gdb: recognize 64 bits Windows executables as Cygwin osabi
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
b811d2c2 5# Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795 349
66b43ecb 350# Number of bits in a short or unsigned short for the target machine.
ea480a30 351v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 352# Number of bits in an int or unsigned int for the target machine.
ea480a30 353v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 354# Number of bits in a long or unsigned long for the target machine.
ea480a30 355v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
356# Number of bits in a long long or unsigned long long for the target
357# machine.
ea480a30 358v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 359
f9e9243a
UW
360# The ABI default bit-size and format for "half", "float", "double", and
361# "long double". These bit/format pairs should eventually be combined
362# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
363# Each format describes both the big and little endian layouts (if
364# useful).
456fcf94 365
ea480a30
SM
366v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
367v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
368v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
369v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
370v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
371v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
372v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
373v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 374
53375380
PA
375# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
376# starting with C++11.
ea480a30 377v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 378# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 379v;int;wchar_signed;;;1;-1;1
53375380 380
9b790ce7
UW
381# Returns the floating-point format to be used for values of length LENGTH.
382# NAME, if non-NULL, is the type name, which may be used to distinguish
383# different target formats of the same length.
ea480a30 384m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
ea480a30 396v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
ea480a30 398v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
ea480a30 413v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 416v;int;char_signed;;;1;-1;1
4e409299 417#
c113ed0c 418F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 419F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
ea480a30 423m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 424#
849d0ba8 425M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
849d0ba8 430M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 431M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 432#
ea480a30 433v;int;num_regs;;;0;-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
ea480a30 438v;int;num_pseudo_regs;;;0;0;;0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
ea480a30 442M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
ea480a30 447M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 448
012b3a21
WT
449# Some targets/architectures can do extra processing/display of
450# segmentation faults. E.g., Intel MPX boundary faults.
451# Call the architecture dependent function to handle the fault.
452# UIOUT is the output stream where the handler will place information.
ea480a30 453M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 454
c2169756
AC
455# GDB's standard (or well known) register numbers. These can map onto
456# a real register or a pseudo (computed) register or not be defined at
1200cd6e 457# all (-1).
3e8c568d 458# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
459v;int;sp_regnum;;;-1;-1;;0
460v;int;pc_regnum;;;-1;-1;;0
461v;int;ps_regnum;;;-1;-1;;0
462v;int;fp0_regnum;;;0;-1;;0
88c72b7d 463# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 464m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 465# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 466m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 467# Convert from an sdb register number to an internal gdb register number.
ea480a30 468m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 469# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 470# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
471m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
472m;const char *;register_name;int regnr;regnr;;0
9c04cab7 473
7b9ee6a8
DJ
474# Return the type of a register specified by the architecture. Only
475# the register cache should call this function directly; others should
476# use "register_type".
ea480a30 477M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 478
8bcb5208
AB
479# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
480# a dummy frame. A dummy frame is created before an inferior call,
481# the frame_id returned here must match the frame_id that was built
482# for the inferior call. Usually this means the returned frame_id's
483# stack address should match the address returned by
484# gdbarch_push_dummy_call, and the returned frame_id's code address
485# should match the address at which the breakpoint was set in the dummy
486# frame.
487m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 488# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 489# deprecated_fp_regnum.
ea480a30 490v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 491
cf84fa6b 492M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
493v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
494M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 495
7eb89530 496# Return true if the code of FRAME is writable.
ea480a30 497m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 498
ea480a30
SM
499m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
500m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
501M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
502# MAP a GDB RAW register number onto a simulator register number. See
503# also include/...-sim.h.
ea480a30
SM
504m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
505m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
506m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
507
508# Determine the address where a longjmp will land and save this address
509# in PC. Return nonzero on success.
510#
511# FRAME corresponds to the longjmp frame.
ea480a30 512F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 513
104c1213 514#
ea480a30 515v;int;believe_pcc_promotion;;;;;;;
104c1213 516#
ea480a30
SM
517m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
518f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
519f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 520# Construct a value representing the contents of register REGNUM in
2ed3c037 521# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
522# allocate and return a struct value with all value attributes
523# (but not the value contents) filled in.
ea480a30 524m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 525#
ea480a30
SM
526m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
527m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
528M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 529
6a3a010b
MR
530# Return the return-value convention that will be used by FUNCTION
531# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
532# case the return convention is computed based only on VALTYPE.
533#
534# If READBUF is not NULL, extract the return value and save it in this buffer.
535#
536# If WRITEBUF is not NULL, it contains a return value which will be
537# stored into the appropriate register. This can be used when we want
538# to force the value returned by a function (see the "return" command
539# for instance).
ea480a30 540M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 541
18648a37
YQ
542# Return true if the return value of function is stored in the first hidden
543# parameter. In theory, this feature should be language-dependent, specified
544# by language and its ABI, such as C++. Unfortunately, compiler may
545# implement it to a target-dependent feature. So that we need such hook here
546# to be aware of this in GDB.
ea480a30 547m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 548
ea480a30
SM
549m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
550M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
551# On some platforms, a single function may provide multiple entry points,
552# e.g. one that is used for function-pointer calls and a different one
553# that is used for direct function calls.
554# In order to ensure that breakpoints set on the function will trigger
555# no matter via which entry point the function is entered, a platform
556# may provide the skip_entrypoint callback. It is called with IP set
557# to the main entry point of a function (as determined by the symbol table),
558# and should return the address of the innermost entry point, where the
559# actual breakpoint needs to be set. Note that skip_entrypoint is used
560# by GDB common code even when debugging optimized code, where skip_prologue
561# is not used.
ea480a30 562M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 563
ea480a30
SM
564f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
565m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
566
567# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 568m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
569
570# Return the software breakpoint from KIND. KIND can have target
571# specific meaning like the Z0 kind parameter.
572# SIZE is set to the software breakpoint's length in memory.
ea480a30 573m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 574
833b7ab5
YQ
575# Return the breakpoint kind for this target based on the current
576# processor state (e.g. the current instruction mode on ARM) and the
577# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 578m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 579
ea480a30
SM
580M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
581m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
582m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
583v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
584
585# A function can be addressed by either it's "pointer" (possibly a
586# descriptor address) or "entry point" (first executable instruction).
587# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 588# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
589# a simplified subset of that functionality - the function's address
590# corresponds to the "function pointer" and the function's start
591# corresponds to the "function entry point" - and hence is redundant.
592
ea480a30 593v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 594
123dc839
DJ
595# Return the remote protocol register number associated with this
596# register. Normally the identity mapping.
ea480a30 597m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 598
b2756930 599# Fetch the target specific address used to represent a load module.
ea480a30 600F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
601
602# Return the thread-local address at OFFSET in the thread-local
603# storage for the thread PTID and the shared library or executable
604# file given by LM_ADDR. If that block of thread-local storage hasn't
605# been allocated yet, this function may throw an error. LM_ADDR may
606# be zero for statically linked multithreaded inferiors.
607
608M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 609#
ea480a30 610v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
611m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
612m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
613# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
614# frame-base. Enable frame-base before frame-unwind.
ea480a30 615F;int;frame_num_args;struct frame_info *frame;frame
104c1213 616#
ea480a30
SM
617M;CORE_ADDR;frame_align;CORE_ADDR address;address
618m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
619v;int;frame_red_zone_size
f0d4cc9e 620#
ea480a30 621m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
622# On some machines there are bits in addresses which are not really
623# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 624# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
625# we get a "real" address such as one would find in a symbol table.
626# This is used only for addresses of instructions, and even then I'm
627# not sure it's used in all contexts. It exists to deal with there
628# being a few stray bits in the PC which would mislead us, not as some
629# sort of generic thing to handle alignment or segmentation (it's
630# possible it should be in TARGET_READ_PC instead).
ea480a30 631m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 632
a738ea1d
YQ
633# On some machines, not all bits of an address word are significant.
634# For example, on AArch64, the top bits of an address known as the "tag"
635# are ignored by the kernel, the hardware, etc. and can be regarded as
636# additional data associated with the address.
5969f0db 637v;int;significant_addr_bit;;;;;;0
a738ea1d 638
e6590a1b
UW
639# FIXME/cagney/2001-01-18: This should be split in two. A target method that
640# indicates if the target needs software single step. An ISA method to
641# implement it.
642#
e6590a1b
UW
643# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
644# target can single step. If not, then implement single step using breakpoints.
64c4637f 645#
93f9a11f
YQ
646# Return a vector of addresses on which the software single step
647# breakpoints should be inserted. NULL means software single step is
648# not used.
649# Multiple breakpoints may be inserted for some instructions such as
650# conditional branch. However, each implementation must always evaluate
651# the condition and only put the breakpoint at the branch destination if
652# the condition is true, so that we ensure forward progress when stepping
653# past a conditional branch to self.
a0ff9e1a 654F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 655
3352ef37
AC
656# Return non-zero if the processor is executing a delay slot and a
657# further single-step is needed before the instruction finishes.
ea480a30 658M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 659# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 660# disassembler. Perhaps objdump can handle it?
39503f82 661f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 662f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
663
664
cfd8ab24 665# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
666# evaluates non-zero, this is the address where the debugger will place
667# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 668m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 669# Some systems also have trampoline code for returning from shared libs.
ea480a30 670m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 671
1d509aa6
MM
672# Return true if PC lies inside an indirect branch thunk.
