2003-07-10 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
1e698235 4# Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
104c1213
JM
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
d8864532
AC
22# Make certain that the script is running in an internationalized
23# environment.
24LANG=c ; export LANG
1bd316f0 25LC_ALL=c ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
0b8f9e4d 44read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
3d9a5942
AC
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
50248794
AC
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
e669114a 88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
50248794
AC
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
34620563
AC
97 # NOT YET: Breaks BELIEVE_PCC_PROMOTION and confuses non-
98 # multi-arch defaults.
99 # test "${predefault}" || predefault=0
06b25f14
AC
100
101 # come up with a format, use a few guesses for variables
102 case ":${class}:${fmt}:${print}:" in
103 :[vV]::: )
104 if [ "${returntype}" = int ]
105 then
106 fmt="%d"
107 print="${macro}"
108 elif [ "${returntype}" = long ]
109 then
110 fmt="%ld"
111 print="${macro}"
112 fi
113 ;;
114 esac
34620563
AC
115 test "${fmt}" || fmt="%ld"
116 test "${print}" || print="(long) ${macro}"
06b25f14 117
ae45cd16
AC
118 case "${class}" in
119 F | V | M )
120 case "${invalid_p}" in
34620563 121 "" )
ae45cd16 122 if test -n "${predefault}" -a "${predefault}" != "0"
34620563
AC
123 then
124 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 125 predicate="gdbarch->${function} != ${predefault}"
34620563 126 else
ae45cd16
AC
127 # filled in later
128 predicate=""
34620563
AC
129 fi
130 ;;
ae45cd16 131 * )
1e9f55d0 132 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
133 kill $$
134 exit 1
135 ;;
136 esac
34620563
AC
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
72e74a21 146 if [ -n "${postdefault}" ]
34620563
AC
147 then
148 fallbackdefault="${postdefault}"
72e74a21 149 elif [ -n "${predefault}" ]
34620563
AC
150 then
151 fallbackdefault="${predefault}"
152 else
73d3c16e 153 fallbackdefault="0"
34620563
AC
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
f0d4cc9e 160 fi
34620563 161 done
72e74a21 162 if [ -n "${class}" ]
34620563
AC
163 then
164 true
c0e8c252
AC
165 else
166 false
167 fi
168}
169
104c1213 170
f0d4cc9e
AC
171fallback_default_p ()
172{
72e74a21
JB
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
175}
176
177class_is_variable_p ()
178{
4a5c6a1d
AC
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_function_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191}
192
193class_is_multiarch_p ()
194{
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201class_is_predicate_p ()
202{
4a5c6a1d
AC
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
f0d4cc9e
AC
207}
208
209class_is_info_p ()
210{
4a5c6a1d
AC
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
f0d4cc9e
AC
215}
216
217
cff3e48b
JM
218# dump out/verify the doco
219for field in ${read}
220do
221 case ${field} in
222
223 class ) : ;;
c4093a6a 224
c0e8c252
AC
225 # # -> line disable
226 # f -> function
227 # hiding a function
2ada493a
AC
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
c0e8c252
AC
230 # v -> variable
231 # hiding a variable
2ada493a
AC
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
c0e8c252
AC
234 # i -> set from info
235 # hiding something from the ``struct info'' object
4a5c6a1d
AC
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
240
241 level ) : ;;
242
c0e8c252
AC
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
cff3e48b
JM
246
247 macro ) : ;;
248
c0e8c252 249 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
250
251 returntype ) : ;;
252
c0e8c252 253 # For functions, the return type; for variables, the data type
cff3e48b
JM
254
255 function ) : ;;
256
c0e8c252
AC
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
260
261 formal ) : ;;
262
c0e8c252
AC
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
cff3e48b
JM
267
268 actual ) : ;;
269
c0e8c252
AC
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
cff3e48b
JM
273
274 attrib ) : ;;
275
c0e8c252
AC
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
cff3e48b 278
0b8f9e4d 279 staticdefault ) : ;;
c0e8c252
AC
280
281 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
cff3e48b 285
0b8f9e4d 286 # If STATICDEFAULT is empty, zero is used.
c0e8c252 287
0b8f9e4d 288 predefault ) : ;;
cff3e48b 289
10312cc4
AC
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
cff3e48b 294
0b8f9e4d
AC
295 # If PREDEFAULT is empty, zero is used.
296
10312cc4
AC
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
f0d4cc9e
AC
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
0b8f9e4d
AC
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
10312cc4
AC
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
f0d4cc9e
AC
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
cff3e48b 328
c4093a6a 329 invalid_p ) : ;;
cff3e48b 330
0b8f9e4d 331 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 332 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
f0d4cc9e
AC
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
343
344 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
345
346 fmt ) : ;;
347
c0e8c252
AC
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
0b8f9e4d 352 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
353
354 print ) : ;;
355
c0e8c252
AC
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
0b8f9e4d 359 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
360
361 print_p ) : ;;
362
c0e8c252
AC
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
4b9b3959 366 # () -> Call a custom function to do the dump.
c0e8c252
AC
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
cff3e48b 369
0b8f9e4d
AC
370 # If PRINT_P is empty, ``1'' is always used.
371
cff3e48b
JM
372 description ) : ;;
373
0b8f9e4d 374 # Currently unused.
cff3e48b 375
50248794
AC
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
cff3e48b
JM
379 esac
380done
381
cff3e48b 382
104c1213
JM
383function_list ()
384{
cff3e48b 385 # See below (DOCO) for description of each field
34620563 386 cat <<EOF
0b8f9e4d 387i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 388#
d7449b42 389i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
4be87837
DJ
390#
391i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
66b43ecb
AC
392# Number of bits in a char or unsigned char for the target machine.
393# Just like CHAR_BIT in <limits.h> but describes the target machine.
e669114a 394# v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
395#
396# Number of bits in a short or unsigned short for the target machine.
e669114a 397v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 398# Number of bits in an int or unsigned int for the target machine.
e669114a 399v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 400# Number of bits in a long or unsigned long for the target machine.
e669114a 401v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
402# Number of bits in a long long or unsigned long long for the target
403# machine.
e669114a 404v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
66b43ecb 405# Number of bits in a float for the target machine.
e669114a 406v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
66b43ecb 407# Number of bits in a double for the target machine.
e669114a 408v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
66b43ecb 409# Number of bits in a long double for the target machine.
e669114a 410v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
411# For most targets, a pointer on the target and its representation as an
412# address in GDB have the same size and "look the same". For such a
413# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414# / addr_bit will be set from it.
415#
416# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418#
419# ptr_bit is the size of a pointer on the target
e669114a 420v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b 421# addr_bit is the size of a target address as represented in gdb
e669114a 422v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb 423# Number of bits in a BFD_VMA for the target object file format.
e669114a 424v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 425#
4e409299 426# One if \`char' acts like \`signed char', zero if \`unsigned char'.
e669114a 427v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 428#
cde9ea48 429F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
e669114a 430f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
a9e5fdc2 431# UNWIND_SP is a direct replacement for TARGET_READ_SP.
bd1ce8ba 432F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
39d4ef09
AC
433# Function for getting target's idea of a frame pointer. FIXME: GDB's
434# whole scheme for dealing with "frames" and "frame pointers" needs a
435# serious shakedown.
e669114a 436f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 437#
d8124050
AC
438M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf:
439M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf:
61a0eb5b 440#
104c1213 441v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
442# This macro gives the number of pseudo-registers that live in the
443# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
444# These pseudo-registers may be aliases for other registers,
445# combinations of other registers, or they may be computed by GDB.
0aba1244 446v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
447
448# GDB's standard (or well known) register numbers. These can map onto
449# a real register or a pseudo (computed) register or not be defined at
1200cd6e 450# all (-1).
a9e5fdc2 451# SP_REGNUM will hopefully be replaced by UNWIND_SP.
1200cd6e 452v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
1200cd6e 453v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 454v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d
AC
455v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
88c72b7d
AC
457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
460f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461# Provide a default mapping from a DWARF register number to a gdb REGNUM.
462f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463# Convert from an sdb register number to an internal gdb register number.
464# This should be defined in tm.h, if REGISTER_NAMES is not set up
465# to map one to one onto the sdb register numbers.
466f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
e23457df 468f::REGISTER_NAME:const char *:register_name:int regnr:regnr
9c04cab7
AC
469
470# REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
471M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr::0:
472# REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
473F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr::0:0
474# DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475# from REGISTER_TYPE.
b8b527c5 476v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
f3be58bc
AC
477# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478# register offsets computed using just REGISTER_TYPE, this can be
479# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480# function with predicate has a valid (callable) initial value. As a
481# consequence, even when the predicate is false, the corresponding
482# function works. This simplifies the migration process - old code,
483# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
9c04cab7 484F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
f3be58bc
AC
485# If all registers have identical raw and virtual sizes and those
486# sizes agree with the value computed from REGISTER_TYPE,
487# DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488# registers.
dadd712e 489F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
f3be58bc
AC
490# If all registers have identical raw and virtual sizes and those
491# sizes agree with the value computed from REGISTER_TYPE,
492# DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493# registers.
dadd712e 494F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
9c04cab7
AC
495# DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 497V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
9c04cab7
AC
498# DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 500V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
9c04cab7 501
f3be58bc
AC
502# See gdbint.texinfo, and PUSH_DUMMY_CALL.
