
833b7ab5
YQ
571# Return the breakpoint kind for this target based on the current
572# processor state (e.g. the current instruction mode on ARM) and the
573# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 574m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 575
ea480a30
SM
576M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
577m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
578m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
579v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
580
581# A function can be addressed by either it's "pointer" (possibly a
582# descriptor address) or "entry point" (first executable instruction).
583# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 584# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
585# a simplified subset of that functionality - the function's address
586# corresponds to the "function pointer" and the function's start
587# corresponds to the "function entry point" - and hence is redundant.
588
ea480a30 589v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 590
123dc839
DJ
591# Return the remote protocol register number associated with this
592# register. Normally the identity mapping.
ea480a30 593m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 594
b2756930 595# Fetch the target specific address used to represent a load module.
ea480a30 596F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
104c1213 597#
ea480a30
SM
598v;CORE_ADDR;frame_args_skip;;;0;;;0
599M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
600M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
42efa47a
AC
601# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
602# frame-base. Enable frame-base before frame-unwind.
ea480a30 603F;int;frame_num_args;struct frame_info *frame;frame
104c1213 604#
ea480a30
SM
605M;CORE_ADDR;frame_align;CORE_ADDR address;address
606m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
607v;int;frame_red_zone_size
f0d4cc9e 608#
ea480a30 609m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
610# On some machines there are bits in addresses which are not really
611# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 612# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
613# we get a "real" address such as one would find in a symbol table.
614# This is used only for addresses of instructions, and even then I'm
615# not sure it's used in all contexts. It exists to deal with there
616# being a few stray bits in the PC which would mislead us, not as some
617# sort of generic thing to handle alignment or segmentation (it's
618# possible it should be in TARGET_READ_PC instead).
ea480a30 619m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 620
a738ea1d
YQ
621# On some machines, not all bits of an address word are significant.
622# For example, on AArch64, the top bits of an address known as the "tag"
623# are ignored by the kernel, the hardware, etc. and can be regarded as
624# additional data associated with the address.
5969f0db 625v;int;significant_addr_bit;;;;;;0
a738ea1d 626
e6590a1b
UW
627# FIXME/cagney/2001-01-18: This should be split in two. A target method that
628# indicates if the target needs software single step. An ISA method to
629# implement it.
630#
e6590a1b
UW
631# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
632# target can single step. If not, then implement single step using breakpoints.
64c4637f 633#
93f9a11f
YQ
634# Return a vector of addresses on which the software single step
635# breakpoints should be inserted. NULL means software single step is
636# not used.
637# Multiple breakpoints may be inserted for some instructions such as
638# conditional branch. However, each implementation must always evaluate
639# the condition and only put the breakpoint at the branch destination if
640# the condition is true, so that we ensure forward progress when stepping
641# past a conditional branch to self.
a0ff9e1a 642F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 643
3352ef37
AC
644# Return non-zero if the processor is executing a delay slot and a
645# further single-step is needed before the instruction finishes.
ea480a30 646M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 647# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 648# disassembler. Perhaps objdump can handle it?
39503f82 649f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 650f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
651
652
cfd8ab24 653# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
654# evaluates non-zero, this is the address where the debugger will place
655# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 656m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 657# Some systems also have trampoline code for returning from shared libs.
ea480a30 658m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 659
1d509aa6
MM
660# Return true if PC lies inside an indirect branch thunk.
661m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
662
c12260ac
CV
663# A target might have problems with watchpoints as soon as the stack
664# frame of the current function has been destroyed. This mostly happens
c9cf6e20 665# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
666# is defined to return a non-zero value if either the given addr is one
667# instruction after the stack destroying instruction up to the trailing
668# return instruction or if we can figure out that the stack frame has
669# already been invalidated regardless of the value of addr. Targets
670# which don't suffer from that problem could just let this functionality
671# untouched.
ea480a30 672m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
673# Process an ELF symbol in the minimal symbol table in a backend-specific
674# way. Normally this hook is supposed to do nothing, however if required,
675# then this hook can be used to apply tranformations to symbols that are
676# considered special in some way. For example the MIPS backend uses it
677# to interpret \`st_other' information to mark compressed code symbols so
678# that they can be treated in the appropriate manner in the processing of
679# the main symbol table and DWARF-2 records.
ea480a30
SM
680F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
681f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
682# Process a symbol in the main symbol table in a backend-specific way.
683# Normally this hook is supposed to do nothing, however if required,
684# then this hook can be used to apply tranformations to symbols that
685# are considered special in some way. This is currently used by the
686# MIPS backend to make sure compressed code symbols have the ISA bit
687# set. This in turn is needed for symbol values seen in GDB to match
688# the values used at the runtime by the program itself, for function
689# and label references.
ea480a30 690f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
691# Adjust the address retrieved from a DWARF-2 record other than a line
692# entry in a backend-specific way. Normally this hook is supposed to
693# return the address passed unchanged, however if that is incorrect for
694# any reason, then this hook can be used to fix the address up in the
695# required manner. This is currently used by the MIPS backend to make
696# sure addresses in FDE, range records, etc. referring to compressed
697# code have the ISA bit set, matching line information and the symbol
698# table.
ea480a30 699f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
700# Adjust the address updated by a line entry in a backend-specific way.
701# Normally this hook is supposed to return the address passed unchanged,
702# however in the case of inconsistencies in these records, this hook can
703# be used to fix them up in the required manner. This is currently used
704# by the MIPS backend to make sure all line addresses in compressed code
705# are presented with the ISA bit set, which is not always the case. This
706# in turn ensures breakpoint addresses are correctly matched against the
707# stop PC.
ea480a30
SM
708f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
709v;int;cannot_step_breakpoint;;;0;0;;0
710v;int;have_nonsteppable_watchpoint;;;0;0;;0
711F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
712M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
713# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
714# FS are passed from the generic execute_cfa_program function.
ea480a30 715m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
716
717# Return the appropriate type_flags for the supplied address class.
718# This function should return 1 if the address class was recognized and
719# type_flags was set, zero otherwise.
ea480a30 720M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 721# Is a register in a group
ea480a30 722m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 723# Fetch the pointer to the ith function argument.
ea480a30 724F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 725
5aa82d05
AA
726# Iterate over all supported register notes in a core file. For each
727# supported register note section, the iterator must call CB and pass
728# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
729# the supported register note sections based on the current register
730# values. Otherwise it should enumerate all supported register note
731# sections.
ea480a30 732M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 733
6432734d 734# Create core file notes
ea480a30 735M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 736
35c2fab7 737# Find core file memory regions
ea480a30 738M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 739
de584861 740# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
741# core file into buffer READBUF with length LEN. Return the number of bytes read
742# (zero indicates failure).
743# failed, otherwise, return the red length of READBUF.
ea480a30 744M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 745
356a5233
JB
746# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
747# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 748# Return the number of bytes read (zero indicates failure).
ea480a30 749M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 750
c0edd9ed 751# How the core target converts a PTID from a core file to a string.
ea480a30 752M;const char *;core_pid_to_str;ptid_t ptid;ptid
28439f5e 753
4dfc5dbc 754# How the core target extracts the name of a thread from a core file.
ea480a30 755M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 756
382b69bb
JB
757# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
758# from core file into buffer READBUF with length LEN. Return the number
759# of bytes read (zero indicates EOF, a negative value indicates failure).
760M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
761
a78c2d62 762# BFD target to use when generating a core file.
ea480a30 763V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 764
0d5de010
DJ
765# If the elements of C++ vtables are in-place function descriptors rather
766# than normal function pointers (which may point to code or a descriptor),
767# set this to one.
ea480a30 768v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
769
770# Set if the least significant bit of the delta is used instead of the least
771# significant bit of the pfn for pointers to virtual member functions.
ea480a30 772v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
773
774# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 775f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 776
1668ae25 777# The maximum length of an instruction on this architecture in bytes.
ea480a30 778V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
779
780# Copy the instruction at FROM to TO, and make any adjustments
781# necessary to single-step it at that address.
782#
783# REGS holds the state the thread's registers will have before
784# executing the copied instruction; the PC in REGS will refer to FROM,
785# not the copy at TO. The caller should update it to point at TO later.
786#
787# Return a pointer to data of the architecture's choice to be passed
788# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
789# the instruction's effects have been completely simulated, with the
790# resulting state written back to REGS.