673m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
674
c12260ac
CV
675# A target might have problems with watchpoints as soon as the stack
676# frame of the current function has been destroyed. This mostly happens
c9cf6e20 677# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
678# is defined to return a non-zero value if either the given addr is one
679# instruction after the stack destroying instruction up to the trailing
680# return instruction or if we can figure out that the stack frame has
681# already been invalidated regardless of the value of addr. Targets
682# which don't suffer from that problem could just let this functionality
683# untouched.
ea480a30 684m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
685# Process an ELF symbol in the minimal symbol table in a backend-specific
686# way. Normally this hook is supposed to do nothing, however if required,
687# then this hook can be used to apply tranformations to symbols that are
688# considered special in some way. For example the MIPS backend uses it
689# to interpret \`st_other' information to mark compressed code symbols so
690# that they can be treated in the appropriate manner in the processing of
691# the main symbol table and DWARF-2 records.
ea480a30
SM
692F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
693f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
694# Process a symbol in the main symbol table in a backend-specific way.
695# Normally this hook is supposed to do nothing, however if required,
696# then this hook can be used to apply tranformations to symbols that
697# are considered special in some way. This is currently used by the
698# MIPS backend to make sure compressed code symbols have the ISA bit
699# set. This in turn is needed for symbol values seen in GDB to match
700# the values used at the runtime by the program itself, for function
701# and label references.
ea480a30 702f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
703# Adjust the address retrieved from a DWARF-2 record other than a line
704# entry in a backend-specific way. Normally this hook is supposed to
705# return the address passed unchanged, however if that is incorrect for
706# any reason, then this hook can be used to fix the address up in the
707# required manner. This is currently used by the MIPS backend to make
708# sure addresses in FDE, range records, etc. referring to compressed
709# code have the ISA bit set, matching line information and the symbol
710# table.
ea480a30 711f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
712# Adjust the address updated by a line entry in a backend-specific way.
713# Normally this hook is supposed to return the address passed unchanged,
714# however in the case of inconsistencies in these records, this hook can
715# be used to fix them up in the required manner. This is currently used
716# by the MIPS backend to make sure all line addresses in compressed code
717# are presented with the ISA bit set, which is not always the case. This
718# in turn ensures breakpoint addresses are correctly matched against the
719# stop PC.
ea480a30
SM
720f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
721v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
722# See comment in target.h about continuable, steppable and
723# non-steppable watchpoints.
ea480a30
SM
724v;int;have_nonsteppable_watchpoint;;;0;0;;0
725F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
726M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
727# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
728# FS are passed from the generic execute_cfa_program function.
ea480a30 729m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
730
731# Return the appropriate type_flags for the supplied address class.
732# This function should return 1 if the address class was recognized and
733# type_flags was set, zero otherwise.
ea480a30 734M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 735# Is a register in a group
ea480a30 736m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 737# Fetch the pointer to the ith function argument.
ea480a30 738F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 739
5aa82d05
AA
740# Iterate over all supported register notes in a core file. For each
741# supported register note section, the iterator must call CB and pass
742# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
743# the supported register note sections based on the current register
744# values. Otherwise it should enumerate all supported register note
745# sections.
ea480a30 746M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 747
6432734d 748# Create core file notes
ea480a30 749M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 750
35c2fab7 751# Find core file memory regions
ea480a30 752M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 753
de584861 754# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
755# core file into buffer READBUF with length LEN. Return the number of bytes read
756# (zero indicates failure).
757# failed, otherwise, return the red length of READBUF.
ea480a30 758M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 759
356a5233
JB
760# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
761# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 762# Return the number of bytes read (zero indicates failure).
ea480a30 763M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 764
c0edd9ed 765# How the core target converts a PTID from a core file to a string.
a068643d 766M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 767
4dfc5dbc 768# How the core target extracts the name of a thread from a core file.
ea480a30 769M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 770
382b69bb
JB
771# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
772# from core file into buffer READBUF with length LEN. Return the number
773# of bytes read (zero indicates EOF, a negative value indicates failure).
774M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
775
a78c2d62 776# BFD target to use when generating a core file.
ea480a30 777V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 778
0d5de010
DJ
779# If the elements of C++ vtables are in-place function descriptors rather
780# than normal function pointers (which may point to code or a descriptor),
781# set this to one.
ea480a30 782v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
783
784# Set if the least significant bit of the delta is used instead of the least
785# significant bit of the pfn for pointers to virtual member functions.
ea480a30 786v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
787
788# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 789f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 790
1668ae25 791# The maximum length of an instruction on this architecture in bytes.
ea480a30 792V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
793
794# Copy the instruction at FROM to TO, and make any adjustments
795# necessary to single-step it at that address.
796#
797# REGS holds the state the thread's registers will have before
798# executing the copied instruction; the PC in REGS will refer to FROM,
799# not the copy at TO. The caller should update it to point at TO later.
800#
801# Return a pointer to data of the architecture's choice to be passed
802# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
803# the instruction's effects have been completely simulated, with the
804# resulting state written back to REGS.
805#
806# For a general explanation of displaced stepping and how GDB uses it,
807# see the comments in infrun.c.
808#
809# The TO area is only guaranteed to have space for
810# gdbarch_max_insn_length (arch) bytes, so this function must not
811# write more bytes than that to that area.
812#
813# If you do not provide this function, GDB assumes that the
814# architecture does not support displaced stepping.
815#
7f03bd92
PA
816# If the instruction cannot execute out of line, return NULL. The
817# core falls back to stepping past the instruction in-line instead in
818# that case.
fdb61c6c 819M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 820
99e40580
UW
821# Return true if GDB should use hardware single-stepping to execute
822# the displaced instruction identified by CLOSURE. If false,
823# GDB will simply restart execution at the displaced instruction
824# location, and it is up to the target to ensure GDB will receive
825# control again (e.g. by placing a software breakpoint instruction
826# into the displaced instruction buffer).
827#
828# The default implementation returns false on all targets that
829# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 830m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 831
237fc4c9
PA
832# Fix up the state resulting from successfully single-stepping a
833# displaced instruction, to give the result we would have gotten from
834# stepping the instruction in its original location.
835#
836# REGS is the register state resulting from single-stepping the
837# displaced instruction.
838#
839# CLOSURE is the result from the matching call to
840# gdbarch_displaced_step_copy_insn.
841#
842# If you provide gdbarch_displaced_step_copy_insn.but not this
843# function, then GDB assumes that no fixup is needed after
844# single-stepping the instruction.
845#
846# For a general explanation of displaced stepping and how GDB uses it,
847# see the comments in infrun.c.
ea480a30 848M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 849
237fc4c9
PA
850# Return the address of an appropriate place to put displaced
851# instructions while we step over them. There need only be one such
852# place, since we're only stepping one thread over a breakpoint at a
853# time.
854#
855# For a general explanation of displaced stepping and how GDB uses it,
856# see the comments in infrun.c.
ea480a30 857m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 858
dde08ee1
PA
859# Relocate an instruction to execute at a different address. OLDLOC
860# is the address in the inferior memory where the instruction to
861# relocate is currently at. On input, TO points to the destination
862# where we want the instruction to be copied (and possibly adjusted)
863# to. On output, it points to one past the end of the resulting
864# instruction(s). The effect of executing the instruction at TO shall
865# be the same as if executing it at FROM. For example, call
866# instructions that implicitly push the return address on the stack
867# should be adjusted to return to the instruction after OLDLOC;
868# relative branches, and other PC-relative instructions need the
869# offset adjusted; etc.
ea480a30 870M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 871
1c772458 872# Refresh overlay mapped state for section OSECT.
ea480a30 873F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 874
ea480a30 875M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
876
877# Handle special encoding of static variables in stabs debug info.
ea480a30 878F;const char *;static_transform_name;const char *name;name
203c3895 879# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 880v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 881
0508c3ec
HZ
882# Parse the instruction at ADDR storing in the record execution log
883# the registers REGCACHE and memory ranges that will be affected when
884# the instruction executes, along with their current values.
885# Return -1 if something goes wrong, 0 otherwise.
ea480a30 886M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 887
3846b520
HZ
888# Save process state after a signal.
889# Return -1 if something goes wrong, 0 otherwise.
ea480a30 890M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 891
22203bbf 892# Signal translation: translate inferior's signal (target's) number
86b49880
PA
893# into GDB's representation. The implementation of this method must
894# be host independent. IOW, don't rely on symbols of the NAT_FILE
895# header (the nm-*.h files), the host <signal.h> header, or similar
896# headers. This is mainly used when cross-debugging core files ---
897# "Live" targets hide the translation behind the target interface
1f8cf220 898# (target_wait, target_resume, etc.).
ea480a30 899M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 900
eb14d406
SDJ
901# Signal translation: translate the GDB's internal signal number into
902# the inferior's signal (target's) representation. The implementation
903# of this method must be host independent. IOW, don't rely on symbols
904# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
905# header, or similar headers.
906# Return the target signal number if found, or -1 if the GDB internal
907# signal number is invalid.
ea480a30 908M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 909
4aa995e1
PA
910# Extra signal info inspection.