503M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info::0:0
504# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505# SAVE_DUMMY_FRAME_TOS.
a59fe496 506F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
f3be58bc
AC
507# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508# DEPRECATED_FP_REGNUM.
509v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511# DEPRECATED_TARGET_READ_FP.
512F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
b8de8283
AC
514# See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515# replacement for DEPRECATED_PUSH_ARGUMENTS.
516M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517# PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519# DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521# Implement PUSH_RETURN_ADDRESS, and then merge in
522# DEPRECATED_PUSH_RETURN_ADDRESS.
523F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp:::0
524# Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526# DEPRECATED_REGISTER_SIZE can be deleted.
527v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
530# DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532# DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534# DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536# DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
541V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust::::0
542# DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543# PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545# This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
546M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr:
547# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
548F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-:::0
549# Implement PUSH_DUMMY_CALL, then delete
550# DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
903ad3a6 553F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
0ab7a791 554m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
23e3a7ac 555M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
e76f1f2e 556M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
557# MAP a GDB RAW register number onto a simulator register number. See
558# also include/...-sim.h.
8238d0bf 559f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
2649061d 560F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes::0:0
01fb7433
AC
561f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0
RE
563# setjmp/longjmp support.
564F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc::0:0
ae45cd16
AC
565# NOTE: cagney/2002-11-24: This function with predicate has a valid
566# (callable) initial value. As a consequence, even when the predicate
567# is false, the corresponding function works. This simplifies the
568# migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569# doesn't need to be modified.
55e1d7e7 570F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
97f46953 571F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
e669114a 572F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
104c1213 573#
f0d4cc9e 574v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
e669114a 575v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
129c1cd6 576F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
104c1213 577#
781a750d
AC
578# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579# For raw <-> cooked register conversions, replaced by pseudo registers.
580f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582# For raw <-> cooked register conversions, replaced by pseudo registers.
583f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585# For raw <-> cooked register conversions, replaced by pseudo registers.
586f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
13d01224 587#
ff2e87ac
AC
588f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
104c1213 591#
66140c26 592f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
ac2e2ef7 593f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 594F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 595#
0b8f9e4d 596f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
749b82f6 597F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-:::0
4183d812
AC
598# NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
599F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp:::0
ebba8386 600#
e669114a
AC
601f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
ebba8386 605#
049ee0e4 606F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache:::0
26e9b323 607F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf:::0
56f12751 608f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
104c1213 609#
f30ee0bc 610F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame:::0
e9582e71 611F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame:::0
104c1213
JM
612#
613f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
0b8f9e4d 614f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
104c1213 615f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
aaab4dba 616f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
0b8f9e4d
AC
617f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
104c1213
JM
619v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621#
f6684c31 622m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213
JM
623#
624v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
0b8f9e4d 625f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
618ce49f
AC
626F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame::0:0
627F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe::0:0
8bedc050
AC
628# DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629# note, per UNWIND_PC's doco, that while the two have similar
630# interfaces they have very different underlying implementations.
631F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi::0:0
12cc2063 632M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame:
a9e5fdc2 633M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame:
42efa47a
AC
634# DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635# frame-base. Enable frame-base before frame-unwind.
636F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638# frame-base. Enable frame-base before frame-unwind.
639F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
6913c89a 640F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
983a287a 641F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
104c1213 642#
2ada493a 643F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp::0:0
dc604539 644M:::CORE_ADDR:frame_align:CORE_ADDR address:address
d03e67c9 645F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type::0:0
58d5518e 646v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e 647#
52f87c51
AC
648v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
649v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
650v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
875e1767
AC
651f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
652# On some machines there are bits in addresses which are not really
653# part of the address, but are used by the kernel, the hardware, etc.
654# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
655# we get a "real" address such as one would find in a symbol table.
656# This is used only for addresses of instructions, and even then I'm
657# not sure it's used in all contexts. It exists to deal with there
658# being a few stray bits in the PC which would mislead us, not as some
659# sort of generic thing to handle alignment or segmentation (it's
660# possible it should be in TARGET_READ_PC instead).
661f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
181c1381
RE
662# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
663# ADDR_BITS_REMOVE.
664f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
665# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
666# the target needs software single step. An ISA method to implement it.
667#
668# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
669# using the breakpoint system instead of blatting memory directly (as with rs6000).
670#
671# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
672# single step. If not, then implement single step using breakpoints.
673F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p::0:0
2bf0cb65 674f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
bdcd319a 675f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
676
677
68e9cc94
CV
678# For SVR4 shared libraries, each call goes through a small piece of
679# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 680# to nonzero if we are currently stopped in one of these.
68e9cc94 681f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
682
683# Some systems also have trampoline code for returning from shared libs.
684f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
685
d7bd68ca
AC
686# Sigtramp is a routine that the kernel calls (which then calls the
687# signal handler). On most machines it is a library routine that is
688# linked into the executable.
689#
690# This macro, given a program counter value and the name of the
691# function in which that PC resides (which can be null if the name is
692# not known), returns nonzero if the PC and name show that we are in
693# sigtramp.
694#
695# On most machines just see if the name is sigtramp (and if we have
696# no name, assume we are not in sigtramp).
697#
698# FIXME: cagney/2002-04-21: The function find_pc_partial_function
699# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
700# This means PC_IN_SIGTRAMP function can't be implemented by doing its
701# own local NAME lookup.
702#
703# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
704# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
705# does not.
706f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
43156d82 707F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
e669114a 708F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
c12260ac
CV
709# A target might have problems with watchpoints as soon as the stack
710# frame of the current function has been destroyed. This mostly happens
711# as the first action in a funtion's epilogue. in_function_epilogue_p()
712# is defined to return a non-zero value if either the given addr is one
713# instruction after the stack destroying instruction up to the trailing
714# return instruction or if we can figure out that the stack frame has
715# already been invalidated regardless of the value of addr. Targets
716# which don't suffer from that problem could just let this functionality
717# untouched.
718m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
719# Given a vector of command-line arguments, return a newly allocated
720# string which, when passed to the create_inferior function, will be
721# parsed (on Unix systems, by the shell) to yield the same vector.
722# This function should call error() if the argument vector is not
723# representable for this target or if this target does not support
724# command-line arguments.
725# ARGC is the number of elements in the vector.
726# ARGV is an array of strings, one per argument.
727m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
b6af0555 728F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile:::0
a2cf933a
EZ
729f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
730f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
e669114a
AC
731v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
732v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
733v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
8b2dbe47 734F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
321432c0
KB
735M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags:
736M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 737# Is a register in a group
7e20f3fb 738m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
143985b7
AF
739# Fetch the pointer to the ith function argument.
740F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type:::::::::
104c1213 741EOF
104c1213
JM
742}
743
0b8f9e4d
AC
744#
745# The .log file
746#
747exec > new-gdbarch.log
34620563 748function_list | while do_read
0b8f9e4d
AC
749do
750 cat <<EOF
104c1213
JM
751${class} ${macro}(${actual})
752 ${returntype} ${function} ($formal)${attrib}
104c1213 753EOF
3d9a5942
AC
754 for r in ${read}
755 do
756 eval echo \"\ \ \ \ ${r}=\${${r}}\"
757 done
f0d4cc9e 758 if class_is_predicate_p && fallback_default_p
0b8f9e4d 759 then
66b43ecb 760 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
761 kill $$
762 exit 1
763 fi
72e74a21 764 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
765 then
766 echo "Error: postdefault is useless when invalid_p=0" 1>&2
767 kill $$
768 exit 1
769 fi
a72293e2
AC
770 if class_is_multiarch_p
771 then
772 if class_is_predicate_p ; then :
773 elif test "x${predefault}" = "x"
774 then
775 echo "Error: pure multi-arch function must have a predefault" 1>&2
776 kill $$
777 exit 1
778 fi
779 fi
3d9a5942 780 echo ""
0b8f9e4d
AC
781done
782
783exec 1>&2
784compare_new gdbarch.log
785
104c1213
JM
786
787copyright ()
788{
789cat <<EOF
59233f88
AC
790/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
791
104c1213 792/* Dynamic architecture support for GDB, the GNU debugger.
1e698235 793 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
104c1213
JM
794
795 This file is part of GDB.
796
797 This program is free software; you can redistribute it and/or modify
798 it under the terms of the GNU General Public License as published by
799 the Free Software Foundation; either version 2 of the License, or
800 (at your option) any later version.
801
802 This program is distributed in the hope that it will be useful,
803 but WITHOUT ANY WARRANTY; without even the implied warranty of
804 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
805 GNU General Public License for more details.
806
807 You should have received a copy of the GNU General Public License
808 along with this program; if not, write to the Free Software
809 Foundation, Inc., 59 Temple Place - Suite 330,
810 Boston, MA 02111-1307, USA. */
811
104c1213
JM
812/* This file was created with the aid of \`\`gdbarch.sh''.
813
52204a0b 814 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
815 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
816 against the existing \`\`gdbarch.[hc]''. Any differences found
817 being reported.