791#
792# For a general explanation of displaced stepping and how GDB uses it,
793# see the comments in infrun.c.
794#
795# The TO area is only guaranteed to have space for
796# gdbarch_max_insn_length (arch) bytes, so this function must not
797# write more bytes than that to that area.
798#
799# If you do not provide this function, GDB assumes that the
800# architecture does not support displaced stepping.
801#
7f03bd92
PA
802# If the instruction cannot execute out of line, return NULL. The
803# core falls back to stepping past the instruction in-line instead in
804# that case.
ea480a30 805M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 806
99e40580
UW
807# Return true if GDB should use hardware single-stepping to execute
808# the displaced instruction identified by CLOSURE. If false,
809# GDB will simply restart execution at the displaced instruction
810# location, and it is up to the target to ensure GDB will receive
811# control again (e.g. by placing a software breakpoint instruction
812# into the displaced instruction buffer).
813#
814# The default implementation returns false on all targets that
815# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 816m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 817
237fc4c9
PA
818# Fix up the state resulting from successfully single-stepping a
819# displaced instruction, to give the result we would have gotten from
820# stepping the instruction in its original location.
821#
822# REGS is the register state resulting from single-stepping the
823# displaced instruction.
824#
825# CLOSURE is the result from the matching call to
826# gdbarch_displaced_step_copy_insn.
827#
828# If you provide gdbarch_displaced_step_copy_insn.but not this
829# function, then GDB assumes that no fixup is needed after
830# single-stepping the instruction.
831#
832# For a general explanation of displaced stepping and how GDB uses it,
833# see the comments in infrun.c.
ea480a30 834M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 835
237fc4c9
PA
836# Return the address of an appropriate place to put displaced
837# instructions while we step over them. There need only be one such
838# place, since we're only stepping one thread over a breakpoint at a
839# time.
840#
841# For a general explanation of displaced stepping and how GDB uses it,
842# see the comments in infrun.c.
ea480a30 843m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 844
dde08ee1
PA
845# Relocate an instruction to execute at a different address. OLDLOC
846# is the address in the inferior memory where the instruction to
847# relocate is currently at. On input, TO points to the destination
848# where we want the instruction to be copied (and possibly adjusted)
849# to. On output, it points to one past the end of the resulting
850# instruction(s). The effect of executing the instruction at TO shall
851# be the same as if executing it at FROM. For example, call
852# instructions that implicitly push the return address on the stack
853# should be adjusted to return to the instruction after OLDLOC;
854# relative branches, and other PC-relative instructions need the
855# offset adjusted; etc.
ea480a30 856M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 857
1c772458 858# Refresh overlay mapped state for section OSECT.
ea480a30 859F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 860
ea480a30 861M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
862
863# Handle special encoding of static variables in stabs debug info.
ea480a30 864F;const char *;static_transform_name;const char *name;name
203c3895 865# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 866v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 867
0508c3ec
HZ
868# Parse the instruction at ADDR storing in the record execution log
869# the registers REGCACHE and memory ranges that will be affected when
870# the instruction executes, along with their current values.
871# Return -1 if something goes wrong, 0 otherwise.
ea480a30 872M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 873
3846b520
HZ
874# Save process state after a signal.
875# Return -1 if something goes wrong, 0 otherwise.
ea480a30 876M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 877
22203bbf 878# Signal translation: translate inferior's signal (target's) number
86b49880
PA
879# into GDB's representation. The implementation of this method must
880# be host independent. IOW, don't rely on symbols of the NAT_FILE
881# header (the nm-*.h files), the host <signal.h> header, or similar
882# headers. This is mainly used when cross-debugging core files ---
883# "Live" targets hide the translation behind the target interface
1f8cf220 884# (target_wait, target_resume, etc.).
ea480a30 885M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 886
eb14d406
SDJ
887# Signal translation: translate the GDB's internal signal number into
888# the inferior's signal (target's) representation. The implementation
889# of this method must be host independent. IOW, don't rely on symbols
890# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
891# header, or similar headers.
892# Return the target signal number if found, or -1 if the GDB internal
893# signal number is invalid.
ea480a30 894M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 895
4aa995e1
PA
896# Extra signal info inspection.
897#
898# Return a type suitable to inspect extra signal information.
ea480a30 899M;struct type *;get_siginfo_type;void;
4aa995e1 900
60c5725c 901# Record architecture-specific information from the symbol table.
ea480a30 902M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 903
a96d9b2e
SDJ
904# Function for the 'catch syscall' feature.
905
906# Get architecture-specific system calls information from registers.
00431a78 907M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 908
458c8db8 909# The filename of the XML syscall for this architecture.
ea480a30 910v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
911
912# Information about system calls from this architecture
ea480a30 913v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 914
55aa24fb
SDJ
915# SystemTap related fields and functions.
916
05c0465e
SDJ
917# A NULL-terminated array of prefixes used to mark an integer constant
918# on the architecture's assembly.
55aa24fb
SDJ
919# For example, on x86 integer constants are written as:
920#
921# \$10 ;; integer constant 10
922#
923# in this case, this prefix would be the character \`\$\'.
ea480a30 924v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 925
05c0465e
SDJ
926# A NULL-terminated array of suffixes used to mark an integer constant
927# on the architecture's assembly.
ea480a30 928v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 929
05c0465e
SDJ
930# A NULL-terminated array of prefixes used to mark a register name on
931# the architecture's assembly.
55aa24fb
SDJ
932# For example, on x86 the register name is written as:
933#
934# \%eax ;; register eax
935#
936# in this case, this prefix would be the character \`\%\'.
ea480a30 937v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 938
05c0465e
SDJ
939# A NULL-terminated array of suffixes used to mark a register name on
940# the architecture's assembly.
ea480a30 941v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 942
05c0465e
SDJ
943# A NULL-terminated array of prefixes used to mark a register
944# indirection on the architecture's assembly.
55aa24fb
SDJ
945# For example, on x86 the register indirection is written as:
946#
947# \(\%eax\) ;; indirecting eax
948#
949# in this case, this prefix would be the charater \`\(\'.
950#
951# Please note that we use the indirection prefix also for register
952# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 953v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 954
05c0465e
SDJ
955# A NULL-terminated array of suffixes used to mark a register
956# indirection on the architecture's assembly.
55aa24fb
SDJ
957# For example, on x86 the register indirection is written as:
958#
959# \(\%eax\) ;; indirecting eax
960#
961# in this case, this prefix would be the charater \`\)\'.
962#
963# Please note that we use the indirection suffix also for register
964# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 965v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 966
05c0465e 967# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
968#
969# For example, on PPC a register is represented by a number in the assembly
970# language (e.g., \`10\' is the 10th general-purpose register). However,
971# inside GDB this same register has an \`r\' appended to its name, so the 10th
972# register would be represented as \`r10\' internally.
ea480a30 973v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
974
975# Suffix used to name a register using GDB's nomenclature.
ea480a30 976v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
977
978# Check if S is a single operand.
979#
980# Single operands can be:
981# \- Literal integers, e.g. \`\$10\' on x86
982# \- Register access, e.g. \`\%eax\' on x86
983# \- Register indirection, e.g. \`\(\%eax\)\' on x86
984# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
985#
986# This function should check for these patterns on the string
987# and return 1 if some were found, or zero otherwise. Please try to match
988# as much info as you can from the string, i.e., if you have to match
989# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 990M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
991
992# Function used to handle a "special case" in the parser.
993#
994# A "special case" is considered to be an unknown token, i.e., a token
995# that the parser does not know how to parse. A good example of special
996# case would be ARM's register displacement syntax:
997#
998# [R0, #4] ;; displacing R0 by 4
999#
1000# Since the parser assumes that a register displacement is of the form:
1001#
1002# <number> <indirection_prefix> <register_name> <indirection_suffix>
1003#
1004# it means that it will not be able to recognize and parse this odd syntax.
1005# Therefore, we should add a special case function that will handle this token.
1006#
1007# This function should generate the proper expression form of the expression
1008# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1009# and so on). It should also return 1 if the parsing was successful, or zero
1010# if the token was not recognized as a special token (in this case, returning
1011# zero means that the special parser is deferring the parsing to the generic
1012# parser), and should advance the buffer pointer (p->arg).
ea480a30 1013M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1014
8b367e17
JM
1015# DTrace related functions.