911#
912# Return a type suitable to inspect extra signal information.
ea480a30 913M;struct type *;get_siginfo_type;void;
4aa995e1 914
60c5725c 915# Record architecture-specific information from the symbol table.
ea480a30 916M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 917
a96d9b2e
SDJ
918# Function for the 'catch syscall' feature.
919
920# Get architecture-specific system calls information from registers.
00431a78 921M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 922
458c8db8 923# The filename of the XML syscall for this architecture.
ea480a30 924v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
925
926# Information about system calls from this architecture
ea480a30 927v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 928
55aa24fb
SDJ
929# SystemTap related fields and functions.
930
05c0465e
SDJ
931# A NULL-terminated array of prefixes used to mark an integer constant
932# on the architecture's assembly.
55aa24fb
SDJ
933# For example, on x86 integer constants are written as:
934#
935# \$10 ;; integer constant 10
936#
937# in this case, this prefix would be the character \`\$\'.
ea480a30 938v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 939
05c0465e
SDJ
940# A NULL-terminated array of suffixes used to mark an integer constant
941# on the architecture's assembly.
ea480a30 942v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 943
05c0465e
SDJ
944# A NULL-terminated array of prefixes used to mark a register name on
945# the architecture's assembly.
55aa24fb
SDJ
946# For example, on x86 the register name is written as:
947#
948# \%eax ;; register eax
949#
950# in this case, this prefix would be the character \`\%\'.
ea480a30 951v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 952
05c0465e
SDJ
953# A NULL-terminated array of suffixes used to mark a register name on
954# the architecture's assembly.
ea480a30 955v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 956
05c0465e
SDJ
957# A NULL-terminated array of prefixes used to mark a register
958# indirection on the architecture's assembly.
55aa24fb
SDJ
959# For example, on x86 the register indirection is written as:
960#
961# \(\%eax\) ;; indirecting eax
962#
963# in this case, this prefix would be the charater \`\(\'.
964#
965# Please note that we use the indirection prefix also for register
966# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 967v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 968
05c0465e
SDJ
969# A NULL-terminated array of suffixes used to mark a register
970# indirection on the architecture's assembly.
55aa24fb
SDJ
971# For example, on x86 the register indirection is written as:
972#
973# \(\%eax\) ;; indirecting eax
974#
975# in this case, this prefix would be the charater \`\)\'.
976#
977# Please note that we use the indirection suffix also for register
978# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 979v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 980
05c0465e 981# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
982#
983# For example, on PPC a register is represented by a number in the assembly
984# language (e.g., \`10\' is the 10th general-purpose register). However,
985# inside GDB this same register has an \`r\' appended to its name, so the 10th
986# register would be represented as \`r10\' internally.
ea480a30 987v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
988
989# Suffix used to name a register using GDB's nomenclature.
ea480a30 990v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
991
992# Check if S is a single operand.
993#
994# Single operands can be:
995# \- Literal integers, e.g. \`\$10\' on x86
996# \- Register access, e.g. \`\%eax\' on x86
997# \- Register indirection, e.g. \`\(\%eax\)\' on x86
998# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
999#
1000# This function should check for these patterns on the string
1001# and return 1 if some were found, or zero otherwise. Please try to match
1002# as much info as you can from the string, i.e., if you have to match
1003# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 1004M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
1005
1006# Function used to handle a "special case" in the parser.
1007#
1008# A "special case" is considered to be an unknown token, i.e., a token
1009# that the parser does not know how to parse. A good example of special
1010# case would be ARM's register displacement syntax:
1011#
1012# [R0, #4] ;; displacing R0 by 4
1013#
1014# Since the parser assumes that a register displacement is of the form:
1015#
1016# <number> <indirection_prefix> <register_name> <indirection_suffix>
1017#
1018# it means that it will not be able to recognize and parse this odd syntax.
1019# Therefore, we should add a special case function that will handle this token.
1020#
1021# This function should generate the proper expression form of the expression
1022# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1023# and so on). It should also return 1 if the parsing was successful, or zero
1024# if the token was not recognized as a special token (in this case, returning
1025# zero means that the special parser is deferring the parsing to the generic
1026# parser), and should advance the buffer pointer (p->arg).
ea480a30 1027M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1028
7d7571f0
SDJ
1029# Perform arch-dependent adjustments to a register name.
1030#
1031# In very specific situations, it may be necessary for the register
1032# name present in a SystemTap probe's argument to be handled in a
1033# special way. For example, on i386, GCC may over-optimize the
1034# register allocation and use smaller registers than necessary. In
1035# such cases, the client that is reading and evaluating the SystemTap
1036# probe (ourselves) will need to actually fetch values from the wider
1037# version of the register in question.
1038#
1039# To illustrate the example, consider the following probe argument
1040# (i386):
1041#
1042# 4@%ax
1043#
1044# This argument says that its value can be found at the %ax register,
1045# which is a 16-bit register. However, the argument's prefix says
1046# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1047# this case, GDB should actually fetch the probe's value from register
1048# %eax, not %ax. In this scenario, this function would actually
1049# replace the register name from %ax to %eax.
1050#
1051# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1052M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1053
8b367e17
JM
1054# DTrace related functions.
1055
1056# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1057# NARG must be >= 0.
37eedb39 1058M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1059
1060# True if the given ADDR does not contain the instruction sequence
1061# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1062M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1063
1064# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1065M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1066
1067# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1068M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1069
50c71eaf
PA
1070# True if the list of shared libraries is one and only for all
1071# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1072# This usually means that all processes, although may or may not share
1073# an address space, will see the same set of symbols at the same
1074# addresses.
ea480a30 1075v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1076
1077# On some targets, even though each inferior has its own private
1078# address space, the debug interface takes care of making breakpoints
1079# visible to all address spaces automatically. For such cases,
1080# this property should be set to true.
ea480a30 1081v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1082
1083# True if inferiors share an address space (e.g., uClinux).
ea480a30 1084m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1085
1086# True if a fast tracepoint can be set at an address.
281d762b 1087m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1088
5f034a78
MK
1089# Guess register state based on tracepoint location. Used for tracepoints
1090# where no registers have been collected, but there's only one location,
1091# allowing us to guess the PC value, and perhaps some other registers.
1092# On entry, regcache has all registers marked as unavailable.
ea480a30 1093m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1094
f870a310 1095# Return the "auto" target charset.
ea480a30 1096f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1097# Return the "auto" target wide charset.
ea480a30 1098f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1099
1100# If non-empty, this is a file extension that will be opened in place
1101# of the file extension reported by the shared library list.
1102#
1103# This is most useful for toolchains that use a post-linker tool,
1104# where the names of the files run on the target differ in extension
1105# compared to the names of the files GDB should load for debug info.
ea480a30 1106v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1107
1108# If true, the target OS has DOS-based file system semantics. That
1109# is, absolute paths include a drive name, and the backslash is
1110# considered a directory separator.
ea480a30 1111v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1112
1113# Generate bytecodes to collect the return address in a frame.
1114# Since the bytecodes run on the target, possibly with GDB not even
1115# connected, the full unwinding machinery is not available, and
1116# typically this function will issue bytecodes for one or more likely
1117# places that the return address may be found.
ea480a30 1118m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1119
3030c96e 1120# Implement the "info proc" command.
ea480a30 1121M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1122
451b7c33
TT
1123# Implement the "info proc" command for core files. Noe that there
1124# are two "info_proc"-like methods on gdbarch -- one for core files,
1125# one for live targets.
ea480a30 1126M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1127
19630284
JB
1128# Iterate over all objfiles in the order that makes the most sense
1129# for the architecture to make global symbol searches.
1130#
1131# CB is a callback function where OBJFILE is the objfile to be searched,
1132# and CB_DATA a pointer to user-defined data (the same data that is passed
1133# when calling this gdbarch method). The iteration stops if this function
1134# returns nonzero.
1135#
1136# CB_DATA is a pointer to some user-defined data to be passed to
1137# the callback.
1138#
1139# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1140# inspected when the symbol search was requested.
ea480a30 1141m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1142
7e35103a 1143# Ravenscar arch-dependent ops.
ea480a30 1144v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1145
1146# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1147m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1148
1149# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1150m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1151
1152# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1153m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92 1154
5133a315
LM
1155# Return true if there's a program/permanent breakpoint planted in
1156# memory at ADDRESS, return false otherwise.
1157m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1158
27a48a92
MK
1159# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1160# Return 0 if *READPTR is already at the end of the buffer.
1161# Return -1 if there is insufficient buffer for a whole entry.
1162# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1163M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1164
2faa3447
JB
1165# Print the description of a single auxv entry described by TYPE and VAL
1166# to FILE.
ea480a30 1167m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1168
3437254d
PA
1169# Find the address range of the current inferior's vsyscall/vDSO, and
1170# write it to *RANGE. If the vsyscall's length can't be determined, a
1171# range with zero length is returned. Returns true if the vsyscall is
1172# found, false otherwise.
ea480a30 1173m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1174
1175# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1176# PROT has GDB_MMAP_PROT_* bitmask format.
1177# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1178f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1179
7f361056
JK
1180# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1181# Print a warning if it is not possible.
ea480a30 1182f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1183
f208eee0
JK
1184# Return string (caller has to use xfree for it) with options for GCC
1185# to produce code for this target, typically "-m64", "-m32" or "-m31".
