Remove simple_displaced_step_copy_insn
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
61baf725 5# Copyright (C) 1998-2017 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
ea480a30 352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
32c9a795 353
66b43ecb 354# Number of bits in a short or unsigned short for the target machine.
ea480a30 355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 356# Number of bits in an int or unsigned int for the target machine.
ea480a30 357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 358# Number of bits in a long or unsigned long for the target machine.
ea480a30 359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
360# Number of bits in a long long or unsigned long long for the target
361# machine.
ea480a30 362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
205c306f
DM
363# Alignment of a long long or unsigned long long for the target
364# machine.
ea480a30 365v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 366
f9e9243a
UW
367# The ABI default bit-size and format for "half", "float", "double", and
368# "long double". These bit/format pairs should eventually be combined
369# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
370# Each format describes both the big and little endian layouts (if
371# useful).
456fcf94 372
ea480a30
SM
373v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
374v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
375v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
376v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
377v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
378v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
379v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
380v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 381
53375380
PA
382# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
383# starting with C++11.
ea480a30 384v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 385# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 386v;int;wchar_signed;;;1;-1;1
53375380 387
9b790ce7
UW
388# Returns the floating-point format to be used for values of length LENGTH.
389# NAME, if non-NULL, is the type name, which may be used to distinguish
390# different target formats of the same length.
ea480a30 391m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 392
52204a0b
DT
393# For most targets, a pointer on the target and its representation as an
394# address in GDB have the same size and "look the same". For such a
17a912b6 395# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
396# / addr_bit will be set from it.
397#
17a912b6 398# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
399# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
400# gdbarch_address_to_pointer as well.
52204a0b
DT
401#
402# ptr_bit is the size of a pointer on the target
ea480a30 403v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 404# addr_bit is the size of a target address as represented in gdb
ea480a30 405v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 406#
8da614df
CV
407# dwarf2_addr_size is the target address size as used in the Dwarf debug
408# info. For .debug_frame FDEs, this is supposed to be the target address
409# size from the associated CU header, and which is equivalent to the
410# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
411# Unfortunately there is no good way to determine this value. Therefore
412# dwarf2_addr_size simply defaults to the target pointer size.
413#
414# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
415# defined using the target's pointer size so far.
416#
417# Note that dwarf2_addr_size only needs to be redefined by a target if the
418# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
419# and if Dwarf versions < 4 need to be supported.
ea480a30 420v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 421#
4e409299 422# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 423v;int;char_signed;;;1;-1;1
4e409299 424#
ea480a30
SM
425F;CORE_ADDR;read_pc;struct regcache *regcache;regcache
426F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
427# Function for getting target's idea of a frame pointer. FIXME: GDB's
428# whole scheme for dealing with "frames" and "frame pointers" needs a
429# serious shakedown.
ea480a30 430m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 431#
ea480a30 432M;enum register_status;pseudo_register_read;struct regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
433# Read a register into a new struct value. If the register is wholly
434# or partly unavailable, this should call mark_value_bytes_unavailable
435# as appropriate. If this is defined, then pseudo_register_read will
436# never be called.
ea480a30
SM
437M;struct value *;pseudo_register_read_value;struct regcache *regcache, int cookednum;regcache, cookednum
438M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 439#
ea480a30 440v;int;num_regs;;;0;-1
0aba1244
EZ
441# This macro gives the number of pseudo-registers that live in the
442# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
443# These pseudo-registers may be aliases for other registers,
444# combinations of other registers, or they may be computed by GDB.
ea480a30 445v;int;num_pseudo_regs;;;0;0;;0
c2169756 446
175ff332
HZ
447# Assemble agent expression bytecode to collect pseudo-register REG.
448# Return -1 if something goes wrong, 0 otherwise.
ea480a30 449M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
450
451# Assemble agent expression bytecode to push the value of pseudo-register
452# REG on the interpreter stack.
453# Return -1 if something goes wrong, 0 otherwise.
ea480a30 454M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 455
012b3a21
WT
456# Some targets/architectures can do extra processing/display of
457# segmentation faults. E.g., Intel MPX boundary faults.
458# Call the architecture dependent function to handle the fault.
459# UIOUT is the output stream where the handler will place information.
ea480a30 460M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 461
c2169756
AC
462# GDB's standard (or well known) register numbers. These can map onto
463# a real register or a pseudo (computed) register or not be defined at
1200cd6e 464# all (-1).
3e8c568d 465# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
466v;int;sp_regnum;;;-1;-1;;0
467v;int;pc_regnum;;;-1;-1;;0
468v;int;ps_regnum;;;-1;-1;;0
469v;int;fp0_regnum;;;0;-1;;0
88c72b7d 470# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 471m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 472# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 473m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 474# Convert from an sdb register number to an internal gdb register number.
ea480a30 475m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 476# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 477# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
478m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
479m;const char *;register_name;int regnr;regnr;;0
9c04cab7 480
7b9ee6a8
DJ
481# Return the type of a register specified by the architecture. Only
482# the register cache should call this function directly; others should
483# use "register_type".
ea480a30 484M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 485
ea480a30 486M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
669fac23 487# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 488# deprecated_fp_regnum.
ea480a30 489v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 490
ea480a30
SM
491M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
492v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
493M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 494
7eb89530 495# Return true if the code of FRAME is writable.
ea480a30 496m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 497
ea480a30
SM
498m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
499m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
500M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
501# MAP a GDB RAW register number onto a simulator register number. See
502# also include/...-sim.h.
ea480a30
SM
503m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
504m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
505m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
506
507# Determine the address where a longjmp will land and save this address
508# in PC. Return nonzero on success.
509#
510# FRAME corresponds to the longjmp frame.
ea480a30 511F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 512
104c1213 513#
ea480a30 514v;int;believe_pcc_promotion;;;;;;;
104c1213 515#
ea480a30
SM
516m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
517f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
518f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 519# Construct a value representing the contents of register REGNUM in
2ed3c037 520# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
521# allocate and return a struct value with all value attributes
522# (but not the value contents) filled in.
ea480a30 523m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 524#
ea480a30
SM
525m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
526m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
527M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 528
6a3a010b
MR
529# Return the return-value convention that will be used by FUNCTION
530# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
531# case the return convention is computed based only on VALTYPE.
532#
533# If READBUF is not NULL, extract the return value and save it in this buffer.
534#
535# If WRITEBUF is not NULL, it contains a return value which will be
536# stored into the appropriate register. This can be used when we want
537# to force the value returned by a function (see the "return" command
538# for instance).
ea480a30 539M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 540
18648a37
YQ
541# Return true if the return value of function is stored in the first hidden
542# parameter. In theory, this feature should be language-dependent, specified
543# by language and its ABI, such as C++. Unfortunately, compiler may
544# implement it to a target-dependent feature. So that we need such hook here
545# to be aware of this in GDB.
ea480a30 546m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 547
ea480a30
SM
548m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
549M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
550# On some platforms, a single function may provide multiple entry points,
551# e.g. one that is used for function-pointer calls and a different one
552# that is used for direct function calls.
553# In order to ensure that breakpoints set on the function will trigger
554# no matter via which entry point the function is entered, a platform
555# may provide the skip_entrypoint callback. It is called with IP set
556# to the main entry point of a function (as determined by the symbol table),
557# and should return the address of the innermost entry point, where the
558# actual breakpoint needs to be set. Note that skip_entrypoint is used
559# by GDB common code even when debugging optimized code, where skip_prologue
560# is not used.
ea480a30 561M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 562
ea480a30
SM
563f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
564m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
565
566# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 567m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
568
569# Return the software breakpoint from KIND. KIND can have target
570# specific meaning like the Z0 kind parameter.
571# SIZE is set to the software breakpoint's length in memory.
ea480a30 572m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 573
833b7ab5
YQ
574# Return the breakpoint kind for this target based on the current
575# processor state (e.g. the current instruction mode on ARM) and the
576# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 577m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 578
ea480a30
SM
579M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
580m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
581m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
582v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
583
584# A function can be addressed by either it's "pointer" (possibly a
585# descriptor address) or "entry point" (first executable instruction).
586# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 587# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
588# a simplified subset of that functionality - the function's address
589# corresponds to the "function pointer" and the function's start
590# corresponds to the "function entry point" - and hence is redundant.
591
ea480a30 592v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 593
123dc839
DJ
594# Return the remote protocol register number associated with this
595# register. Normally the identity mapping.
ea480a30 596m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 597
b2756930 598# Fetch the target specific address used to represent a load module.
ea480a30 599F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
104c1213 600#
ea480a30
SM
601v;CORE_ADDR;frame_args_skip;;;0;;;0
602M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
603M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
42efa47a
AC
604# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
605# frame-base. Enable frame-base before frame-unwind.
ea480a30 606F;int;frame_num_args;struct frame_info *frame;frame
104c1213 607#
ea480a30
SM
608M;CORE_ADDR;frame_align;CORE_ADDR address;address
609m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
610v;int;frame_red_zone_size
f0d4cc9e 611#
ea480a30 612m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
613# On some machines there are bits in addresses which are not really
614# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 615# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
616# we get a "real" address such as one would find in a symbol table.