818
819 If editing this file, please also run gdbarch.sh and merge any
52204a0b 820 changes into that script. Conversely, when making sweeping changes
104c1213
JM
821 to this file, modifying gdbarch.sh and using its output may prove
822 easier. */
823
824EOF
825}
826
827#
828# The .h file
829#
830
831exec > new-gdbarch.h
832copyright
833cat <<EOF
834#ifndef GDBARCH_H
835#define GDBARCH_H
836
2bf0cb65 837#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
fd0407d6 838#if !GDB_MULTI_ARCH
67a2b77e 839/* Pull in function declarations refered to, indirectly, via macros. */
67a2b77e 840#include "inferior.h" /* For unsigned_address_to_pointer(). */
e9a2674e 841#include "symfile.h" /* For entry_point_address(). */
fd0407d6 842#endif
2bf0cb65 843
da3331ec
AC
844struct floatformat;
845struct ui_file;
104c1213
JM
846struct frame_info;
847struct value;
b6af0555 848struct objfile;
a2cf933a 849struct minimal_symbol;
049ee0e4 850struct regcache;
b59ff9d5 851struct reggroup;
104c1213 852
104c1213
JM
853extern struct gdbarch *current_gdbarch;
854
855
104c1213
JM
856/* If any of the following are defined, the target wasn't correctly
857 converted. */
858
83905903
AC
859#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
860#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
861#endif
104c1213
JM
862EOF
863
864# function typedef's
3d9a5942
AC
865printf "\n"
866printf "\n"
867printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 868function_list | while do_read
104c1213 869do
2ada493a
AC
870 if class_is_info_p
871 then
3d9a5942
AC
872 printf "\n"
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
874 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 875 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
876 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 printf "#endif\n"
c25083af 878 printf "#if !defined (${macro})\n"
3d9a5942
AC
879 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
880 printf "#endif\n"
2ada493a 881 fi
104c1213
JM
882done
883
884# function typedef's
3d9a5942
AC
885printf "\n"
886printf "\n"
887printf "/* The following are initialized by the target dependent code. */\n"
34620563 888function_list | while do_read
104c1213 889do
72e74a21 890 if [ -n "${comment}" ]
34620563
AC
891 then
892 echo "${comment}" | sed \
893 -e '2 s,#,/*,' \
894 -e '3,$ s,#, ,' \
895 -e '$ s,$, */,'
896 fi
b77be6cf 897 if class_is_multiarch_p
2ada493a 898 then
b77be6cf
AC
899 if class_is_predicate_p
900 then
901 printf "\n"
902 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
903 fi
904 else
905 if class_is_predicate_p
906 then
907 printf "\n"
908 printf "#if defined (${macro})\n"
909 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
910 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 911 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
912 printf "#define ${macro}_P() (1)\n"
913 printf "#endif\n"
eee30e78 914 printf "#endif\n"
b77be6cf
AC
915 printf "\n"
916 printf "/* Default predicate for non- multi-arch targets. */\n"
917 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
918 printf "#define ${macro}_P() (0)\n"
919 printf "#endif\n"
920 printf "\n"
921 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 922 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
923 printf "#error \"Non multi-arch definition of ${macro}\"\n"
924 printf "#endif\n"
028c194b 925 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
926 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
927 printf "#endif\n"
928 fi
4a5c6a1d 929 fi
2ada493a
AC
930 if class_is_variable_p
931 then
f0d4cc9e 932 if fallback_default_p || class_is_predicate_p
33489c5b 933 then
3d9a5942
AC
934 printf "\n"
935 printf "/* Default (value) for non- multi-arch platforms. */\n"
936 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
f0d4cc9e
AC
937 echo "#define ${macro} (${fallbackdefault})" \
938 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
3d9a5942 939 printf "#endif\n"
33489c5b 940 fi
3d9a5942
AC
941 printf "\n"
942 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
943 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 944 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
945 printf "#error \"Non multi-arch definition of ${macro}\"\n"
946 printf "#endif\n"
c25083af
AC
947 printf "#if !defined (${macro})\n"
948 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
949 printf "#endif\n"
2ada493a
AC
950 fi
951 if class_is_function_p
952 then
b77be6cf
AC
953 if class_is_multiarch_p ; then :
954 elif fallback_default_p || class_is_predicate_p
33489c5b 955 then
3d9a5942
AC
956 printf "\n"
957 printf "/* Default (function) for non- multi-arch platforms. */\n"
958 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
72e74a21 959 if [ "x${fallbackdefault}" = "x0" ]
33489c5b 960 then
dedc2a2b
AC
961 if [ "x${actual}" = "x-" ]
962 then
963 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
dedc2a2b
AC
964 else
965 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
966 fi
33489c5b 967 else
f0d4cc9e
AC
968 # FIXME: Should be passing current_gdbarch through!
969 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
970 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
33489c5b 971 fi
3d9a5942 972 printf "#endif\n"
33489c5b 973 fi
3d9a5942 974 printf "\n"
72e74a21 975 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
976 then
977 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
978 elif class_is_multiarch_p
979 then
980 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
981 else
982 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
983 fi
72e74a21 984 if [ "x${formal}" = "xvoid" ]
104c1213 985 then
3d9a5942 986 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 987 else
3d9a5942 988 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 989 fi
3d9a5942 990 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
991 if class_is_multiarch_p ; then :
992 else
028c194b 993 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
994 printf "#error \"Non multi-arch definition of ${macro}\"\n"
995 printf "#endif\n"
c25083af
AC
996 if [ "x${actual}" = "x" ]
997 then
998 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
999 elif [ "x${actual}" = "x-" ]
1000 then
1001 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1002 else
1003 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1004 fi
1005 printf "#if !defined (${macro})\n"
72e74a21 1006 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
1007 then
1008 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 1009 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
1010 then
1011 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1012 else
1013 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1014 fi
1015 printf "#endif\n"
104c1213 1016 fi
2ada493a 1017 fi
104c1213
JM
1018done
1019
1020# close it off
1021cat <<EOF
1022
1023extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1024
1025
1026/* Mechanism for co-ordinating the selection of a specific
1027 architecture.
1028
1029 GDB targets (*-tdep.c) can register an interest in a specific
1030 architecture. Other GDB components can register a need to maintain
1031 per-architecture data.
1032
1033 The mechanisms below ensures that there is only a loose connection
1034 between the set-architecture command and the various GDB
0fa6923a 1035 components. Each component can independently register their need
104c1213
JM
1036 to maintain architecture specific data with gdbarch.
1037
1038 Pragmatics:
1039
1040 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1041 didn't scale.
1042
1043 The more traditional mega-struct containing architecture specific
1044 data for all the various GDB components was also considered. Since
0fa6923a 1045 GDB is built from a variable number of (fairly independent)
104c1213
JM
1046 components it was determined that the global aproach was not
1047 applicable. */
1048
1049
1050/* Register a new architectural family with GDB.
1051
1052 Register support for the specified ARCHITECTURE with GDB. When
1053 gdbarch determines that the specified architecture has been
1054 selected, the corresponding INIT function is called.
1055
1056 --
1057
1058 The INIT function takes two parameters: INFO which contains the
1059 information available to gdbarch about the (possibly new)
1060 architecture; ARCHES which is a list of the previously created
1061 \`\`struct gdbarch'' for this architecture.
1062
0f79675b
AC
1063 The INFO parameter is, as far as possible, be pre-initialized with
1064 information obtained from INFO.ABFD or the previously selected
1065 architecture.
1066
1067 The ARCHES parameter is a linked list (sorted most recently used)
1068 of all the previously created architures for this architecture
1069 family. The (possibly NULL) ARCHES->gdbarch can used to access
1070 values from the previously selected architecture for this
1071 architecture family. The global \`\`current_gdbarch'' shall not be
1072 used.
104c1213
JM
1073
1074 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1075 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1076 gdbarch'' from the ARCHES list - indicating that the new
1077 architecture is just a synonym for an earlier architecture (see
1078 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1079 - that describes the selected architecture (see gdbarch_alloc()).
1080
1081 The DUMP_TDEP function shall print out all target specific values.
1082 Care should be taken to ensure that the function works in both the
1083 multi-arch and non- multi-arch cases. */
104c1213
JM
1084
1085struct gdbarch_list
1086{
1087 struct gdbarch *gdbarch;
1088 struct gdbarch_list *next;
1089};
1090
1091struct gdbarch_info
1092{
104c1213
JM
1093 /* Use default: NULL (ZERO). */
1094 const struct bfd_arch_info *bfd_arch_info;
1095
428721aa 1096 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1097 int byte_order;
1098
1099 /* Use default: NULL (ZERO). */
1100 bfd *abfd;
1101
1102 /* Use default: NULL (ZERO). */
1103 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1104
1105 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1106 enum gdb_osabi osabi;
104c1213
JM
1107};
1108
1109typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1110typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1111
4b9b3959 1112/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1113extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1114
4b9b3959
AC
1115extern void gdbarch_register (enum bfd_architecture architecture,
1116 gdbarch_init_ftype *,
1117 gdbarch_dump_tdep_ftype *);
1118
104c1213 1119
b4a20239
AC
1120/* Return a freshly allocated, NULL terminated, array of the valid
1121 architecture names. Since architectures are registered during the
1122 _initialize phase this function only returns useful information
1123 once initialization has been completed. */
1124
1125extern const char **gdbarch_printable_names (void);
1126
1127
104c1213
JM
1128/* Helper function. Search the list of ARCHES for a GDBARCH that
1129 matches the information provided by INFO. */
1130
1131extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1132
1133
1134/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1135 basic initialization using values obtained from the INFO andTDEP
1136 parameters. set_gdbarch_*() functions are called to complete the
1137 initialization of the object. */
1138
1139extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1140
1141
4b9b3959
AC
1142/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1143 It is assumed that the caller freeds the \`\`struct
1144 gdbarch_tdep''. */
1145
058f20d5
JB
1146extern void gdbarch_free (struct gdbarch *);
1147
1148
b732d07d 1149/* Helper function. Force an update of the current architecture.
