Manual copyright year update of various GDB files
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
88b9d363 5# Copyright (C) 1998-2022 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532 26
59233f88 27# Format of the input table
97030eea 28read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
29
30do_read ()
31{
34620563
AC
32 comment=""
33 class=""
c9023fb3
PA
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
ffc2844e 37 # shellcheck disable=SC2162
c9023fb3 38 while IFS='' read line
34620563
AC
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 44 then
34620563
AC
45 continue
46 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 47 then
34620563
AC
48 comment="${comment}
49${line}"
f0d4cc9e 50 else
3d9a5942
AC
51
52 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
cb02ab24 55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
3d9a5942 56
ea480a30 57 OFS="${IFS}" ; IFS="[;]"
a6fc5ffc 58 eval read "${read}" <<EOF
34620563
AC
59${line}
60EOF
61 IFS="${OFS}"
62
1207375d 63 if test -n "${garbage_at_eol:-}"
283354d8
AC
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
3d9a5942
AC
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
a6fc5ffc 74 if eval test "\"\${${r}}\" = ' '"
3d9a5942 75 then
a6fc5ffc 76 eval "${r}="
3d9a5942
AC
77 fi
78 done
79
a72293e2 80 case "${class}" in
1207375d 81 m ) staticdefault="${predefault:-}" ;;
a72293e2
AC
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
06b25f14 85
ae45cd16
AC
86 case "${class}" in
87 F | V | M )
1207375d 88 case "${invalid_p:-}" in
34620563 89 "" )
f7968451 90 if test -n "${predefault}"
34620563
AC
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
1207375d 93 predicate="gdbarch->${function:-} != ${predefault}"
f7968451
AC
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
34620563
AC
100 fi
101 ;;
ae45cd16 102 * )
1e9f55d0 103 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
104 kill $$
105 exit 1
106 ;;
107 esac
34620563
AC
108 esac
109
34620563
AC
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
f0d4cc9e 114 fi
34620563 115 done
72e74a21 116 if [ -n "${class}" ]
34620563
AC
117 then
118 true
c0e8c252
AC
119 else
120 false
121 fi
122}
123
104c1213 124
f0d4cc9e
AC
125fallback_default_p ()
126{
1207375d 127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
9fdb2916 128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
f0d4cc9e
AC
129}
130
131class_is_variable_p ()
132{
4a5c6a1d
AC
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
f0d4cc9e
AC
137}
138
139class_is_function_p ()
140{
4a5c6a1d
AC
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145}
146
147class_is_multiarch_p ()
148{
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
f0d4cc9e
AC
153}
154
155class_is_predicate_p ()
156{
4a5c6a1d
AC
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
f0d4cc9e
AC
161}
162
163class_is_info_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171
cff3e48b
JM
172# dump out/verify the doco
173for field in ${read}
174do
175 case ${field} in
176
177 class ) : ;;
c4093a6a 178
c0e8c252
AC
179 # # -> line disable
180 # f -> function
181 # hiding a function
2ada493a
AC
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
c0e8c252
AC
184 # v -> variable
185 # hiding a variable
2ada493a
AC
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
c0e8c252
AC
188 # i -> set from info
189 # hiding something from the ``struct info'' object
4a5c6a1d
AC
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
dda83cd7 192 # M -> multi-arch function + predicate
4a5c6a1d 193 # hiding a multi-arch function + predicate to test function validity
cff3e48b 194
cff3e48b
JM
195 returntype ) : ;;
196
c0e8c252 197 # For functions, the return type; for variables, the data type
cff3e48b
JM
198
199 function ) : ;;
200
c0e8c252
AC
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
204
205 formal ) : ;;
206
c0e8c252
AC
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
cff3e48b
JM
211
212 actual ) : ;;
213
c0e8c252
AC
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
cff3e48b 217
0b8f9e4d 218 staticdefault ) : ;;
c0e8c252
AC
219
220 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
cff3e48b 224
0b8f9e4d 225 # If STATICDEFAULT is empty, zero is used.
c0e8c252 226
0b8f9e4d 227 predefault ) : ;;
cff3e48b 228
10312cc4
AC
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
cff3e48b 233
0b8f9e4d
AC
234 # If PREDEFAULT is empty, zero is used.
235
10312cc4
AC
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
f0d4cc9e
AC
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
0b8f9e4d
AC
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
10312cc4
AC
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
f0d4cc9e
AC
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
be7811ad 265 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
266 # will contain the current architecture. Care should be
267 # taken.
cff3e48b 268
c4093a6a 269 invalid_p ) : ;;
cff3e48b 270
0b8f9e4d 271 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 272 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
f0d4cc9e
AC
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
283
284 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 285
cff3e48b
JM
286 print ) : ;;
287
2f9b146e
AC
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
c0e8c252 290
0b1553bc
UW
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
cff3e48b 293
283354d8 294 garbage_at_eol ) : ;;
0b8f9e4d 295
283354d8 296 # Catches stray fields.
cff3e48b 297
50248794
AC
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
cff3e48b
JM
301 esac
302done
303
cff3e48b 304
104c1213
JM
305function_list ()
306{
cff3e48b 307 # See below (DOCO) for description of each field
34620563 308 cat <<EOF
ea480a30 309i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 310#
ea480a30
SM
311i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 313#
ea480a30 314i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 315#
ea480a30 316i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 317
66b43ecb 318# Number of bits in a short or unsigned short for the target machine.
ea480a30 319v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 320# Number of bits in an int or unsigned int for the target machine.
ea480a30 321v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 322# Number of bits in a long or unsigned long for the target machine.
ea480a30 323v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
324# Number of bits in a long long or unsigned long long for the target
325# machine.
ea480a30 326v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 327
2a67f09d 328# The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
f9e9243a
UW
329# "long double". These bit/format pairs should eventually be combined
330# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
331# Each format describes both the big and little endian layouts (if
332# useful).
456fcf94 333
2a67f09d
FW
334v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
ea480a30
SM
336v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 344
53375380
PA
345# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346# starting with C++11.
ea480a30 347v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 348# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 349v;int;wchar_signed;;;1;-1;1
53375380 350
9b790ce7
UW
351# Returns the floating-point format to be used for values of length LENGTH.
352# NAME, if non-NULL, is the type name, which may be used to distinguish
353# different target formats of the same length.
ea480a30 354m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 355
52204a0b
DT
356# For most targets, a pointer on the target and its representation as an
357# address in GDB have the same size and "look the same". For such a
17a912b6 358# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
359# / addr_bit will be set from it.
360#
17a912b6 361# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
362# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363# gdbarch_address_to_pointer as well.
52204a0b
DT
364#
365# ptr_bit is the size of a pointer on the target
ea480a30 366v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 367# addr_bit is the size of a target address as represented in gdb
ea480a30 368v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 369#
8da614df
CV
370# dwarf2_addr_size is the target address size as used in the Dwarf debug
371# info. For .debug_frame FDEs, this is supposed to be the target address
372# size from the associated CU header, and which is equivalent to the
373# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374# Unfortunately there is no good way to determine this value. Therefore
375# dwarf2_addr_size simply defaults to the target pointer size.
376#
377# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378# defined using the target's pointer size so far.
379#
380# Note that dwarf2_addr_size only needs to be redefined by a target if the
381# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382# and if Dwarf versions < 4 need to be supported.
ea480a30 383v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 384#
4e409299 385# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 386v;int;char_signed;;;1;-1;1
4e409299 387#
c113ed0c 388F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 389F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
390# Function for getting target's idea of a frame pointer. FIXME: GDB's
391# whole scheme for dealing with "frames" and "frame pointers" needs a
392# serious shakedown.
ea480a30 393m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 394#
849d0ba8 395M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
396# Read a register into a new struct value. If the register is wholly
397# or partly unavailable, this should call mark_value_bytes_unavailable
398# as appropriate. If this is defined, then pseudo_register_read will
399# never be called.
849d0ba8 400M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 401M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 402#
ea480a30 403v;int;num_regs;;;0;-1
0aba1244
EZ
404# This macro gives the number of pseudo-registers that live in the
405# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
406# These pseudo-registers may be aliases for other registers,
407# combinations of other registers, or they may be computed by GDB.
ea480a30 408v;int;num_pseudo_regs;;;0;0;;0
c2169756 409
175ff332
HZ
410# Assemble agent expression bytecode to collect pseudo-register REG.
411# Return -1 if something goes wrong, 0 otherwise.
ea480a30 412M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
413
414# Assemble agent expression bytecode to push the value of pseudo-register
415# REG on the interpreter stack.
416# Return -1 if something goes wrong, 0 otherwise.
ea480a30 417M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 418
272bb05c
JB
419# Some architectures can display additional information for specific
420# signals.
421# UIOUT is the output stream where the handler will place information.
422M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
423
c2169756
AC
424# GDB's standard (or well known) register numbers. These can map onto
425# a real register or a pseudo (computed) register or not be defined at
1200cd6e 426# all (-1).
3e8c568d 427# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
428v;int;sp_regnum;;;-1;-1;;0
429v;int;pc_regnum;;;-1;-1;;0
430v;int;ps_regnum;;;-1;-1;;0
431v;int;fp0_regnum;;;0;-1;;0
88c72b7d 432# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 433m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 434# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 435m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 436# Convert from an sdb register number to an internal gdb register number.
ea480a30 437m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 438# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 439# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
440m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441m;const char *;register_name;int regnr;regnr;;0
9c04cab7 442
7b9ee6a8
DJ
443# Return the type of a register specified by the architecture. Only
444# the register cache should call this function directly; others should
445# use "register_type".
ea480a30 446M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 447
8bcb5208
AB
448# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449# a dummy frame. A dummy frame is created before an inferior call,
450# the frame_id returned here must match the frame_id that was built
451# for the inferior call. Usually this means the returned frame_id's
452# stack address should match the address returned by
453# gdbarch_push_dummy_call, and the returned frame_id's code address
454# should match the address at which the breakpoint was set in the dummy
455# frame.
456m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 457# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 458# deprecated_fp_regnum.
ea480a30 459v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 460
cf84fa6b 461M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
462v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 464
7eb89530 465# Return true if the code of FRAME is writable.
ea480a30 466m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 467
ea480a30
SM
468m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
471# MAP a GDB RAW register number onto a simulator register number. See
472# also include/...-sim.h.
ea480a30
SM
473m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
476
477# Determine the address where a longjmp will land and save this address
478# in PC. Return nonzero on success.