1186# These options are put before CU's DW_AT_producer compilation options so that
953cff56
TT
1187# they can override it.
1188m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1189
1190# Return a regular expression that matches names used by this
1191# architecture in GNU configury triplets. The result is statically
1192# allocated and must not be freed. The default implementation simply
1193# returns the BFD architecture name, which is correct in nearly every
1194# case.
ea480a30 1195m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1196
1197# Return the size in 8-bit bytes of an addressable memory unit on this
1198# architecture. This corresponds to the number of 8-bit bytes associated to
1199# each address in memory.
ea480a30 1200m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1201
65b48a81 1202# Functions for allowing a target to modify its disassembler options.
471b9d15 1203v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1204v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1205v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1206
5561fc30
AB
1207# Type alignment override method. Return the architecture specific
1208# alignment required for TYPE. If there is no special handling
1209# required for TYPE then return the value 0, GDB will then apply the
1210# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1211m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1212
aa7ca1bb
AH
1213# Return a string containing any flags for the given PC in the given FRAME.
1214f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1215
104c1213 1216EOF
104c1213
JM
1217}
1218
0b8f9e4d
AC
1219#
1220# The .log file
1221#
1222exec > new-gdbarch.log
34620563 1223function_list | while do_read
0b8f9e4d
AC
1224do
1225 cat <<EOF
2f9b146e 1226${class} ${returntype} ${function} ($formal)
104c1213 1227EOF
3d9a5942
AC
1228 for r in ${read}
1229 do
1230 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1231 done
f0d4cc9e 1232 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1233 then
66d659b1 1234 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1235 kill $$
1236 exit 1
1237 fi
72e74a21 1238 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1239 then
1240 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1241 kill $$
1242 exit 1
1243 fi
a72293e2
AC
1244 if class_is_multiarch_p
1245 then
1246 if class_is_predicate_p ; then :
1247 elif test "x${predefault}" = "x"
1248 then
2f9b146e 1249 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1250 kill $$
1251 exit 1
1252 fi
1253 fi
3d9a5942 1254 echo ""
0b8f9e4d
AC
1255done
1256
1257exec 1>&2
1258compare_new gdbarch.log
1259
104c1213
JM
1260
1261copyright ()
1262{
1263cat <<EOF
c4bfde41
JK
1264/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1265/* vi:set ro: */
59233f88 1266
104c1213 1267/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1268
e5d78223 1269 Copyright (C) 1998-2020 Free Software Foundation, Inc.
104c1213
JM
1270
1271 This file is part of GDB.
1272
1273 This program is free software; you can redistribute it and/or modify
1274 it under the terms of the GNU General Public License as published by
50efebf8 1275 the Free Software Foundation; either version 3 of the License, or
104c1213 1276 (at your option) any later version.
618f726f 1277
104c1213
JM
1278 This program is distributed in the hope that it will be useful,
1279 but WITHOUT ANY WARRANTY; without even the implied warranty of
1280 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1281 GNU General Public License for more details.
618f726f 1282
104c1213 1283 You should have received a copy of the GNU General Public License
50efebf8 1284 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1285
104c1213
JM
1286/* This file was created with the aid of \`\`gdbarch.sh''.
1287
52204a0b 1288 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1289 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1290 against the existing \`\`gdbarch.[hc]''. Any differences found
1291 being reported.
1292
1293 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1294 changes into that script. Conversely, when making sweeping changes
104c1213 1295 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1296 easier. */
104c1213
JM
1297
1298EOF
1299}
1300
1301#
1302# The .h file
1303#
1304
1305exec > new-gdbarch.h
1306copyright
1307cat <<EOF
1308#ifndef GDBARCH_H
1309#define GDBARCH_H
1310
a0ff9e1a 1311#include <vector>
eb7a547a 1312#include "frame.h"
65b48a81 1313#include "dis-asm.h"
284a0e3c 1314#include "gdb_obstack.h"
fdb61c6c 1315#include "infrun.h"
eb7a547a 1316
da3331ec
AC
1317struct floatformat;
1318struct ui_file;
104c1213 1319struct value;
b6af0555 1320struct objfile;
1c772458 1321struct obj_section;
a2cf933a 1322struct minimal_symbol;
049ee0e4 1323struct regcache;
b59ff9d5 1324struct reggroup;
6ce6d90f 1325struct regset;
a89aa300 1326struct disassemble_info;
e2d0e7eb 1327struct target_ops;
030f20e1 1328struct obstack;
8181d85f 1329struct bp_target_info;
424163ea 1330struct target_desc;
3e29f34a 1331struct symbol;
a96d9b2e 1332struct syscall;
175ff332 1333struct agent_expr;
6710bf39 1334struct axs_value;
55aa24fb 1335struct stap_parse_info;
37eedb39 1336struct expr_builder;
7e35103a 1337struct ravenscar_arch_ops;
3437254d 1338struct mem_range;
458c8db8 1339struct syscalls_info;
4dfc5dbc 1340struct thread_info;
012b3a21 1341struct ui_out;
104c1213 1342
8a526fa6
PA
1343#include "regcache.h"
1344
6ecd4729
PA
1345/* The architecture associated with the inferior through the
1346 connection to the target.
1347
1348 The architecture vector provides some information that is really a
1349 property of the inferior, accessed through a particular target:
1350 ptrace operations; the layout of certain RSP packets; the solib_ops
1351 vector; etc. To differentiate architecture accesses to
1352 per-inferior/target properties from
1353 per-thread/per-frame/per-objfile properties, accesses to
1354 per-inferior/target properties should be made through this
1355 gdbarch. */
1356
1357/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1358extern struct gdbarch *target_gdbarch (void);
6ecd4729 1359
19630284
JB
1360/* Callback type for the 'iterate_over_objfiles_in_search_order'
1361 gdbarch method. */
1362
1363typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1364 (struct objfile *objfile, void *cb_data);
5aa82d05 1365
1528345d
AA
1366/* Callback type for regset section iterators. The callback usually
1367 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1368 pass a buffer - for collects this buffer will need to be created using
1369 COLLECT_SIZE, for supply the existing buffer being read from should
1370 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1371 is used for diagnostic messages. CB_DATA should have been passed
1372 unchanged through the iterator. */
1528345d 1373
5aa82d05 1374typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1375 (const char *sect_name, int supply_size, int collect_size,
1376 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1377
1378/* For a function call, does the function return a value using a
1379 normal value return or a structure return - passing a hidden
1380 argument pointing to storage. For the latter, there are two
1381 cases: language-mandated structure return and target ABI
1382 structure return. */
1383
1384enum function_call_return_method
1385{
1386 /* Standard value return. */
1387 return_method_normal = 0,
1388
1389 /* Language ABI structure return. This is handled
1390 by passing the return location as the first parameter to
1391 the function, even preceding "this". */
1392 return_method_hidden_param,
1393
1394 /* Target ABI struct return. This is target-specific; for instance,
1395 on ia64 the first argument is passed in out0 but the hidden
1396 structure return pointer would normally be passed in r8. */
1397 return_method_struct,
1398};
1399
104c1213
JM
1400EOF
1401
1402# function typedef's
3d9a5942
AC
1403printf "\n"
1404printf "\n"
0963b4bd 1405printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1406function_list | while do_read
104c1213 1407do
2ada493a
AC
1408 if class_is_info_p
1409 then
3d9a5942
AC
1410 printf "\n"
1411 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1412 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1413 fi
104c1213
JM
1414done
1415
1416# function typedef's
3d9a5942
AC
1417printf "\n"
1418printf "\n"
0963b4bd 1419printf "/* The following are initialized by the target dependent code. */\n"
34620563 1420function_list | while do_read
104c1213 1421do
72e74a21 1422 if [ -n "${comment}" ]
34620563
AC
1423 then
1424 echo "${comment}" | sed \
1425 -e '2 s,#,/*,' \
1426 -e '3,$ s,#, ,' \
1427 -e '$ s,$, */,'
1428 fi
412d5987
AC
1429
1430 if class_is_predicate_p
2ada493a 1431 then
412d5987
AC
1432 printf "\n"
1433 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1434 fi
2ada493a
AC
1435 if class_is_variable_p
1436 then
3d9a5942
AC
1437 printf "\n"
1438 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1439 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1440 fi
1441 if class_is_function_p
1442 then
3d9a5942 1443 printf "\n"
72e74a21 1444 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1445 then
1446 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1447 elif class_is_multiarch_p
1448 then
1449 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1450 else
1451 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1452 fi
72e74a21 1453 if [ "x${formal}" = "xvoid" ]
104c1213 1454 then
3d9a5942 1455 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1456 else
3d9a5942 1457 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1458 fi
3d9a5942 1459 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1460 fi
104c1213
JM
1461done
1462
1463# close it off
1464cat <<EOF
1465
1466extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1467
1468
1469/* Mechanism for co-ordinating the selection of a specific
1470 architecture.
1471
1472 GDB targets (*-tdep.c) can register an interest in a specific
1473 architecture. Other GDB components can register a need to maintain
1474 per-architecture data.