104c1213 1150
b732d07d
AC
1151 The actual architecture selected is determined by INFO, \`\`(gdb) set
1152 architecture'' et.al., the existing architecture and BFD's default
1153 architecture. INFO should be initialized to zero and then selected
1154 fields should be updated.
104c1213 1155
16f33e29
AC
1156 Returns non-zero if the update succeeds */
1157
1158extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1159
1160
1161
1162/* Register per-architecture data-pointer.
1163
1164 Reserve space for a per-architecture data-pointer. An identifier
1165 for the reserved data-pointer is returned. That identifer should
95160752 1166 be saved in a local static variable.
104c1213 1167
76860b5f
AC
1168 The per-architecture data-pointer is either initialized explicitly
1169 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1170 gdbarch_data()). FREE() is called to delete either an existing
2af496cb 1171 data-pointer overridden by set_gdbarch_data() or when the
76860b5f 1172 architecture object is being deleted.
104c1213 1173
95160752
AC
1174 When a previously created architecture is re-selected, the
1175 per-architecture data-pointer for that previous architecture is
76860b5f 1176 restored. INIT() is not re-called.
104c1213
JM
1177
1178 Multiple registrarants for any architecture are allowed (and
1179 strongly encouraged). */
1180
95160752 1181struct gdbarch_data;
104c1213 1182
95160752
AC
1183typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1184typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1185 void *pointer);
1186extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1187 gdbarch_data_free_ftype *free);
1188extern void set_gdbarch_data (struct gdbarch *gdbarch,
1189 struct gdbarch_data *data,
1190 void *pointer);
104c1213 1191
451fbdda 1192extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1193
1194
104c1213
JM
1195/* Register per-architecture memory region.
1196
1197 Provide a memory-region swap mechanism. Per-architecture memory
1198 region are created. These memory regions are swapped whenever the
1199 architecture is changed. For a new architecture, the memory region
1200 is initialized with zero (0) and the INIT function is called.
1201
1202 Memory regions are swapped / initialized in the order that they are
1203 registered. NULL DATA and/or INIT values can be specified.
1204
1205 New code should use register_gdbarch_data(). */
1206
1207typedef void (gdbarch_swap_ftype) (void);
1208extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1209#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1210
1211
1212
0fa6923a 1213/* The target-system-dependent byte order is dynamic */
104c1213 1214
104c1213 1215extern int target_byte_order;
104c1213
JM
1216#ifndef TARGET_BYTE_ORDER
1217#define TARGET_BYTE_ORDER (target_byte_order + 0)
1218#endif
1219
1220extern int target_byte_order_auto;
1221#ifndef TARGET_BYTE_ORDER_AUTO
1222#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1223#endif
1224
1225
1226
0fa6923a 1227/* The target-system-dependent BFD architecture is dynamic */
104c1213
JM
1228
1229extern int target_architecture_auto;
1230#ifndef TARGET_ARCHITECTURE_AUTO
1231#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1232#endif
1233
1234extern const struct bfd_arch_info *target_architecture;
1235#ifndef TARGET_ARCHITECTURE
1236#define TARGET_ARCHITECTURE (target_architecture + 0)
1237#endif
1238
104c1213 1239
0fa6923a 1240/* The target-system-dependent disassembler is semi-dynamic */
104c1213 1241
810ecf9f 1242/* Use gdb_disassemble, and gdbarch_print_insn instead. */
d7a27068 1243extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
104c1213 1244
810ecf9f
AC
1245/* Use set_gdbarch_print_insn instead. */
1246extern disassemble_info deprecated_tm_print_insn_info;
104c1213 1247
0fa6923a 1248/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1249 byte-order, ...) using information found in the BFD */
1250
1251extern void set_gdbarch_from_file (bfd *);
1252
1253
e514a9d6
JM
1254/* Initialize the current architecture to the "first" one we find on
1255 our list. */
1256
1257extern void initialize_current_architecture (void);
1258
ceaa8edf
JB
1259/* For non-multiarched targets, do any initialization of the default
1260 gdbarch object necessary after the _initialize_MODULE functions
1261 have run. */
5ae5f592 1262extern void initialize_non_multiarch (void);
104c1213
JM
1263
1264/* gdbarch trace variable */
1265extern int gdbarch_debug;
1266
4b9b3959 1267extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1268
1269#endif
1270EOF
1271exec 1>&2
1272#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1273compare_new gdbarch.h
104c1213
JM
1274
1275
1276#
1277# C file
1278#
1279
1280exec > new-gdbarch.c
1281copyright
1282cat <<EOF
1283
1284#include "defs.h"
7355ddba 1285#include "arch-utils.h"
104c1213
JM
1286
1287#if GDB_MULTI_ARCH
1288#include "gdbcmd.h"
1289#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1290#else
1291/* Just include everything in sight so that the every old definition
1292 of macro is visible. */
1293#include "gdb_string.h"
1294#include <ctype.h>
1295#include "symtab.h"
1296#include "frame.h"
1297#include "inferior.h"
1298#include "breakpoint.h"
0596389c 1299#include "gdb_wait.h"
104c1213
JM
1300#include "gdbcore.h"
1301#include "gdbcmd.h"
1302#include "target.h"
1303#include "gdbthread.h"
1304#include "annotate.h"
1305#include "symfile.h" /* for overlay functions */
fd0407d6 1306#include "value.h" /* For old tm.h/nm.h macros. */
104c1213
JM
1307#endif
1308#include "symcat.h"
1309
f0d4cc9e 1310#include "floatformat.h"
104c1213 1311
95160752 1312#include "gdb_assert.h"
b66d6d2e 1313#include "gdb_string.h"
67c2c32c 1314#include "gdb-events.h"
b59ff9d5 1315#include "reggroups.h"
4be87837 1316#include "osabi.h"
e9a2674e 1317#include "symfile.h" /* For entry_point_address. */
95160752 1318
104c1213
JM
1319/* Static function declarations */
1320
1321static void verify_gdbarch (struct gdbarch *gdbarch);
b3cc3077 1322static void alloc_gdbarch_data (struct gdbarch *);
95160752 1323static void free_gdbarch_data (struct gdbarch *);
104c1213 1324static void init_gdbarch_swap (struct gdbarch *);
40af4b0c 1325static void clear_gdbarch_swap (struct gdbarch *);
104c1213
JM
1326static void swapout_gdbarch_swap (struct gdbarch *);
1327static void swapin_gdbarch_swap (struct gdbarch *);
1328
104c1213
JM
1329/* Non-zero if we want to trace architecture code. */
1330
1331#ifndef GDBARCH_DEBUG
1332#define GDBARCH_DEBUG 0
1333#endif
1334int gdbarch_debug = GDBARCH_DEBUG;
1335
1336EOF
1337
1338# gdbarch open the gdbarch object
3d9a5942
AC
1339printf "\n"
1340printf "/* Maintain the struct gdbarch object */\n"
1341printf "\n"
1342printf "struct gdbarch\n"
1343printf "{\n"
76860b5f
AC
1344printf " /* Has this architecture been fully initialized? */\n"
1345printf " int initialized_p;\n"
3d9a5942 1346printf " /* basic architectural information */\n"
34620563 1347function_list | while do_read
104c1213 1348do
2ada493a
AC
1349 if class_is_info_p
1350 then
3d9a5942 1351 printf " ${returntype} ${function};\n"
2ada493a 1352 fi
104c1213 1353done
3d9a5942
AC
1354printf "\n"
1355printf " /* target specific vector. */\n"
1356printf " struct gdbarch_tdep *tdep;\n"
1357printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1358printf "\n"
1359printf " /* per-architecture data-pointers */\n"
95160752 1360printf " unsigned nr_data;\n"
3d9a5942
AC
1361printf " void **data;\n"
1362printf "\n"
1363printf " /* per-architecture swap-regions */\n"
1364printf " struct gdbarch_swap *swap;\n"
1365printf "\n"
104c1213
JM
1366cat <<EOF
1367 /* Multi-arch values.
1368
1369 When extending this structure you must:
1370
1371 Add the field below.
1372
1373 Declare set/get functions and define the corresponding
1374 macro in gdbarch.h.
1375
1376 gdbarch_alloc(): If zero/NULL is not a suitable default,
1377 initialize the new field.
1378
1379 verify_gdbarch(): Confirm that the target updated the field
1380 correctly.
1381
7e73cedf 1382 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1383 field is dumped out
1384
c0e8c252 1385 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1386 variable (base values on the host's c-type system).