617# This is used only for addresses of instructions, and even then I'm
618# not sure it's used in all contexts. It exists to deal with there
619# being a few stray bits in the PC which would mislead us, not as some
620# sort of generic thing to handle alignment or segmentation (it's
621# possible it should be in TARGET_READ_PC instead).
ea480a30 622m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b
UW
623
624# FIXME/cagney/2001-01-18: This should be split in two. A target method that
625# indicates if the target needs software single step. An ISA method to
626# implement it.
627#
e6590a1b
UW
628# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
629# target can single step. If not, then implement single step using breakpoints.
64c4637f 630#
93f9a11f
YQ
631# Return a vector of addresses on which the software single step
632# breakpoints should be inserted. NULL means software single step is
633# not used.
634# Multiple breakpoints may be inserted for some instructions such as
635# conditional branch. However, each implementation must always evaluate
636# the condition and only put the breakpoint at the branch destination if
637# the condition is true, so that we ensure forward progress when stepping
638# past a conditional branch to self.
a0ff9e1a 639F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 640
3352ef37
AC
641# Return non-zero if the processor is executing a delay slot and a
642# further single-step is needed before the instruction finishes.
ea480a30 643M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 644# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 645# disassembler. Perhaps objdump can handle it?
39503f82 646f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 647f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
648
649
cfd8ab24 650# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
651# evaluates non-zero, this is the address where the debugger will place
652# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 653m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 654# Some systems also have trampoline code for returning from shared libs.
ea480a30 655m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 656
c12260ac
CV
657# A target might have problems with watchpoints as soon as the stack
658# frame of the current function has been destroyed. This mostly happens
c9cf6e20 659# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
660# is defined to return a non-zero value if either the given addr is one
661# instruction after the stack destroying instruction up to the trailing
662# return instruction or if we can figure out that the stack frame has
663# already been invalidated regardless of the value of addr. Targets
664# which don't suffer from that problem could just let this functionality
665# untouched.
ea480a30 666m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
667# Process an ELF symbol in the minimal symbol table in a backend-specific
668# way. Normally this hook is supposed to do nothing, however if required,
669# then this hook can be used to apply tranformations to symbols that are
670# considered special in some way. For example the MIPS backend uses it
671# to interpret \`st_other' information to mark compressed code symbols so
672# that they can be treated in the appropriate manner in the processing of
673# the main symbol table and DWARF-2 records.
ea480a30
SM
674F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
675f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
676# Process a symbol in the main symbol table in a backend-specific way.
677# Normally this hook is supposed to do nothing, however if required,
678# then this hook can be used to apply tranformations to symbols that
679# are considered special in some way. This is currently used by the
680# MIPS backend to make sure compressed code symbols have the ISA bit
681# set. This in turn is needed for symbol values seen in GDB to match
682# the values used at the runtime by the program itself, for function
683# and label references.
ea480a30 684f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
685# Adjust the address retrieved from a DWARF-2 record other than a line
686# entry in a backend-specific way. Normally this hook is supposed to
687# return the address passed unchanged, however if that is incorrect for
688# any reason, then this hook can be used to fix the address up in the
689# required manner. This is currently used by the MIPS backend to make
690# sure addresses in FDE, range records, etc. referring to compressed
691# code have the ISA bit set, matching line information and the symbol
692# table.
ea480a30 693f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
694# Adjust the address updated by a line entry in a backend-specific way.
695# Normally this hook is supposed to return the address passed unchanged,
696# however in the case of inconsistencies in these records, this hook can
697# be used to fix them up in the required manner. This is currently used
698# by the MIPS backend to make sure all line addresses in compressed code
699# are presented with the ISA bit set, which is not always the case. This
700# in turn ensures breakpoint addresses are correctly matched against the
701# stop PC.
ea480a30
SM
702f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
703v;int;cannot_step_breakpoint;;;0;0;;0
704v;int;have_nonsteppable_watchpoint;;;0;0;;0
705F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
706M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
707# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
708# FS are passed from the generic execute_cfa_program function.
ea480a30 709m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
710
711# Return the appropriate type_flags for the supplied address class.
712# This function should return 1 if the address class was recognized and
713# type_flags was set, zero otherwise.
ea480a30 714M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 715# Is a register in a group
ea480a30 716m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 717# Fetch the pointer to the ith function argument.
ea480a30 718F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 719
5aa82d05
AA
720# Iterate over all supported register notes in a core file. For each
721# supported register note section, the iterator must call CB and pass
722# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
723# the supported register note sections based on the current register
724# values. Otherwise it should enumerate all supported register note
725# sections.
ea480a30 726M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 727
6432734d 728# Create core file notes
ea480a30 729M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 730
35c2fab7 731# Find core file memory regions
ea480a30 732M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 733
de584861 734# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
735# core file into buffer READBUF with length LEN. Return the number of bytes read
736# (zero indicates failure).
737# failed, otherwise, return the red length of READBUF.
ea480a30 738M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 739
356a5233
JB
740# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
741# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 742# Return the number of bytes read (zero indicates failure).
ea480a30 743M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 744
c0edd9ed 745# How the core target converts a PTID from a core file to a string.
ea480a30 746M;const char *;core_pid_to_str;ptid_t ptid;ptid
28439f5e 747
4dfc5dbc 748# How the core target extracts the name of a thread from a core file.
ea480a30 749M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 750
382b69bb
JB
751# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
752# from core file into buffer READBUF with length LEN. Return the number
753# of bytes read (zero indicates EOF, a negative value indicates failure).
754M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
755
a78c2d62 756# BFD target to use when generating a core file.
ea480a30 757V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 758
0d5de010
DJ
759# If the elements of C++ vtables are in-place function descriptors rather
760# than normal function pointers (which may point to code or a descriptor),
761# set this to one.
ea480a30 762v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
763
764# Set if the least significant bit of the delta is used instead of the least
765# significant bit of the pfn for pointers to virtual member functions.
ea480a30 766v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
767
768# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 769f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 770
1668ae25 771# The maximum length of an instruction on this architecture in bytes.
ea480a30 772V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
773
774# Copy the instruction at FROM to TO, and make any adjustments
775# necessary to single-step it at that address.
776#
777# REGS holds the state the thread's registers will have before
778# executing the copied instruction; the PC in REGS will refer to FROM,
779# not the copy at TO. The caller should update it to point at TO later.
780#
781# Return a pointer to data of the architecture's choice to be passed
782# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
783# the instruction's effects have been completely simulated, with the
784# resulting state written back to REGS.
785#
786# For a general explanation of displaced stepping and how GDB uses it,
787# see the comments in infrun.c.
788#
789# The TO area is only guaranteed to have space for
790# gdbarch_max_insn_length (arch) bytes, so this function must not
791# write more bytes than that to that area.
792#
793# If you do not provide this function, GDB assumes that the
794# architecture does not support displaced stepping.
795#
7f03bd92
PA
796# If the instruction cannot execute out of line, return NULL. The
797# core falls back to stepping past the instruction in-line instead in
798# that case.
ea480a30 799M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 800
99e40580
UW
801# Return true if GDB should use hardware single-stepping to execute
802# the displaced instruction identified by CLOSURE. If false,
803# GDB will simply restart execution at the displaced instruction
804# location, and it is up to the target to ensure GDB will receive
805# control again (e.g. by placing a software breakpoint instruction
806# into the displaced instruction buffer).
807#
808# The default implementation returns false on all targets that
809# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 810m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 811
237fc4c9
PA
812# Fix up the state resulting from successfully single-stepping a
813# displaced instruction, to give the result we would have gotten from
814# stepping the instruction in its original location.
815#
816# REGS is the register state resulting from single-stepping the
817# displaced instruction.
818#
819# CLOSURE is the result from the matching call to
820# gdbarch_displaced_step_copy_insn.
821#
822# If you provide gdbarch_displaced_step_copy_insn.but not this
823# function, then GDB assumes that no fixup is needed after
824# single-stepping the instruction.
825#
826# For a general explanation of displaced stepping and how GDB uses it,
827# see the comments in infrun.c.
ea480a30 828M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 829
237fc4c9
PA
830# Return the address of an appropriate place to put displaced
831# instructions while we step over them. There need only be one such
832# place, since we're only stepping one thread over a breakpoint at a
833# time.
834#
835# For a general explanation of displaced stepping and how GDB uses it,
836# see the comments in infrun.c.
ea480a30 837m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 838
dde08ee1
PA
839# Relocate an instruction to execute at a different address. OLDLOC
840# is the address in the inferior memory where the instruction to
841# relocate is currently at. On input, TO points to the destination
842# where we want the instruction to be copied (and possibly adjusted)
843# to. On output, it points to one past the end of the resulting
844# instruction(s). The effect of executing the instruction at TO shall
845# be the same as if executing it at FROM. For example, call
846# instructions that implicitly push the return address on the stack
847# should be adjusted to return to the instruction after OLDLOC;
848# relative branches, and other PC-relative instructions need the
849# offset adjusted; etc.
ea480a30 850M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 851
1c772458 852# Refresh overlay mapped state for section OSECT.
ea480a30 853F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 854
ea480a30 855M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
856
857# Handle special encoding of static variables in stabs debug info.
ea480a30 858F;const char *;static_transform_name;const char *name;name
203c3895 859# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 860v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 861
0508c3ec
HZ
862# Parse the instruction at ADDR storing in the record execution log
863# the registers REGCACHE and memory ranges that will be affected when
864# the instruction executes, along with their current values.