479#
480# FRAME corresponds to the longjmp frame.
ea480a30 481F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 482
104c1213 483#
ea480a30 484v;int;believe_pcc_promotion;;;;;;;
104c1213 485#
ea480a30
SM
486m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 489# Construct a value representing the contents of register REGNUM in
2ed3c037 490# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
491# allocate and return a struct value with all value attributes
492# (but not the value contents) filled in.
ea480a30 493m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 494#
ea480a30
SM
495m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 498
6a3a010b
MR
499# Return the return-value convention that will be used by FUNCTION
500# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
501# case the return convention is computed based only on VALTYPE.
502#
503# If READBUF is not NULL, extract the return value and save it in this buffer.
504#
505# If WRITEBUF is not NULL, it contains a return value which will be
506# stored into the appropriate register. This can be used when we want
507# to force the value returned by a function (see the "return" command
508# for instance).
ea480a30 509M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 510
18648a37
YQ
511# Return true if the return value of function is stored in the first hidden
512# parameter. In theory, this feature should be language-dependent, specified
513# by language and its ABI, such as C++. Unfortunately, compiler may
514# implement it to a target-dependent feature. So that we need such hook here
515# to be aware of this in GDB.
ea480a30 516m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 517
ea480a30
SM
518m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
520# On some platforms, a single function may provide multiple entry points,
521# e.g. one that is used for function-pointer calls and a different one
522# that is used for direct function calls.
523# In order to ensure that breakpoints set on the function will trigger
524# no matter via which entry point the function is entered, a platform
525# may provide the skip_entrypoint callback. It is called with IP set
526# to the main entry point of a function (as determined by the symbol table),
527# and should return the address of the innermost entry point, where the
528# actual breakpoint needs to be set. Note that skip_entrypoint is used
529# by GDB common code even when debugging optimized code, where skip_prologue
530# is not used.
ea480a30 531M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 532
ea480a30
SM
533f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
535
536# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 537m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
538
539# Return the software breakpoint from KIND. KIND can have target
540# specific meaning like the Z0 kind parameter.
541# SIZE is set to the software breakpoint's length in memory.
ea480a30 542m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 543
833b7ab5
YQ
544# Return the breakpoint kind for this target based on the current
545# processor state (e.g. the current instruction mode on ARM) and the
546# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 547m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 548
ea480a30
SM
549M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
553
554# A function can be addressed by either it's "pointer" (possibly a
555# descriptor address) or "entry point" (first executable instruction).
556# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 557# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
558# a simplified subset of that functionality - the function's address
559# corresponds to the "function pointer" and the function's start
560# corresponds to the "function entry point" - and hence is redundant.
561
ea480a30 562v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 563
123dc839
DJ
564# Return the remote protocol register number associated with this
565# register. Normally the identity mapping.
ea480a30 566m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 567
b2756930 568# Fetch the target specific address used to represent a load module.
ea480a30 569F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
570
571# Return the thread-local address at OFFSET in the thread-local
572# storage for the thread PTID and the shared library or executable
573# file given by LM_ADDR. If that block of thread-local storage hasn't
574# been allocated yet, this function may throw an error. LM_ADDR may
575# be zero for statically linked multithreaded inferiors.
576
577M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 578#
ea480a30 579v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
580m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
582# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583# frame-base. Enable frame-base before frame-unwind.
ea480a30 584F;int;frame_num_args;struct frame_info *frame;frame
104c1213 585#
ea480a30
SM
586M;CORE_ADDR;frame_align;CORE_ADDR address;address
587m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588v;int;frame_red_zone_size
f0d4cc9e 589#
ea480a30 590m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
591# On some machines there are bits in addresses which are not really
592# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 593# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
594# we get a "real" address such as one would find in a symbol table.
595# This is used only for addresses of instructions, and even then I'm
596# not sure it's used in all contexts. It exists to deal with there
597# being a few stray bits in the PC which would mislead us, not as some
598# sort of generic thing to handle alignment or segmentation (it's
599# possible it should be in TARGET_READ_PC instead).
ea480a30 600m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 601
a738ea1d
YQ
602# On some machines, not all bits of an address word are significant.
603# For example, on AArch64, the top bits of an address known as the "tag"
604# are ignored by the kernel, the hardware, etc. and can be regarded as
605# additional data associated with the address.
5969f0db 606v;int;significant_addr_bit;;;;;;0
a738ea1d 607
c193949e
LM
608# Return a string representation of the memory tag TAG.
609m;std::string;memtag_to_string;struct value *tag;tag;;default_memtag_to_string;;0
610
4f3fb91a
LM
611# Return true if ADDRESS contains a tag and false otherwise. ADDRESS
612# must be either a pointer or a reference type.
c193949e
LM
613m;bool;tagged_address_p;struct value *address;address;;default_tagged_address_p;;0
614
615# Return true if the tag from ADDRESS matches the memory tag for that
616# particular address. Return false otherwise.
617m;bool;memtag_matches_p;struct value *address;address;;default_memtag_matches_p;;0
618
619# Set the tags of type TAG_TYPE, for the memory address range
620# [ADDRESS, ADDRESS + LENGTH) to TAGS.
621# Return true if successful and false otherwise.
622m;bool;set_memtags;struct value *address, size_t length, const gdb::byte_vector \&tags, memtag_type tag_type;address, length, tags, tag_type;;default_set_memtags;;0
623
624# Return the tag of type TAG_TYPE associated with the memory address ADDRESS,
625# assuming ADDRESS is tagged.
626m;struct value *;get_memtag;struct value *address, memtag_type tag_type;address, tag_type;;default_get_memtag;;0
627
628# memtag_granule_size is the size of the allocation tag granule, for
629# architectures that support memory tagging.
630# This is 0 for architectures that do not support memory tagging.
631# For a non-zero value, this represents the number of bytes of memory per tag.
632v;CORE_ADDR;memtag_granule_size;;;;;;0
633
e6590a1b
UW
634# FIXME/cagney/2001-01-18: This should be split in two. A target method that
635# indicates if the target needs software single step. An ISA method to
636# implement it.
637#
e6590a1b
UW
638# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
639# target can single step. If not, then implement single step using breakpoints.
64c4637f 640#
93f9a11f
YQ
641# Return a vector of addresses on which the software single step
642# breakpoints should be inserted. NULL means software single step is
643# not used.
644# Multiple breakpoints may be inserted for some instructions such as
645# conditional branch. However, each implementation must always evaluate
646# the condition and only put the breakpoint at the branch destination if
647# the condition is true, so that we ensure forward progress when stepping
648# past a conditional branch to self.
a0ff9e1a 649F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 650
3352ef37
AC
651# Return non-zero if the processor is executing a delay slot and a
652# further single-step is needed before the instruction finishes.
ea480a30 653M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 654# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 655# disassembler. Perhaps objdump can handle it?
39503f82 656f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 657f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
658
659
cfd8ab24 660# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
661# evaluates non-zero, this is the address where the debugger will place
662# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 663m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 664# Some systems also have trampoline code for returning from shared libs.
ea480a30 665m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 666
1d509aa6
MM
667# Return true if PC lies inside an indirect branch thunk.
668m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
669
c12260ac
CV
670# A target might have problems with watchpoints as soon as the stack
671# frame of the current function has been destroyed. This mostly happens
c9cf6e20 672# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
673# is defined to return a non-zero value if either the given addr is one
674# instruction after the stack destroying instruction up to the trailing
675# return instruction or if we can figure out that the stack frame has
676# already been invalidated regardless of the value of addr. Targets
677# which don't suffer from that problem could just let this functionality
678# untouched.
ea480a30 679m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
680# Process an ELF symbol in the minimal symbol table in a backend-specific
681# way. Normally this hook is supposed to do nothing, however if required,
682# then this hook can be used to apply tranformations to symbols that are
683# considered special in some way. For example the MIPS backend uses it
684# to interpret \`st_other' information to mark compressed code symbols so
685# that they can be treated in the appropriate manner in the processing of
686# the main symbol table and DWARF-2 records.
ea480a30
SM
687F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
688f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
689# Process a symbol in the main symbol table in a backend-specific way.
690# Normally this hook is supposed to do nothing, however if required,
691# then this hook can be used to apply tranformations to symbols that
692# are considered special in some way. This is currently used by the
693# MIPS backend to make sure compressed code symbols have the ISA bit
694# set. This in turn is needed for symbol values seen in GDB to match
695# the values used at the runtime by the program itself, for function
696# and label references.
ea480a30 697f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
698# Adjust the address retrieved from a DWARF-2 record other than a line
699# entry in a backend-specific way. Normally this hook is supposed to
700# return the address passed unchanged, however if that is incorrect for
701# any reason, then this hook can be used to fix the address up in the
702# required manner. This is currently used by the MIPS backend to make
703# sure addresses in FDE, range records, etc. referring to compressed
704# code have the ISA bit set, matching line information and the symbol
705# table.
ea480a30 706f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
707# Adjust the address updated by a line entry in a backend-specific way.
708# Normally this hook is supposed to return the address passed unchanged,
709# however in the case of inconsistencies in these records, this hook can
710# be used to fix them up in the required manner. This is currently used
711# by the MIPS backend to make sure all line addresses in compressed code
712# are presented with the ISA bit set, which is not always the case. This
713# in turn ensures breakpoint addresses are correctly matched against the
714# stop PC.
ea480a30
SM
715f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
716v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
717# See comment in target.h about continuable, steppable and
718# non-steppable watchpoints.
ea480a30 719v;int;have_nonsteppable_watchpoint;;;0;0;;0
314ad88d
PA
720F;type_instance_flags;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
721M;const char *;address_class_type_flags_to_name;type_instance_flags type_flags;type_flags
b41c5a85
JW
722# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
723# FS are passed from the generic execute_cfa_program function.
ea480a30 724m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
725
726# Return the appropriate type_flags for the supplied address class.
314ad88d
PA
727# This function should return true if the address class was recognized and
728# type_flags was set, false otherwise.
729M;bool;address_class_name_to_type_flags;const char *name, type_instance_flags *type_flags_ptr;name, type_flags_ptr
b59ff9d5 730# Is a register in a group
ea480a30 731m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 732# Fetch the pointer to the ith function argument.
ea480a30 733F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 734
5aa82d05
AA
735# Iterate over all supported register notes in a core file. For each
736# supported register note section, the iterator must call CB and pass
737# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
738# the supported register note sections based on the current register
739# values. Otherwise it should enumerate all supported register note
740# sections.
ea480a30 741M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 742
6432734d 743# Create core file notes
c21f37a8 744M;gdb::unique_xmalloc_ptr<char>;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 745
35c2fab7 746# Find core file memory regions
ea480a30 747M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 748
de584861 749# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
750# core file into buffer READBUF with length LEN. Return the number of bytes read
751# (zero indicates failure).