1387
1388 get_gdbarch(): Implement the set/get functions (probably using
1389 the macro's as shortcuts).
1390
1391 */
1392
1393EOF
34620563 1394function_list | while do_read
104c1213 1395do
2ada493a
AC
1396 if class_is_variable_p
1397 then
3d9a5942 1398 printf " ${returntype} ${function};\n"
2ada493a
AC
1399 elif class_is_function_p
1400 then
3d9a5942 1401 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1402 fi
104c1213 1403done
3d9a5942 1404printf "};\n"
104c1213
JM
1405
1406# A pre-initialized vector
3d9a5942
AC
1407printf "\n"
1408printf "\n"
104c1213
JM
1409cat <<EOF
1410/* The default architecture uses host values (for want of a better
1411 choice). */
1412EOF
3d9a5942
AC
1413printf "\n"
1414printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1415printf "\n"
1416printf "struct gdbarch startup_gdbarch =\n"
1417printf "{\n"
76860b5f 1418printf " 1, /* Always initialized. */\n"
3d9a5942 1419printf " /* basic architecture information */\n"
4b9b3959 1420function_list | while do_read
104c1213 1421do
2ada493a
AC
1422 if class_is_info_p
1423 then
ec5cbaec 1424 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1425 fi
104c1213
JM
1426done
1427cat <<EOF
4b9b3959
AC
1428 /* target specific vector and its dump routine */
1429 NULL, NULL,
104c1213
JM
1430 /*per-architecture data-pointers and swap regions */
1431 0, NULL, NULL,
1432 /* Multi-arch values */
1433EOF
34620563 1434function_list | while do_read
104c1213 1435do
2ada493a
AC
1436 if class_is_function_p || class_is_variable_p
1437 then
ec5cbaec 1438 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1439 fi
104c1213
JM
1440done
1441cat <<EOF
c0e8c252 1442 /* startup_gdbarch() */
104c1213 1443};
4b9b3959 1444
c0e8c252 1445struct gdbarch *current_gdbarch = &startup_gdbarch;
ceaa8edf
JB
1446
1447/* Do any initialization needed for a non-multiarch configuration
1448 after the _initialize_MODULE functions have been run. */
1449void
5ae5f592 1450initialize_non_multiarch (void)
ceaa8edf
JB
1451{
1452 alloc_gdbarch_data (&startup_gdbarch);
40af4b0c
AC
1453 /* Ensure that all swap areas are zeroed so that they again think
1454 they are starting from scratch. */
1455 clear_gdbarch_swap (&startup_gdbarch);
6c1e5d11 1456 init_gdbarch_swap (&startup_gdbarch);
ceaa8edf 1457}
104c1213
JM
1458EOF
1459
1460# Create a new gdbarch struct
3d9a5942
AC
1461printf "\n"
1462printf "\n"
104c1213 1463cat <<EOF
66b43ecb 1464/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1465 \`\`struct gdbarch_info''. */
1466EOF
3d9a5942 1467printf "\n"
104c1213
JM
1468cat <<EOF
1469struct gdbarch *
1470gdbarch_alloc (const struct gdbarch_info *info,
1471 struct gdbarch_tdep *tdep)
1472{
85de9627
AC
1473 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1474 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1475 the current local architecture and not the previous global
1476 architecture. This ensures that the new architectures initial
1477 values are not influenced by the previous architecture. Once
1478 everything is parameterised with gdbarch, this will go away. */
1479 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1480 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1481
1482 alloc_gdbarch_data (current_gdbarch);
1483
1484 current_gdbarch->tdep = tdep;
104c1213 1485EOF
3d9a5942 1486printf "\n"
34620563 1487function_list | while do_read
104c1213 1488do
2ada493a
AC
1489 if class_is_info_p
1490 then
85de9627 1491 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1492 fi
104c1213 1493done
3d9a5942
AC
1494printf "\n"
1495printf " /* Force the explicit initialization of these. */\n"
34620563 1496function_list | while do_read
104c1213 1497do
2ada493a
AC
1498 if class_is_function_p || class_is_variable_p
1499 then
72e74a21 1500 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1501 then
85de9627 1502 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1503 fi
2ada493a 1504 fi
104c1213
JM
1505done
1506cat <<EOF
1507 /* gdbarch_alloc() */
1508
85de9627 1509 return current_gdbarch;
104c1213
JM
1510}
1511EOF
1512
058f20d5 1513# Free a gdbarch struct.
3d9a5942
AC
1514printf "\n"
1515printf "\n"
058f20d5
JB
1516cat <<EOF
1517/* Free a gdbarch struct. This should never happen in normal
1518 operation --- once you've created a gdbarch, you keep it around.
1519 However, if an architecture's init function encounters an error
1520 building the structure, it may need to clean up a partially
1521 constructed gdbarch. */
4b9b3959 1522
058f20d5
JB
1523void
1524gdbarch_free (struct gdbarch *arch)
1525{
95160752
AC
1526 gdb_assert (arch != NULL);
1527 free_gdbarch_data (arch);
338d7c5c 1528 xfree (arch);
058f20d5
JB
1529}
1530EOF
1531
104c1213 1532# verify a new architecture
3d9a5942
AC
1533printf "\n"
1534printf "\n"
1535printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1536printf "\n"
104c1213
JM
1537cat <<EOF
1538static void
1539verify_gdbarch (struct gdbarch *gdbarch)
1540{
f16a1923
AC
1541 struct ui_file *log;
1542 struct cleanup *cleanups;
1543 long dummy;
1544 char *buf;
104c1213 1545 /* Only perform sanity checks on a multi-arch target. */
6166d547 1546 if (!GDB_MULTI_ARCH)
104c1213 1547 return;
f16a1923
AC
1548 log = mem_fileopen ();
1549 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1550 /* fundamental */
428721aa 1551 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1552 fprintf_unfiltered (log, "\n\tbyte-order");
104c1213 1553 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1554 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1555 /* Check those that need to be defined for the given multi-arch level. */
1556EOF
34620563 1557function_list | while do_read
104c1213 1558do
2ada493a
AC
1559 if class_is_function_p || class_is_variable_p
1560 then
72e74a21 1561 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1562 then
3d9a5942 1563 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1564 elif class_is_predicate_p
1565 then
3d9a5942 1566 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1567 # FIXME: See do_read for potential simplification
72e74a21 1568 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1569 then
3d9a5942
AC
1570 printf " if (${invalid_p})\n"
1571 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1572 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1573 then
3d9a5942
AC
1574 printf " if (gdbarch->${function} == ${predefault})\n"
1575 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1576 elif [ -n "${postdefault}" ]
f0d4cc9e 1577 then
3d9a5942
AC
1578 printf " if (gdbarch->${function} == 0)\n"
1579 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1580 elif [ -n "${invalid_p}" ]
104c1213 1581 then
50248794 1582 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1583 printf " && (${invalid_p}))\n"
f16a1923 1584 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1585 elif [ -n "${predefault}" ]
104c1213 1586 then
50248794 1587 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1588 printf " && (gdbarch->${function} == ${predefault}))\n"
f16a1923 1589 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1590 fi
2ada493a 1591 fi
104c1213
JM
1592done
1593cat <<EOF
f16a1923
AC
1594 buf = ui_file_xstrdup (log, &dummy);
1595 make_cleanup (xfree, buf);
1596 if (strlen (buf) > 0)
1597 internal_error (__FILE__, __LINE__,
1598 "verify_gdbarch: the following are invalid ...%s",
1599 buf);
1600 do_cleanups (cleanups);
104c1213
JM
1601}
1602EOF
1603
1604# dump the structure
3d9a5942
AC
1605printf "\n"
1606printf "\n"
104c1213 1607cat <<EOF
4b9b3959
AC
1608/* Print out the details of the current architecture. */
1609
1610/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1611 just happens to match the global variable \`\`current_gdbarch''. That
1612 way macros refering to that variable get the local and not the global
1613 version - ulgh. Once everything is parameterised with gdbarch, this
1614 will go away. */
1615
104c1213 1616void
4b9b3959 1617gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1618{
4b9b3959
AC
1619 fprintf_unfiltered (file,
1620 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1621 GDB_MULTI_ARCH);
104c1213 1622EOF
9ba8d803 1623function_list | sort -t: -k 3 | while do_read
104c1213 1624do
1e9f55d0
AC
1625 # First the predicate
1626 if class_is_predicate_p
1627 then
1628 if class_is_multiarch_p
1629 then
1630 printf " if (GDB_MULTI_ARCH)\n"
1631 printf " fprintf_unfiltered (file,\n"
1632 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1633 printf " gdbarch_${function}_p (current_gdbarch));\n"
1634 else
1635 printf "#ifdef ${macro}_P\n"
1636 printf " fprintf_unfiltered (file,\n"
1637 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1638 printf " \"${macro}_P()\",\n"
1639 printf " XSTRING (${macro}_P ()));\n"
1640 printf " fprintf_unfiltered (file,\n"
1641 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1642 printf " ${macro}_P ());\n"
1643 printf "#endif\n"
1644 fi
1645 fi
4a5c6a1d 1646 # multiarch functions don't have macros.