865# Return -1 if something goes wrong, 0 otherwise.
ea480a30 866M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 867
3846b520
HZ
868# Save process state after a signal.
869# Return -1 if something goes wrong, 0 otherwise.
ea480a30 870M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 871
22203bbf 872# Signal translation: translate inferior's signal (target's) number
86b49880
PA
873# into GDB's representation. The implementation of this method must
874# be host independent. IOW, don't rely on symbols of the NAT_FILE
875# header (the nm-*.h files), the host <signal.h> header, or similar
876# headers. This is mainly used when cross-debugging core files ---
877# "Live" targets hide the translation behind the target interface
1f8cf220 878# (target_wait, target_resume, etc.).
ea480a30 879M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 880
eb14d406
SDJ
881# Signal translation: translate the GDB's internal signal number into
882# the inferior's signal (target's) representation. The implementation
883# of this method must be host independent. IOW, don't rely on symbols
884# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
885# header, or similar headers.
886# Return the target signal number if found, or -1 if the GDB internal
887# signal number is invalid.
ea480a30 888M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 889
4aa995e1
PA
890# Extra signal info inspection.
891#
892# Return a type suitable to inspect extra signal information.
ea480a30 893M;struct type *;get_siginfo_type;void;
4aa995e1 894
60c5725c 895# Record architecture-specific information from the symbol table.
ea480a30 896M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 897
a96d9b2e
SDJ
898# Function for the 'catch syscall' feature.
899
900# Get architecture-specific system calls information from registers.
ea480a30 901M;LONGEST;get_syscall_number;ptid_t ptid;ptid
a96d9b2e 902
458c8db8 903# The filename of the XML syscall for this architecture.
ea480a30 904v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
905
906# Information about system calls from this architecture
ea480a30 907v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 908
55aa24fb
SDJ
909# SystemTap related fields and functions.
910
05c0465e
SDJ
911# A NULL-terminated array of prefixes used to mark an integer constant
912# on the architecture's assembly.
55aa24fb
SDJ
913# For example, on x86 integer constants are written as:
914#
915# \$10 ;; integer constant 10
916#
917# in this case, this prefix would be the character \`\$\'.
ea480a30 918v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 919
05c0465e
SDJ
920# A NULL-terminated array of suffixes used to mark an integer constant
921# on the architecture's assembly.
ea480a30 922v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 923
05c0465e
SDJ
924# A NULL-terminated array of prefixes used to mark a register name on
925# the architecture's assembly.
55aa24fb
SDJ
926# For example, on x86 the register name is written as:
927#
928# \%eax ;; register eax
929#
930# in this case, this prefix would be the character \`\%\'.
ea480a30 931v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 932
05c0465e
SDJ
933# A NULL-terminated array of suffixes used to mark a register name on
934# the architecture's assembly.
ea480a30 935v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 936
05c0465e
SDJ
937# A NULL-terminated array of prefixes used to mark a register
938# indirection on the architecture's assembly.
55aa24fb
SDJ
939# For example, on x86 the register indirection is written as:
940#
941# \(\%eax\) ;; indirecting eax
942#
943# in this case, this prefix would be the charater \`\(\'.
944#
945# Please note that we use the indirection prefix also for register
946# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 947v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 948
05c0465e
SDJ
949# A NULL-terminated array of suffixes used to mark a register
950# indirection on the architecture's assembly.
55aa24fb
SDJ
951# For example, on x86 the register indirection is written as:
952#
953# \(\%eax\) ;; indirecting eax
954#
955# in this case, this prefix would be the charater \`\)\'.
956#
957# Please note that we use the indirection suffix also for register
958# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 959v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 960
05c0465e 961# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
962#
963# For example, on PPC a register is represented by a number in the assembly
964# language (e.g., \`10\' is the 10th general-purpose register). However,
965# inside GDB this same register has an \`r\' appended to its name, so the 10th
966# register would be represented as \`r10\' internally.
ea480a30 967v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
968
969# Suffix used to name a register using GDB's nomenclature.
ea480a30 970v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
971
972# Check if S is a single operand.
973#
974# Single operands can be:
975# \- Literal integers, e.g. \`\$10\' on x86
976# \- Register access, e.g. \`\%eax\' on x86
977# \- Register indirection, e.g. \`\(\%eax\)\' on x86
978# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
979#
980# This function should check for these patterns on the string
981# and return 1 if some were found, or zero otherwise. Please try to match
982# as much info as you can from the string, i.e., if you have to match
983# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 984M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
985
986# Function used to handle a "special case" in the parser.
987#
988# A "special case" is considered to be an unknown token, i.e., a token
989# that the parser does not know how to parse. A good example of special
990# case would be ARM's register displacement syntax:
991#
992# [R0, #4] ;; displacing R0 by 4
993#
994# Since the parser assumes that a register displacement is of the form:
995#
996# <number> <indirection_prefix> <register_name> <indirection_suffix>
997#
998# it means that it will not be able to recognize and parse this odd syntax.
999# Therefore, we should add a special case function that will handle this token.
1000#
1001# This function should generate the proper expression form of the expression
1002# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1003# and so on). It should also return 1 if the parsing was successful, or zero
1004# if the token was not recognized as a special token (in this case, returning
1005# zero means that the special parser is deferring the parsing to the generic
1006# parser), and should advance the buffer pointer (p->arg).
ea480a30 1007M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1008
8b367e17
JM
1009# DTrace related functions.
1010
1011# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1012# NARG must be >= 0.
ea480a30 1013M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
8b367e17
JM
1014
1015# True if the given ADDR does not contain the instruction sequence
1016# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1017M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1018
1019# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1020M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1021
1022# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1023M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1024
50c71eaf
PA
1025# True if the list of shared libraries is one and only for all
1026# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1027# This usually means that all processes, although may or may not share
1028# an address space, will see the same set of symbols at the same
1029# addresses.
ea480a30 1030v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1031
1032# On some targets, even though each inferior has its own private
1033# address space, the debug interface takes care of making breakpoints
1034# visible to all address spaces automatically. For such cases,
1035# this property should be set to true.
ea480a30 1036v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1037
1038# True if inferiors share an address space (e.g., uClinux).
ea480a30 1039m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1040
1041# True if a fast tracepoint can be set at an address.
ea480a30 1042m;int;fast_tracepoint_valid_at;CORE_ADDR addr, char **msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1043
5f034a78
MK
1044# Guess register state based on tracepoint location. Used for tracepoints
1045# where no registers have been collected, but there's only one location,
1046# allowing us to guess the PC value, and perhaps some other registers.
1047# On entry, regcache has all registers marked as unavailable.
ea480a30 1048m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1049
f870a310 1050# Return the "auto" target charset.
ea480a30 1051f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1052# Return the "auto" target wide charset.
ea480a30 1053f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1054
1055# If non-empty, this is a file extension that will be opened in place
1056# of the file extension reported by the shared library list.
1057#
1058# This is most useful for toolchains that use a post-linker tool,
1059# where the names of the files run on the target differ in extension
1060# compared to the names of the files GDB should load for debug info.
ea480a30 1061v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1062
1063# If true, the target OS has DOS-based file system semantics. That
1064# is, absolute paths include a drive name, and the backslash is
1065# considered a directory separator.
ea480a30 1066v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1067
1068# Generate bytecodes to collect the return address in a frame.
1069# Since the bytecodes run on the target, possibly with GDB not even
1070# connected, the full unwinding machinery is not available, and
1071# typically this function will issue bytecodes for one or more likely
1072# places that the return address may be found.
ea480a30 1073m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1074
3030c96e 1075# Implement the "info proc" command.
ea480a30 1076M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1077
451b7c33
TT
1078# Implement the "info proc" command for core files. Noe that there
1079# are two "info_proc"-like methods on gdbarch -- one for core files,
1080# one for live targets.
ea480a30 1081M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1082
19630284
JB
1083# Iterate over all objfiles in the order that makes the most sense
1084# for the architecture to make global symbol searches.
1085#
1086# CB is a callback function where OBJFILE is the objfile to be searched,
1087# and CB_DATA a pointer to user-defined data (the same data that is passed
1088# when calling this gdbarch method). The iteration stops if this function
1089# returns nonzero.
1090#
1091# CB_DATA is a pointer to some user-defined data to be passed to
1092# the callback.
1093#
1094# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1095# inspected when the symbol search was requested.
ea480a30 1096m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1097
7e35103a 1098# Ravenscar arch-dependent ops.
ea480a30 1099v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1100
1101# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1102m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1103
1104# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1105m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1106
1107# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1108m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1109
1110# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1111# Return 0 if *READPTR is already at the end of the buffer.
1112# Return -1 if there is insufficient buffer for a whole entry.