752# failed, otherwise, return the red length of READBUF.
ea480a30 753M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 754
356a5233
JB
755# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
756# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 757# Return the number of bytes read (zero indicates failure).
ea480a30 758M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 759
c0edd9ed 760# How the core target converts a PTID from a core file to a string.
a068643d 761M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 762
4dfc5dbc 763# How the core target extracts the name of a thread from a core file.
ea480a30 764M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 765
382b69bb
JB
766# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
767# from core file into buffer READBUF with length LEN. Return the number
768# of bytes read (zero indicates EOF, a negative value indicates failure).
769M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
770
a78c2d62 771# BFD target to use when generating a core file.
ea480a30 772V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 773
0d5de010
DJ
774# If the elements of C++ vtables are in-place function descriptors rather
775# than normal function pointers (which may point to code or a descriptor),
776# set this to one.
ea480a30 777v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
778
779# Set if the least significant bit of the delta is used instead of the least
780# significant bit of the pfn for pointers to virtual member functions.
ea480a30 781v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
782
783# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 784f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 785
1668ae25 786# The maximum length of an instruction on this architecture in bytes.
ea480a30 787V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
788
789# Copy the instruction at FROM to TO, and make any adjustments
790# necessary to single-step it at that address.
791#
792# REGS holds the state the thread's registers will have before
793# executing the copied instruction; the PC in REGS will refer to FROM,
794# not the copy at TO. The caller should update it to point at TO later.
795#
796# Return a pointer to data of the architecture's choice to be passed
19b187a9 797# to gdbarch_displaced_step_fixup.
237fc4c9
PA
798#
799# For a general explanation of displaced stepping and how GDB uses it,
800# see the comments in infrun.c.
801#
802# The TO area is only guaranteed to have space for
803# gdbarch_max_insn_length (arch) bytes, so this function must not
804# write more bytes than that to that area.
805#
806# If you do not provide this function, GDB assumes that the
807# architecture does not support displaced stepping.
808#
7f03bd92
PA
809# If the instruction cannot execute out of line, return NULL. The
810# core falls back to stepping past the instruction in-line instead in
811# that case.
1152d984 812M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 813
58103c33
SM
814# Return true if GDB should use hardware single-stepping to execute a displaced
815# step instruction. If false, GDB will simply restart execution at the
816# displaced instruction location, and it is up to the target to ensure GDB will
817# receive control again (e.g. by placing a software breakpoint instruction into
818# the displaced instruction buffer).
819#
820# The default implementation returns false on all targets that provide a
821# gdbarch_software_single_step routine, and true otherwise.
40a53766 822m;bool;displaced_step_hw_singlestep;void;;;default_displaced_step_hw_singlestep;;0
99e40580 823
237fc4c9
PA
824# Fix up the state resulting from successfully single-stepping a
825# displaced instruction, to give the result we would have gotten from
826# stepping the instruction in its original location.
827#
828# REGS is the register state resulting from single-stepping the
829# displaced instruction.
830#
831# CLOSURE is the result from the matching call to
832# gdbarch_displaced_step_copy_insn.
833#
834# If you provide gdbarch_displaced_step_copy_insn.but not this
835# function, then GDB assumes that no fixup is needed after
836# single-stepping the instruction.
837#
838# For a general explanation of displaced stepping and how GDB uses it,
839# see the comments in infrun.c.
1152d984 840M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 841
187b041e 842# Prepare THREAD for it to displaced step the instruction at its current PC.
237fc4c9 843#
187b041e
SM
844# Throw an exception if any unexpected error happens.
845M;displaced_step_prepare_status;displaced_step_prepare;thread_info *thread, CORE_ADDR &displaced_pc;thread, displaced_pc
846
847# Clean up after a displaced step of THREAD.
848m;displaced_step_finish_status;displaced_step_finish;thread_info *thread, gdb_signal sig;thread, sig;;NULL;;(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)
849
850# Return the closure associated to the displaced step buffer that is at ADDR.
851F;const displaced_step_copy_insn_closure *;displaced_step_copy_insn_closure_by_addr;inferior *inf, CORE_ADDR addr;inf, addr
852
853# PARENT_INF has forked and CHILD_PTID is the ptid of the child. Restore the
854# contents of all displaced step buffers in the child's address space.
855f;void;displaced_step_restore_all_in_ptid;inferior *parent_inf, ptid_t child_ptid;parent_inf, child_ptid
237fc4c9 856
dde08ee1
PA
857# Relocate an instruction to execute at a different address. OLDLOC
858# is the address in the inferior memory where the instruction to
859# relocate is currently at. On input, TO points to the destination
860# where we want the instruction to be copied (and possibly adjusted)
861# to. On output, it points to one past the end of the resulting
862# instruction(s). The effect of executing the instruction at TO shall
863# be the same as if executing it at FROM. For example, call
864# instructions that implicitly push the return address on the stack
865# should be adjusted to return to the instruction after OLDLOC;
866# relative branches, and other PC-relative instructions need the
867# offset adjusted; etc.
ea480a30 868M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 869
1c772458 870# Refresh overlay mapped state for section OSECT.
ea480a30 871F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 872
ea480a30 873M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273 874
203c3895 875# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 876v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 877
0508c3ec
HZ
878# Parse the instruction at ADDR storing in the record execution log
879# the registers REGCACHE and memory ranges that will be affected when
880# the instruction executes, along with their current values.
881# Return -1 if something goes wrong, 0 otherwise.
ea480a30 882M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 883
3846b520
HZ
884# Save process state after a signal.
885# Return -1 if something goes wrong, 0 otherwise.
ea480a30 886M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 887
22203bbf 888# Signal translation: translate inferior's signal (target's) number
86b49880
PA
889# into GDB's representation. The implementation of this method must
890# be host independent. IOW, don't rely on symbols of the NAT_FILE
891# header (the nm-*.h files), the host <signal.h> header, or similar
892# headers. This is mainly used when cross-debugging core files ---
893# "Live" targets hide the translation behind the target interface
1f8cf220 894# (target_wait, target_resume, etc.).
ea480a30 895M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 896
eb14d406
SDJ
897# Signal translation: translate the GDB's internal signal number into
898# the inferior's signal (target's) representation. The implementation
899# of this method must be host independent. IOW, don't rely on symbols
900# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
901# header, or similar headers.
902# Return the target signal number if found, or -1 if the GDB internal
903# signal number is invalid.
ea480a30 904M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 905
4aa995e1
PA
906# Extra signal info inspection.
907#
908# Return a type suitable to inspect extra signal information.
ea480a30 909M;struct type *;get_siginfo_type;void;
4aa995e1 910
60c5725c 911# Record architecture-specific information from the symbol table.
ea480a30 912M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 913
a96d9b2e
SDJ
914# Function for the 'catch syscall' feature.
915
916# Get architecture-specific system calls information from registers.
00431a78 917M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 918
458c8db8 919# The filename of the XML syscall for this architecture.
ea480a30 920v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
921
922# Information about system calls from this architecture
ea480a30 923v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 924
55aa24fb
SDJ
925# SystemTap related fields and functions.
926
05c0465e
SDJ
927# A NULL-terminated array of prefixes used to mark an integer constant
928# on the architecture's assembly.
55aa24fb
SDJ
929# For example, on x86 integer constants are written as:
930#
931# \$10 ;; integer constant 10
932#
933# in this case, this prefix would be the character \`\$\'.
ea480a30 934v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 935
05c0465e
SDJ
936# A NULL-terminated array of suffixes used to mark an integer constant
937# on the architecture's assembly.
ea480a30 938v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 939
05c0465e
SDJ
940# A NULL-terminated array of prefixes used to mark a register name on
941# the architecture's assembly.
55aa24fb
SDJ
942# For example, on x86 the register name is written as:
943#
944# \%eax ;; register eax
945#
946# in this case, this prefix would be the character \`\%\'.
ea480a30 947v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 948
05c0465e
SDJ
949# A NULL-terminated array of suffixes used to mark a register name on
950# the architecture's assembly.
ea480a30 951v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 952
05c0465e
SDJ
953# A NULL-terminated array of prefixes used to mark a register
954# indirection on the architecture's assembly.
55aa24fb
SDJ
955# For example, on x86 the register indirection is written as:
956#
957# \(\%eax\) ;; indirecting eax
958#
959# in this case, this prefix would be the charater \`\(\'.
960#
961# Please note that we use the indirection prefix also for register
962# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 963v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 964
05c0465e
SDJ
965# A NULL-terminated array of suffixes used to mark a register
966# indirection on the architecture's assembly.
55aa24fb
SDJ
967# For example, on x86 the register indirection is written as:
968#
969# \(\%eax\) ;; indirecting eax
970#
971# in this case, this prefix would be the charater \`\)\'.
972#
973# Please note that we use the indirection suffix also for register
974# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 975v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 976
05c0465e 977# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
978#
979# For example, on PPC a register is represented by a number in the assembly
980# language (e.g., \`10\' is the 10th general-purpose register). However,
981# inside GDB this same register has an \`r\' appended to its name, so the 10th
982# register would be represented as \`r10\' internally.
ea480a30 983v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
984
985# Suffix used to name a register using GDB's nomenclature.
ea480a30 986v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
987
988# Check if S is a single operand.
989#
990# Single operands can be:
991# \- Literal integers, e.g. \`\$10\' on x86
992# \- Register access, e.g. \`\%eax\' on x86
993# \- Register indirection, e.g. \`\(\%eax\)\' on x86
994# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
995#
996# This function should check for these patterns on the string
997# and return 1 if some were found, or zero otherwise. Please try to match
998# as much info as you can from the string, i.e., if you have to match
999# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 1000M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
1001
1002# Function used to handle a "special case" in the parser.
1003#
1004# A "special case" is considered to be an unknown token, i.e., a token
1005# that the parser does not know how to parse. A good example of special
1006# case would be ARM's register displacement syntax:
1007#
1008# [R0, #4] ;; displacing R0 by 4
1009#
1010# Since the parser assumes that a register displacement is of the form:
1011#
1012# <number> <indirection_prefix> <register_name> <indirection_suffix>
1013#
1014# it means that it will not be able to recognize and parse this odd syntax.
1015# Therefore, we should add a special case function that will handle this token.
1016#
1017# This function should generate the proper expression form of the expression
1018# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1019# and so on). It should also return 1 if the parsing was successful, or zero
1020# if the token was not recognized as a special token (in this case, returning
1021# zero means that the special parser is deferring the parsing to the generic
1022# parser), and should advance the buffer pointer (p->arg).
4c5e7a93 1023M;expr::operation_up;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1024
7d7571f0
SDJ
1025# Perform arch-dependent adjustments to a register name.