1475
1476 The mechanisms below ensures that there is only a loose connection
1477 between the set-architecture command and the various GDB
0fa6923a 1478 components. Each component can independently register their need
104c1213
JM
1479 to maintain architecture specific data with gdbarch.
1480
1481 Pragmatics:
1482
1483 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1484 didn't scale.
1485
1486 The more traditional mega-struct containing architecture specific
1487 data for all the various GDB components was also considered. Since
0fa6923a 1488 GDB is built from a variable number of (fairly independent)
104c1213 1489 components it was determined that the global aproach was not
0963b4bd 1490 applicable. */
104c1213
JM
1491
1492
1493/* Register a new architectural family with GDB.
1494
1495 Register support for the specified ARCHITECTURE with GDB. When
1496 gdbarch determines that the specified architecture has been
1497 selected, the corresponding INIT function is called.
1498
1499 --
1500
1501 The INIT function takes two parameters: INFO which contains the
1502 information available to gdbarch about the (possibly new)
1503 architecture; ARCHES which is a list of the previously created
1504 \`\`struct gdbarch'' for this architecture.
1505
0f79675b 1506 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1507 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1508
1509 The ARCHES parameter is a linked list (sorted most recently used)
1510 of all the previously created architures for this architecture
1511 family. The (possibly NULL) ARCHES->gdbarch can used to access
1512 values from the previously selected architecture for this
59837fe0 1513 architecture family.
104c1213
JM
1514
1515 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1516 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1517 gdbarch'' from the ARCHES list - indicating that the new
1518 architecture is just a synonym for an earlier architecture (see
1519 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1520 - that describes the selected architecture (see gdbarch_alloc()).
1521
1522 The DUMP_TDEP function shall print out all target specific values.
1523 Care should be taken to ensure that the function works in both the
0963b4bd 1524 multi-arch and non- multi-arch cases. */
104c1213
JM
1525
1526struct gdbarch_list
1527{
1528 struct gdbarch *gdbarch;
1529 struct gdbarch_list *next;
1530};
1531
1532struct gdbarch_info
1533{
0963b4bd 1534 /* Use default: NULL (ZERO). */
104c1213
JM
1535 const struct bfd_arch_info *bfd_arch_info;
1536
428721aa 1537 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1538 enum bfd_endian byte_order;
104c1213 1539
94123b4f 1540 enum bfd_endian byte_order_for_code;
9d4fde75 1541
0963b4bd 1542 /* Use default: NULL (ZERO). */
104c1213
JM
1543 bfd *abfd;
1544
0963b4bd 1545 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1546 union
1547 {
1548 /* Architecture-specific information. The generic form for targets
1549 that have extra requirements. */
1550 struct gdbarch_tdep_info *tdep_info;
1551
1552 /* Architecture-specific target description data. Numerous targets
1553 need only this, so give them an easy way to hold it. */
1554 struct tdesc_arch_data *tdesc_data;
1555
1556 /* SPU file system ID. This is a single integer, so using the
1557 generic form would only complicate code. Other targets may
1558 reuse this member if suitable. */
1559 int *id;
1560 };
4be87837
DJ
1561
1562 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1563 enum gdb_osabi osabi;
424163ea
DJ
1564
1565 /* Use default: NULL (ZERO). */
1566 const struct target_desc *target_desc;
104c1213
JM
1567};
1568
1569typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1570typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1571
4b9b3959 1572/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1573extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1574
4b9b3959
AC
1575extern void gdbarch_register (enum bfd_architecture architecture,
1576 gdbarch_init_ftype *,
1577 gdbarch_dump_tdep_ftype *);
1578
104c1213 1579
b4a20239
AC
1580/* Return a freshly allocated, NULL terminated, array of the valid
1581 architecture names. Since architectures are registered during the
1582 _initialize phase this function only returns useful information
0963b4bd 1583 once initialization has been completed. */
b4a20239
AC
1584
1585extern const char **gdbarch_printable_names (void);
1586
1587
104c1213 1588/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1589 matches the information provided by INFO. */
104c1213 1590
424163ea 1591extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1592
1593
1594/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1595 basic initialization using values obtained from the INFO and TDEP
104c1213 1596 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1597 initialization of the object. */
104c1213
JM
1598
1599extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1600
1601
4b9b3959
AC
1602/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1603 It is assumed that the caller freeds the \`\`struct
0963b4bd 1604 gdbarch_tdep''. */
4b9b3959 1605
058f20d5
JB
1606extern void gdbarch_free (struct gdbarch *);
1607
284a0e3c
SM
1608/* Get the obstack owned by ARCH. */
1609
1610extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1611
aebd7893
AC
1612/* Helper function. Allocate memory from the \`\`struct gdbarch''
1613 obstack. The memory is freed when the corresponding architecture
1614 is also freed. */
1615
284a0e3c
SM
1616#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1617 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1618
1619#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1620 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1621
6c214e7c
PP
1622/* Duplicate STRING, returning an equivalent string that's allocated on the
1623 obstack associated with GDBARCH. The string is freed when the corresponding
1624 architecture is also freed. */
1625
1626extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1627
0963b4bd 1628/* Helper function. Force an update of the current architecture.
104c1213 1629
b732d07d
AC
1630 The actual architecture selected is determined by INFO, \`\`(gdb) set
1631 architecture'' et.al., the existing architecture and BFD's default
1632 architecture. INFO should be initialized to zero and then selected
1633 fields should be updated.
104c1213 1634
0963b4bd 1635 Returns non-zero if the update succeeds. */
16f33e29
AC
1636
1637extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1638
1639
ebdba546
AC
1640/* Helper function. Find an architecture matching info.
1641
1642 INFO should be initialized using gdbarch_info_init, relevant fields
1643 set, and then finished using gdbarch_info_fill.
1644
1645 Returns the corresponding architecture, or NULL if no matching
59837fe0 1646 architecture was found. */
ebdba546
AC
1647
1648extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1649
1650
aff68abb 1651/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1652
aff68abb 1653extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1654
104c1213
JM
1655
1656/* Register per-architecture data-pointer.
1657
1658 Reserve space for a per-architecture data-pointer. An identifier
1659 for the reserved data-pointer is returned. That identifer should
95160752 1660 be saved in a local static variable.
104c1213 1661
fcc1c85c
AC
1662 Memory for the per-architecture data shall be allocated using
1663 gdbarch_obstack_zalloc. That memory will be deleted when the
1664 corresponding architecture object is deleted.
104c1213 1665
95160752
AC
1666 When a previously created architecture is re-selected, the
1667 per-architecture data-pointer for that previous architecture is
76860b5f 1668 restored. INIT() is not re-called.