1113# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1114M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1115
2faa3447
JB
1116# Print the description of a single auxv entry described by TYPE and VAL
1117# to FILE.
ea480a30 1118m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1119
3437254d
PA
1120# Find the address range of the current inferior's vsyscall/vDSO, and
1121# write it to *RANGE. If the vsyscall's length can't be determined, a
1122# range with zero length is returned. Returns true if the vsyscall is
1123# found, false otherwise.
ea480a30 1124m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1125
1126# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1127# PROT has GDB_MMAP_PROT_* bitmask format.
1128# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1129f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1130
7f361056
JK
1131# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1132# Print a warning if it is not possible.
ea480a30 1133f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1134
f208eee0
JK
1135# Return string (caller has to use xfree for it) with options for GCC
1136# to produce code for this target, typically "-m64", "-m32" or "-m31".
1137# These options are put before CU's DW_AT_producer compilation options so that
1138# they can override it. Method may also return NULL.
ea480a30 1139m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1140
1141# Return a regular expression that matches names used by this
1142# architecture in GNU configury triplets. The result is statically
1143# allocated and must not be freed. The default implementation simply
1144# returns the BFD architecture name, which is correct in nearly every
1145# case.
ea480a30 1146m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1147
1148# Return the size in 8-bit bytes of an addressable memory unit on this
1149# architecture. This corresponds to the number of 8-bit bytes associated to
1150# each address in memory.
ea480a30 1151m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1152
65b48a81 1153# Functions for allowing a target to modify its disassembler options.
ea480a30
SM
1154v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1155v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1156
104c1213 1157EOF
104c1213
JM
1158}
1159
0b8f9e4d
AC
1160#
1161# The .log file
1162#
1163exec > new-gdbarch.log
34620563 1164function_list | while do_read
0b8f9e4d
AC
1165do
1166 cat <<EOF
2f9b146e 1167${class} ${returntype} ${function} ($formal)
104c1213 1168EOF
3d9a5942
AC
1169 for r in ${read}
1170 do
1171 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1172 done
f0d4cc9e 1173 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1174 then
66d659b1 1175 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1176 kill $$
1177 exit 1
1178 fi
72e74a21 1179 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1180 then
1181 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1182 kill $$
1183 exit 1
1184 fi
a72293e2
AC
1185 if class_is_multiarch_p
1186 then
1187 if class_is_predicate_p ; then :
1188 elif test "x${predefault}" = "x"
1189 then
2f9b146e 1190 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1191 kill $$
1192 exit 1
1193 fi
1194 fi
3d9a5942 1195 echo ""
0b8f9e4d
AC
1196done
1197
1198exec 1>&2
1199compare_new gdbarch.log
1200
104c1213
JM
1201
1202copyright ()
1203{
1204cat <<EOF
c4bfde41
JK
1205/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1206/* vi:set ro: */
59233f88 1207
104c1213 1208/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1209
61baf725 1210 Copyright (C) 1998-2017 Free Software Foundation, Inc.
104c1213
JM
1211
1212 This file is part of GDB.
1213
1214 This program is free software; you can redistribute it and/or modify
1215 it under the terms of the GNU General Public License as published by
50efebf8 1216 the Free Software Foundation; either version 3 of the License, or
104c1213 1217 (at your option) any later version.
618f726f 1218
104c1213
JM
1219 This program is distributed in the hope that it will be useful,
1220 but WITHOUT ANY WARRANTY; without even the implied warranty of
1221 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1222 GNU General Public License for more details.
618f726f 1223
104c1213 1224 You should have received a copy of the GNU General Public License
50efebf8 1225 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1226
104c1213
JM
1227/* This file was created with the aid of \`\`gdbarch.sh''.
1228
52204a0b 1229 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1230 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1231 against the existing \`\`gdbarch.[hc]''. Any differences found
1232 being reported.
1233
1234 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1235 changes into that script. Conversely, when making sweeping changes
104c1213 1236 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1237 easier. */
104c1213
JM
1238
1239EOF
1240}
1241
1242#
1243# The .h file
1244#
1245
1246exec > new-gdbarch.h
1247copyright
1248cat <<EOF
1249#ifndef GDBARCH_H
1250#define GDBARCH_H
1251
a0ff9e1a 1252#include <vector>
eb7a547a 1253#include "frame.h"
65b48a81 1254#include "dis-asm.h"
eb7a547a 1255
da3331ec
AC
1256struct floatformat;
1257struct ui_file;
104c1213 1258struct value;
b6af0555 1259struct objfile;
1c772458 1260struct obj_section;
a2cf933a 1261struct minimal_symbol;
049ee0e4 1262struct regcache;
b59ff9d5 1263struct reggroup;
6ce6d90f 1264struct regset;
a89aa300 1265struct disassemble_info;
e2d0e7eb 1266struct target_ops;
030f20e1 1267struct obstack;
8181d85f 1268struct bp_target_info;
424163ea 1269struct target_desc;
3e29f34a 1270struct symbol;
237fc4c9 1271struct displaced_step_closure;
a96d9b2e 1272struct syscall;
175ff332 1273struct agent_expr;
6710bf39 1274struct axs_value;
55aa24fb 1275struct stap_parse_info;
8b367e17 1276struct parser_state;
7e35103a 1277struct ravenscar_arch_ops;
3437254d 1278struct mem_range;
458c8db8 1279struct syscalls_info;
4dfc5dbc 1280struct thread_info;
012b3a21 1281struct ui_out;
104c1213 1282
8a526fa6
PA
1283#include "regcache.h"
1284
6ecd4729
PA
1285/* The architecture associated with the inferior through the
1286 connection to the target.
1287
1288 The architecture vector provides some information that is really a
1289 property of the inferior, accessed through a particular target:
1290 ptrace operations; the layout of certain RSP packets; the solib_ops
1291 vector; etc. To differentiate architecture accesses to
1292 per-inferior/target properties from
1293 per-thread/per-frame/per-objfile properties, accesses to
1294 per-inferior/target properties should be made through this
1295 gdbarch. */
1296
1297/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1298extern struct gdbarch *target_gdbarch (void);
6ecd4729 1299
19630284
JB
1300/* Callback type for the 'iterate_over_objfiles_in_search_order'
1301 gdbarch method. */
1302
1303typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1304 (struct objfile *objfile, void *cb_data);
5aa82d05 1305
1528345d
AA
1306/* Callback type for regset section iterators. The callback usually
1307 invokes the REGSET's supply or collect method, to which it must
1308 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1309 section name, and HUMAN_NAME is used for diagnostic messages.
1310 CB_DATA should have been passed unchanged through the iterator. */
1311
5aa82d05 1312typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1313 (const char *sect_name, int size, const struct regset *regset,
1314 const char *human_name, void *cb_data);
104c1213
JM
1315EOF
1316
1317# function typedef's
3d9a5942
AC
1318printf "\n"
1319printf "\n"
0963b4bd 1320printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1321function_list | while do_read
104c1213 1322do
2ada493a
AC
1323 if class_is_info_p
1324 then
3d9a5942
AC
1325 printf "\n"
1326 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1327 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1328 fi
104c1213
JM
1329done
1330
1331# function typedef's
3d9a5942
AC
1332printf "\n"
1333printf "\n"
0963b4bd 1334printf "/* The following are initialized by the target dependent code. */\n"
34620563 1335function_list | while do_read
104c1213 1336do
72e74a21 1337 if [ -n "${comment}" ]
34620563
AC
1338 then
1339 echo "${comment}" | sed \
1340 -e '2 s,#,/*,' \
1341 -e '3,$ s,#, ,' \
1342 -e '$ s,$, */,'
1343 fi
412d5987
AC
1344
1345 if class_is_predicate_p
2ada493a 1346 then
412d5987
AC
1347 printf "\n"
1348 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1349 fi
2ada493a
AC
1350 if class_is_variable_p
1351 then
3d9a5942
AC
1352 printf "\n"
1353 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1354 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1355 fi
1356 if class_is_function_p
1357 then
3d9a5942 1358 printf "\n"
72e74a21 1359 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1360 then
1361 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1362 elif class_is_multiarch_p
1363 then
1364 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1365 else
1366 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1367 fi
72e74a21 1368 if [ "x${formal}" = "xvoid" ]
104c1213 1369 then
3d9a5942 1370 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1371 else
3d9a5942 1372 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1373 fi
3d9a5942 1374 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1375 fi
104c1213
JM
1376done
1377
1378# close it off
1379cat <<EOF
1380
a96d9b2e
SDJ
1381/* Definition for an unknown syscall, used basically in error-cases. */
1382#define UNKNOWN_SYSCALL (-1)
1383
104c1213
JM
1384extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1385
1386
1387/* Mechanism for co-ordinating the selection of a specific
1388 architecture.
1389
1390 GDB targets (*-tdep.c) can register an interest in a specific
1391 architecture. Other GDB components can register a need to maintain
1392 per-architecture data.
1393
1394 The mechanisms below ensures that there is only a loose connection
1395 between the set-architecture command and the various GDB
0fa6923a 1396 components. Each component can independently register their need
104c1213
JM
1397 to maintain architecture specific data with gdbarch.
1398
1399 Pragmatics:
1400
1401 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1402 didn't scale.