1016
1017# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1018# NARG must be >= 0.
ea480a30 1019M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
8b367e17
JM
1020
1021# True if the given ADDR does not contain the instruction sequence
1022# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1023M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1024
1025# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1026M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1027
1028# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1029M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1030
50c71eaf
PA
1031# True if the list of shared libraries is one and only for all
1032# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1033# This usually means that all processes, although may or may not share
1034# an address space, will see the same set of symbols at the same
1035# addresses.
ea480a30 1036v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1037
1038# On some targets, even though each inferior has its own private
1039# address space, the debug interface takes care of making breakpoints
1040# visible to all address spaces automatically. For such cases,
1041# this property should be set to true.
ea480a30 1042v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1043
1044# True if inferiors share an address space (e.g., uClinux).
ea480a30 1045m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1046
1047# True if a fast tracepoint can be set at an address.
281d762b 1048m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1049
5f034a78
MK
1050# Guess register state based on tracepoint location. Used for tracepoints
1051# where no registers have been collected, but there's only one location,
1052# allowing us to guess the PC value, and perhaps some other registers.
1053# On entry, regcache has all registers marked as unavailable.
ea480a30 1054m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1055
f870a310 1056# Return the "auto" target charset.
ea480a30 1057f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1058# Return the "auto" target wide charset.
ea480a30 1059f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1060
1061# If non-empty, this is a file extension that will be opened in place
1062# of the file extension reported by the shared library list.
1063#
1064# This is most useful for toolchains that use a post-linker tool,
1065# where the names of the files run on the target differ in extension
1066# compared to the names of the files GDB should load for debug info.
ea480a30 1067v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1068
1069# If true, the target OS has DOS-based file system semantics. That
1070# is, absolute paths include a drive name, and the backslash is
1071# considered a directory separator.
ea480a30 1072v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1073
1074# Generate bytecodes to collect the return address in a frame.
1075# Since the bytecodes run on the target, possibly with GDB not even
1076# connected, the full unwinding machinery is not available, and
1077# typically this function will issue bytecodes for one or more likely
1078# places that the return address may be found.
ea480a30 1079m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1080
3030c96e 1081# Implement the "info proc" command.
ea480a30 1082M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1083
451b7c33
TT
1084# Implement the "info proc" command for core files. Noe that there
1085# are two "info_proc"-like methods on gdbarch -- one for core files,
1086# one for live targets.
ea480a30 1087M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1088
19630284
JB
1089# Iterate over all objfiles in the order that makes the most sense
1090# for the architecture to make global symbol searches.
1091#
1092# CB is a callback function where OBJFILE is the objfile to be searched,
1093# and CB_DATA a pointer to user-defined data (the same data that is passed
1094# when calling this gdbarch method). The iteration stops if this function
1095# returns nonzero.
1096#
1097# CB_DATA is a pointer to some user-defined data to be passed to
1098# the callback.
1099#
1100# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1101# inspected when the symbol search was requested.
ea480a30 1102m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1103
7e35103a 1104# Ravenscar arch-dependent ops.
ea480a30 1105v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1106
1107# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1108m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1109
1110# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1111m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1112
1113# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1114m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1115
1116# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1117# Return 0 if *READPTR is already at the end of the buffer.
1118# Return -1 if there is insufficient buffer for a whole entry.
1119# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1120M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1121
2faa3447
JB
1122# Print the description of a single auxv entry described by TYPE and VAL
1123# to FILE.
ea480a30 1124m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1125
3437254d
PA
1126# Find the address range of the current inferior's vsyscall/vDSO, and
1127# write it to *RANGE. If the vsyscall's length can't be determined, a
1128# range with zero length is returned. Returns true if the vsyscall is
1129# found, false otherwise.
ea480a30 1130m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1131
1132# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1133# PROT has GDB_MMAP_PROT_* bitmask format.
1134# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1135f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1136
7f361056
JK
1137# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1138# Print a warning if it is not possible.
ea480a30 1139f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1140
f208eee0
JK
1141# Return string (caller has to use xfree for it) with options for GCC
1142# to produce code for this target, typically "-m64", "-m32" or "-m31".
1143# These options are put before CU's DW_AT_producer compilation options so that
1144# they can override it. Method may also return NULL.
ea480a30 1145m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1146
1147# Return a regular expression that matches names used by this
1148# architecture in GNU configury triplets. The result is statically
1149# allocated and must not be freed. The default implementation simply
1150# returns the BFD architecture name, which is correct in nearly every
1151# case.
ea480a30 1152m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1153
1154# Return the size in 8-bit bytes of an addressable memory unit on this
1155# architecture. This corresponds to the number of 8-bit bytes associated to
1156# each address in memory.
ea480a30 1157m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1158
65b48a81 1159# Functions for allowing a target to modify its disassembler options.
471b9d15 1160v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1161v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1162v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1163
2b4424c3
TT
1164# Type alignment.
1165m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1166
104c1213 1167EOF
104c1213
JM
1168}
1169
0b8f9e4d
AC
1170#
1171# The .log file
1172#
1173exec > new-gdbarch.log
34620563 1174function_list | while do_read
0b8f9e4d
AC
1175do
1176 cat <<EOF
2f9b146e 1177${class} ${returntype} ${function} ($formal)
104c1213 1178EOF
3d9a5942
AC
1179 for r in ${read}
1180 do
1181 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1182 done
f0d4cc9e 1183 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1184 then
66d659b1 1185 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1186 kill $$
1187 exit 1
1188 fi
72e74a21 1189 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1190 then
1191 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1192 kill $$
1193 exit 1
1194 fi
a72293e2
AC
1195 if class_is_multiarch_p
1196 then
1197 if class_is_predicate_p ; then :
1198 elif test "x${predefault}" = "x"
1199 then
2f9b146e 1200 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1201 kill $$
1202 exit 1
1203 fi
1204 fi
3d9a5942 1205 echo ""
0b8f9e4d
AC
1206done
1207
1208exec 1>&2
1209compare_new gdbarch.log
1210
104c1213
JM
1211
1212copyright ()
1213{
1214cat <<EOF
c4bfde41
JK
1215/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1216/* vi:set ro: */
59233f88 1217
104c1213 1218/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1219
e2882c85 1220 Copyright (C) 1998-2018 Free Software Foundation, Inc.
104c1213
JM
1221
1222 This file is part of GDB.
1223
1224 This program is free software; you can redistribute it and/or modify
1225 it under the terms of the GNU General Public License as published by
50efebf8 1226 the Free Software Foundation; either version 3 of the License, or
104c1213 1227 (at your option) any later version.
618f726f 1228
104c1213
JM
1229 This program is distributed in the hope that it will be useful,
1230 but WITHOUT ANY WARRANTY; without even the implied warranty of
1231 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1232 GNU General Public License for more details.
618f726f 1233
104c1213 1234 You should have received a copy of the GNU General Public License
50efebf8 1235 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1236
104c1213
JM
1237/* This file was created with the aid of \`\`gdbarch.sh''.
1238
52204a0b 1239 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1240 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1241 against the existing \`\`gdbarch.[hc]''. Any differences found
1242 being reported.
1243
1244 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1245 changes into that script. Conversely, when making sweeping changes
104c1213 1246 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1247 easier. */
104c1213
JM
1248
1249EOF
1250}
1251
1252#
1253# The .h file
1254#
1255
1256exec > new-gdbarch.h
1257copyright
1258cat <<EOF
1259#ifndef GDBARCH_H
1260#define GDBARCH_H
1261
a0ff9e1a 1262#include <vector>
eb7a547a 1263#include "frame.h"
65b48a81 1264#include "dis-asm.h"
284a0e3c 1265#include "gdb_obstack.h"
eb7a547a 1266
da3331ec
AC
1267struct floatformat;
1268struct ui_file;
104c1213 1269struct value;
b6af0555 1270struct objfile;
1c772458 1271struct obj_section;
a2cf933a 1272struct minimal_symbol;
049ee0e4 1273struct regcache;
b59ff9d5 1274struct reggroup;
6ce6d90f 1275struct regset;
a89aa300 1276struct disassemble_info;
e2d0e7eb 1277struct target_ops;
030f20e1 1278struct obstack;
8181d85f 1279struct bp_target_info;
424163ea 1280struct target_desc;
3e29f34a 1281struct symbol;
237fc4c9 1282struct displaced_step_closure;
a96d9b2e 1283struct syscall;
175ff332 1284struct agent_expr;
6710bf39 1285struct axs_value;
55aa24fb 1286struct stap_parse_info;
8b367e17 1287struct parser_state;
7e35103a 1288struct ravenscar_arch_ops;
3437254d 1289struct mem_range;
458c8db8 1290struct syscalls_info;
4dfc5dbc 1291struct thread_info;
012b3a21 1292struct ui_out;
104c1213 1293
8a526fa6
PA
1294#include "regcache.h"
1295
6ecd4729
PA
1296/* The architecture associated with the inferior through the
1297 connection to the target.