104c1213
JM
1669
1670 Multiple registrarants for any architecture are allowed (and
1671 strongly encouraged). */
1672
95160752 1673struct gdbarch_data;
104c1213 1674
030f20e1
AC
1675typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1676extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1677typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1678extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1679extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1680 struct gdbarch_data *data,
1681 void *pointer);
104c1213 1682
451fbdda 1683extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1684
1685
0fa6923a 1686/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1687 byte-order, ...) using information found in the BFD. */
104c1213
JM
1688
1689extern void set_gdbarch_from_file (bfd *);
1690
1691
e514a9d6
JM
1692/* Initialize the current architecture to the "first" one we find on
1693 our list. */
1694
1695extern void initialize_current_architecture (void);
1696
104c1213 1697/* gdbarch trace variable */
ccce17b0 1698extern unsigned int gdbarch_debug;
104c1213 1699
4b9b3959 1700extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1701
f6efe3f8
SM
1702/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1703
1704static inline int
1705gdbarch_num_cooked_regs (gdbarch *arch)
1706{
1707 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1708}
1709
104c1213
JM
1710#endif
1711EOF
1712exec 1>&2
1713#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1714compare_new gdbarch.h
104c1213
JM
1715
1716
1717#
1718# C file
1719#
1720
1721exec > new-gdbarch.c
1722copyright
1723cat <<EOF
1724
1725#include "defs.h"
7355ddba 1726#include "arch-utils.h"
104c1213 1727
104c1213 1728#include "gdbcmd.h"
faaf634c 1729#include "inferior.h"
104c1213
JM
1730#include "symcat.h"
1731
f0d4cc9e 1732#include "floatformat.h"
b59ff9d5 1733#include "reggroups.h"
4be87837 1734#include "osabi.h"
aebd7893 1735#include "gdb_obstack.h"
0bee6dd4 1736#include "observable.h"
a3ecef73 1737#include "regcache.h"
19630284 1738#include "objfiles.h"
2faa3447 1739#include "auxv.h"
8bcb5208
AB
1740#include "frame-unwind.h"
1741#include "dummy-frame.h"
95160752 1742
104c1213
JM
1743/* Static function declarations */
1744
b3cc3077 1745static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1746
104c1213
JM
1747/* Non-zero if we want to trace architecture code. */
1748
1749#ifndef GDBARCH_DEBUG
1750#define GDBARCH_DEBUG 0
1751#endif
ccce17b0 1752unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1753static void
1754show_gdbarch_debug (struct ui_file *file, int from_tty,
1755 struct cmd_list_element *c, const char *value)
1756{
1757 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1758}
104c1213 1759
456fcf94 1760static const char *
8da61cc4 1761pformat (const struct floatformat **format)
456fcf94
AC
1762{
1763 if (format == NULL)
1764 return "(null)";
1765 else
8da61cc4
DJ
1766 /* Just print out one of them - this is only for diagnostics. */
1767 return format[0]->name;
456fcf94
AC
1768}
1769
08105857
PA
1770static const char *
1771pstring (const char *string)
1772{
1773 if (string == NULL)
1774 return "(null)";
1775 return string;
05c0465e
SDJ
1776}
1777
a121b7c1 1778static const char *
f7bb4e3a
PB
1779pstring_ptr (char **string)
1780{
1781 if (string == NULL || *string == NULL)
1782 return "(null)";
1783 return *string;
1784}
1785
05c0465e
SDJ
1786/* Helper function to print a list of strings, represented as "const
1787 char *const *". The list is printed comma-separated. */
1788
a121b7c1 1789static const char *
05c0465e
SDJ
1790pstring_list (const char *const *list)
1791{
1792 static char ret[100];
1793 const char *const *p;
1794 size_t offset = 0;
1795
1796 if (list == NULL)
1797 return "(null)";
1798
1799 ret[0] = '\0';
1800 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1801 {
1802 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1803 offset += 2 + s;
1804 }
1805
1806 if (offset > 0)
1807 {
1808 gdb_assert (offset - 2 < sizeof (ret));
1809 ret[offset - 2] = '\0';
1810 }
1811
1812 return ret;
08105857
PA
1813}
1814
104c1213
JM
1815EOF
1816
1817# gdbarch open the gdbarch object
3d9a5942 1818printf "\n"
0963b4bd 1819printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1820printf "\n"
1821printf "struct gdbarch\n"
1822printf "{\n"
76860b5f
AC
1823printf " /* Has this architecture been fully initialized? */\n"
1824printf " int initialized_p;\n"
aebd7893
AC
1825printf "\n"
1826printf " /* An obstack bound to the lifetime of the architecture. */\n"
1827printf " struct obstack *obstack;\n"
1828printf "\n"
0963b4bd 1829printf " /* basic architectural information. */\n"
34620563 1830function_list | while do_read
104c1213 1831do
2ada493a
AC
1832 if class_is_info_p
1833 then
3d9a5942 1834 printf " ${returntype} ${function};\n"
2ada493a 1835 fi
104c1213 1836done
3d9a5942 1837printf "\n"
0963b4bd 1838printf " /* target specific vector. */\n"
3d9a5942
AC
1839printf " struct gdbarch_tdep *tdep;\n"
1840printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1841printf "\n"
0963b4bd 1842printf " /* per-architecture data-pointers. */\n"
95160752 1843printf " unsigned nr_data;\n"
3d9a5942
AC
1844printf " void **data;\n"
1845printf "\n"
104c1213
JM
1846cat <<EOF
1847 /* Multi-arch values.
1848
1849 When extending this structure you must:
1850
1851 Add the field below.
1852
1853 Declare set/get functions and define the corresponding
1854 macro in gdbarch.h.
1855
1856 gdbarch_alloc(): If zero/NULL is not a suitable default,
1857 initialize the new field.
1858
1859 verify_gdbarch(): Confirm that the target updated the field
1860 correctly.
1861
7e73cedf 1862 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1863 field is dumped out
1864
104c1213
JM
1865 get_gdbarch(): Implement the set/get functions (probably using
1866 the macro's as shortcuts).
1867
1868 */
1869
1870EOF
34620563 1871function_list | while do_read
104c1213 1872do
2ada493a
AC
1873 if class_is_variable_p
1874 then
3d9a5942 1875 printf " ${returntype} ${function};\n"
2ada493a
AC
1876 elif class_is_function_p
1877 then
2f9b146e 1878 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1879 fi
104c1213 1880done
3d9a5942 1881printf "};\n"
104c1213 1882
104c1213 1883# Create a new gdbarch struct
104c1213 1884cat <<EOF
7de2341d 1885
66b43ecb 1886/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1887 \`\`struct gdbarch_info''. */
104c1213 1888EOF
3d9a5942 1889printf "\n"
104c1213
JM
1890cat <<EOF
1891struct gdbarch *
1892gdbarch_alloc (const struct gdbarch_info *info,
1893 struct gdbarch_tdep *tdep)
1894{
be7811ad 1895 struct gdbarch *gdbarch;
aebd7893
AC
1896
1897 /* Create an obstack for allocating all the per-architecture memory,
1898 then use that to allocate the architecture vector. */
70ba0933 1899 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1900 obstack_init (obstack);
8d749320 1901 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1902 memset (gdbarch, 0, sizeof (*gdbarch));
1903 gdbarch->obstack = obstack;
85de9627 1904
be7811ad 1905 alloc_gdbarch_data (gdbarch);
85de9627 1906
be7811ad 1907 gdbarch->tdep = tdep;
104c1213 1908EOF
3d9a5942 1909printf "\n"
34620563 1910function_list | while do_read
104c1213 1911do
2ada493a
AC
1912 if class_is_info_p
1913 then
be7811ad 1914 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1915 fi
104c1213 1916done
3d9a5942 1917printf "\n"
0963b4bd 1918printf " /* Force the explicit initialization of these. */\n"
34620563 1919function_list | while do_read
104c1213 1920do
2ada493a
AC
1921 if class_is_function_p || class_is_variable_p
1922 then
72e74a21 1923 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1924 then
be7811ad 1925 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1926 fi
2ada493a 1927 fi
104c1213
JM
1928done
1929cat <<EOF
1930 /* gdbarch_alloc() */
1931
be7811ad 1932 return gdbarch;
104c1213
JM
1933}
1934EOF
1935
058f20d5 1936# Free a gdbarch struct.
3d9a5942
AC
1937printf "\n"
1938printf "\n"
058f20d5 1939cat <<EOF
aebd7893 1940
284a0e3c 1941obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1942{
284a0e3c 1943 return arch->obstack;
aebd7893
AC
1944}
1945
6c214e7c
PP
1946/* See gdbarch.h. */
1947
1948char *
1949gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1950{
1951 return obstack_strdup (arch->obstack, string);
1952}
1953
aebd7893 1954
058f20d5
JB
1955/* Free a gdbarch struct. This should never happen in normal
1956 operation --- once you've created a gdbarch, you keep it around.
1957 However, if an architecture's init function encounters an error
1958 building the structure, it may need to clean up a partially
1959 constructed gdbarch. */
4b9b3959 1960
058f20d5
JB
1961void
1962gdbarch_free (struct gdbarch *arch)
1963{
aebd7893 1964 struct obstack *obstack;
05c547f6 1965
95160752 1966 gdb_assert (arch != NULL);
aebd7893
AC
1967 gdb_assert (!arch->initialized_p);
1968 obstack = arch->obstack;
1969 obstack_free (obstack, 0); /* Includes the ARCH. */
1970 xfree (obstack);
058f20d5
JB
1971}
1972EOF
1973
104c1213 1974# verify a new architecture
104c1213 1975cat <<EOF
db446970
AC
1976
1977
1978/* Ensure that all values in a GDBARCH are reasonable. */
1979
104c1213 1980static void
be7811ad 1981verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1982{
d7e74731 1983 string_file log;
05c547f6 1984
104c1213 1985 /* fundamental */
be7811ad 1986 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1987 log.puts ("\n\tbyte-order");
be7811ad 1988 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1989 log.puts ("\n\tbfd_arch_info");
0963b4bd 1990 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1991EOF
34620563 1992function_list | while do_read
104c1213 1993do
2ada493a
AC
1994 if class_is_function_p || class_is_variable_p
1995 then
72e74a21 1996 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1997 then
3d9a5942 1998 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1999 elif class_is_predicate_p
2000 then
0963b4bd 2001 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 2002 # FIXME: See do_read for potential simplification
72e74a21 2003 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 2004 then
3d9a5942 2005 printf " if (${invalid_p})\n"
be7811ad 2006 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 2007 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 2008 then
be7811ad
MD
2009 printf " if (gdbarch->${function} == ${predefault})\n"
2010 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 2011 elif [ -n "${postdefault}" ]
f0d4cc9e 2012 then
be7811ad
MD
2013 printf " if (gdbarch->${function} == 0)\n"
2014 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 2015 elif [ -n "${invalid_p}" ]
104c1213 2016 then
4d60522e 2017 printf " if (${invalid_p})\n"
d7e74731 2018 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 2019 elif [ -n "${predefault}" ]
104c1213 2020 then
be7811ad 2021 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 2022 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 2023 fi
2ada493a 2024 fi
104c1213
JM
2025done
2026cat <<EOF
d7e74731 2027 if (!log.empty ())
f16a1923 2028 internal_error (__FILE__, __LINE__,
85c07804 2029 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 2030 log.c_str ());
104c1213
JM
2031}
2032EOF
2033
2034# dump the structure
3d9a5942
AC
2035printf "\n"
2036printf "\n"
104c1213 2037cat <<EOF
0963b4bd 2038/* Print out the details of the current architecture. */
4b9b3959 2039
104c1213 2040void
be7811ad 2041gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2042{
b78960be 2043 const char *gdb_nm_file = "<not-defined>";
05c547f6 2044
b78960be
AC
2045#if defined (GDB_NM_FILE)
2046 gdb_nm_file = GDB_NM_FILE;
2047#endif
2048 fprintf_unfiltered (file,
2049 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2050 gdb_nm_file);
104c1213 2051EOF
ea480a30 2052function_list | sort '-t;' -k 3 | while do_read
104c1213 2053do
1e9f55d0
AC
2054 # First the predicate
2055 if class_is_predicate_p
2056 then
7996bcec 2057 printf " fprintf_unfiltered (file,\n"
48f7351b 2058 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 2059 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 2060 fi
48f7351b 2061 # Print the corresponding value.