1403
1404 The more traditional mega-struct containing architecture specific
1405 data for all the various GDB components was also considered. Since
0fa6923a 1406 GDB is built from a variable number of (fairly independent)
104c1213 1407 components it was determined that the global aproach was not
0963b4bd 1408 applicable. */
104c1213
JM
1409
1410
1411/* Register a new architectural family with GDB.
1412
1413 Register support for the specified ARCHITECTURE with GDB. When
1414 gdbarch determines that the specified architecture has been
1415 selected, the corresponding INIT function is called.
1416
1417 --
1418
1419 The INIT function takes two parameters: INFO which contains the
1420 information available to gdbarch about the (possibly new)
1421 architecture; ARCHES which is a list of the previously created
1422 \`\`struct gdbarch'' for this architecture.
1423
0f79675b 1424 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1425 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1426
1427 The ARCHES parameter is a linked list (sorted most recently used)
1428 of all the previously created architures for this architecture
1429 family. The (possibly NULL) ARCHES->gdbarch can used to access
1430 values from the previously selected architecture for this
59837fe0 1431 architecture family.
104c1213
JM
1432
1433 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1434 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1435 gdbarch'' from the ARCHES list - indicating that the new
1436 architecture is just a synonym for an earlier architecture (see
1437 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1438 - that describes the selected architecture (see gdbarch_alloc()).
1439
1440 The DUMP_TDEP function shall print out all target specific values.
1441 Care should be taken to ensure that the function works in both the
0963b4bd 1442 multi-arch and non- multi-arch cases. */
104c1213
JM
1443
1444struct gdbarch_list
1445{
1446 struct gdbarch *gdbarch;
1447 struct gdbarch_list *next;
1448};
1449
1450struct gdbarch_info
1451{
0963b4bd 1452 /* Use default: NULL (ZERO). */
104c1213
JM
1453 const struct bfd_arch_info *bfd_arch_info;
1454
428721aa 1455 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1456 enum bfd_endian byte_order;
104c1213 1457
94123b4f 1458 enum bfd_endian byte_order_for_code;
9d4fde75 1459
0963b4bd 1460 /* Use default: NULL (ZERO). */
104c1213
JM
1461 bfd *abfd;
1462
0963b4bd 1463 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1464 union
1465 {
1466 /* Architecture-specific information. The generic form for targets
1467 that have extra requirements. */
1468 struct gdbarch_tdep_info *tdep_info;
1469
1470 /* Architecture-specific target description data. Numerous targets
1471 need only this, so give them an easy way to hold it. */
1472 struct tdesc_arch_data *tdesc_data;
1473
1474 /* SPU file system ID. This is a single integer, so using the
1475 generic form would only complicate code. Other targets may
1476 reuse this member if suitable. */
1477 int *id;
1478 };
4be87837
DJ
1479
1480 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1481 enum gdb_osabi osabi;
424163ea
DJ
1482
1483 /* Use default: NULL (ZERO). */
1484 const struct target_desc *target_desc;
104c1213
JM
1485};
1486
1487typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1488typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1489
4b9b3959 1490/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1491extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1492
4b9b3959
AC
1493extern void gdbarch_register (enum bfd_architecture architecture,
1494 gdbarch_init_ftype *,
1495 gdbarch_dump_tdep_ftype *);
1496
104c1213 1497
b4a20239
AC
1498/* Return a freshly allocated, NULL terminated, array of the valid
1499 architecture names. Since architectures are registered during the
1500 _initialize phase this function only returns useful information
0963b4bd 1501 once initialization has been completed. */
b4a20239
AC
1502
1503extern const char **gdbarch_printable_names (void);
1504
1505
104c1213 1506/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1507 matches the information provided by INFO. */
104c1213 1508
424163ea 1509extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1510
1511
1512/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1513 basic initialization using values obtained from the INFO and TDEP
104c1213 1514 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1515 initialization of the object. */
104c1213
JM
1516
1517extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1518
1519
4b9b3959
AC
1520/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1521 It is assumed that the caller freeds the \`\`struct
0963b4bd 1522 gdbarch_tdep''. */
4b9b3959 1523
058f20d5
JB
1524extern void gdbarch_free (struct gdbarch *);
1525
1526
aebd7893
AC
1527/* Helper function. Allocate memory from the \`\`struct gdbarch''
1528 obstack. The memory is freed when the corresponding architecture
1529 is also freed. */
1530
1531extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1532#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1533#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1534
6c214e7c
PP
1535/* Duplicate STRING, returning an equivalent string that's allocated on the
1536 obstack associated with GDBARCH. The string is freed when the corresponding
1537 architecture is also freed. */
1538
1539extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1540
0963b4bd 1541/* Helper function. Force an update of the current architecture.
104c1213 1542
b732d07d
AC
1543 The actual architecture selected is determined by INFO, \`\`(gdb) set
1544 architecture'' et.al., the existing architecture and BFD's default
1545 architecture. INFO should be initialized to zero and then selected
1546 fields should be updated.
104c1213 1547
0963b4bd 1548 Returns non-zero if the update succeeds. */
16f33e29
AC
1549
1550extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1551
1552
ebdba546
AC
1553/* Helper function. Find an architecture matching info.
1554
1555 INFO should be initialized using gdbarch_info_init, relevant fields
1556 set, and then finished using gdbarch_info_fill.
1557
1558 Returns the corresponding architecture, or NULL if no matching
59837fe0 1559 architecture was found. */
ebdba546
AC
1560
1561extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1562
1563
aff68abb 1564/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1565
aff68abb 1566extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1567
104c1213
JM
1568
1569/* Register per-architecture data-pointer.
1570
1571 Reserve space for a per-architecture data-pointer. An identifier
1572 for the reserved data-pointer is returned. That identifer should
95160752 1573 be saved in a local static variable.
104c1213 1574
fcc1c85c
AC
1575 Memory for the per-architecture data shall be allocated using
1576 gdbarch_obstack_zalloc. That memory will be deleted when the
1577 corresponding architecture object is deleted.
104c1213 1578
95160752
AC
1579 When a previously created architecture is re-selected, the
1580 per-architecture data-pointer for that previous architecture is
76860b5f 1581 restored. INIT() is not re-called.
104c1213
JM
1582
1583 Multiple registrarants for any architecture are allowed (and
1584 strongly encouraged). */
1585
95160752 1586struct gdbarch_data;
104c1213 1587
030f20e1
AC
1588typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1589extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1590typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1591extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1592extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1593 struct gdbarch_data *data,
1594 void *pointer);
104c1213 1595
451fbdda 1596extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1597
1598
0fa6923a 1599/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1600 byte-order, ...) using information found in the BFD. */
104c1213
JM
1601
1602extern void set_gdbarch_from_file (bfd *);
1603
1604
e514a9d6
JM
1605/* Initialize the current architecture to the "first" one we find on
1606 our list. */
1607
1608extern void initialize_current_architecture (void);
1609
104c1213 1610/* gdbarch trace variable */
ccce17b0 1611extern unsigned int gdbarch_debug;
104c1213 1612
4b9b3959 1613extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1614
1615#endif
1616EOF
1617exec 1>&2
1618#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1619compare_new gdbarch.h
104c1213
JM
1620
1621
1622#
1623# C file
1624#
1625
1626exec > new-gdbarch.c
1627copyright
1628cat <<EOF
1629
1630#include "defs.h"
7355ddba 1631#include "arch-utils.h"
104c1213 1632
104c1213 1633#include "gdbcmd.h"
faaf634c 1634#include "inferior.h"
104c1213
JM
1635#include "symcat.h"
1636
f0d4cc9e 1637#include "floatformat.h"
b59ff9d5 1638#include "reggroups.h"
4be87837 1639#include "osabi.h"
aebd7893 1640#include "gdb_obstack.h"
383f836e 1641#include "observer.h"
a3ecef73 1642#include "regcache.h"
19630284 1643#include "objfiles.h"
2faa3447 1644#include "auxv.h"
95160752 1645
104c1213
JM
1646/* Static function declarations */
1647
b3cc3077 1648static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1649
104c1213
JM
1650/* Non-zero if we want to trace architecture code. */
1651
1652#ifndef GDBARCH_DEBUG
1653#define GDBARCH_DEBUG 0
1654#endif
ccce17b0 1655unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1656static void
1657show_gdbarch_debug (struct ui_file *file, int from_tty,
1658 struct cmd_list_element *c, const char *value)
1659{
1660 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1661}
104c1213 1662
456fcf94 1663static const char *
8da61cc4 1664pformat (const struct floatformat **format)
456fcf94
AC
1665{
1666 if (format == NULL)
1667 return "(null)";
1668 else
8da61cc4
DJ
1669 /* Just print out one of them - this is only for diagnostics. */
1670 return format[0]->name;
456fcf94
AC
1671}
1672
08105857
PA
1673static const char *
1674pstring (const char *string)
1675{
1676 if (string == NULL)
1677 return "(null)";
1678 return string;
05c0465e
SDJ
1679}
1680
a121b7c1 1681static const char *
f7bb4e3a
PB
1682pstring_ptr (char **string)
1683{
1684 if (string == NULL || *string == NULL)
1685 return "(null)";
1686 return *string;
1687}
1688
05c0465e
SDJ
1689/* Helper function to print a list of strings, represented as "const
1690 char *const *". The list is printed comma-separated. */
1691
a121b7c1 1692static const char *
05c0465e
SDJ
1693pstring_list (const char *const *list)
1694{
1695 static char ret[100];
1696 const char *const *p;
1697 size_t offset = 0;
1698
1699 if (list == NULL)
1700 return "(null)";
1701
1702 ret[0] = '\0';
1703 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1704 {
1705 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1706 offset += 2 + s;
1707 }
1708
1709 if (offset > 0)
1710 {
1711 gdb_assert (offset - 2 < sizeof (ret));
1712 ret[offset - 2] = '\0';
1713 }
1714
1715 return ret;
08105857
PA
1716}
1717
104c1213
JM
1718EOF
1719
1720# gdbarch open the gdbarch object
3d9a5942 1721printf "\n"
0963b4bd 1722printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1723printf "\n"
1724printf "struct gdbarch\n"
1725printf "{\n"
76860b5f
AC
1726printf " /* Has this architecture been fully initialized? */\n"
1727printf " int initialized_p;\n"
aebd7893
AC
1728printf "\n"
1729printf " /* An obstack bound to the lifetime of the architecture. */\n"
1730printf " struct obstack *obstack;\n"
1731printf "\n"
0963b4bd 1732printf " /* basic architectural information. */\n"
34620563 1733function_list | while do_read
104c1213 1734do
2ada493a
AC
1735 if class_is_info_p
1736 then
3d9a5942 1737 printf " ${returntype} ${function};\n"
2ada493a 1738 fi
104c1213 1739done
3d9a5942 1740printf "\n"
0963b4bd 1741printf " /* target specific vector. */\n"
3d9a5942
AC
1742printf " struct gdbarch_tdep *tdep;\n"
1743printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1744printf "\n"
0963b4bd 1745printf " /* per-architecture data-pointers. */\n"
95160752 1746printf " unsigned nr_data;\n"
3d9a5942
AC
1747printf " void **data;\n"
1748printf "\n"
104c1213
JM
1749cat <<EOF
1750 /* Multi-arch values.