08e45a40
AC
1647 if class_is_multiarch_p
1648 then
1649 printf " if (GDB_MULTI_ARCH)\n"
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1652 printf " (long) current_gdbarch->${function});\n"
1653 continue
1654 fi
06b25f14 1655 # Print the macro definition.
08e45a40 1656 printf "#ifdef ${macro}\n"
72e74a21 1657 if [ "x${returntype}" = "xvoid" ]
63e69063 1658 then
08e45a40 1659 printf "#if GDB_MULTI_ARCH\n"
3d9a5942 1660 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
63e69063 1661 fi
2ada493a
AC
1662 if class_is_function_p
1663 then
3d9a5942
AC
1664 printf " fprintf_unfiltered (file,\n"
1665 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1666 printf " \"${macro}(${actual})\",\n"
1667 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1668 else
3d9a5942
AC
1669 printf " fprintf_unfiltered (file,\n"
1670 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1671 printf " XSTRING (${macro}));\n"
4b9b3959 1672 fi
06b25f14 1673 # Print the architecture vector value
08e45a40 1674 if [ "x${returntype}" = "xvoid" ]
4a5c6a1d 1675 then
08e45a40 1676 printf "#endif\n"
4a5c6a1d 1677 fi
72e74a21 1678 if [ "x${print_p}" = "x()" ]
4b9b3959 1679 then
4a5c6a1d 1680 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1681 elif [ "x${print_p}" = "x0" ]
4b9b3959 1682 then
4a5c6a1d 1683 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1684 elif [ -n "${print_p}" ]
4b9b3959 1685 then
4a5c6a1d 1686 printf " if (${print_p})\n"
3d9a5942
AC
1687 printf " fprintf_unfiltered (file,\n"
1688 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1689 printf " ${print});\n"
4b9b3959
AC
1690 elif class_is_function_p
1691 then
3d9a5942
AC
1692 printf " if (GDB_MULTI_ARCH)\n"
1693 printf " fprintf_unfiltered (file,\n"
6cbda714 1694 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
3d9a5942
AC
1695 printf " (long) current_gdbarch->${function}\n"
1696 printf " /*${macro} ()*/);\n"
4b9b3959 1697 else
3d9a5942
AC
1698 printf " fprintf_unfiltered (file,\n"
1699 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1700 printf " ${print});\n"
2ada493a 1701 fi
3d9a5942 1702 printf "#endif\n"
104c1213 1703done
381323f4 1704cat <<EOF
4b9b3959
AC
1705 if (current_gdbarch->dump_tdep != NULL)
1706 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1707}
1708EOF
104c1213
JM
1709
1710
1711# GET/SET
3d9a5942 1712printf "\n"
104c1213
JM
1713cat <<EOF
1714struct gdbarch_tdep *
1715gdbarch_tdep (struct gdbarch *gdbarch)
1716{
1717 if (gdbarch_debug >= 2)
3d9a5942 1718 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1719 return gdbarch->tdep;
1720}
1721EOF
3d9a5942 1722printf "\n"
34620563 1723function_list | while do_read
104c1213 1724do
2ada493a
AC
1725 if class_is_predicate_p
1726 then
3d9a5942
AC
1727 printf "\n"
1728 printf "int\n"
1729 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1730 printf "{\n"
8de9bdc4 1731 printf " gdb_assert (gdbarch != NULL);\n"
ae45cd16 1732 if [ -n "${predicate}" ]
2ada493a 1733 then
ae45cd16 1734 printf " return ${predicate};\n"
ae99b398
AC
1735 elif class_is_variable_p
1736 then
1737 printf " return gdbarch->${function} != 0;\n"
1738 elif class_is_function_p
1739 then
956ac328 1740 printf " return gdbarch->${function} != NULL;\n"
2ada493a 1741 fi
3d9a5942 1742 printf "}\n"
2ada493a
AC
1743 fi
1744 if class_is_function_p
1745 then
3d9a5942
AC
1746 printf "\n"
1747 printf "${returntype}\n"
72e74a21 1748 if [ "x${formal}" = "xvoid" ]
104c1213 1749 then
3d9a5942 1750 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1751 else
3d9a5942 1752 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1753 fi
3d9a5942 1754 printf "{\n"
8de9bdc4 1755 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1756 printf " gdb_assert (gdbarch->${function} != NULL);\n"
ae45cd16
AC
1757 if class_is_predicate_p && test -n "${predicate}"
1758 then
1759 # Allow a call to a function with a predicate.
956ac328 1760 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1761 fi
3d9a5942
AC
1762 printf " if (gdbarch_debug >= 2)\n"
1763 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1764 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1765 then
1766 if class_is_multiarch_p
1767 then
1768 params="gdbarch"
1769 else
1770 params=""
1771 fi
1772 else
1773 if class_is_multiarch_p
1774 then
1775 params="gdbarch, ${actual}"
1776 else
1777 params="${actual}"
1778 fi
1779 fi
72e74a21 1780 if [ "x${returntype}" = "xvoid" ]
104c1213 1781 then
4a5c6a1d 1782 printf " gdbarch->${function} (${params});\n"
104c1213 1783 else
4a5c6a1d 1784 printf " return gdbarch->${function} (${params});\n"
104c1213 1785 fi
3d9a5942
AC
1786 printf "}\n"
1787 printf "\n"
1788 printf "void\n"
1789 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1790 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1791 printf "{\n"
1792 printf " gdbarch->${function} = ${function};\n"
1793 printf "}\n"
2ada493a
AC
1794 elif class_is_variable_p
1795 then
3d9a5942
AC
1796 printf "\n"
1797 printf "${returntype}\n"
1798 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1799 printf "{\n"
8de9bdc4 1800 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1801 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1802 then
3d9a5942 1803 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1804 elif [ -n "${invalid_p}" ]
104c1213 1805 then
956ac328
AC
1806 printf " /* Check variable is valid. */\n"
1807 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1808 elif [ -n "${predefault}" ]
104c1213 1809 then
956ac328
AC
1810 printf " /* Check variable changed from pre-default. */\n"
1811 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1812 fi
3d9a5942
AC
1813 printf " if (gdbarch_debug >= 2)\n"
1814 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1815 printf " return gdbarch->${function};\n"
1816 printf "}\n"
1817 printf "\n"
1818 printf "void\n"
1819 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1820 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1821 printf "{\n"
1822 printf " gdbarch->${function} = ${function};\n"
1823 printf "}\n"
2ada493a
AC
1824 elif class_is_info_p
1825 then
3d9a5942
AC
1826 printf "\n"
1827 printf "${returntype}\n"
1828 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1829 printf "{\n"
8de9bdc4 1830 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1831 printf " if (gdbarch_debug >= 2)\n"
1832 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1833 printf " return gdbarch->${function};\n"
1834 printf "}\n"
2ada493a 1835 fi
104c1213
JM
1836done
1837
1838# All the trailing guff
1839cat <<EOF
1840
1841
f44c642f 1842/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1843 modules. */
1844
1845struct gdbarch_data
1846{
95160752 1847 unsigned index;
76860b5f 1848 int init_p;
95160752
AC
1849 gdbarch_data_init_ftype *init;
1850 gdbarch_data_free_ftype *free;
104c1213
JM
1851};
1852
1853struct gdbarch_data_registration
1854{
104c1213
JM
1855 struct gdbarch_data *data;
1856 struct gdbarch_data_registration *next;
1857};
1858
f44c642f 1859struct gdbarch_data_registry
104c1213 1860{
95160752 1861 unsigned nr;
104c1213
JM
1862 struct gdbarch_data_registration *registrations;
1863};
1864
f44c642f 1865struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1866{
1867 0, NULL,
1868};
1869
1870struct gdbarch_data *
95160752
AC
1871register_gdbarch_data (gdbarch_data_init_ftype *init,
1872 gdbarch_data_free_ftype *free)
104c1213
JM
1873{
1874 struct gdbarch_data_registration **curr;
76860b5f 1875 /* Append the new registraration. */
f44c642f 1876 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1877 (*curr) != NULL;
1878 curr = &(*curr)->next);
1879 (*curr) = XMALLOC (struct gdbarch_data_registration);
1880 (*curr)->next = NULL;
104c1213 1881 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1882 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752 1883 (*curr)->data->init = init;
76860b5f 1884 (*curr)->data->init_p = 1;
95160752 1885 (*curr)->data->free = free;
104c1213
JM
1886 return (*curr)->data;
1887}
1888
1889
b3cc3077 1890/* Create/delete the gdbarch data vector. */
95160752
AC
1891
1892static void
b3cc3077 1893alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1894{
b3cc3077
JB
1895 gdb_assert (gdbarch->data == NULL);
1896 gdbarch->nr_data = gdbarch_data_registry.nr;
1897 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1898}
3c875b6f 1899
b3cc3077
JB
1900static void
1901free_gdbarch_data (struct gdbarch *gdbarch)
1902{
1903 struct gdbarch_data_registration *rego;
1904 gdb_assert (gdbarch->data != NULL);
1905 for (rego = gdbarch_data_registry.registrations;
1906 rego != NULL;
1907 rego = rego->next)
95160752 1908 {
b3cc3077
JB
1909 struct gdbarch_data *data = rego->data;