1026#
1027# In very specific situations, it may be necessary for the register
1028# name present in a SystemTap probe's argument to be handled in a
1029# special way. For example, on i386, GCC may over-optimize the
1030# register allocation and use smaller registers than necessary. In
1031# such cases, the client that is reading and evaluating the SystemTap
1032# probe (ourselves) will need to actually fetch values from the wider
1033# version of the register in question.
1034#
1035# To illustrate the example, consider the following probe argument
1036# (i386):
1037#
1038# 4@%ax
1039#
1040# This argument says that its value can be found at the %ax register,
1041# which is a 16-bit register. However, the argument's prefix says
1042# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1043# this case, GDB should actually fetch the probe's value from register
1044# %eax, not %ax. In this scenario, this function would actually
1045# replace the register name from %ax to %eax.
1046#
1047# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1048M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1049
8b367e17
JM
1050# DTrace related functions.
1051
1052# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1053# NARG must be >= 0.
482ddd69 1054M;expr::operation_up;dtrace_parse_probe_argument;int narg;narg
8b367e17
JM
1055
1056# True if the given ADDR does not contain the instruction sequence
1057# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1058M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1059
1060# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1061M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1062
1063# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1064M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1065
50c71eaf
PA
1066# True if the list of shared libraries is one and only for all
1067# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1068# This usually means that all processes, although may or may not share
1069# an address space, will see the same set of symbols at the same
1070# addresses.
ea480a30 1071v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1072
1073# On some targets, even though each inferior has its own private
1074# address space, the debug interface takes care of making breakpoints
1075# visible to all address spaces automatically. For such cases,
1076# this property should be set to true.
ea480a30 1077v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1078
1079# True if inferiors share an address space (e.g., uClinux).
ea480a30 1080m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1081
1082# True if a fast tracepoint can be set at an address.
281d762b 1083m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1084
5f034a78
MK
1085# Guess register state based on tracepoint location. Used for tracepoints
1086# where no registers have been collected, but there's only one location,
1087# allowing us to guess the PC value, and perhaps some other registers.
1088# On entry, regcache has all registers marked as unavailable.
ea480a30 1089m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1090
f870a310 1091# Return the "auto" target charset.
ea480a30 1092f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1093# Return the "auto" target wide charset.
ea480a30 1094f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1095
1096# If non-empty, this is a file extension that will be opened in place
1097# of the file extension reported by the shared library list.
1098#
1099# This is most useful for toolchains that use a post-linker tool,
1100# where the names of the files run on the target differ in extension
1101# compared to the names of the files GDB should load for debug info.
ea480a30 1102v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1103
1104# If true, the target OS has DOS-based file system semantics. That
1105# is, absolute paths include a drive name, and the backslash is
1106# considered a directory separator.
ea480a30 1107v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1108
1109# Generate bytecodes to collect the return address in a frame.
1110# Since the bytecodes run on the target, possibly with GDB not even
1111# connected, the full unwinding machinery is not available, and
1112# typically this function will issue bytecodes for one or more likely
1113# places that the return address may be found.
ea480a30 1114m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1115
3030c96e 1116# Implement the "info proc" command.
ea480a30 1117M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1118
451b7c33
TT
1119# Implement the "info proc" command for core files. Noe that there
1120# are two "info_proc"-like methods on gdbarch -- one for core files,
1121# one for live targets.
ea480a30 1122M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1123
19630284
JB
1124# Iterate over all objfiles in the order that makes the most sense
1125# for the architecture to make global symbol searches.
1126#
1127# CB is a callback function where OBJFILE is the objfile to be searched,
1128# and CB_DATA a pointer to user-defined data (the same data that is passed
1129# when calling this gdbarch method). The iteration stops if this function
1130# returns nonzero.
1131#
1132# CB_DATA is a pointer to some user-defined data to be passed to
1133# the callback.
1134#
1135# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1136# inspected when the symbol search was requested.
ea480a30 1137m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1138
7e35103a 1139# Ravenscar arch-dependent ops.
ea480a30 1140v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1141
1142# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1143m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1144
1145# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1146m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1147
1148# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1149m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1150
5133a315
LM
1151# Return true if there's a program/permanent breakpoint planted in
1152# memory at ADDRESS, return false otherwise.
1153m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1154
27a48a92
MK
1155# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1156# Return 0 if *READPTR is already at the end of the buffer.
1157# Return -1 if there is insufficient buffer for a whole entry.
1158# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1159M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1160
2faa3447
JB
1161# Print the description of a single auxv entry described by TYPE and VAL
1162# to FILE.
ea480a30 1163m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1164
3437254d
PA
1165# Find the address range of the current inferior's vsyscall/vDSO, and
1166# write it to *RANGE. If the vsyscall's length can't be determined, a
1167# range with zero length is returned. Returns true if the vsyscall is
1168# found, false otherwise.
ea480a30 1169m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1170
1171# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1172# PROT has GDB_MMAP_PROT_* bitmask format.
1173# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1174f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1175
7f361056
JK
1176# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1177# Print a warning if it is not possible.
ea480a30 1178f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1179
f208eee0
JK
1180# Return string (caller has to use xfree for it) with options for GCC
1181# to produce code for this target, typically "-m64", "-m32" or "-m31".
1182# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1183# they can override it.
1184m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1185
1186# Return a regular expression that matches names used by this
1187# architecture in GNU configury triplets. The result is statically
1188# allocated and must not be freed. The default implementation simply
1189# returns the BFD architecture name, which is correct in nearly every
1190# case.
ea480a30 1191m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1192
1193# Return the size in 8-bit bytes of an addressable memory unit on this
1194# architecture. This corresponds to the number of 8-bit bytes associated to
1195# each address in memory.
ea480a30 1196m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1197
65b48a81 1198# Functions for allowing a target to modify its disassembler options.
471b9d15 1199v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1200v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1201v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1202
5561fc30
AB
1203# Type alignment override method. Return the architecture specific
1204# alignment required for TYPE. If there is no special handling
1205# required for TYPE then return the value 0, GDB will then apply the
1206# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1207m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1208
aa7ca1bb
AH
1209# Return a string containing any flags for the given PC in the given FRAME.
1210f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1211
7e183d27 1212# Read core file mappings
70125a45 1213m;void;read_core_file_mappings;struct bfd *cbfd, gdb::function_view<void (ULONGEST count)> pre_loop_cb, gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
7e183d27 1214
104c1213 1215EOF
104c1213
JM
1216}
1217
0b8f9e4d
AC
1218#
1219# The .log file
1220#
41a77cba 1221exec > gdbarch.log
34620563 1222function_list | while do_read
0b8f9e4d
AC
1223do
1224 cat <<EOF
1207375d 1225${class} ${returntype:-} ${function} (${formal:-})
104c1213 1226EOF
3d9a5942
AC
1227 for r in ${read}
1228 do
a6fc5ffc 1229 eval echo "\" ${r}=\${${r}}\""
3d9a5942 1230 done
f0d4cc9e 1231 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1232 then
66d659b1 1233 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1234 kill $$
1235 exit 1
1236 fi
759cea5e 1237 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
f0d4cc9e
AC
1238 then
1239 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1240 kill $$
1241 exit 1
1242 fi
a72293e2
AC
1243 if class_is_multiarch_p
1244 then
1245 if class_is_predicate_p ; then :
1246 elif test "x${predefault}" = "x"
1247 then
2f9b146e 1248 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1249 kill $$
1250 exit 1
1251 fi
1252 fi
3d9a5942 1253 echo ""
0b8f9e4d
AC
1254done
1255
1256exec 1>&2
0b8f9e4d 1257
104c1213
JM
1258
1259copyright ()
1260{
1261cat <<EOF
c4bfde41
JK
1262/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1263/* vi:set ro: */
59233f88 1264
104c1213 1265/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1266
afe40966 1267 Copyright (C) 1998-2022 Free Software Foundation, Inc.
104c1213
JM
1268
1269 This file is part of GDB.
1270
1271 This program is free software; you can redistribute it and/or modify
1272 it under the terms of the GNU General Public License as published by
50efebf8 1273 the Free Software Foundation; either version 3 of the License, or
104c1213 1274 (at your option) any later version.
618f726f 1275
104c1213
JM
1276 This program is distributed in the hope that it will be useful,
1277 but WITHOUT ANY WARRANTY; without even the implied warranty of
1278 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1279 GNU General Public License for more details.
618f726f 1280
104c1213 1281 You should have received a copy of the GNU General Public License
50efebf8 1282 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1283
41a77cba 1284/* This file was created with the aid of \`\`gdbarch.sh''. */
104c1213
JM
1285
1286EOF
1287}
1288
1289#
1290# The .h file
1291#
1292
1293exec > new-gdbarch.h
1294copyright
1295cat <<EOF
1296#ifndef GDBARCH_H
1297#define GDBARCH_H
1298
a0ff9e1a 1299#include <vector>
eb7a547a 1300#include "frame.h"
65b48a81 1301#include "dis-asm.h"
284a0e3c 1302#include "gdb_obstack.h"
fdb61c6c 1303#include "infrun.h"
fe4b2ee6 1304#include "osabi.h"
c7acb87b 1305#include "displaced-stepping.h"
eb7a547a 1306
da3331ec
AC
1307struct floatformat;
1308struct ui_file;
104c1213 1309struct value;
b6af0555 1310struct objfile;
1c772458 1311struct obj_section;
a2cf933a 1312struct minimal_symbol;
049ee0e4 1313struct regcache;
b59ff9d5 1314struct reggroup;
6ce6d90f 1315struct regset;
a89aa300 1316struct disassemble_info;
e2d0e7eb 1317struct target_ops;
030f20e1 1318struct obstack;
8181d85f 1319struct bp_target_info;
424163ea 1320struct target_desc;
3e29f34a 1321struct symbol;
a96d9b2e 1322struct syscall;
175ff332 1323struct agent_expr;
6710bf39 1324struct axs_value;
55aa24fb 1325struct stap_parse_info;
37eedb39 1326struct expr_builder;
7e35103a 1327struct ravenscar_arch_ops;
3437254d 1328struct mem_range;
458c8db8 1329struct syscalls_info;
4dfc5dbc 1330struct thread_info;
012b3a21 1331struct ui_out;
187b041e 1332struct inferior;
104c1213 1333
8a526fa6
PA
1334#include "regcache.h"
1335
6ecd4729
PA
1336/* The architecture associated with the inferior through the
1337 connection to the target.