1751
1752 When extending this structure you must:
1753
1754 Add the field below.
1755
1756 Declare set/get functions and define the corresponding
1757 macro in gdbarch.h.
1758
1759 gdbarch_alloc(): If zero/NULL is not a suitable default,
1760 initialize the new field.
1761
1762 verify_gdbarch(): Confirm that the target updated the field
1763 correctly.
1764
7e73cedf 1765 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1766 field is dumped out
1767
104c1213
JM
1768 get_gdbarch(): Implement the set/get functions (probably using
1769 the macro's as shortcuts).
1770
1771 */
1772
1773EOF
34620563 1774function_list | while do_read
104c1213 1775do
2ada493a
AC
1776 if class_is_variable_p
1777 then
3d9a5942 1778 printf " ${returntype} ${function};\n"
2ada493a
AC
1779 elif class_is_function_p
1780 then
2f9b146e 1781 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1782 fi
104c1213 1783done
3d9a5942 1784printf "};\n"
104c1213 1785
104c1213 1786# Create a new gdbarch struct
104c1213 1787cat <<EOF
7de2341d 1788
66b43ecb 1789/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1790 \`\`struct gdbarch_info''. */
104c1213 1791EOF
3d9a5942 1792printf "\n"
104c1213
JM
1793cat <<EOF
1794struct gdbarch *
1795gdbarch_alloc (const struct gdbarch_info *info,
1796 struct gdbarch_tdep *tdep)
1797{
be7811ad 1798 struct gdbarch *gdbarch;
aebd7893
AC
1799
1800 /* Create an obstack for allocating all the per-architecture memory,
1801 then use that to allocate the architecture vector. */
70ba0933 1802 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1803 obstack_init (obstack);
8d749320 1804 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1805 memset (gdbarch, 0, sizeof (*gdbarch));
1806 gdbarch->obstack = obstack;
85de9627 1807
be7811ad 1808 alloc_gdbarch_data (gdbarch);
85de9627 1809
be7811ad 1810 gdbarch->tdep = tdep;
104c1213 1811EOF
3d9a5942 1812printf "\n"
34620563 1813function_list | while do_read
104c1213 1814do
2ada493a
AC
1815 if class_is_info_p
1816 then
be7811ad 1817 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1818 fi
104c1213 1819done
3d9a5942 1820printf "\n"
0963b4bd 1821printf " /* Force the explicit initialization of these. */\n"
34620563 1822function_list | while do_read
104c1213 1823do
2ada493a
AC
1824 if class_is_function_p || class_is_variable_p
1825 then
72e74a21 1826 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1827 then
be7811ad 1828 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1829 fi
2ada493a 1830 fi
104c1213
JM
1831done
1832cat <<EOF
1833 /* gdbarch_alloc() */
1834
be7811ad 1835 return gdbarch;
104c1213
JM
1836}
1837EOF
1838
058f20d5 1839# Free a gdbarch struct.
3d9a5942
AC
1840printf "\n"
1841printf "\n"
058f20d5 1842cat <<EOF
aebd7893
AC
1843/* Allocate extra space using the per-architecture obstack. */
1844
1845void *
1846gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1847{
1848 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1849
aebd7893
AC
1850 memset (data, 0, size);
1851 return data;
1852}
1853
6c214e7c
PP
1854/* See gdbarch.h. */
1855
1856char *
1857gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1858{
1859 return obstack_strdup (arch->obstack, string);
1860}
1861
aebd7893 1862
058f20d5
JB
1863/* Free a gdbarch struct. This should never happen in normal
1864 operation --- once you've created a gdbarch, you keep it around.
1865 However, if an architecture's init function encounters an error
1866 building the structure, it may need to clean up a partially
1867 constructed gdbarch. */
4b9b3959 1868
058f20d5
JB
1869void
1870gdbarch_free (struct gdbarch *arch)
1871{
aebd7893 1872 struct obstack *obstack;
05c547f6 1873
95160752 1874 gdb_assert (arch != NULL);
aebd7893
AC
1875 gdb_assert (!arch->initialized_p);
1876 obstack = arch->obstack;
1877 obstack_free (obstack, 0); /* Includes the ARCH. */
1878 xfree (obstack);
058f20d5
JB
1879}
1880EOF
1881
104c1213 1882# verify a new architecture
104c1213 1883cat <<EOF
db446970
AC
1884
1885
1886/* Ensure that all values in a GDBARCH are reasonable. */
1887
104c1213 1888static void
be7811ad 1889verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1890{
d7e74731 1891 string_file log;
05c547f6 1892
104c1213 1893 /* fundamental */
be7811ad 1894 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1895 log.puts ("\n\tbyte-order");
be7811ad 1896 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1897 log.puts ("\n\tbfd_arch_info");
0963b4bd 1898 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1899EOF
34620563 1900function_list | while do_read
104c1213 1901do
2ada493a
AC
1902 if class_is_function_p || class_is_variable_p
1903 then
72e74a21 1904 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1905 then
3d9a5942 1906 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1907 elif class_is_predicate_p
1908 then
0963b4bd 1909 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1910 # FIXME: See do_read for potential simplification
72e74a21 1911 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1912 then
3d9a5942 1913 printf " if (${invalid_p})\n"
be7811ad 1914 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1915 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1916 then
be7811ad
MD
1917 printf " if (gdbarch->${function} == ${predefault})\n"
1918 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1919 elif [ -n "${postdefault}" ]
f0d4cc9e 1920 then
be7811ad
MD
1921 printf " if (gdbarch->${function} == 0)\n"
1922 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1923 elif [ -n "${invalid_p}" ]
104c1213 1924 then
4d60522e 1925 printf " if (${invalid_p})\n"
d7e74731 1926 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1927 elif [ -n "${predefault}" ]
104c1213 1928 then
be7811ad 1929 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1930 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1931 fi
2ada493a 1932 fi
104c1213
JM
1933done
1934cat <<EOF
d7e74731 1935 if (!log.empty ())
f16a1923 1936 internal_error (__FILE__, __LINE__,
85c07804 1937 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1938 log.c_str ());
104c1213
JM
1939}
1940EOF
1941
1942# dump the structure
3d9a5942
AC
1943printf "\n"
1944printf "\n"
104c1213 1945cat <<EOF
0963b4bd 1946/* Print out the details of the current architecture. */
4b9b3959 1947
104c1213 1948void
be7811ad 1949gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1950{
b78960be 1951 const char *gdb_nm_file = "<not-defined>";
05c547f6 1952
b78960be
AC
1953#if defined (GDB_NM_FILE)
1954 gdb_nm_file = GDB_NM_FILE;
1955#endif
1956 fprintf_unfiltered (file,
1957 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1958 gdb_nm_file);
104c1213 1959EOF
ea480a30 1960function_list | sort '-t;' -k 3 | while do_read
104c1213 1961do
1e9f55d0
AC
1962 # First the predicate
1963 if class_is_predicate_p
1964 then
7996bcec 1965 printf " fprintf_unfiltered (file,\n"
48f7351b 1966 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1967 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1968 fi
48f7351b 1969 # Print the corresponding value.