1298
1299 The architecture vector provides some information that is really a
1300 property of the inferior, accessed through a particular target:
1301 ptrace operations; the layout of certain RSP packets; the solib_ops
1302 vector; etc. To differentiate architecture accesses to
1303 per-inferior/target properties from
1304 per-thread/per-frame/per-objfile properties, accesses to
1305 per-inferior/target properties should be made through this
1306 gdbarch. */
1307
1308/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1309extern struct gdbarch *target_gdbarch (void);
6ecd4729 1310
19630284
JB
1311/* Callback type for the 'iterate_over_objfiles_in_search_order'
1312 gdbarch method. */
1313
1314typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1315 (struct objfile *objfile, void *cb_data);
5aa82d05 1316
1528345d
AA
1317/* Callback type for regset section iterators. The callback usually
1318 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1319 pass a buffer - for collects this buffer will need to be created using
1320 COLLECT_SIZE, for supply the existing buffer being read from should
1321 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1322 is used for diagnostic messages. CB_DATA should have been passed
1323 unchanged through the iterator. */
1528345d 1324
5aa82d05 1325typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1326 (const char *sect_name, int supply_size, int collect_size,
1327 const struct regset *regset, const char *human_name, void *cb_data);
104c1213
JM
1328EOF
1329
1330# function typedef's
3d9a5942
AC
1331printf "\n"
1332printf "\n"
0963b4bd 1333printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1334function_list | while do_read
104c1213 1335do
2ada493a
AC
1336 if class_is_info_p
1337 then
3d9a5942
AC
1338 printf "\n"
1339 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1340 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1341 fi
104c1213
JM
1342done
1343
1344# function typedef's
3d9a5942
AC
1345printf "\n"
1346printf "\n"
0963b4bd 1347printf "/* The following are initialized by the target dependent code. */\n"
34620563 1348function_list | while do_read
104c1213 1349do
72e74a21 1350 if [ -n "${comment}" ]
34620563
AC
1351 then
1352 echo "${comment}" | sed \
1353 -e '2 s,#,/*,' \
1354 -e '3,$ s,#, ,' \
1355 -e '$ s,$, */,'
1356 fi
412d5987
AC
1357
1358 if class_is_predicate_p
2ada493a 1359 then
412d5987
AC
1360 printf "\n"
1361 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1362 fi
2ada493a
AC
1363 if class_is_variable_p
1364 then
3d9a5942
AC
1365 printf "\n"
1366 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1367 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1368 fi
1369 if class_is_function_p
1370 then
3d9a5942 1371 printf "\n"
72e74a21 1372 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1373 then
1374 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1375 elif class_is_multiarch_p
1376 then
1377 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1378 else
1379 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1380 fi
72e74a21 1381 if [ "x${formal}" = "xvoid" ]
104c1213 1382 then
3d9a5942 1383 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1384 else
3d9a5942 1385 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1386 fi
3d9a5942 1387 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1388 fi
104c1213
JM
1389done
1390
1391# close it off
1392cat <<EOF
1393
a96d9b2e
SDJ
1394/* Definition for an unknown syscall, used basically in error-cases. */
1395#define UNKNOWN_SYSCALL (-1)
1396
104c1213
JM
1397extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1398
1399
1400/* Mechanism for co-ordinating the selection of a specific
1401 architecture.
1402
1403 GDB targets (*-tdep.c) can register an interest in a specific
1404 architecture. Other GDB components can register a need to maintain
1405 per-architecture data.
1406
1407 The mechanisms below ensures that there is only a loose connection
1408 between the set-architecture command and the various GDB
0fa6923a 1409 components. Each component can independently register their need
104c1213
JM
1410 to maintain architecture specific data with gdbarch.
1411
1412 Pragmatics:
1413
1414 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1415 didn't scale.
1416
1417 The more traditional mega-struct containing architecture specific
1418 data for all the various GDB components was also considered. Since
0fa6923a 1419 GDB is built from a variable number of (fairly independent)
104c1213 1420 components it was determined that the global aproach was not
0963b4bd 1421 applicable. */
104c1213
JM
1422
1423
1424/* Register a new architectural family with GDB.
1425
1426 Register support for the specified ARCHITECTURE with GDB. When
1427 gdbarch determines that the specified architecture has been
1428 selected, the corresponding INIT function is called.
1429
1430 --
1431
1432 The INIT function takes two parameters: INFO which contains the
1433 information available to gdbarch about the (possibly new)
1434 architecture; ARCHES which is a list of the previously created
1435 \`\`struct gdbarch'' for this architecture.
1436
0f79675b 1437 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1438 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1439
1440 The ARCHES parameter is a linked list (sorted most recently used)
1441 of all the previously created architures for this architecture
1442 family. The (possibly NULL) ARCHES->gdbarch can used to access
1443 values from the previously selected architecture for this
59837fe0 1444 architecture family.
104c1213
JM
1445
1446 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1447 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1448 gdbarch'' from the ARCHES list - indicating that the new
1449 architecture is just a synonym for an earlier architecture (see
1450 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1451 - that describes the selected architecture (see gdbarch_alloc()).
1452
1453 The DUMP_TDEP function shall print out all target specific values.
1454 Care should be taken to ensure that the function works in both the
0963b4bd 1455 multi-arch and non- multi-arch cases. */
104c1213
JM
1456
1457struct gdbarch_list
1458{
1459 struct gdbarch *gdbarch;
1460 struct gdbarch_list *next;
1461};
1462
1463struct gdbarch_info
1464{
0963b4bd 1465 /* Use default: NULL (ZERO). */
104c1213
JM
1466 const struct bfd_arch_info *bfd_arch_info;
1467
428721aa 1468 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1469 enum bfd_endian byte_order;
104c1213 1470
94123b4f 1471 enum bfd_endian byte_order_for_code;
9d4fde75 1472
0963b4bd 1473 /* Use default: NULL (ZERO). */
104c1213
JM
1474 bfd *abfd;
1475
0963b4bd 1476 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1477 union
1478 {
1479 /* Architecture-specific information. The generic form for targets
1480 that have extra requirements. */
1481 struct gdbarch_tdep_info *tdep_info;
1482
1483 /* Architecture-specific target description data. Numerous targets
1484 need only this, so give them an easy way to hold it. */
1485 struct tdesc_arch_data *tdesc_data;
1486
1487 /* SPU file system ID. This is a single integer, so using the
1488 generic form would only complicate code. Other targets may
1489 reuse this member if suitable. */
1490 int *id;
1491 };
4be87837
DJ
1492
1493 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1494 enum gdb_osabi osabi;
424163ea
DJ
1495
1496 /* Use default: NULL (ZERO). */
1497 const struct target_desc *target_desc;
104c1213
JM
1498};
1499
1500typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1501typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1502
4b9b3959 1503/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1504extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1505
4b9b3959
AC
1506extern void gdbarch_register (enum bfd_architecture architecture,
1507 gdbarch_init_ftype *,
1508 gdbarch_dump_tdep_ftype *);
1509
104c1213 1510
b4a20239
AC
1511/* Return a freshly allocated, NULL terminated, array of the valid
1512 architecture names. Since architectures are registered during the
1513 _initialize phase this function only returns useful information
0963b4bd 1514 once initialization has been completed. */
b4a20239
AC
1515
1516extern const char **gdbarch_printable_names (void);
1517
1518
104c1213 1519/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1520 matches the information provided by INFO. */
104c1213 1521
424163ea 1522extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1523
1524
1525/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1526 basic initialization using values obtained from the INFO and TDEP
104c1213 1527 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1528 initialization of the object. */
104c1213
JM
1529
1530extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1531
1532
4b9b3959
AC
1533/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1534 It is assumed that the caller freeds the \`\`struct
0963b4bd 1535 gdbarch_tdep''. */
4b9b3959 1536
058f20d5
JB
1537extern void gdbarch_free (struct gdbarch *);
1538
284a0e3c
SM
1539/* Get the obstack owned by ARCH. */
1540
1541extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1542
aebd7893
AC
1543/* Helper function. Allocate memory from the \`\`struct gdbarch''
1544 obstack. The memory is freed when the corresponding architecture
1545 is also freed. */
1546
284a0e3c
SM
1547#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1548 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1549
1550#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1551 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1552
6c214e7c
PP
1553/* Duplicate STRING, returning an equivalent string that's allocated on the
1554 obstack associated with GDBARCH. The string is freed when the corresponding
1555 architecture is also freed. */
1556
1557extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1558
0963b4bd 1559/* Helper function. Force an update of the current architecture.