1338
1339 The architecture vector provides some information that is really a
1340 property of the inferior, accessed through a particular target:
1341 ptrace operations; the layout of certain RSP packets; the solib_ops
1342 vector; etc. To differentiate architecture accesses to
1343 per-inferior/target properties from
1344 per-thread/per-frame/per-objfile properties, accesses to
1345 per-inferior/target properties should be made through this
1346 gdbarch. */
1347
1348/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1349extern struct gdbarch *target_gdbarch (void);
6ecd4729 1350
19630284
JB
1351/* Callback type for the 'iterate_over_objfiles_in_search_order'
1352 gdbarch method. */
1353
1354typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1355 (struct objfile *objfile, void *cb_data);
5aa82d05 1356
1528345d
AA
1357/* Callback type for regset section iterators. The callback usually
1358 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1359 pass a buffer - for collects this buffer will need to be created using
1360 COLLECT_SIZE, for supply the existing buffer being read from should
1361 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1362 is used for diagnostic messages. CB_DATA should have been passed
1363 unchanged through the iterator. */
1528345d 1364
5aa82d05 1365typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1366 (const char *sect_name, int supply_size, int collect_size,
1367 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1368
1369/* For a function call, does the function return a value using a
1370 normal value return or a structure return - passing a hidden
1371 argument pointing to storage. For the latter, there are two
1372 cases: language-mandated structure return and target ABI
1373 structure return. */
1374
1375enum function_call_return_method
1376{
1377 /* Standard value return. */
1378 return_method_normal = 0,
1379
1380 /* Language ABI structure return. This is handled
1381 by passing the return location as the first parameter to
1382 the function, even preceding "this". */
1383 return_method_hidden_param,
1384
1385 /* Target ABI struct return. This is target-specific; for instance,
1386 on ia64 the first argument is passed in out0 but the hidden
1387 structure return pointer would normally be passed in r8. */
1388 return_method_struct,
1389};
1390
c193949e
LM
1391enum class memtag_type
1392{
1393 /* Logical tag, the tag that is stored in unused bits of a pointer to a
1394 virtual address. */
1395 logical = 0,
1396
1397 /* Allocation tag, the tag that is associated with every granule of memory in
1398 the physical address space. Allocation tags are used to validate memory
1399 accesses via pointers containing logical tags. */
1400 allocation,
1401};
1402
104c1213
JM
1403EOF
1404
1405# function typedef's
3d9a5942
AC
1406printf "\n"
1407printf "\n"
0963b4bd 1408printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1409function_list | while do_read
104c1213 1410do
2ada493a
AC
1411 if class_is_info_p
1412 then
3d9a5942 1413 printf "\n"
8d113d13
SM
1414 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1415 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
2ada493a 1416 fi
104c1213
JM
1417done
1418
1419# function typedef's
3d9a5942
AC
1420printf "\n"
1421printf "\n"
0963b4bd 1422printf "/* The following are initialized by the target dependent code. */\n"
34620563 1423function_list | while do_read
104c1213 1424do
72e74a21 1425 if [ -n "${comment}" ]
34620563
AC
1426 then
1427 echo "${comment}" | sed \
1428 -e '2 s,#,/*,' \
1429 -e '3,$ s,#, ,' \
1430 -e '$ s,$, */,'
1431 fi
412d5987
AC
1432
1433 if class_is_predicate_p
2ada493a 1434 then
412d5987 1435 printf "\n"
39535193 1436 printf "extern bool gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
4a5c6a1d 1437 fi
2ada493a
AC
1438 if class_is_variable_p
1439 then
3d9a5942 1440 printf "\n"
8d113d13
SM
1441 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1442 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
2ada493a
AC
1443 fi
1444 if class_is_function_p
1445 then
3d9a5942 1446 printf "\n"
72e74a21 1447 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d 1448 then
8d113d13 1449 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
4a5c6a1d
AC
1450 elif class_is_multiarch_p
1451 then
8d113d13 1452 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1453 else
8d113d13 1454 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
4a5c6a1d 1455 fi
72e74a21 1456 if [ "x${formal}" = "xvoid" ]
104c1213 1457 then
8d113d13 1458 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
104c1213 1459 else
8d113d13 1460 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
104c1213 1461 fi
8d113d13 1462 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
2ada493a 1463 fi
104c1213
JM
1464done
1465
1466# close it off
1467cat <<EOF
1468
1469extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1470
1471
1472/* Mechanism for co-ordinating the selection of a specific
1473 architecture.
1474
1475 GDB targets (*-tdep.c) can register an interest in a specific
1476 architecture. Other GDB components can register a need to maintain
1477 per-architecture data.
1478
1479 The mechanisms below ensures that there is only a loose connection
1480 between the set-architecture command and the various GDB
0fa6923a 1481 components. Each component can independently register their need
104c1213
JM
1482 to maintain architecture specific data with gdbarch.
1483
1484 Pragmatics:
1485
1486 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1487 didn't scale.
1488
1489 The more traditional mega-struct containing architecture specific
1490 data for all the various GDB components was also considered. Since
0fa6923a 1491 GDB is built from a variable number of (fairly independent)
104c1213 1492 components it was determined that the global aproach was not
0963b4bd 1493 applicable. */
104c1213
JM
1494
1495
1496/* Register a new architectural family with GDB.
1497
1498 Register support for the specified ARCHITECTURE with GDB. When
1499 gdbarch determines that the specified architecture has been
1500 selected, the corresponding INIT function is called.
1501
1502 --
1503
1504 The INIT function takes two parameters: INFO which contains the
1505 information available to gdbarch about the (possibly new)
1506 architecture; ARCHES which is a list of the previously created
1507 \`\`struct gdbarch'' for this architecture.
1508
0f79675b 1509 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1510 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1511
1512 The ARCHES parameter is a linked list (sorted most recently used)
1513 of all the previously created architures for this architecture
1514 family. The (possibly NULL) ARCHES->gdbarch can used to access
1515 values from the previously selected architecture for this
59837fe0 1516 architecture family.
104c1213
JM
1517
1518 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1519 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1520 gdbarch'' from the ARCHES list - indicating that the new
1521 architecture is just a synonym for an earlier architecture (see
1522 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1523 - that describes the selected architecture (see gdbarch_alloc()).
1524
1525 The DUMP_TDEP function shall print out all target specific values.
1526 Care should be taken to ensure that the function works in both the
0963b4bd 1527 multi-arch and non- multi-arch cases. */
104c1213
JM
1528
1529struct gdbarch_list
1530{
1531 struct gdbarch *gdbarch;
1532 struct gdbarch_list *next;
1533};
1534
1535struct gdbarch_info
1536{
b447dd03
SM
1537 gdbarch_info ()
1538 /* Ensure the union is zero-initialized. Relies on the fact that there's
1539 no member larger than TDESC_DATA. */
1540 : tdesc_data ()
1541 {}
104c1213 1542
b447dd03 1543 const struct bfd_arch_info *bfd_arch_info = nullptr;
104c1213 1544
b447dd03 1545 enum bfd_endian byte_order = BFD_ENDIAN_UNKNOWN;
9d4fde75 1546
b447dd03
SM
1547 enum bfd_endian byte_order_for_code = BFD_ENDIAN_UNKNOWN;
1548
1549 bfd *abfd = nullptr;
104c1213 1550
0dba2a6c
MR
1551 union
1552 {
0dba2a6c
MR
1553 /* Architecture-specific target description data. Numerous targets
1554 need only this, so give them an easy way to hold it. */
1555 struct tdesc_arch_data *tdesc_data;
1556
1557 /* SPU file system ID. This is a single integer, so using the
1558 generic form would only complicate code. Other targets may
1559 reuse this member if suitable. */
1560 int *id;
1561 };
4be87837 1562
b447dd03 1563 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
424163ea 1564
b447dd03 1565 const struct target_desc *target_desc = nullptr;
104c1213
JM
1566};
1567
1568typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1569typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1570
4b9b3959 1571/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1572extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1573
4b9b3959 1574extern void gdbarch_register (enum bfd_architecture architecture,
dda83cd7
SM
1575 gdbarch_init_ftype *,
1576 gdbarch_dump_tdep_ftype *);
4b9b3959 1577
104c1213 1578
b4a20239
AC
1579/* Return a freshly allocated, NULL terminated, array of the valid
1580 architecture names. Since architectures are registered during the
1581 _initialize phase this function only returns useful information
0963b4bd 1582 once initialization has been completed. */
b4a20239
AC
1583
1584extern const char **gdbarch_printable_names (void);
1585
1586
104c1213 1587/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1588 matches the information provided by INFO. */
104c1213 1589
424163ea 1590extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1591
1592
1593/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1594 basic initialization using values obtained from the INFO and TDEP
104c1213 1595 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1596 initialization of the object. */
104c1213
JM
1597
1598extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1599
1600
4b9b3959
AC
1601/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1602 It is assumed that the caller freeds the \`\`struct
0963b4bd 1603 gdbarch_tdep''. */
4b9b3959 1604
058f20d5
JB
1605extern void gdbarch_free (struct gdbarch *);
1606
284a0e3c
SM
1607/* Get the obstack owned by ARCH. */
1608
1609extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1610
aebd7893
AC
1611/* Helper function. Allocate memory from the \`\`struct gdbarch''
1612 obstack. The memory is freed when the corresponding architecture
1613 is also freed. */
1614
284a0e3c
SM
1615#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1616 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1617
1618#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1619 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1620
6c214e7c
PP
1621/* Duplicate STRING, returning an equivalent string that's allocated on the
1622 obstack associated with GDBARCH. The string is freed when the corresponding
1623 architecture is also freed. */
1624
1625extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1626
0963b4bd 1627/* Helper function. Force an update of the current architecture.
104c1213 1628
b732d07d
AC
1629 The actual architecture selected is determined by INFO, \`\`(gdb) set
1630 architecture'' et.al., the existing architecture and BFD's default
1631 architecture. INFO should be initialized to zero and then selected
1632 fields should be updated.
104c1213 1633
0963b4bd 1634 Returns non-zero if the update succeeds. */
16f33e29
AC
1635
1636extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1637
1638
ebdba546
AC
1639/* Helper function. Find an architecture matching info.
1640
b447dd03
SM
1641 INFO should have relevant fields set, and then finished using
1642 gdbarch_info_fill.
ebdba546
AC
1643
1644 Returns the corresponding architecture, or NULL if no matching
59837fe0 1645 architecture was found. */
ebdba546
AC
1646
1647extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1648
1649
aff68abb 1650/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1651
aff68abb 1652extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1653
104c1213
JM
1654
1655/* Register per-architecture data-pointer.
1656
1657 Reserve space for a per-architecture data-pointer. An identifier
1658 for the reserved data-pointer is returned. That identifer should
95160752 1659 be saved in a local static variable.