283354d8 1970 if class_is_function_p
4b9b3959 1971 then
7996bcec 1972 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1973 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1974 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1975 else
48f7351b 1976 # It is a variable
2f9b146e
AC
1977 case "${print}:${returntype}" in
1978 :CORE_ADDR )
0b1553bc
UW
1979 fmt="%s"
1980 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1981 ;;
2f9b146e 1982 :* )
48f7351b 1983 fmt="%s"
623d3eb1 1984 print="plongest (gdbarch->${function})"
48f7351b
AC
1985 ;;
1986 * )
2f9b146e 1987 fmt="%s"
48f7351b
AC
1988 ;;
1989 esac
3d9a5942 1990 printf " fprintf_unfiltered (file,\n"
48f7351b 1991 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1992 printf " ${print});\n"
2ada493a 1993 fi
104c1213 1994done
381323f4 1995cat <<EOF
be7811ad
MD
1996 if (gdbarch->dump_tdep != NULL)
1997 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1998}
1999EOF
104c1213
JM
2000
2001
2002# GET/SET
3d9a5942 2003printf "\n"
104c1213
JM
2004cat <<EOF
2005struct gdbarch_tdep *
2006gdbarch_tdep (struct gdbarch *gdbarch)
2007{
2008 if (gdbarch_debug >= 2)
3d9a5942 2009 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2010 return gdbarch->tdep;
2011}
2012EOF
3d9a5942 2013printf "\n"
34620563 2014function_list | while do_read
104c1213 2015do
2ada493a
AC
2016 if class_is_predicate_p
2017 then
3d9a5942
AC
2018 printf "\n"
2019 printf "int\n"
2020 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2021 printf "{\n"
8de9bdc4 2022 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2023 printf " return ${predicate};\n"
3d9a5942 2024 printf "}\n"
2ada493a
AC
2025 fi
2026 if class_is_function_p
2027 then
3d9a5942
AC
2028 printf "\n"
2029 printf "${returntype}\n"
72e74a21 2030 if [ "x${formal}" = "xvoid" ]
104c1213 2031 then
3d9a5942 2032 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2033 else
3d9a5942 2034 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2035 fi
3d9a5942 2036 printf "{\n"
8de9bdc4 2037 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2038 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2039 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2040 then
2041 # Allow a call to a function with a predicate.
956ac328 2042 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2043 fi
3d9a5942
AC
2044 printf " if (gdbarch_debug >= 2)\n"
2045 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2046 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2047 then
2048 if class_is_multiarch_p
2049 then
2050 params="gdbarch"
2051 else
2052 params=""
2053 fi
2054 else
2055 if class_is_multiarch_p
2056 then
2057 params="gdbarch, ${actual}"
2058 else
2059 params="${actual}"
2060 fi
2061 fi
72e74a21 2062 if [ "x${returntype}" = "xvoid" ]
104c1213 2063 then
4a5c6a1d 2064 printf " gdbarch->${function} (${params});\n"
104c1213 2065 else
4a5c6a1d 2066 printf " return gdbarch->${function} (${params});\n"
104c1213 2067 fi
3d9a5942
AC
2068 printf "}\n"
2069 printf "\n"
2070 printf "void\n"
2071 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2072 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2073 printf "{\n"
2074 printf " gdbarch->${function} = ${function};\n"
2075 printf "}\n"
2ada493a
AC
2076 elif class_is_variable_p
2077 then
3d9a5942
AC
2078 printf "\n"
2079 printf "${returntype}\n"
2080 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2081 printf "{\n"
8de9bdc4 2082 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2083 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2084 then
3d9a5942 2085 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2086 elif [ -n "${invalid_p}" ]
104c1213 2087 then
956ac328
AC
2088 printf " /* Check variable is valid. */\n"
2089 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2090 elif [ -n "${predefault}" ]
104c1213 2091 then
956ac328
AC
2092 printf " /* Check variable changed from pre-default. */\n"
2093 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2094 fi
3d9a5942
AC
2095 printf " if (gdbarch_debug >= 2)\n"
2096 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2097 printf " return gdbarch->${function};\n"
2098 printf "}\n"
2099 printf "\n"
2100 printf "void\n"
2101 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2102 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2103 printf "{\n"
2104 printf " gdbarch->${function} = ${function};\n"
2105 printf "}\n"
2ada493a
AC
2106 elif class_is_info_p
2107 then
3d9a5942
AC
2108 printf "\n"
2109 printf "${returntype}\n"
2110 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2111 printf "{\n"
8de9bdc4 2112 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2113 printf " if (gdbarch_debug >= 2)\n"
2114 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2115 printf " return gdbarch->${function};\n"
2116 printf "}\n"
2ada493a 2117 fi
104c1213
JM
2118done
2119
2120# All the trailing guff
2121cat <<EOF
2122
2123
f44c642f 2124/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2125 modules. */
104c1213
JM
2126
2127struct gdbarch_data
2128{
95160752 2129 unsigned index;
76860b5f 2130 int init_p;
030f20e1
AC
2131 gdbarch_data_pre_init_ftype *pre_init;
2132 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2133};
2134
2135struct gdbarch_data_registration
2136{
104c1213
JM
2137 struct gdbarch_data *data;
2138 struct gdbarch_data_registration *next;
2139};
2140
f44c642f 2141struct gdbarch_data_registry
104c1213 2142{
95160752 2143 unsigned nr;
104c1213
JM
2144 struct gdbarch_data_registration *registrations;
2145};
2146
f44c642f 2147struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2148{
2149 0, NULL,
2150};
2151
030f20e1
AC
2152static struct gdbarch_data *
2153gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2154 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2155{
2156 struct gdbarch_data_registration **curr;
05c547f6
MS
2157
2158 /* Append the new registration. */
f44c642f 2159 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2160 (*curr) != NULL;
2161 curr = &(*curr)->next);
70ba0933 2162 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2163 (*curr)->next = NULL;
70ba0933 2164 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2165 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2166 (*curr)->data->pre_init = pre_init;
2167 (*curr)->data->post_init = post_init;
76860b5f 2168 (*curr)->data->init_p = 1;
104c1213
JM
2169 return (*curr)->data;
2170}
2171
030f20e1
AC
2172struct gdbarch_data *
2173gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2174{
2175 return gdbarch_data_register (pre_init, NULL);
2176}
2177
2178struct gdbarch_data *
2179gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2180{
2181 return gdbarch_data_register (NULL, post_init);
2182}
104c1213 2183
0963b4bd 2184/* Create/delete the gdbarch data vector. */
95160752
AC
2185
2186static void
b3cc3077 2187alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2188{
b3cc3077
JB
2189 gdb_assert (gdbarch->data == NULL);
2190 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2191 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2192}
3c875b6f 2193
76860b5f 2194/* Initialize the current value of the specified per-architecture
0963b4bd 2195 data-pointer. */
b3cc3077 2196
95160752 2197void
030f20e1
AC
2198deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2199 struct gdbarch_data *data,
2200 void *pointer)
95160752
AC
2201{
2202 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2203 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2204 gdb_assert (data->pre_init == NULL);
95160752
AC
2205 gdbarch->data[data->index] = pointer;
2206}
2207
104c1213 2208/* Return the current value of the specified per-architecture
0963b4bd 2209 data-pointer. */
104c1213
JM
2210
2211void *
451fbdda 2212gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2213{
451fbdda 2214 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2215 if (gdbarch->data[data->index] == NULL)
76860b5f 2216 {
030f20e1
AC
2217 /* The data-pointer isn't initialized, call init() to get a
2218 value. */
2219 if (data->pre_init != NULL)
2220 /* Mid architecture creation: pass just the obstack, and not
2221 the entire architecture, as that way it isn't possible for
2222 pre-init code to refer to undefined architecture
2223 fields. */
2224 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2225 else if (gdbarch->initialized_p
2226 && data->post_init != NULL)
2227 /* Post architecture creation: pass the entire architecture
2228 (as all fields are valid), but be careful to also detect
2229 recursive references. */
2230 {
2231 gdb_assert (data->init_p);
2232 data->init_p = 0;
2233 gdbarch->data[data->index] = data->post_init (gdbarch);
2234 data->init_p = 1;
2235 }
2236 else
2237 /* The architecture initialization hasn't completed - punt -
2238 hope that the caller knows what they are doing. Once
2239 deprecated_set_gdbarch_data has been initialized, this can be
2240 changed to an internal error. */
2241 return NULL;
76860b5f
AC
2242 gdb_assert (gdbarch->data[data->index] != NULL);
2243 }
451fbdda 2244 return gdbarch->data[data->index];
104c1213
JM
2245}
2246
2247
0963b4bd 2248/* Keep a registry of the architectures known by GDB. */
104c1213 2249
4b9b3959 2250struct gdbarch_registration
104c1213
JM
2251{
2252 enum bfd_architecture bfd_architecture;
2253 gdbarch_init_ftype *init;
4b9b3959 2254 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2255 struct gdbarch_list *arches;
4b9b3959 2256 struct gdbarch_registration *next;
104c1213
JM
2257};
2258