1910 gdb_assert (data->index < gdbarch->nr_data);
1911 if (data->free != NULL && gdbarch->data[data->index] != NULL)
95160752 1912 {
b3cc3077
JB
1913 data->free (gdbarch, gdbarch->data[data->index]);
1914 gdbarch->data[data->index] = NULL;
95160752 1915 }
104c1213 1916 }
b3cc3077
JB
1917 xfree (gdbarch->data);
1918 gdbarch->data = NULL;
104c1213
JM
1919}
1920
1921
76860b5f 1922/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1923 data-pointer. */
1924
95160752
AC
1925void
1926set_gdbarch_data (struct gdbarch *gdbarch,
1927 struct gdbarch_data *data,
1928 void *pointer)
1929{
1930 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1931 if (gdbarch->data[data->index] != NULL)
1932 {
1933 gdb_assert (data->free != NULL);
1934 data->free (gdbarch, gdbarch->data[data->index]);
1935 }
95160752
AC
1936 gdbarch->data[data->index] = pointer;
1937}
1938
104c1213
JM
1939/* Return the current value of the specified per-architecture
1940 data-pointer. */
1941
1942void *
451fbdda 1943gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1944{
451fbdda 1945 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1946 /* The data-pointer isn't initialized, call init() to get a value but
1947 only if the architecture initializaiton has completed. Otherwise
1948 punt - hope that the caller knows what they are doing. */
1949 if (gdbarch->data[data->index] == NULL
1950 && gdbarch->initialized_p)
1951 {
1952 /* Be careful to detect an initialization cycle. */
1953 gdb_assert (data->init_p);
1954 data->init_p = 0;
1955 gdb_assert (data->init != NULL);
1956 gdbarch->data[data->index] = data->init (gdbarch);
1957 data->init_p = 1;
1958 gdb_assert (gdbarch->data[data->index] != NULL);
1959 }
451fbdda 1960 return gdbarch->data[data->index];
104c1213
JM
1961}
1962
1963
1964
f44c642f 1965/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1966
1967struct gdbarch_swap
1968{
1969 void *swap;
1970 struct gdbarch_swap_registration *source;
1971 struct gdbarch_swap *next;
1972};
1973
1974struct gdbarch_swap_registration
1975{
1976 void *data;
1977 unsigned long sizeof_data;
1978 gdbarch_swap_ftype *init;
1979 struct gdbarch_swap_registration *next;
1980};
1981
f44c642f 1982struct gdbarch_swap_registry
104c1213
JM
1983{
1984 int nr;
1985 struct gdbarch_swap_registration *registrations;
1986};
1987
f44c642f 1988struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1989{
1990 0, NULL,
1991};
1992
1993void
1994register_gdbarch_swap (void *data,
1995 unsigned long sizeof_data,
1996 gdbarch_swap_ftype *init)
1997{
1998 struct gdbarch_swap_registration **rego;
f44c642f 1999 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
2000 (*rego) != NULL;
2001 rego = &(*rego)->next);
2002 (*rego) = XMALLOC (struct gdbarch_swap_registration);
2003 (*rego)->next = NULL;
2004 (*rego)->init = init;
2005 (*rego)->data = data;
2006 (*rego)->sizeof_data = sizeof_data;
2007}
2008
40af4b0c
AC
2009static void
2010clear_gdbarch_swap (struct gdbarch *gdbarch)
2011{
2012 struct gdbarch_swap *curr;
2013 for (curr = gdbarch->swap;
2014 curr != NULL;
2015 curr = curr->next)
2016 {
2017 memset (curr->source->data, 0, curr->source->sizeof_data);
2018 }
2019}
104c1213
JM
2020
2021static void
2022init_gdbarch_swap (struct gdbarch *gdbarch)
2023{
2024 struct gdbarch_swap_registration *rego;
2025 struct gdbarch_swap **curr = &gdbarch->swap;
f44c642f 2026 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
2027 rego != NULL;
2028 rego = rego->next)
2029 {
2030 if (rego->data != NULL)
2031 {
2032 (*curr) = XMALLOC (struct gdbarch_swap);
2033 (*curr)->source = rego;
2034 (*curr)->swap = xmalloc (rego->sizeof_data);
2035 (*curr)->next = NULL;
104c1213
JM
2036 curr = &(*curr)->next;
2037 }
2038 if (rego->init != NULL)
2039 rego->init ();
2040 }
2041}
2042
2043static void
2044swapout_gdbarch_swap (struct gdbarch *gdbarch)
2045{
2046 struct gdbarch_swap *curr;
2047 for (curr = gdbarch->swap;
2048 curr != NULL;
2049 curr = curr->next)
2050 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2051}
2052
2053static void
2054swapin_gdbarch_swap (struct gdbarch *gdbarch)
2055{
2056 struct gdbarch_swap *curr;
2057 for (curr = gdbarch->swap;
2058 curr != NULL;
2059 curr = curr->next)
2060 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2061}
2062
2063
f44c642f 2064/* Keep a registry of the architectures known by GDB. */
104c1213 2065
4b9b3959 2066struct gdbarch_registration
104c1213
JM
2067{
2068 enum bfd_architecture bfd_architecture;
2069 gdbarch_init_ftype *init;
4b9b3959 2070 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2071 struct gdbarch_list *arches;
4b9b3959 2072 struct gdbarch_registration *next;
104c1213
JM
2073};
2074
f44c642f 2075static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2076
b4a20239
AC
2077static void
2078append_name (const char ***buf, int *nr, const char *name)
2079{
2080 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2081 (*buf)[*nr] = name;
2082 *nr += 1;
2083}
2084
2085const char **
2086gdbarch_printable_names (void)
2087{
2088 if (GDB_MULTI_ARCH)
2089 {
2090 /* Accumulate a list of names based on the registed list of
2091 architectures. */
2092 enum bfd_architecture a;
2093 int nr_arches = 0;
2094 const char **arches = NULL;
4b9b3959 2095 struct gdbarch_registration *rego;
f44c642f 2096 for (rego = gdbarch_registry;
b4a20239
AC
2097 rego != NULL;
2098 rego = rego->next)
2099 {
2100 const struct bfd_arch_info *ap;
2101 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2102 if (ap == NULL)
8e65ff28
AC
2103 internal_error (__FILE__, __LINE__,
2104 "gdbarch_architecture_names: multi-arch unknown");
b4a20239
AC
2105 do
2106 {
2107 append_name (&arches, &nr_arches, ap->printable_name);
2108 ap = ap->next;
2109 }
2110 while (ap != NULL);
2111 }
2112 append_name (&arches, &nr_arches, NULL);
2113 return arches;
2114 }
2115 else
2116 /* Just return all the architectures that BFD knows. Assume that
2117 the legacy architecture framework supports them. */
2118 return bfd_arch_list ();
2119}
2120
2121
104c1213 2122void
4b9b3959
AC
2123gdbarch_register (enum bfd_architecture bfd_architecture,
2124 gdbarch_init_ftype *init,
2125 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2126{
4b9b3959 2127 struct gdbarch_registration **curr;
104c1213 2128 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2129 /* Check that BFD recognizes this architecture */
104c1213
JM
2130 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2131 if (bfd_arch_info == NULL)
2132 {
8e65ff28
AC
2133 internal_error (__FILE__, __LINE__,
2134 "gdbarch: Attempt to register unknown architecture (%d)",
2135 bfd_architecture);
104c1213
JM
2136 }
2137 /* Check that we haven't seen this architecture before */
f44c642f 2138 for (curr = &gdbarch_registry;
104c1213
JM
2139 (*curr) != NULL;
2140 curr = &(*curr)->next)
2141 {
2142 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2143 internal_error (__FILE__, __LINE__,
2144 "gdbarch: Duplicate registraration of architecture (%s)",
2145 bfd_arch_info->printable_name);
104c1213
JM
2146 }
2147 /* log it */
2148 if (gdbarch_debug)
2149 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2150 bfd_arch_info->printable_name,
2151 (long) init);
2152 /* Append it */
4b9b3959 2153 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2154 (*curr)->bfd_architecture = bfd_architecture;
2155 (*curr)->init = init;
4b9b3959 2156 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2157 (*curr)->arches = NULL;
2158 (*curr)->next = NULL;
8e1a459b
C
2159 /* When non- multi-arch, install whatever target dump routine we've
2160 been provided - hopefully that routine has been written correctly
4b9b3959
AC
2161 and works regardless of multi-arch. */
2162 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2163 && startup_gdbarch.dump_tdep == NULL)
2164 startup_gdbarch.dump_tdep = dump_tdep;
2165}
2166
2167void
2168register_gdbarch_init (enum bfd_architecture bfd_architecture,
2169 gdbarch_init_ftype *init)
2170{
2171 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2172}
104c1213
JM
2173
2174
2175/* Look for an architecture using gdbarch_info. Base search on only
2176 BFD_ARCH_INFO and BYTE_ORDER. */
2177
2178struct gdbarch_list *
2179gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2180 const struct gdbarch_info *info)
2181{
2182 for (; arches != NULL; arches = arches->next)
2183 {
2184 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2185 continue;
2186 if (info->byte_order != arches->gdbarch->byte_order)
2187 continue;
4be87837
DJ
2188 if (info->osabi != arches->gdbarch->osabi)
2189 continue;
104c1213
JM
2190 return arches;
2191 }
2192 return NULL;
2193}
2194
2195