104c1213 1660
fcc1c85c
AC
1661 Memory for the per-architecture data shall be allocated using
1662 gdbarch_obstack_zalloc. That memory will be deleted when the
1663 corresponding architecture object is deleted.
104c1213 1664
95160752
AC
1665 When a previously created architecture is re-selected, the
1666 per-architecture data-pointer for that previous architecture is
76860b5f 1667 restored. INIT() is not re-called.
104c1213
JM
1668
1669 Multiple registrarants for any architecture are allowed (and
1670 strongly encouraged). */
1671
95160752 1672struct gdbarch_data;
104c1213 1673
030f20e1
AC
1674typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1675extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1676typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1677extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
104c1213 1678
451fbdda 1679extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1680
1681
0fa6923a 1682/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1683 byte-order, ...) using information found in the BFD. */
104c1213
JM
1684
1685extern void set_gdbarch_from_file (bfd *);
1686
1687
e514a9d6
JM
1688/* Initialize the current architecture to the "first" one we find on
1689 our list. */
1690
1691extern void initialize_current_architecture (void);
1692
104c1213 1693/* gdbarch trace variable */
ccce17b0 1694extern unsigned int gdbarch_debug;
104c1213 1695
4b9b3959 1696extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1697
f6efe3f8
SM
1698/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1699
1700static inline int
1701gdbarch_num_cooked_regs (gdbarch *arch)
1702{
1703 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1704}
1705
104c1213
JM
1706#endif
1707EOF
1708exec 1>&2
41a77cba
SM
1709../move-if-change new-gdbarch.h gdbarch.h
1710rm -f new-gdbarch.h
104c1213
JM
1711
1712
1713#
1714# C file
1715#
1716
1717exec > new-gdbarch.c
1718copyright
1719cat <<EOF
1720
1721#include "defs.h"
7355ddba 1722#include "arch-utils.h"
104c1213 1723
104c1213 1724#include "gdbcmd.h"
faaf634c 1725#include "inferior.h"
104c1213
JM
1726#include "symcat.h"
1727
f0d4cc9e 1728#include "floatformat.h"
b59ff9d5 1729#include "reggroups.h"
4be87837 1730#include "osabi.h"
aebd7893 1731#include "gdb_obstack.h"
0bee6dd4 1732#include "observable.h"
a3ecef73 1733#include "regcache.h"
19630284 1734#include "objfiles.h"
2faa3447 1735#include "auxv.h"
8bcb5208
AB
1736#include "frame-unwind.h"
1737#include "dummy-frame.h"
95160752 1738
104c1213
JM
1739/* Static function declarations */
1740
b3cc3077 1741static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1742
104c1213
JM
1743/* Non-zero if we want to trace architecture code. */
1744
1745#ifndef GDBARCH_DEBUG
1746#define GDBARCH_DEBUG 0
1747#endif
ccce17b0 1748unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1749static void
1750show_gdbarch_debug (struct ui_file *file, int from_tty,
dda83cd7 1751 struct cmd_list_element *c, const char *value)
920d2a44
AC
1752{
1753 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1754}
104c1213 1755
456fcf94 1756static const char *
8da61cc4 1757pformat (const struct floatformat **format)
456fcf94
AC
1758{
1759 if (format == NULL)
1760 return "(null)";
1761 else
8da61cc4
DJ
1762 /* Just print out one of them - this is only for diagnostics. */
1763 return format[0]->name;
456fcf94
AC
1764}
1765
08105857
PA
1766static const char *
1767pstring (const char *string)
1768{
1769 if (string == NULL)
1770 return "(null)";
1771 return string;
05c0465e
SDJ
1772}
1773
a121b7c1 1774static const char *
f7bb4e3a
PB
1775pstring_ptr (char **string)
1776{
1777 if (string == NULL || *string == NULL)
1778 return "(null)";
1779 return *string;
1780}
1781
05c0465e
SDJ
1782/* Helper function to print a list of strings, represented as "const
1783 char *const *". The list is printed comma-separated. */
1784
a121b7c1 1785static const char *
05c0465e
SDJ
1786pstring_list (const char *const *list)
1787{
1788 static char ret[100];
1789 const char *const *p;
1790 size_t offset = 0;
1791
1792 if (list == NULL)
1793 return "(null)";
1794
1795 ret[0] = '\0';
1796 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1797 {
1798 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1799 offset += 2 + s;
1800 }
1801
1802 if (offset > 0)
1803 {
1804 gdb_assert (offset - 2 < sizeof (ret));
1805 ret[offset - 2] = '\0';
1806 }
1807
1808 return ret;
08105857
PA
1809}
1810
104c1213
JM
1811EOF
1812
1813# gdbarch open the gdbarch object
3d9a5942 1814printf "\n"
0963b4bd 1815printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1816printf "\n"
1817printf "struct gdbarch\n"
1818printf "{\n"
76860b5f
AC
1819printf " /* Has this architecture been fully initialized? */\n"
1820printf " int initialized_p;\n"
aebd7893
AC
1821printf "\n"
1822printf " /* An obstack bound to the lifetime of the architecture. */\n"
1823printf " struct obstack *obstack;\n"
1824printf "\n"
0963b4bd 1825printf " /* basic architectural information. */\n"
34620563 1826function_list | while do_read
104c1213 1827do
2ada493a
AC
1828 if class_is_info_p
1829 then
8d113d13 1830 printf " %s %s;\n" "$returntype" "$function"
2ada493a 1831 fi
104c1213 1832done
3d9a5942 1833printf "\n"
0963b4bd 1834printf " /* target specific vector. */\n"
3d9a5942
AC
1835printf " struct gdbarch_tdep *tdep;\n"
1836printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1837printf "\n"
0963b4bd 1838printf " /* per-architecture data-pointers. */\n"
95160752 1839printf " unsigned nr_data;\n"
3d9a5942
AC
1840printf " void **data;\n"
1841printf "\n"
104c1213
JM
1842cat <<EOF
1843 /* Multi-arch values.
1844
1845 When extending this structure you must:
1846
1847 Add the field below.
1848
1849 Declare set/get functions and define the corresponding
1850 macro in gdbarch.h.
1851
1852 gdbarch_alloc(): If zero/NULL is not a suitable default,
1853 initialize the new field.
1854
1855 verify_gdbarch(): Confirm that the target updated the field
1856 correctly.
1857
7e73cedf 1858 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1859 field is dumped out
1860
104c1213
JM
1861 get_gdbarch(): Implement the set/get functions (probably using
1862 the macro's as shortcuts).
1863
1864 */
1865
1866EOF
34620563 1867function_list | while do_read
104c1213 1868do
2ada493a
AC
1869 if class_is_variable_p
1870 then
8d113d13 1871 printf " %s %s;\n" "$returntype" "$function"
2ada493a
AC
1872 elif class_is_function_p
1873 then
8d113d13 1874 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
2ada493a 1875 fi
104c1213 1876done
3d9a5942 1877printf "};\n"
104c1213 1878
104c1213 1879# Create a new gdbarch struct
104c1213 1880cat <<EOF
7de2341d 1881
66b43ecb 1882/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1883 \`\`struct gdbarch_info''. */
104c1213 1884EOF
3d9a5942 1885printf "\n"
104c1213
JM
1886cat <<EOF
1887struct gdbarch *
1888gdbarch_alloc (const struct gdbarch_info *info,
dda83cd7 1889 struct gdbarch_tdep *tdep)
104c1213 1890{
be7811ad 1891 struct gdbarch *gdbarch;
aebd7893
AC
1892
1893 /* Create an obstack for allocating all the per-architecture memory,
1894 then use that to allocate the architecture vector. */
70ba0933 1895 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1896 obstack_init (obstack);
8d749320 1897 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1898 memset (gdbarch, 0, sizeof (*gdbarch));
1899 gdbarch->obstack = obstack;
85de9627 1900
be7811ad 1901 alloc_gdbarch_data (gdbarch);
85de9627 1902
be7811ad 1903 gdbarch->tdep = tdep;
104c1213 1904EOF
3d9a5942 1905printf "\n"
34620563 1906function_list | while do_read
104c1213 1907do
2ada493a
AC
1908 if class_is_info_p
1909 then
8d113d13 1910 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
2ada493a 1911 fi
104c1213 1912done
3d9a5942 1913printf "\n"
0963b4bd 1914printf " /* Force the explicit initialization of these. */\n"
34620563 1915function_list | while do_read
104c1213 1916do
2ada493a
AC
1917 if class_is_function_p || class_is_variable_p
1918 then
759cea5e 1919 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
104c1213 1920 then
8d113d13 1921 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
104c1213 1922 fi
2ada493a 1923 fi
104c1213
JM
1924done
1925cat <<EOF
1926 /* gdbarch_alloc() */
1927
be7811ad 1928 return gdbarch;
104c1213
JM
1929}
1930EOF
1931
058f20d5 1932# Free a gdbarch struct.
3d9a5942
AC
1933printf "\n"
1934printf "\n"
058f20d5 1935cat <<EOF
aebd7893 1936
284a0e3c 1937obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1938{
284a0e3c 1939 return arch->obstack;
aebd7893
AC
1940}
1941
6c214e7c
PP
1942/* See gdbarch.h. */
1943
1944char *
1945gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1946{
1947 return obstack_strdup (arch->obstack, string);
1948}
1949
aebd7893 1950
058f20d5
JB
1951/* Free a gdbarch struct. This should never happen in normal
1952 operation --- once you've created a gdbarch, you keep it around.