f44c642f 2259static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2260
b4a20239
AC
2261static void
2262append_name (const char ***buf, int *nr, const char *name)
2263{
1dc7a623 2264 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2265 (*buf)[*nr] = name;
2266 *nr += 1;
2267}
2268
2269const char **
2270gdbarch_printable_names (void)
2271{
7996bcec 2272 /* Accumulate a list of names based on the registed list of
0963b4bd 2273 architectures. */
7996bcec
AC
2274 int nr_arches = 0;
2275 const char **arches = NULL;
2276 struct gdbarch_registration *rego;
05c547f6 2277
7996bcec
AC
2278 for (rego = gdbarch_registry;
2279 rego != NULL;
2280 rego = rego->next)
b4a20239 2281 {
7996bcec
AC
2282 const struct bfd_arch_info *ap;
2283 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2284 if (ap == NULL)
2285 internal_error (__FILE__, __LINE__,
85c07804 2286 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2287 do
2288 {
2289 append_name (&arches, &nr_arches, ap->printable_name);
2290 ap = ap->next;
2291 }
2292 while (ap != NULL);
b4a20239 2293 }
7996bcec
AC
2294 append_name (&arches, &nr_arches, NULL);
2295 return arches;
b4a20239
AC
2296}
2297
2298
104c1213 2299void
4b9b3959
AC
2300gdbarch_register (enum bfd_architecture bfd_architecture,
2301 gdbarch_init_ftype *init,
2302 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2303{
4b9b3959 2304 struct gdbarch_registration **curr;
104c1213 2305 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2306
ec3d358c 2307 /* Check that BFD recognizes this architecture */
104c1213
JM
2308 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2309 if (bfd_arch_info == NULL)
2310 {
8e65ff28 2311 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2312 _("gdbarch: Attempt to register "
2313 "unknown architecture (%d)"),
8e65ff28 2314 bfd_architecture);
104c1213 2315 }
0963b4bd 2316 /* Check that we haven't seen this architecture before. */
f44c642f 2317 for (curr = &gdbarch_registry;
104c1213
JM
2318 (*curr) != NULL;
2319 curr = &(*curr)->next)
2320 {
2321 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2322 internal_error (__FILE__, __LINE__,
64b9b334 2323 _("gdbarch: Duplicate registration "
0963b4bd 2324 "of architecture (%s)"),
8e65ff28 2325 bfd_arch_info->printable_name);
104c1213
JM
2326 }
2327 /* log it */
2328 if (gdbarch_debug)
30737ed9 2329 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2330 bfd_arch_info->printable_name,
30737ed9 2331 host_address_to_string (init));
104c1213 2332 /* Append it */
70ba0933 2333 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2334 (*curr)->bfd_architecture = bfd_architecture;
2335 (*curr)->init = init;
4b9b3959 2336 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2337 (*curr)->arches = NULL;
2338 (*curr)->next = NULL;
4b9b3959
AC
2339}
2340
2341void
2342register_gdbarch_init (enum bfd_architecture bfd_architecture,
2343 gdbarch_init_ftype *init)
2344{
2345 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2346}
104c1213
JM
2347
2348
424163ea 2349/* Look for an architecture using gdbarch_info. */
104c1213
JM
2350
2351struct gdbarch_list *
2352gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2353 const struct gdbarch_info *info)
2354{
2355 for (; arches != NULL; arches = arches->next)
2356 {
2357 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2358 continue;
2359 if (info->byte_order != arches->gdbarch->byte_order)
2360 continue;
4be87837
DJ
2361 if (info->osabi != arches->gdbarch->osabi)
2362 continue;
424163ea
DJ
2363 if (info->target_desc != arches->gdbarch->target_desc)
2364 continue;
104c1213
JM
2365 return arches;
2366 }
2367 return NULL;
2368}
2369
2370
ebdba546 2371/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2372 architecture if needed. Return that new architecture. */
104c1213 2373
59837fe0
UW
2374struct gdbarch *
2375gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2376{
2377 struct gdbarch *new_gdbarch;
4b9b3959 2378 struct gdbarch_registration *rego;
104c1213 2379
b732d07d 2380 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2381 sources: "set ..."; INFOabfd supplied; and the global
2382 defaults. */
2383 gdbarch_info_fill (&info);
4be87837 2384
0963b4bd 2385 /* Must have found some sort of architecture. */
b732d07d 2386 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2387
2388 if (gdbarch_debug)
2389 {
2390 fprintf_unfiltered (gdb_stdlog,
59837fe0 2391 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2392 (info.bfd_arch_info != NULL
2393 ? info.bfd_arch_info->printable_name
2394 : "(null)"));
2395 fprintf_unfiltered (gdb_stdlog,
59837fe0 2396 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2397 info.byte_order,
d7449b42 2398 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2399 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2400 : "default"));
4be87837 2401 fprintf_unfiltered (gdb_stdlog,
59837fe0 2402 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2403 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2404 fprintf_unfiltered (gdb_stdlog,
59837fe0 2405 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2406 host_address_to_string (info.abfd));
104c1213 2407 fprintf_unfiltered (gdb_stdlog,
59837fe0 2408 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2409 host_address_to_string (info.tdep_info));
104c1213
JM
2410 }
2411
ebdba546 2412 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2413 for (rego = gdbarch_registry;
2414 rego != NULL;
2415 rego = rego->next)
2416 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2417 break;
2418 if (rego == NULL)
2419 {
2420 if (gdbarch_debug)
59837fe0 2421 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2422 "No matching architecture\n");
b732d07d
AC
2423 return 0;
2424 }
2425
ebdba546 2426 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2427 new_gdbarch = rego->init (info, rego->arches);
2428
ebdba546
AC
2429 /* Did the tdep code like it? No. Reject the change and revert to
2430 the old architecture. */
104c1213
JM
2431 if (new_gdbarch == NULL)
2432 {
2433 if (gdbarch_debug)
59837fe0 2434 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2435 "Target rejected architecture\n");
2436 return NULL;
104c1213
JM
2437 }
2438
ebdba546
AC
2439 /* Is this a pre-existing architecture (as determined by already
2440 being initialized)? Move it to the front of the architecture
2441 list (keeping the list sorted Most Recently Used). */
2442 if (new_gdbarch->initialized_p)
104c1213 2443 {
ebdba546 2444 struct gdbarch_list **list;
fe978cb0 2445 struct gdbarch_list *self;
104c1213 2446 if (gdbarch_debug)
59837fe0 2447 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2448 "Previous architecture %s (%s) selected\n",
2449 host_address_to_string (new_gdbarch),
104c1213 2450 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2451 /* Find the existing arch in the list. */
2452 for (list = &rego->arches;
2453 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2454 list = &(*list)->next);
2455 /* It had better be in the list of architectures. */
2456 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2457 /* Unlink SELF. */
2458 self = (*list);
2459 (*list) = self->next;
2460 /* Insert SELF at the front. */
2461 self->next = rego->arches;
2462 rego->arches = self;
ebdba546
AC
2463 /* Return it. */
2464 return new_gdbarch;
104c1213
JM
2465 }
2466
ebdba546
AC
2467 /* It's a new architecture. */
2468 if (gdbarch_debug)
59837fe0 2469 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2470 "New architecture %s (%s) selected\n",
2471 host_address_to_string (new_gdbarch),
ebdba546
AC
2472 new_gdbarch->bfd_arch_info->printable_name);
2473
2474 /* Insert the new architecture into the front of the architecture
2475 list (keep the list sorted Most Recently Used). */
0f79675b 2476 {
fe978cb0
PA
2477 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2478 self->next = rego->arches;
2479 self->gdbarch = new_gdbarch;
2480 rego->arches = self;
0f79675b 2481 }
104c1213 2482
4b9b3959
AC
2483 /* Check that the newly installed architecture is valid. Plug in
2484 any post init values. */
2485 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2486 verify_gdbarch (new_gdbarch);
ebdba546 2487 new_gdbarch->initialized_p = 1;
104c1213 2488
4b9b3959 2489 if (gdbarch_debug)
ebdba546
AC
2490 gdbarch_dump (new_gdbarch, gdb_stdlog);
2491
2492 return new_gdbarch;
2493}
2494
e487cc15 2495/* Make the specified architecture current. */
ebdba546
AC
2496
2497void
aff68abb 2498set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2499{
2500 gdb_assert (new_gdbarch != NULL);
ebdba546 2501 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2502 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2503 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2504 registers_changed ();
ebdba546 2505}
104c1213 2506
f5656ead 2507/* Return the current inferior's arch. */
6ecd4729
PA
2508
2509struct gdbarch *
f5656ead 2510target_gdbarch (void)
6ecd4729
PA
2511{
2512 return current_inferior ()->gdbarch;
2513}
2514
104c1213 2515void
34620563 2516_initialize_gdbarch (void)
104c1213 2517{
ccce17b0 2518 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2519Set architecture debugging."), _("\\
2520Show architecture debugging."), _("\\
2521When non-zero, architecture debugging is enabled."),
2522 NULL,
920d2a44 2523 show_gdbarch_debug,
85c07804 2524 &setdebuglist, &showdebuglist);
104c1213
JM
2525}
2526EOF
2527
2528# close things off
2529exec 1>&2
2530#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2531compare_new gdbarch.c
This page took 1.542531 seconds and 4 git commands to generate.