2196/* Update the current architecture. Return ZERO if the update request
2197 failed. */
2198
2199int
16f33e29 2200gdbarch_update_p (struct gdbarch_info info)
104c1213
JM
2201{
2202 struct gdbarch *new_gdbarch;
40af4b0c 2203 struct gdbarch *old_gdbarch;
4b9b3959 2204 struct gdbarch_registration *rego;
104c1213 2205
b732d07d
AC
2206 /* Fill in missing parts of the INFO struct using a number of
2207 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2208
2209 /* \`\`(gdb) set architecture ...'' */
2210 if (info.bfd_arch_info == NULL
2211 && !TARGET_ARCHITECTURE_AUTO)
2212 info.bfd_arch_info = TARGET_ARCHITECTURE;
2213 if (info.bfd_arch_info == NULL
2214 && info.abfd != NULL
2215 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2216 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2217 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
104c1213 2218 if (info.bfd_arch_info == NULL)
b732d07d
AC
2219 info.bfd_arch_info = TARGET_ARCHITECTURE;
2220
2221 /* \`\`(gdb) set byte-order ...'' */
428721aa 2222 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d
AC
2223 && !TARGET_BYTE_ORDER_AUTO)
2224 info.byte_order = TARGET_BYTE_ORDER;
2225 /* From the INFO struct. */
428721aa 2226 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d 2227 && info.abfd != NULL)
d7449b42 2228 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
778eb05e 2229 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
428721aa 2230 : BFD_ENDIAN_UNKNOWN);
b732d07d 2231 /* From the current target. */
428721aa 2232 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
b732d07d 2233 info.byte_order = TARGET_BYTE_ORDER;
104c1213 2234
4be87837
DJ
2235 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2236 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2237 info.osabi = gdbarch_lookup_osabi (info.abfd);
2238 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2239 info.osabi = current_gdbarch->osabi;
2240
b732d07d
AC
2241 /* Must have found some sort of architecture. */
2242 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2243
2244 if (gdbarch_debug)
2245 {
2246 fprintf_unfiltered (gdb_stdlog,
b732d07d 2247 "gdbarch_update: info.bfd_arch_info %s\n",
104c1213
JM
2248 (info.bfd_arch_info != NULL
2249 ? info.bfd_arch_info->printable_name
2250 : "(null)"));
2251 fprintf_unfiltered (gdb_stdlog,
b732d07d 2252 "gdbarch_update: info.byte_order %d (%s)\n",
104c1213 2253 info.byte_order,
d7449b42 2254 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2255 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2256 : "default"));
4be87837
DJ
2257 fprintf_unfiltered (gdb_stdlog,
2258 "gdbarch_update: info.osabi %d (%s)\n",
2259 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2260 fprintf_unfiltered (gdb_stdlog,
b732d07d 2261 "gdbarch_update: info.abfd 0x%lx\n",
104c1213
JM
2262 (long) info.abfd);
2263 fprintf_unfiltered (gdb_stdlog,
b732d07d 2264 "gdbarch_update: info.tdep_info 0x%lx\n",
104c1213
JM
2265 (long) info.tdep_info);
2266 }
2267
b732d07d
AC
2268 /* Find the target that knows about this architecture. */
2269 for (rego = gdbarch_registry;
2270 rego != NULL;
2271 rego = rego->next)
2272 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2273 break;
2274 if (rego == NULL)
2275 {
2276 if (gdbarch_debug)
2277 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2278 return 0;
2279 }
2280
40af4b0c
AC
2281 /* Swap the data belonging to the old target out setting the
2282 installed data to zero. This stops the ->init() function trying
2283 to refer to the previous architecture's global data structures. */
2284 swapout_gdbarch_swap (current_gdbarch);
2285 clear_gdbarch_swap (current_gdbarch);
2286
2287 /* Save the previously selected architecture, setting the global to
2288 NULL. This stops ->init() trying to use the previous
2289 architecture's configuration. The previous architecture may not
2290 even be of the same architecture family. The most recent
2291 architecture of the same family is found at the head of the
2292 rego->arches list. */
2293 old_gdbarch = current_gdbarch;
2294 current_gdbarch = NULL;
2295
104c1213
JM
2296 /* Ask the target for a replacement architecture. */
2297 new_gdbarch = rego->init (info, rego->arches);
2298
40af4b0c
AC
2299 /* Did the target like it? No. Reject the change and revert to the
2300 old architecture. */
104c1213
JM
2301 if (new_gdbarch == NULL)
2302 {
2303 if (gdbarch_debug)
3d9a5942 2304 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
40af4b0c
AC
2305 swapin_gdbarch_swap (old_gdbarch);
2306 current_gdbarch = old_gdbarch;
104c1213
JM
2307 return 0;
2308 }
2309
40af4b0c
AC
2310 /* Did the architecture change? No. Oops, put the old architecture
2311 back. */
2312 if (old_gdbarch == new_gdbarch)
104c1213
JM
2313 {
2314 if (gdbarch_debug)
3d9a5942 2315 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
104c1213
JM
2316 (long) new_gdbarch,
2317 new_gdbarch->bfd_arch_info->printable_name);
40af4b0c
AC
2318 swapin_gdbarch_swap (old_gdbarch);
2319 current_gdbarch = old_gdbarch;
104c1213
JM
2320 return 1;
2321 }
2322
0f79675b
AC
2323 /* Is this a pre-existing architecture? Yes. Move it to the front
2324 of the list of architectures (keeping the list sorted Most
2325 Recently Used) and then copy it in. */
2326 {
2327 struct gdbarch_list **list;
2328 for (list = &rego->arches;
2329 (*list) != NULL;
2330 list = &(*list)->next)
2331 {
2332 if ((*list)->gdbarch == new_gdbarch)
2333 {
2334 struct gdbarch_list *this;
2335 if (gdbarch_debug)
2336 fprintf_unfiltered (gdb_stdlog,
2337 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2338 (long) new_gdbarch,
2339 new_gdbarch->bfd_arch_info->printable_name);
2340 /* Unlink this. */
2341 this = (*list);
2342 (*list) = this->next;
2343 /* Insert in the front. */
2344 this->next = rego->arches;
2345 rego->arches = this;
2346 /* Copy the new architecture in. */
2347 current_gdbarch = new_gdbarch;
2348 swapin_gdbarch_swap (new_gdbarch);
2349 architecture_changed_event ();
2350 return 1;
2351 }
2352 }
2353 }
2354
2355 /* Prepend this new architecture to the architecture list (keep the
2356 list sorted Most Recently Used). */
2357 {
2358 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2359 this->next = rego->arches;
2360 this->gdbarch = new_gdbarch;
2361 rego->arches = this;
2362 }
104c1213 2363
76860b5f 2364 /* Switch to this new architecture marking it initialized. */
104c1213 2365 current_gdbarch = new_gdbarch;
76860b5f 2366 current_gdbarch->initialized_p = 1;
104c1213
JM
2367 if (gdbarch_debug)
2368 {
2369 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2370 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2371 (long) new_gdbarch,
2372 new_gdbarch->bfd_arch_info->printable_name);
104c1213
JM
2373 }
2374
4b9b3959
AC
2375 /* Check that the newly installed architecture is valid. Plug in
2376 any post init values. */
2377 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213
JM
2378 verify_gdbarch (new_gdbarch);
2379
cf17c188
AC
2380 /* Initialize the per-architecture memory (swap) areas.
2381 CURRENT_GDBARCH must be update before these modules are
2382 called. */
2383 init_gdbarch_swap (new_gdbarch);
2384
76860b5f 2385 /* Initialize the per-architecture data. CURRENT_GDBARCH
cf17c188 2386 must be updated before these modules are called. */
67c2c32c
KS
2387 architecture_changed_event ();
2388
4b9b3959
AC
2389 if (gdbarch_debug)
2390 gdbarch_dump (current_gdbarch, gdb_stdlog);
2391
104c1213
JM
2392 return 1;
2393}
2394
2395
104c1213
JM
2396/* Disassembler */
2397
2398/* Pointer to the target-dependent disassembly function. */
d7a27068 2399int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
104c1213 2400
104c1213 2401extern void _initialize_gdbarch (void);
b4a20239 2402
104c1213 2403void
34620563 2404_initialize_gdbarch (void)
104c1213 2405{
59233f88
AC
2406 struct cmd_list_element *c;
2407
59233f88 2408 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2409 class_maintenance,
2410 var_zinteger,
2411 (char *)&gdbarch_debug,
3d9a5942 2412 "Set architecture debugging.\\n\\
59233f88
AC
2413When non-zero, architecture debugging is enabled.", &setdebuglist),
2414 &showdebuglist);
2415 c = add_set_cmd ("archdebug",
2416 class_maintenance,
2417 var_zinteger,
2418 (char *)&gdbarch_debug,
3d9a5942 2419 "Set architecture debugging.\\n\\
59233f88
AC
2420When non-zero, architecture debugging is enabled.", &setlist);
2421
2422 deprecate_cmd (c, "set debug arch");
2423 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2424}
2425EOF
2426
2427# close things off
2428exec 1>&2
2429#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2430compare_new gdbarch.c
This page took 0.421381 seconds and 4 git commands to generate.