104c1213 1560
b732d07d
AC
1561 The actual architecture selected is determined by INFO, \`\`(gdb) set
1562 architecture'' et.al., the existing architecture and BFD's default
1563 architecture. INFO should be initialized to zero and then selected
1564 fields should be updated.
104c1213 1565
0963b4bd 1566 Returns non-zero if the update succeeds. */
16f33e29
AC
1567
1568extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1569
1570
ebdba546
AC
1571/* Helper function. Find an architecture matching info.
1572
1573 INFO should be initialized using gdbarch_info_init, relevant fields
1574 set, and then finished using gdbarch_info_fill.
1575
1576 Returns the corresponding architecture, or NULL if no matching
59837fe0 1577 architecture was found. */
ebdba546
AC
1578
1579extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1580
1581
aff68abb 1582/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1583
aff68abb 1584extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1585
104c1213
JM
1586
1587/* Register per-architecture data-pointer.
1588
1589 Reserve space for a per-architecture data-pointer. An identifier
1590 for the reserved data-pointer is returned. That identifer should
95160752 1591 be saved in a local static variable.
104c1213 1592
fcc1c85c
AC
1593 Memory for the per-architecture data shall be allocated using
1594 gdbarch_obstack_zalloc. That memory will be deleted when the
1595 corresponding architecture object is deleted.
104c1213 1596
95160752
AC
1597 When a previously created architecture is re-selected, the
1598 per-architecture data-pointer for that previous architecture is
76860b5f 1599 restored. INIT() is not re-called.
104c1213
JM
1600
1601 Multiple registrarants for any architecture are allowed (and
1602 strongly encouraged). */
1603
95160752 1604struct gdbarch_data;
104c1213 1605
030f20e1
AC
1606typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1607extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1608typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1609extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1610extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1611 struct gdbarch_data *data,
1612 void *pointer);
104c1213 1613
451fbdda 1614extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1615
1616
0fa6923a 1617/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1618 byte-order, ...) using information found in the BFD. */
104c1213
JM
1619
1620extern void set_gdbarch_from_file (bfd *);
1621
1622
e514a9d6
JM
1623/* Initialize the current architecture to the "first" one we find on
1624 our list. */
1625
1626extern void initialize_current_architecture (void);
1627
104c1213 1628/* gdbarch trace variable */
ccce17b0 1629extern unsigned int gdbarch_debug;
104c1213 1630
4b9b3959 1631extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1632
1633#endif
1634EOF
1635exec 1>&2
1636#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1637compare_new gdbarch.h
104c1213
JM
1638
1639
1640#
1641# C file
1642#
1643
1644exec > new-gdbarch.c
1645copyright
1646cat <<EOF
1647
1648#include "defs.h"
7355ddba 1649#include "arch-utils.h"
104c1213 1650
104c1213 1651#include "gdbcmd.h"
faaf634c 1652#include "inferior.h"
104c1213
JM
1653#include "symcat.h"
1654
f0d4cc9e 1655#include "floatformat.h"
b59ff9d5 1656#include "reggroups.h"
4be87837 1657#include "osabi.h"
aebd7893 1658#include "gdb_obstack.h"
0bee6dd4 1659#include "observable.h"
a3ecef73 1660#include "regcache.h"
19630284 1661#include "objfiles.h"
2faa3447 1662#include "auxv.h"
95160752 1663
104c1213
JM
1664/* Static function declarations */
1665
b3cc3077 1666static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1667
104c1213
JM
1668/* Non-zero if we want to trace architecture code. */
1669
1670#ifndef GDBARCH_DEBUG
1671#define GDBARCH_DEBUG 0
1672#endif
ccce17b0 1673unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1674static void
1675show_gdbarch_debug (struct ui_file *file, int from_tty,
1676 struct cmd_list_element *c, const char *value)
1677{
1678 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1679}
104c1213 1680
456fcf94 1681static const char *
8da61cc4 1682pformat (const struct floatformat **format)
456fcf94
AC
1683{
1684 if (format == NULL)
1685 return "(null)";
1686 else
8da61cc4
DJ
1687 /* Just print out one of them - this is only for diagnostics. */
1688 return format[0]->name;
456fcf94
AC
1689}
1690
08105857
PA
1691static const char *
1692pstring (const char *string)
1693{
1694 if (string == NULL)
1695 return "(null)";
1696 return string;
05c0465e
SDJ
1697}
1698
a121b7c1 1699static const char *
f7bb4e3a
PB
1700pstring_ptr (char **string)
1701{
1702 if (string == NULL || *string == NULL)
1703 return "(null)";
1704 return *string;
1705}
1706
05c0465e
SDJ
1707/* Helper function to print a list of strings, represented as "const
1708 char *const *". The list is printed comma-separated. */
1709
a121b7c1 1710static const char *
05c0465e
SDJ
1711pstring_list (const char *const *list)
1712{
1713 static char ret[100];
1714 const char *const *p;
1715 size_t offset = 0;
1716
1717 if (list == NULL)
1718 return "(null)";
1719
1720 ret[0] = '\0';
1721 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1722 {
1723 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1724 offset += 2 + s;
1725 }
1726
1727 if (offset > 0)
1728 {
1729 gdb_assert (offset - 2 < sizeof (ret));
1730 ret[offset - 2] = '\0';
1731 }
1732
1733 return ret;
08105857
PA
1734}
1735
104c1213
JM
1736EOF
1737
1738# gdbarch open the gdbarch object
3d9a5942 1739printf "\n"
0963b4bd 1740printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1741printf "\n"
1742printf "struct gdbarch\n"
1743printf "{\n"
76860b5f
AC
1744printf " /* Has this architecture been fully initialized? */\n"
1745printf " int initialized_p;\n"
aebd7893
AC
1746printf "\n"
1747printf " /* An obstack bound to the lifetime of the architecture. */\n"
1748printf " struct obstack *obstack;\n"
1749printf "\n"
0963b4bd 1750printf " /* basic architectural information. */\n"
34620563 1751function_list | while do_read
104c1213 1752do
2ada493a
AC
1753 if class_is_info_p
1754 then
3d9a5942 1755 printf " ${returntype} ${function};\n"
2ada493a 1756 fi
104c1213 1757done
3d9a5942 1758printf "\n"
0963b4bd 1759printf " /* target specific vector. */\n"
3d9a5942
AC
1760printf " struct gdbarch_tdep *tdep;\n"
1761printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1762printf "\n"
0963b4bd 1763printf " /* per-architecture data-pointers. */\n"
95160752 1764printf " unsigned nr_data;\n"
3d9a5942
AC
1765printf " void **data;\n"
1766printf "\n"
104c1213
JM
1767cat <<EOF
1768 /* Multi-arch values.
1769
1770 When extending this structure you must:
1771
1772 Add the field below.
1773
1774 Declare set/get functions and define the corresponding
1775 macro in gdbarch.h.
1776
1777 gdbarch_alloc(): If zero/NULL is not a suitable default,
1778 initialize the new field.
1779
1780 verify_gdbarch(): Confirm that the target updated the field
1781 correctly.
1782
7e73cedf 1783 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1784 field is dumped out
1785
104c1213
JM
1786 get_gdbarch(): Implement the set/get functions (probably using
1787 the macro's as shortcuts).