1953 However, if an architecture's init function encounters an error
1954 building the structure, it may need to clean up a partially
1955 constructed gdbarch. */
4b9b3959 1956
058f20d5
JB
1957void
1958gdbarch_free (struct gdbarch *arch)
1959{
aebd7893 1960 struct obstack *obstack;
05c547f6 1961
95160752 1962 gdb_assert (arch != NULL);
aebd7893
AC
1963 gdb_assert (!arch->initialized_p);
1964 obstack = arch->obstack;
1965 obstack_free (obstack, 0); /* Includes the ARCH. */
1966 xfree (obstack);
058f20d5
JB
1967}
1968EOF
1969
104c1213 1970# verify a new architecture
104c1213 1971cat <<EOF
db446970
AC
1972
1973
1974/* Ensure that all values in a GDBARCH are reasonable. */
1975
104c1213 1976static void
be7811ad 1977verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1978{
d7e74731 1979 string_file log;
05c547f6 1980
104c1213 1981 /* fundamental */
be7811ad 1982 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1983 log.puts ("\n\tbyte-order");
be7811ad 1984 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1985 log.puts ("\n\tbfd_arch_info");
0963b4bd 1986 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1987EOF
34620563 1988function_list | while do_read
104c1213 1989do
2ada493a
AC
1990 if class_is_function_p || class_is_variable_p
1991 then
72e74a21 1992 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1993 then
8d113d13 1994 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2ada493a
AC
1995 elif class_is_predicate_p
1996 then
8d113d13 1997 printf " /* Skip verify of %s, has predicate. */\n" "$function"
f0d4cc9e 1998 # FIXME: See do_read for potential simplification
759cea5e 1999 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
f0d4cc9e 2000 then
8d113d13
SM
2001 printf " if (%s)\n" "$invalid_p"
2002 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
759cea5e 2003 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
f0d4cc9e 2004 then
8d113d13
SM
2005 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2006 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 2007 elif [ -n "${postdefault}" ]
f0d4cc9e 2008 then
8d113d13
SM
2009 printf " if (gdbarch->%s == 0)\n" "$function"
2010 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
72e74a21 2011 elif [ -n "${invalid_p}" ]
104c1213 2012 then
8d113d13
SM
2013 printf " if (%s)\n" "$invalid_p"
2014 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
72e74a21 2015 elif [ -n "${predefault}" ]
104c1213 2016 then
8d113d13
SM
2017 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2018 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
104c1213 2019 fi
2ada493a 2020 fi
104c1213
JM
2021done
2022cat <<EOF
d7e74731 2023 if (!log.empty ())
f16a1923 2024 internal_error (__FILE__, __LINE__,
dda83cd7
SM
2025 _("verify_gdbarch: the following are invalid ...%s"),
2026 log.c_str ());
104c1213
JM
2027}
2028EOF
2029
2030# dump the structure
3d9a5942
AC
2031printf "\n"
2032printf "\n"
104c1213 2033cat <<EOF
0963b4bd 2034/* Print out the details of the current architecture. */
4b9b3959 2035
104c1213 2036void
be7811ad 2037gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2038{
b78960be 2039 const char *gdb_nm_file = "<not-defined>";
05c547f6 2040
b78960be
AC
2041#if defined (GDB_NM_FILE)
2042 gdb_nm_file = GDB_NM_FILE;
2043#endif
2044 fprintf_unfiltered (file,
dda83cd7
SM
2045 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2046 gdb_nm_file);
104c1213 2047EOF
ea480a30 2048function_list | sort '-t;' -k 3 | while do_read
104c1213 2049do
1e9f55d0
AC
2050 # First the predicate
2051 if class_is_predicate_p
2052 then
7996bcec 2053 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2054 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2055 printf " gdbarch_%s_p (gdbarch));\n" "$function"
08e45a40 2056 fi
48f7351b 2057 # Print the corresponding value.
283354d8 2058 if class_is_function_p
4b9b3959 2059 then
7996bcec 2060 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2061 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2062 printf " host_address_to_string (gdbarch->%s));\n" "$function"
4b9b3959 2063 else
48f7351b 2064 # It is a variable
2f9b146e
AC
2065 case "${print}:${returntype}" in
2066 :CORE_ADDR )
0b1553bc
UW
2067 fmt="%s"
2068 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2069 ;;
2f9b146e 2070 :* )
dda83cd7 2071 fmt="%s"
623d3eb1 2072 print="plongest (gdbarch->${function})"
48f7351b
AC
2073 ;;
2074 * )
dda83cd7 2075 fmt="%s"
48f7351b 2076 ;;
dda83cd7 2077 esac
3d9a5942 2078 printf " fprintf_unfiltered (file,\n"
8d113d13
SM
2079 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2080 printf " %s);\n" "$print"
2ada493a 2081 fi
104c1213 2082done
381323f4 2083cat <<EOF
be7811ad
MD
2084 if (gdbarch->dump_tdep != NULL)
2085 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2086}
2087EOF
104c1213
JM
2088
2089
2090# GET/SET
3d9a5942 2091printf "\n"
104c1213
JM
2092cat <<EOF
2093struct gdbarch_tdep *
2094gdbarch_tdep (struct gdbarch *gdbarch)
2095{
2096 if (gdbarch_debug >= 2)
3d9a5942 2097 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2098 return gdbarch->tdep;
2099}
2100EOF
3d9a5942 2101printf "\n"
34620563 2102function_list | while do_read
104c1213 2103do
2ada493a
AC
2104 if class_is_predicate_p
2105 then
3d9a5942 2106 printf "\n"
39535193 2107 printf "bool\n"
8d113d13 2108 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2109 printf "{\n"
dda83cd7 2110 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2111 printf " return %s;\n" "$predicate"
3d9a5942 2112 printf "}\n"
2ada493a
AC
2113 fi
2114 if class_is_function_p
2115 then
3d9a5942 2116 printf "\n"
8d113d13 2117 printf "%s\n" "$returntype"
72e74a21 2118 if [ "x${formal}" = "xvoid" ]
104c1213 2119 then
8d113d13 2120 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
104c1213 2121 else
8d113d13 2122 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
104c1213 2123 fi
3d9a5942 2124 printf "{\n"
dda83cd7 2125 printf " gdb_assert (gdbarch != NULL);\n"
8d113d13 2126 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
f7968451 2127 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2128 then
2129 # Allow a call to a function with a predicate.
8d113d13 2130 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
ae45cd16 2131 fi
3d9a5942 2132 printf " if (gdbarch_debug >= 2)\n"
8d113d13 2133 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
1207375d 2134 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
4a5c6a1d
AC
2135 then
2136 if class_is_multiarch_p
2137 then
2138 params="gdbarch"
2139 else
2140 params=""
2141 fi
2142 else
2143 if class_is_multiarch_p
2144 then
2145 params="gdbarch, ${actual}"
2146 else
2147 params="${actual}"
2148 fi
dda83cd7 2149 fi
72e74a21 2150 if [ "x${returntype}" = "xvoid" ]
104c1213 2151 then
8d113d13 2152 printf " gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2153 else
8d113d13 2154 printf " return gdbarch->%s (%s);\n" "$function" "$params"
104c1213 2155 fi
3d9a5942
AC
2156 printf "}\n"
2157 printf "\n"
2158 printf "void\n"
8d113d13 2159 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2160 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
3d9a5942 2161 printf "{\n"
8d113d13 2162 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2163 printf "}\n"
2ada493a
AC
2164 elif class_is_variable_p
2165 then
3d9a5942 2166 printf "\n"
8d113d13
SM
2167 printf "%s\n" "$returntype"
2168 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2169 printf "{\n"
dda83cd7 2170 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2171 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2172 then
8d113d13 2173 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
72e74a21 2174 elif [ -n "${invalid_p}" ]
104c1213 2175 then
956ac328 2176 printf " /* Check variable is valid. */\n"
8d113d13 2177 printf " gdb_assert (!(%s));\n" "$invalid_p"
72e74a21 2178 elif [ -n "${predefault}" ]
104c1213 2179 then
956ac328 2180 printf " /* Check variable changed from pre-default. */\n"
8d113d13 2181 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
104c1213 2182 fi
3d9a5942 2183 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2184 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2185 printf " return gdbarch->%s;\n" "$function"
3d9a5942
AC
2186 printf "}\n"
2187 printf "\n"
2188 printf "void\n"
8d113d13 2189 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
cb02ab24 2190 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
3d9a5942 2191 printf "{\n"
8d113d13 2192 printf " gdbarch->%s = %s;\n" "$function" "$function"
3d9a5942 2193 printf "}\n"
2ada493a
AC
2194 elif class_is_info_p
2195 then
3d9a5942 2196 printf "\n"
8d113d13
SM
2197 printf "%s\n" "$returntype"
2198 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
3d9a5942 2199 printf "{\n"
dda83cd7 2200 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942 2201 printf " if (gdbarch_debug >= 2)\n"
8d113d13
SM
2202 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2203 printf " return gdbarch->%s;\n" "$function"
3d9a5942 2204 printf "}\n"
2ada493a 2205 fi
104c1213
JM
2206done
2207
2208# All the trailing guff
2209cat <<EOF
2210
2211
f44c642f 2212/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2213 modules. */
104c1213
JM
2214
2215struct gdbarch_data
2216{
95160752 2217 unsigned index;
76860b5f 2218 int init_p;
030f20e1
AC
2219 gdbarch_data_pre_init_ftype *pre_init;
2220 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2221};
2222
2223struct gdbarch_data_registration
2224{
104c1213
JM
2225 struct gdbarch_data *data;
2226 struct gdbarch_data_registration *next;
2227};
2228
f44c642f 2229struct gdbarch_data_registry
104c1213 2230{
95160752 2231 unsigned nr;
104c1213
JM
2232 struct gdbarch_data_registration *registrations;
2233};
2234
41c0087b 2235static struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2236{
2237 0, NULL,
2238};
2239
030f20e1
AC
2240static struct gdbarch_data *
2241gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2242 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2243{
2244 struct gdbarch_data_registration **curr;
05c547f6
MS
2245
2246 /* Append the new registration. */
f44c642f 2247 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2248 (*curr) != NULL;
2249 curr = &(*curr)->next);
70ba0933 2250 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2251 (*curr)->next = NULL;
70ba0933 2252 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2253 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2254 (*curr)->data->pre_init = pre_init;
2255 (*curr)->data->post_init = post_init;
76860b5f 2256 (*curr)->data->init_p = 1;
104c1213
JM
2257 return (*curr)->data;
2258}
2259
030f20e1
AC
2260struct gdbarch_data *
2261gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2262{
2263 return gdbarch_data_register (pre_init, NULL);
2264}
2265
2266struct gdbarch_data *
2267gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2268{
2269 return gdbarch_data_register (NULL, post_init);
2270}
104c1213 2271
0963b4bd 2272/* Create/delete the gdbarch data vector. */
95160752
AC
2273
2274static void
b3cc3077 2275alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2276{
b3cc3077
JB
2277 gdb_assert (gdbarch->data == NULL);
2278 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2279 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2280}
3c875b6f 2281