283354d8 2062 if class_is_function_p
4b9b3959 2063 then
7996bcec 2064 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
2065 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2066 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 2067 else
48f7351b 2068 # It is a variable
2f9b146e
AC
2069 case "${print}:${returntype}" in
2070 :CORE_ADDR )
0b1553bc
UW
2071 fmt="%s"
2072 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2073 ;;
2f9b146e 2074 :* )
48f7351b 2075 fmt="%s"
623d3eb1 2076 print="plongest (gdbarch->${function})"
48f7351b
AC
2077 ;;
2078 * )
2f9b146e 2079 fmt="%s"
48f7351b
AC
2080 ;;
2081 esac
3d9a5942 2082 printf " fprintf_unfiltered (file,\n"
48f7351b 2083 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 2084 printf " ${print});\n"
2ada493a 2085 fi
104c1213 2086done
381323f4 2087cat <<EOF
be7811ad
MD
2088 if (gdbarch->dump_tdep != NULL)
2089 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2090}
2091EOF
104c1213
JM
2092
2093
2094# GET/SET
3d9a5942 2095printf "\n"
104c1213
JM
2096cat <<EOF
2097struct gdbarch_tdep *
2098gdbarch_tdep (struct gdbarch *gdbarch)
2099{
2100 if (gdbarch_debug >= 2)
3d9a5942 2101 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2102 return gdbarch->tdep;
2103}
2104EOF
3d9a5942 2105printf "\n"
34620563 2106function_list | while do_read
104c1213 2107do
2ada493a
AC
2108 if class_is_predicate_p
2109 then
3d9a5942
AC
2110 printf "\n"
2111 printf "int\n"
2112 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2113 printf "{\n"
8de9bdc4 2114 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2115 printf " return ${predicate};\n"
3d9a5942 2116 printf "}\n"
2ada493a
AC
2117 fi
2118 if class_is_function_p
2119 then
3d9a5942
AC
2120 printf "\n"
2121 printf "${returntype}\n"
72e74a21 2122 if [ "x${formal}" = "xvoid" ]
104c1213 2123 then
3d9a5942 2124 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2125 else
3d9a5942 2126 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2127 fi
3d9a5942 2128 printf "{\n"
8de9bdc4 2129 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2130 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2131 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2132 then
2133 # Allow a call to a function with a predicate.
956ac328 2134 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2135 fi
3d9a5942
AC
2136 printf " if (gdbarch_debug >= 2)\n"
2137 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2138 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2139 then
2140 if class_is_multiarch_p
2141 then
2142 params="gdbarch"
2143 else
2144 params=""
2145 fi
2146 else
2147 if class_is_multiarch_p
2148 then
2149 params="gdbarch, ${actual}"
2150 else
2151 params="${actual}"
2152 fi
2153 fi
72e74a21 2154 if [ "x${returntype}" = "xvoid" ]
104c1213 2155 then
4a5c6a1d 2156 printf " gdbarch->${function} (${params});\n"
104c1213 2157 else
4a5c6a1d 2158 printf " return gdbarch->${function} (${params});\n"
104c1213 2159 fi
3d9a5942
AC
2160 printf "}\n"
2161 printf "\n"
2162 printf "void\n"
2163 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2164 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2165 printf "{\n"
2166 printf " gdbarch->${function} = ${function};\n"
2167 printf "}\n"
2ada493a
AC
2168 elif class_is_variable_p
2169 then
3d9a5942
AC
2170 printf "\n"
2171 printf "${returntype}\n"
2172 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2173 printf "{\n"
8de9bdc4 2174 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2175 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2176 then
3d9a5942 2177 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2178 elif [ -n "${invalid_p}" ]
104c1213 2179 then
956ac328
AC
2180 printf " /* Check variable is valid. */\n"
2181 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2182 elif [ -n "${predefault}" ]
104c1213 2183 then
956ac328
AC
2184 printf " /* Check variable changed from pre-default. */\n"
2185 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2186 fi
3d9a5942
AC
2187 printf " if (gdbarch_debug >= 2)\n"
2188 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2189 printf " return gdbarch->${function};\n"
2190 printf "}\n"
2191 printf "\n"
2192 printf "void\n"
2193 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2194 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2195 printf "{\n"
2196 printf " gdbarch->${function} = ${function};\n"
2197 printf "}\n"
2ada493a
AC
2198 elif class_is_info_p
2199 then
3d9a5942
AC
2200 printf "\n"
2201 printf "${returntype}\n"
2202 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2203 printf "{\n"
8de9bdc4 2204 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2205 printf " if (gdbarch_debug >= 2)\n"
2206 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2207 printf " return gdbarch->${function};\n"
2208 printf "}\n"
2ada493a 2209 fi
104c1213
JM
2210done
2211
2212# All the trailing guff
2213cat <<EOF
2214
2215
f44c642f 2216/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2217 modules. */
104c1213
JM
2218
2219struct gdbarch_data
2220{
95160752 2221 unsigned index;
76860b5f 2222 int init_p;
030f20e1
AC
2223 gdbarch_data_pre_init_ftype *pre_init;
2224 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2225};
2226
2227struct gdbarch_data_registration
2228{
104c1213
JM
2229 struct gdbarch_data *data;
2230 struct gdbarch_data_registration *next;
2231};
2232
f44c642f 2233struct gdbarch_data_registry
104c1213 2234{
95160752 2235 unsigned nr;
104c1213
JM
2236 struct gdbarch_data_registration *registrations;
2237};
2238
f44c642f 2239struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2240{
2241 0, NULL,
2242};
2243
030f20e1
AC
2244static struct gdbarch_data *
2245gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2246 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2247{
2248 struct gdbarch_data_registration **curr;
05c547f6
MS
2249
2250 /* Append the new registration. */
f44c642f 2251 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2252 (*curr) != NULL;
2253 curr = &(*curr)->next);
70ba0933 2254 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2255 (*curr)->next = NULL;
70ba0933 2256 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2257 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2258 (*curr)->data->pre_init = pre_init;
2259 (*curr)->data->post_init = post_init;
76860b5f 2260 (*curr)->data->init_p = 1;
104c1213
JM
2261 return (*curr)->data;
2262}
2263
030f20e1
AC
2264struct gdbarch_data *
2265gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2266{
2267 return gdbarch_data_register (pre_init, NULL);
2268}
2269
2270struct gdbarch_data *
2271gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2272{
2273 return gdbarch_data_register (NULL, post_init);
2274}
104c1213 2275
0963b4bd 2276/* Create/delete the gdbarch data vector. */
95160752
AC
2277
2278static void
b3cc3077 2279alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2280{
b3cc3077
JB
2281 gdb_assert (gdbarch->data == NULL);
2282 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2283 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2284}
3c875b6f 2285
76860b5f 2286/* Initialize the current value of the specified per-architecture
0963b4bd 2287 data-pointer. */
b3cc3077 2288
95160752 2289void
030f20e1
AC
2290deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2291 struct gdbarch_data *data,
2292 void *pointer)
95160752
AC
2293{
2294 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2295 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2296 gdb_assert (data->pre_init == NULL);
95160752
AC
2297 gdbarch->data[data->index] = pointer;
2298}
2299
104c1213 2300/* Return the current value of the specified per-architecture
0963b4bd 2301 data-pointer. */
104c1213
JM
2302
2303void *
451fbdda 2304gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2305{
451fbdda 2306 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2307 if (gdbarch->data[data->index] == NULL)
76860b5f 2308 {
030f20e1
AC
2309 /* The data-pointer isn't initialized, call init() to get a
2310 value. */
2311 if (data->pre_init != NULL)
2312 /* Mid architecture creation: pass just the obstack, and not
2313 the entire architecture, as that way it isn't possible for
2314 pre-init code to refer to undefined architecture
2315 fields. */
2316 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2317 else if (gdbarch->initialized_p
2318 && data->post_init != NULL)
2319 /* Post architecture creation: pass the entire architecture
2320 (as all fields are valid), but be careful to also detect
2321 recursive references. */
2322 {
2323 gdb_assert (data->init_p);
2324 data->init_p = 0;
2325 gdbarch->data[data->index] = data->post_init (gdbarch);
2326 data->init_p = 1;
2327 }
2328 else
2329 /* The architecture initialization hasn't completed - punt -
2330 hope that the caller knows what they are doing. Once
2331 deprecated_set_gdbarch_data has been initialized, this can be
2332 changed to an internal error. */
2333 return NULL;
76860b5f
AC
2334 gdb_assert (gdbarch->data[data->index] != NULL);
2335 }
451fbdda 2336 return gdbarch->data[data->index];
104c1213
JM
2337}
2338
2339
0963b4bd 2340/* Keep a registry of the architectures known by GDB. */
104c1213 2341
4b9b3959 2342struct gdbarch_registration