1788
1789 */
1790
1791EOF
34620563 1792function_list | while do_read
104c1213 1793do
2ada493a
AC
1794 if class_is_variable_p
1795 then
3d9a5942 1796 printf " ${returntype} ${function};\n"
2ada493a
AC
1797 elif class_is_function_p
1798 then
2f9b146e 1799 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1800 fi
104c1213 1801done
3d9a5942 1802printf "};\n"
104c1213 1803
104c1213 1804# Create a new gdbarch struct
104c1213 1805cat <<EOF
7de2341d 1806
66b43ecb 1807/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1808 \`\`struct gdbarch_info''. */
104c1213 1809EOF
3d9a5942 1810printf "\n"
104c1213
JM
1811cat <<EOF
1812struct gdbarch *
1813gdbarch_alloc (const struct gdbarch_info *info,
1814 struct gdbarch_tdep *tdep)
1815{
be7811ad 1816 struct gdbarch *gdbarch;
aebd7893
AC
1817
1818 /* Create an obstack for allocating all the per-architecture memory,
1819 then use that to allocate the architecture vector. */
70ba0933 1820 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1821 obstack_init (obstack);
8d749320 1822 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1823 memset (gdbarch, 0, sizeof (*gdbarch));
1824 gdbarch->obstack = obstack;
85de9627 1825
be7811ad 1826 alloc_gdbarch_data (gdbarch);
85de9627 1827
be7811ad 1828 gdbarch->tdep = tdep;
104c1213 1829EOF
3d9a5942 1830printf "\n"
34620563 1831function_list | while do_read
104c1213 1832do
2ada493a
AC
1833 if class_is_info_p
1834 then
be7811ad 1835 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1836 fi
104c1213 1837done
3d9a5942 1838printf "\n"
0963b4bd 1839printf " /* Force the explicit initialization of these. */\n"
34620563 1840function_list | while do_read
104c1213 1841do
2ada493a
AC
1842 if class_is_function_p || class_is_variable_p
1843 then
72e74a21 1844 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1845 then
be7811ad 1846 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1847 fi
2ada493a 1848 fi
104c1213
JM
1849done
1850cat <<EOF
1851 /* gdbarch_alloc() */
1852
be7811ad 1853 return gdbarch;
104c1213
JM
1854}
1855EOF
1856
058f20d5 1857# Free a gdbarch struct.
3d9a5942
AC
1858printf "\n"
1859printf "\n"
058f20d5 1860cat <<EOF
aebd7893 1861
284a0e3c 1862obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1863{
284a0e3c 1864 return arch->obstack;
aebd7893
AC
1865}
1866
6c214e7c
PP
1867/* See gdbarch.h. */
1868
1869char *
1870gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1871{
1872 return obstack_strdup (arch->obstack, string);
1873}
1874
aebd7893 1875
058f20d5
JB
1876/* Free a gdbarch struct. This should never happen in normal
1877 operation --- once you've created a gdbarch, you keep it around.
1878 However, if an architecture's init function encounters an error
1879 building the structure, it may need to clean up a partially
1880 constructed gdbarch. */
4b9b3959 1881
058f20d5
JB
1882void
1883gdbarch_free (struct gdbarch *arch)
1884{
aebd7893 1885 struct obstack *obstack;
05c547f6 1886
95160752 1887 gdb_assert (arch != NULL);
aebd7893
AC
1888 gdb_assert (!arch->initialized_p);
1889 obstack = arch->obstack;
1890 obstack_free (obstack, 0); /* Includes the ARCH. */
1891 xfree (obstack);
058f20d5
JB
1892}
1893EOF
1894
104c1213 1895# verify a new architecture
104c1213 1896cat <<EOF
db446970
AC
1897
1898
1899/* Ensure that all values in a GDBARCH are reasonable. */
1900
104c1213 1901static void
be7811ad 1902verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1903{
d7e74731 1904 string_file log;
05c547f6 1905
104c1213 1906 /* fundamental */
be7811ad 1907 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1908 log.puts ("\n\tbyte-order");
be7811ad 1909 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1910 log.puts ("\n\tbfd_arch_info");
0963b4bd 1911 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1912EOF
34620563 1913function_list | while do_read
104c1213 1914do
2ada493a
AC
1915 if class_is_function_p || class_is_variable_p
1916 then
72e74a21 1917 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1918 then
3d9a5942 1919 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1920 elif class_is_predicate_p
1921 then
0963b4bd 1922 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1923 # FIXME: See do_read for potential simplification
72e74a21 1924 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1925 then
3d9a5942 1926 printf " if (${invalid_p})\n"
be7811ad 1927 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1928 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1929 then
be7811ad
MD
1930 printf " if (gdbarch->${function} == ${predefault})\n"
1931 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1932 elif [ -n "${postdefault}" ]
f0d4cc9e 1933 then
be7811ad
MD
1934 printf " if (gdbarch->${function} == 0)\n"
1935 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1936 elif [ -n "${invalid_p}" ]
104c1213 1937 then
4d60522e 1938 printf " if (${invalid_p})\n"
d7e74731 1939 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1940 elif [ -n "${predefault}" ]
104c1213 1941 then
be7811ad 1942 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1943 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1944 fi
2ada493a 1945 fi
104c1213
JM
1946done
1947cat <<EOF
d7e74731 1948 if (!log.empty ())
f16a1923 1949 internal_error (__FILE__, __LINE__,
85c07804 1950 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1951 log.c_str ());
104c1213
JM
1952}
1953EOF
1954
1955# dump the structure
3d9a5942
AC
1956printf "\n"
1957printf "\n"
104c1213 1958cat <<EOF
0963b4bd 1959/* Print out the details of the current architecture. */
4b9b3959 1960
104c1213 1961void
be7811ad 1962gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1963{
b78960be 1964 const char *gdb_nm_file = "<not-defined>";
05c547f6 1965
b78960be
AC
1966#if defined (GDB_NM_FILE)
1967 gdb_nm_file = GDB_NM_FILE;
1968#endif
1969 fprintf_unfiltered (file,
1970 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1971 gdb_nm_file);
104c1213 1972EOF
ea480a30 1973function_list | sort '-t;' -k 3 | while do_read
104c1213 1974do
1e9f55d0
AC
1975 # First the predicate
1976 if class_is_predicate_p
1977 then
7996bcec 1978 printf " fprintf_unfiltered (file,\n"
48f7351b 1979 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1980 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1981 fi
48f7351b 1982 # Print the corresponding value.
283354d8 1983 if class_is_function_p
4b9b3959 1984 then
7996bcec 1985 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1986 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1987 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1988 else
48f7351b 1989 # It is a variable
2f9b146e
AC
1990 case "${print}:${returntype}" in
1991 :CORE_ADDR )
0b1553bc
UW
1992 fmt="%s"
1993 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1994 ;;
2f9b146e 1995 :* )
48f7351b 1996 fmt="%s"
623d3eb1 1997 print="plongest (gdbarch->${function})"
48f7351b
AC
1998 ;;
1999 * )
2f9b146e 2000 fmt="%s"
48f7351b
AC
2001 ;;
2002 esac
3d9a5942 2003 printf " fprintf_unfiltered (file,\n"
48f7351b 2004 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 2005 printf " ${print});\n"
2ada493a 2006 fi
104c1213 2007done
381323f4 2008cat <<EOF
be7811ad
MD
2009 if (gdbarch->dump_tdep != NULL)
2010 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2011}
2012EOF
104c1213
JM
2013
2014
2015# GET/SET
3d9a5942 2016printf "\n"
104c1213
JM
2017cat <<EOF
2018struct gdbarch_tdep *
2019gdbarch_tdep (struct gdbarch *gdbarch)
2020{
2021 if (gdbarch_debug >= 2)
3d9a5942 2022 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2023 return gdbarch->tdep;
2024}
2025EOF
3d9a5942 2026printf "\n"
34620563 2027function_list | while do_read
104c1213 2028do
2ada493a
AC
2029 if class_is_predicate_p
2030 then
3d9a5942
AC
2031 printf "\n"
2032 printf "int\n"
2033 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2034 printf "{\n"
8de9bdc4 2035 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2036 printf " return ${predicate};\n"
3d9a5942 2037 printf "}\n"
2ada493a
AC
2038 fi
2039 if class_is_function_p
2040 then
3d9a5942
AC
2041 printf "\n"
2042 printf "${returntype}\n"
72e74a21 2043 if [ "x${formal}" = "xvoid" ]
104c1213 2044 then
3d9a5942 2045 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2046 else
3d9a5942 2047 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2048 fi
3d9a5942 2049 printf "{\n"
8de9bdc4 2050 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2051 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2052 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2053 then
2054 # Allow a call to a function with a predicate.