104c1213 2282/* Return the current value of the specified per-architecture
0963b4bd 2283 data-pointer. */
104c1213
JM
2284
2285void *
451fbdda 2286gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2287{
451fbdda 2288 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2289 if (gdbarch->data[data->index] == NULL)
76860b5f 2290 {
030f20e1
AC
2291 /* The data-pointer isn't initialized, call init() to get a
2292 value. */
2293 if (data->pre_init != NULL)
2294 /* Mid architecture creation: pass just the obstack, and not
2295 the entire architecture, as that way it isn't possible for
2296 pre-init code to refer to undefined architecture
2297 fields. */
2298 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2299 else if (gdbarch->initialized_p
2300 && data->post_init != NULL)
2301 /* Post architecture creation: pass the entire architecture
2302 (as all fields are valid), but be careful to also detect
2303 recursive references. */
2304 {
2305 gdb_assert (data->init_p);
2306 data->init_p = 0;
2307 gdbarch->data[data->index] = data->post_init (gdbarch);
2308 data->init_p = 1;
2309 }
2310 else
3bc98c0c
AB
2311 internal_error (__FILE__, __LINE__,
2312 _("gdbarch post-init data field can only be used "
2313 "after gdbarch is fully initialised"));
76860b5f
AC
2314 gdb_assert (gdbarch->data[data->index] != NULL);
2315 }
451fbdda 2316 return gdbarch->data[data->index];
104c1213
JM
2317}
2318
2319
0963b4bd 2320/* Keep a registry of the architectures known by GDB. */
104c1213 2321
4b9b3959 2322struct gdbarch_registration
104c1213
JM
2323{
2324 enum bfd_architecture bfd_architecture;
2325 gdbarch_init_ftype *init;
4b9b3959 2326 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2327 struct gdbarch_list *arches;
4b9b3959 2328 struct gdbarch_registration *next;
104c1213
JM
2329};
2330
f44c642f 2331static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2332
b4a20239
AC
2333static void
2334append_name (const char ***buf, int *nr, const char *name)
2335{
1dc7a623 2336 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2337 (*buf)[*nr] = name;
2338 *nr += 1;
2339}
2340
2341const char **
2342gdbarch_printable_names (void)
2343{
7996bcec 2344 /* Accumulate a list of names based on the registed list of
0963b4bd 2345 architectures. */
7996bcec
AC
2346 int nr_arches = 0;
2347 const char **arches = NULL;
2348 struct gdbarch_registration *rego;
05c547f6 2349
7996bcec
AC
2350 for (rego = gdbarch_registry;
2351 rego != NULL;
2352 rego = rego->next)
b4a20239 2353 {
7996bcec
AC
2354 const struct bfd_arch_info *ap;
2355 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2356 if (ap == NULL)
dda83cd7
SM
2357 internal_error (__FILE__, __LINE__,
2358 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec 2359 do
dda83cd7
SM
2360 {
2361 append_name (&arches, &nr_arches, ap->printable_name);
2362 ap = ap->next;
2363 }
7996bcec 2364 while (ap != NULL);
b4a20239 2365 }
7996bcec
AC
2366 append_name (&arches, &nr_arches, NULL);
2367 return arches;
b4a20239
AC
2368}
2369
2370
104c1213 2371void
4b9b3959 2372gdbarch_register (enum bfd_architecture bfd_architecture,
dda83cd7 2373 gdbarch_init_ftype *init,
4b9b3959 2374 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2375{
4b9b3959 2376 struct gdbarch_registration **curr;
104c1213 2377 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2378
ec3d358c 2379 /* Check that BFD recognizes this architecture */
104c1213
JM
2380 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2381 if (bfd_arch_info == NULL)
2382 {
8e65ff28 2383 internal_error (__FILE__, __LINE__,
dda83cd7 2384 _("gdbarch: Attempt to register "
0963b4bd 2385 "unknown architecture (%d)"),
dda83cd7 2386 bfd_architecture);
104c1213 2387 }
0963b4bd 2388 /* Check that we haven't seen this architecture before. */
f44c642f 2389 for (curr = &gdbarch_registry;
104c1213
JM
2390 (*curr) != NULL;
2391 curr = &(*curr)->next)
2392 {
2393 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2394 internal_error (__FILE__, __LINE__,
dda83cd7 2395 _("gdbarch: Duplicate registration "
0963b4bd 2396 "of architecture (%s)"),
dda83cd7 2397 bfd_arch_info->printable_name);
104c1213
JM
2398 }
2399 /* log it */
2400 if (gdbarch_debug)
30737ed9 2401 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2402 bfd_arch_info->printable_name,
30737ed9 2403 host_address_to_string (init));
104c1213 2404 /* Append it */
70ba0933 2405 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2406 (*curr)->bfd_architecture = bfd_architecture;
2407 (*curr)->init = init;
4b9b3959 2408 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2409 (*curr)->arches = NULL;
2410 (*curr)->next = NULL;
4b9b3959
AC
2411}
2412
2413void
2414register_gdbarch_init (enum bfd_architecture bfd_architecture,
2415 gdbarch_init_ftype *init)
2416{
2417 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2418}
104c1213
JM
2419
2420
424163ea 2421/* Look for an architecture using gdbarch_info. */
104c1213
JM
2422
2423struct gdbarch_list *
2424gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
dda83cd7 2425 const struct gdbarch_info *info)
104c1213
JM
2426{
2427 for (; arches != NULL; arches = arches->next)
2428 {
2429 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2430 continue;
2431 if (info->byte_order != arches->gdbarch->byte_order)
2432 continue;
4be87837
DJ
2433 if (info->osabi != arches->gdbarch->osabi)
2434 continue;
424163ea
DJ
2435 if (info->target_desc != arches->gdbarch->target_desc)
2436 continue;
104c1213
JM
2437 return arches;
2438 }
2439 return NULL;
2440}
2441
2442
ebdba546 2443/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2444 architecture if needed. Return that new architecture. */
104c1213 2445
59837fe0
UW
2446struct gdbarch *
2447gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2448{
2449 struct gdbarch *new_gdbarch;
4b9b3959 2450 struct gdbarch_registration *rego;
104c1213 2451
b732d07d 2452 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2453 sources: "set ..."; INFOabfd supplied; and the global
2454 defaults. */
2455 gdbarch_info_fill (&info);
4be87837 2456
0963b4bd 2457 /* Must have found some sort of architecture. */
b732d07d 2458 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2459
2460 if (gdbarch_debug)
2461 {
2462 fprintf_unfiltered (gdb_stdlog,
59837fe0 2463 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2464 (info.bfd_arch_info != NULL
2465 ? info.bfd_arch_info->printable_name
2466 : "(null)"));
2467 fprintf_unfiltered (gdb_stdlog,
59837fe0 2468 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2469 info.byte_order,
d7449b42 2470 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2471 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2472 : "default"));
4be87837 2473 fprintf_unfiltered (gdb_stdlog,
59837fe0 2474 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2475 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2476 fprintf_unfiltered (gdb_stdlog,
59837fe0 2477 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2478 host_address_to_string (info.abfd));
104c1213
JM
2479 }
2480
ebdba546 2481 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2482 for (rego = gdbarch_registry;
2483 rego != NULL;
2484 rego = rego->next)
2485 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2486 break;
2487 if (rego == NULL)
2488 {
2489 if (gdbarch_debug)
59837fe0 2490 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2491 "No matching architecture\n");
b732d07d
AC
2492 return 0;
2493 }
2494
ebdba546 2495 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2496 new_gdbarch = rego->init (info, rego->arches);
2497
ebdba546
AC
2498 /* Did the tdep code like it? No. Reject the change and revert to
2499 the old architecture. */
104c1213
JM
2500 if (new_gdbarch == NULL)
2501 {
2502 if (gdbarch_debug)
59837fe0 2503 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2504 "Target rejected architecture\n");
2505 return NULL;
104c1213
JM
2506 }
2507
ebdba546
AC
2508 /* Is this a pre-existing architecture (as determined by already
2509 being initialized)? Move it to the front of the architecture
2510 list (keeping the list sorted Most Recently Used). */
2511 if (new_gdbarch->initialized_p)
104c1213 2512 {
ebdba546 2513 struct gdbarch_list **list;
fe978cb0 2514 struct gdbarch_list *self;
104c1213 2515 if (gdbarch_debug)
59837fe0 2516 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2517 "Previous architecture %s (%s) selected\n",
2518 host_address_to_string (new_gdbarch),
104c1213 2519 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2520 /* Find the existing arch in the list. */
2521 for (list = &rego->arches;
2522 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2523 list = &(*list)->next);
2524 /* It had better be in the list of architectures. */
2525 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2526 /* Unlink SELF. */
2527 self = (*list);
2528 (*list) = self->next;
2529 /* Insert SELF at the front. */
2530 self->next = rego->arches;
2531 rego->arches = self;
ebdba546
AC
2532 /* Return it. */
2533 return new_gdbarch;
104c1213
JM
2534 }
2535
ebdba546
AC
2536 /* It's a new architecture. */
2537 if (gdbarch_debug)
59837fe0 2538 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2539 "New architecture %s (%s) selected\n",
2540 host_address_to_string (new_gdbarch),
ebdba546
AC
2541 new_gdbarch->bfd_arch_info->printable_name);
2542
2543 /* Insert the new architecture into the front of the architecture
2544 list (keep the list sorted Most Recently Used). */
0f79675b 2545 {
fe978cb0
PA
2546 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2547 self->next = rego->arches;
2548 self->gdbarch = new_gdbarch;
2549 rego->arches = self;
0f79675b 2550 }
104c1213 2551
4b9b3959
AC
2552 /* Check that the newly installed architecture is valid. Plug in
2553 any post init values. */
2554 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2555 verify_gdbarch (new_gdbarch);
ebdba546 2556 new_gdbarch->initialized_p = 1;
104c1213 2557
4b9b3959 2558 if (gdbarch_debug)
ebdba546
AC
2559 gdbarch_dump (new_gdbarch, gdb_stdlog);
2560
2561 return new_gdbarch;
2562}
2563
e487cc15 2564/* Make the specified architecture current. */
ebdba546
AC
2565
2566void
aff68abb 2567set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2568{
2569 gdb_assert (new_gdbarch != NULL);
ebdba546 2570 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2571 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2572 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2573 registers_changed ();
ebdba546 2574}
104c1213 2575
f5656ead 2576/* Return the current inferior's arch. */
6ecd4729
PA
2577
2578struct gdbarch *
f5656ead 2579target_gdbarch (void)
6ecd4729
PA
2580{
2581 return current_inferior ()->gdbarch;
2582}
2583
a1237872 2584void _initialize_gdbarch ();
104c1213 2585void
a1237872 2586_initialize_gdbarch ()
104c1213 2587{
ccce17b0 2588 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2589Set architecture debugging."), _("\\
2590Show architecture debugging."), _("\\
2591When non-zero, architecture debugging is enabled."),
dda83cd7
SM
2592 NULL,
2593 show_gdbarch_debug,
2594 &setdebuglist, &showdebuglist);
104c1213
JM
2595}
2596EOF
2597
2598# close things off
2599exec 1>&2
41a77cba
SM
2600../move-if-change new-gdbarch.c gdbarch.c
2601rm -f new-gdbarch.c
This page took 1.920591 seconds and 4 git commands to generate.