956ac328 2055 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2056 fi
3d9a5942
AC
2057 printf " if (gdbarch_debug >= 2)\n"
2058 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2059 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2060 then
2061 if class_is_multiarch_p
2062 then
2063 params="gdbarch"
2064 else
2065 params=""
2066 fi
2067 else
2068 if class_is_multiarch_p
2069 then
2070 params="gdbarch, ${actual}"
2071 else
2072 params="${actual}"
2073 fi
2074 fi
72e74a21 2075 if [ "x${returntype}" = "xvoid" ]
104c1213 2076 then
4a5c6a1d 2077 printf " gdbarch->${function} (${params});\n"
104c1213 2078 else
4a5c6a1d 2079 printf " return gdbarch->${function} (${params});\n"
104c1213 2080 fi
3d9a5942
AC
2081 printf "}\n"
2082 printf "\n"
2083 printf "void\n"
2084 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2085 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2086 printf "{\n"
2087 printf " gdbarch->${function} = ${function};\n"
2088 printf "}\n"
2ada493a
AC
2089 elif class_is_variable_p
2090 then
3d9a5942
AC
2091 printf "\n"
2092 printf "${returntype}\n"
2093 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2094 printf "{\n"
8de9bdc4 2095 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2096 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2097 then
3d9a5942 2098 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2099 elif [ -n "${invalid_p}" ]
104c1213 2100 then
956ac328
AC
2101 printf " /* Check variable is valid. */\n"
2102 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2103 elif [ -n "${predefault}" ]
104c1213 2104 then
956ac328
AC
2105 printf " /* Check variable changed from pre-default. */\n"
2106 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2107 fi
3d9a5942
AC
2108 printf " if (gdbarch_debug >= 2)\n"
2109 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2110 printf " return gdbarch->${function};\n"
2111 printf "}\n"
2112 printf "\n"
2113 printf "void\n"
2114 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2115 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2116 printf "{\n"
2117 printf " gdbarch->${function} = ${function};\n"
2118 printf "}\n"
2ada493a
AC
2119 elif class_is_info_p
2120 then
3d9a5942
AC
2121 printf "\n"
2122 printf "${returntype}\n"
2123 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2124 printf "{\n"
8de9bdc4 2125 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2126 printf " if (gdbarch_debug >= 2)\n"
2127 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2128 printf " return gdbarch->${function};\n"
2129 printf "}\n"
2ada493a 2130 fi
104c1213
JM
2131done
2132
2133# All the trailing guff
2134cat <<EOF
2135
2136
f44c642f 2137/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2138 modules. */
104c1213
JM
2139
2140struct gdbarch_data
2141{
95160752 2142 unsigned index;
76860b5f 2143 int init_p;
030f20e1
AC
2144 gdbarch_data_pre_init_ftype *pre_init;
2145 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2146};
2147
2148struct gdbarch_data_registration
2149{
104c1213
JM
2150 struct gdbarch_data *data;
2151 struct gdbarch_data_registration *next;
2152};
2153
f44c642f 2154struct gdbarch_data_registry
104c1213 2155{
95160752 2156 unsigned nr;
104c1213
JM
2157 struct gdbarch_data_registration *registrations;
2158};
2159
f44c642f 2160struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2161{
2162 0, NULL,
2163};
2164
030f20e1
AC
2165static struct gdbarch_data *
2166gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2167 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2168{
2169 struct gdbarch_data_registration **curr;
05c547f6
MS
2170
2171 /* Append the new registration. */
f44c642f 2172 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2173 (*curr) != NULL;
2174 curr = &(*curr)->next);
70ba0933 2175 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2176 (*curr)->next = NULL;
70ba0933 2177 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2178 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2179 (*curr)->data->pre_init = pre_init;
2180 (*curr)->data->post_init = post_init;
76860b5f 2181 (*curr)->data->init_p = 1;
104c1213
JM
2182 return (*curr)->data;
2183}
2184
030f20e1
AC
2185struct gdbarch_data *
2186gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2187{
2188 return gdbarch_data_register (pre_init, NULL);
2189}
2190
2191struct gdbarch_data *
2192gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2193{
2194 return gdbarch_data_register (NULL, post_init);
2195}
104c1213 2196
0963b4bd 2197/* Create/delete the gdbarch data vector. */
95160752
AC
2198
2199static void
b3cc3077 2200alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2201{
b3cc3077
JB
2202 gdb_assert (gdbarch->data == NULL);
2203 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2204 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2205}
3c875b6f 2206
76860b5f 2207/* Initialize the current value of the specified per-architecture
0963b4bd 2208 data-pointer. */
b3cc3077 2209
95160752 2210void
030f20e1
AC
2211deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2212 struct gdbarch_data *data,
2213 void *pointer)
95160752
AC
2214{
2215 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2216 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2217 gdb_assert (data->pre_init == NULL);
95160752
AC
2218 gdbarch->data[data->index] = pointer;
2219}
2220
104c1213 2221/* Return the current value of the specified per-architecture
0963b4bd 2222 data-pointer. */
104c1213
JM
2223
2224void *
451fbdda 2225gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2226{
451fbdda 2227 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2228 if (gdbarch->data[data->index] == NULL)
76860b5f 2229 {
030f20e1
AC
2230 /* The data-pointer isn't initialized, call init() to get a
2231 value. */
2232 if (data->pre_init != NULL)
2233 /* Mid architecture creation: pass just the obstack, and not
2234 the entire architecture, as that way it isn't possible for
2235 pre-init code to refer to undefined architecture
2236 fields. */
2237 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2238 else if (gdbarch->initialized_p
2239 && data->post_init != NULL)
2240 /* Post architecture creation: pass the entire architecture
2241 (as all fields are valid), but be careful to also detect
2242 recursive references. */
2243 {
2244 gdb_assert (data->init_p);
2245 data->init_p = 0;
2246 gdbarch->data[data->index] = data->post_init (gdbarch);
2247 data->init_p = 1;
2248 }
2249 else
2250 /* The architecture initialization hasn't completed - punt -
2251 hope that the caller knows what they are doing. Once
2252 deprecated_set_gdbarch_data has been initialized, this can be
2253 changed to an internal error. */
2254 return NULL;
76860b5f
AC
2255 gdb_assert (gdbarch->data[data->index] != NULL);
2256 }
451fbdda 2257 return gdbarch->data[data->index];
104c1213
JM
2258}
2259
2260
0963b4bd 2261/* Keep a registry of the architectures known by GDB. */
104c1213 2262
4b9b3959 2263struct gdbarch_registration
104c1213
JM
2264{
2265 enum bfd_architecture bfd_architecture;
2266 gdbarch_init_ftype *init;
4b9b3959 2267 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2268 struct gdbarch_list *arches;
4b9b3959 2269 struct gdbarch_registration *next;
104c1213
JM
2270};
2271
f44c642f 2272static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2273
b4a20239
AC
2274static void
2275append_name (const char ***buf, int *nr, const char *name)
2276{
1dc7a623 2277 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2278 (*buf)[*nr] = name;
2279 *nr += 1;
2280}
2281
2282const char **
2283gdbarch_printable_names (void)
2284{
7996bcec 2285 /* Accumulate a list of names based on the registed list of
0963b4bd 2286 architectures. */
7996bcec
AC
2287 int nr_arches = 0;
2288 const char **arches = NULL;
2289 struct gdbarch_registration *rego;
05c547f6 2290
7996bcec
AC
2291 for (rego = gdbarch_registry;
2292 rego != NULL;
2293 rego = rego->next)
b4a20239 2294 {
7996bcec
AC
2295 const struct bfd_arch_info *ap;
2296 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2297 if (ap == NULL)
2298 internal_error (__FILE__, __LINE__,
85c07804 2299 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2300 do
2301 {
2302 append_name (&arches, &nr_arches, ap->printable_name);
2303 ap = ap->next;
2304 }
2305 while (ap != NULL);
b4a20239 2306 }
7996bcec
AC
2307 append_name (&arches, &nr_arches, NULL);
2308 return arches;
b4a20239
AC
2309}
2310
2311
104c1213 2312void
4b9b3959
AC
2313gdbarch_register (enum bfd_architecture bfd_architecture,
2314 gdbarch_init_ftype *init,
2315 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2316{
4b9b3959 2317 struct gdbarch_registration **curr;
104c1213 2318 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2319
ec3d358c 2320 /* Check that BFD recognizes this architecture */
104c1213
JM
2321 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2322 if (bfd_arch_info == NULL)
2323 {
8e65ff28 2324 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2325 _("gdbarch: Attempt to register "
2326 "unknown architecture (%d)"),
8e65ff28 2327 bfd_architecture);
104c1213 2328 }
0963b4bd 2329 /* Check that we haven't seen this architecture before. */
f44c642f 2330 for (curr = &gdbarch_registry;
104c1213
JM
2331 (*curr) != NULL;
2332 curr = &(*curr)->next)
2333 {
2334 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2335 internal_error (__FILE__, __LINE__,
64b9b334 2336 _("gdbarch: Duplicate registration "
0963b4bd 2337 "of architecture (%s)"),
8e65ff28 2338 bfd_arch_info->printable_name);
104c1213
JM
2339 }
2340 /* log it */
2341 if (gdbarch_debug)
30737ed9 2342 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2343 bfd_arch_info->printable_name,
30737ed9 2344 host_address_to_string (init));
104c1213 2345 /* Append it */
70ba0933 2346 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2347 (*curr)->bfd_architecture = bfd_architecture;
2348 (*curr)->init = init;
4b9b3959 2349 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2350 (*curr)->arches = NULL;
2351 (*curr)->next = NULL;
4b9b3959
AC
2352}
2353
2354void
2355register_gdbarch_init (enum bfd_architecture bfd_architecture,
2356 gdbarch_init_ftype *init)
2357{
2358 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2359}
104c1213
JM
2360
2361
424163ea 2362/* Look for an architecture using gdbarch_info. */
104c1213
JM
2363
2364struct gdbarch_list *
2365gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2366 const struct gdbarch_info *info)
2367{
2368 for (; arches != NULL; arches = arches->next)
2369 {
2370 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2371 continue;
2372 if (info->byte_order != arches->gdbarch->byte_order)
2373 continue;
4be87837
DJ
2374 if (info->osabi != arches->gdbarch->osabi)
2375 continue;
424163ea
DJ
2376 if (info->target_desc != arches->gdbarch->target_desc)
2377 continue;
104c1213
JM
2378 return arches;
2379 }
2380 return NULL;
2381}
2382
2383
ebdba546 2384/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2385 architecture if needed. Return that new architecture. */
104c1213 2386
59837fe0
UW
2387struct gdbarch *
2388gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2389{
2390 struct gdbarch *new_gdbarch;
4b9b3959 2391 struct gdbarch_registration *rego;
104c1213 2392
b732d07d 2393 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2394 sources: "set ..."; INFOabfd supplied; and the global
2395 defaults. */
2396 gdbarch_info_fill (&info);
4be87837 2397
0963b4bd 2398 /* Must have found some sort of architecture. */
b732d07d 2399 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2400
2401 if (gdbarch_debug)
2402 {
2403 fprintf_unfiltered (gdb_stdlog,
59837fe0 2404 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2405 (info.bfd_arch_info != NULL
2406 ? info.bfd_arch_info->printable_name
2407 : "(null)"));
2408 fprintf_unfiltered (gdb_stdlog,
59837fe0 2409 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2410 info.byte_order,
d7449b42 2411 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2412 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2413 : "default"));
4be87837 2414 fprintf_unfiltered (gdb_stdlog,
59837fe0 2415 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2416 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2417 fprintf_unfiltered (gdb_stdlog,
59837fe0 2418 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2419 host_address_to_string (info.abfd));
104c1213 2420 fprintf_unfiltered (gdb_stdlog,
59837fe0 2421 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2422 host_address_to_string (info.tdep_info));
104c1213
JM
2423 }
2424
ebdba546 2425 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2426 for (rego = gdbarch_registry;
2427 rego != NULL;
2428 rego = rego->next)
2429 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2430 break;
2431 if (rego == NULL)
2432 {
2433 if (gdbarch_debug)
59837fe0 2434 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2435 "No matching architecture\n");
b732d07d
AC
2436 return 0;
2437 }
2438
ebdba546 2439 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2440 new_gdbarch = rego->init (info, rego->arches);
2441
ebdba546
AC
2442 /* Did the tdep code like it? No. Reject the change and revert to
2443 the old architecture. */
104c1213
JM
2444 if (new_gdbarch == NULL)
2445 {
2446 if (gdbarch_debug)
59837fe0 2447 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2448 "Target rejected architecture\n");
2449 return NULL;
104c1213
JM
2450 }
2451
ebdba546
AC
2452 /* Is this a pre-existing architecture (as determined by already
2453 being initialized)? Move it to the front of the architecture
2454 list (keeping the list sorted Most Recently Used). */
2455 if (new_gdbarch->initialized_p)
104c1213 2456 {
ebdba546 2457 struct gdbarch_list **list;
fe978cb0 2458 struct gdbarch_list *self;
104c1213 2459 if (gdbarch_debug)
59837fe0 2460 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2461 "Previous architecture %s (%s) selected\n",
2462 host_address_to_string (new_gdbarch),
104c1213 2463 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2464 /* Find the existing arch in the list. */
2465 for (list = &rego->arches;
2466 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2467 list = &(*list)->next);
2468 /* It had better be in the list of architectures. */
2469 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2470 /* Unlink SELF. */
2471 self = (*list);
2472 (*list) = self->next;
2473 /* Insert SELF at the front. */
2474 self->next = rego->arches;
2475 rego->arches = self;
ebdba546
AC
2476 /* Return it. */
2477 return new_gdbarch;
104c1213
JM
2478 }
2479
ebdba546
AC
2480 /* It's a new architecture. */
2481 if (gdbarch_debug)
59837fe0 2482 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2483 "New architecture %s (%s) selected\n",
2484 host_address_to_string (new_gdbarch),
ebdba546
AC
2485 new_gdbarch->bfd_arch_info->printable_name);
2486
2487 /* Insert the new architecture into the front of the architecture
2488 list (keep the list sorted Most Recently Used). */
0f79675b 2489 {
fe978cb0
PA
2490 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2491 self->next = rego->arches;
2492 self->gdbarch = new_gdbarch;
2493 rego->arches = self;
0f79675b 2494 }
104c1213 2495
4b9b3959
AC
2496 /* Check that the newly installed architecture is valid. Plug in
2497 any post init values. */
2498 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2499 verify_gdbarch (new_gdbarch);
ebdba546 2500 new_gdbarch->initialized_p = 1;
104c1213 2501
4b9b3959 2502 if (gdbarch_debug)
ebdba546
AC
2503 gdbarch_dump (new_gdbarch, gdb_stdlog);
2504
2505 return new_gdbarch;
2506}
2507
e487cc15 2508/* Make the specified architecture current. */
ebdba546
AC
2509
2510void
aff68abb 2511set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2512{
2513 gdb_assert (new_gdbarch != NULL);
ebdba546 2514 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2515 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2516 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2517 registers_changed ();
ebdba546 2518}
104c1213 2519
f5656ead 2520/* Return the current inferior's arch. */
6ecd4729
PA
2521
2522struct gdbarch *
f5656ead 2523target_gdbarch (void)
6ecd4729
PA
2524{
2525 return current_inferior ()->gdbarch;
2526}
2527
104c1213 2528void
34620563 2529_initialize_gdbarch (void)
104c1213 2530{
ccce17b0 2531 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2532Set architecture debugging."), _("\\
2533Show architecture debugging."), _("\\
2534When non-zero, architecture debugging is enabled."),
2535 NULL,
920d2a44 2536 show_gdbarch_debug,
85c07804 2537 &setdebuglist, &showdebuglist);
104c1213
JM
2538}
2539EOF
2540
2541# close things off
2542exec 1>&2
2543#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2544compare_new gdbarch.c
This page took 1.715649 seconds and 4 git commands to generate.