104c1213
JM
2343{
2344 enum bfd_architecture bfd_architecture;
2345 gdbarch_init_ftype *init;
4b9b3959 2346 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2347 struct gdbarch_list *arches;
4b9b3959 2348 struct gdbarch_registration *next;
104c1213
JM
2349};
2350
f44c642f 2351static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2352
b4a20239
AC
2353static void
2354append_name (const char ***buf, int *nr, const char *name)
2355{
1dc7a623 2356 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2357 (*buf)[*nr] = name;
2358 *nr += 1;
2359}
2360
2361const char **
2362gdbarch_printable_names (void)
2363{
7996bcec 2364 /* Accumulate a list of names based on the registed list of
0963b4bd 2365 architectures. */
7996bcec
AC
2366 int nr_arches = 0;
2367 const char **arches = NULL;
2368 struct gdbarch_registration *rego;
05c547f6 2369
7996bcec
AC
2370 for (rego = gdbarch_registry;
2371 rego != NULL;
2372 rego = rego->next)
b4a20239 2373 {
7996bcec
AC
2374 const struct bfd_arch_info *ap;
2375 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2376 if (ap == NULL)
2377 internal_error (__FILE__, __LINE__,
85c07804 2378 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2379 do
2380 {
2381 append_name (&arches, &nr_arches, ap->printable_name);
2382 ap = ap->next;
2383 }
2384 while (ap != NULL);
b4a20239 2385 }
7996bcec
AC
2386 append_name (&arches, &nr_arches, NULL);
2387 return arches;
b4a20239
AC
2388}
2389
2390
104c1213 2391void
4b9b3959
AC
2392gdbarch_register (enum bfd_architecture bfd_architecture,
2393 gdbarch_init_ftype *init,
2394 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2395{
4b9b3959 2396 struct gdbarch_registration **curr;
104c1213 2397 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2398
ec3d358c 2399 /* Check that BFD recognizes this architecture */
104c1213
JM
2400 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2401 if (bfd_arch_info == NULL)
2402 {
8e65ff28 2403 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2404 _("gdbarch: Attempt to register "
2405 "unknown architecture (%d)"),
8e65ff28 2406 bfd_architecture);
104c1213 2407 }
0963b4bd 2408 /* Check that we haven't seen this architecture before. */
f44c642f 2409 for (curr = &gdbarch_registry;
104c1213
JM
2410 (*curr) != NULL;
2411 curr = &(*curr)->next)
2412 {
2413 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2414 internal_error (__FILE__, __LINE__,
64b9b334 2415 _("gdbarch: Duplicate registration "
0963b4bd 2416 "of architecture (%s)"),
8e65ff28 2417 bfd_arch_info->printable_name);
104c1213
JM
2418 }
2419 /* log it */
2420 if (gdbarch_debug)
30737ed9 2421 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2422 bfd_arch_info->printable_name,
30737ed9 2423 host_address_to_string (init));
104c1213 2424 /* Append it */
70ba0933 2425 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2426 (*curr)->bfd_architecture = bfd_architecture;
2427 (*curr)->init = init;
4b9b3959 2428 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2429 (*curr)->arches = NULL;
2430 (*curr)->next = NULL;
4b9b3959
AC
2431}
2432
2433void
2434register_gdbarch_init (enum bfd_architecture bfd_architecture,
2435 gdbarch_init_ftype *init)
2436{
2437 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2438}
104c1213
JM
2439
2440
424163ea 2441/* Look for an architecture using gdbarch_info. */
104c1213
JM
2442
2443struct gdbarch_list *
2444gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2445 const struct gdbarch_info *info)
2446{
2447 for (; arches != NULL; arches = arches->next)
2448 {
2449 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2450 continue;
2451 if (info->byte_order != arches->gdbarch->byte_order)
2452 continue;
4be87837
DJ
2453 if (info->osabi != arches->gdbarch->osabi)
2454 continue;
424163ea
DJ
2455 if (info->target_desc != arches->gdbarch->target_desc)
2456 continue;
104c1213
JM
2457 return arches;
2458 }
2459 return NULL;
2460}
2461
2462
ebdba546 2463/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2464 architecture if needed. Return that new architecture. */
104c1213 2465
59837fe0
UW
2466struct gdbarch *
2467gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2468{
2469 struct gdbarch *new_gdbarch;
4b9b3959 2470 struct gdbarch_registration *rego;
104c1213 2471
b732d07d 2472 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2473 sources: "set ..."; INFOabfd supplied; and the global
2474 defaults. */
2475 gdbarch_info_fill (&info);
4be87837 2476
0963b4bd 2477 /* Must have found some sort of architecture. */
b732d07d 2478 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2479
2480 if (gdbarch_debug)
2481 {
2482 fprintf_unfiltered (gdb_stdlog,
59837fe0 2483 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2484 (info.bfd_arch_info != NULL
2485 ? info.bfd_arch_info->printable_name
2486 : "(null)"));
2487 fprintf_unfiltered (gdb_stdlog,
59837fe0 2488 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2489 info.byte_order,
d7449b42 2490 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2491 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2492 : "default"));
4be87837 2493 fprintf_unfiltered (gdb_stdlog,
59837fe0 2494 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2495 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2496 fprintf_unfiltered (gdb_stdlog,
59837fe0 2497 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2498 host_address_to_string (info.abfd));
104c1213 2499 fprintf_unfiltered (gdb_stdlog,
59837fe0 2500 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2501 host_address_to_string (info.tdep_info));
104c1213
JM
2502 }
2503
ebdba546 2504 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2505 for (rego = gdbarch_registry;
2506 rego != NULL;
2507 rego = rego->next)
2508 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2509 break;
2510 if (rego == NULL)
2511 {
2512 if (gdbarch_debug)
59837fe0 2513 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2514 "No matching architecture\n");
b732d07d
AC
2515 return 0;
2516 }
2517
ebdba546 2518 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2519 new_gdbarch = rego->init (info, rego->arches);
2520
ebdba546
AC
2521 /* Did the tdep code like it? No. Reject the change and revert to
2522 the old architecture. */
104c1213
JM
2523 if (new_gdbarch == NULL)
2524 {
2525 if (gdbarch_debug)
59837fe0 2526 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2527 "Target rejected architecture\n");
2528 return NULL;
104c1213
JM
2529 }
2530
ebdba546
AC
2531 /* Is this a pre-existing architecture (as determined by already
2532 being initialized)? Move it to the front of the architecture
2533 list (keeping the list sorted Most Recently Used). */
2534 if (new_gdbarch->initialized_p)
104c1213 2535 {
ebdba546 2536 struct gdbarch_list **list;
fe978cb0 2537 struct gdbarch_list *self;
104c1213 2538 if (gdbarch_debug)
59837fe0 2539 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2540 "Previous architecture %s (%s) selected\n",
2541 host_address_to_string (new_gdbarch),
104c1213 2542 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2543 /* Find the existing arch in the list. */
2544 for (list = &rego->arches;
2545 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2546 list = &(*list)->next);
2547 /* It had better be in the list of architectures. */
2548 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2549 /* Unlink SELF. */
2550 self = (*list);
2551 (*list) = self->next;
2552 /* Insert SELF at the front. */
2553 self->next = rego->arches;
2554 rego->arches = self;
ebdba546
AC
2555 /* Return it. */
2556 return new_gdbarch;
104c1213
JM
2557 }
2558
ebdba546
AC
2559 /* It's a new architecture. */
2560 if (gdbarch_debug)
59837fe0 2561 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2562 "New architecture %s (%s) selected\n",
2563 host_address_to_string (new_gdbarch),
ebdba546
AC
2564 new_gdbarch->bfd_arch_info->printable_name);
2565
2566 /* Insert the new architecture into the front of the architecture
2567 list (keep the list sorted Most Recently Used). */
0f79675b 2568 {
fe978cb0
PA
2569 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2570 self->next = rego->arches;
2571 self->gdbarch = new_gdbarch;
2572 rego->arches = self;
0f79675b 2573 }
104c1213 2574
4b9b3959
AC
2575 /* Check that the newly installed architecture is valid. Plug in
2576 any post init values. */
2577 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2578 verify_gdbarch (new_gdbarch);
ebdba546 2579 new_gdbarch->initialized_p = 1;
104c1213 2580
4b9b3959 2581 if (gdbarch_debug)
ebdba546
AC
2582 gdbarch_dump (new_gdbarch, gdb_stdlog);
2583
2584 return new_gdbarch;
2585}
2586
e487cc15 2587/* Make the specified architecture current. */
ebdba546
AC
2588
2589void
aff68abb 2590set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2591{
2592 gdb_assert (new_gdbarch != NULL);
ebdba546 2593 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2594 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2595 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2596 registers_changed ();
ebdba546 2597}
104c1213 2598
f5656ead 2599/* Return the current inferior's arch. */
6ecd4729
PA
2600
2601struct gdbarch *
f5656ead 2602target_gdbarch (void)
6ecd4729
PA
2603{
2604 return current_inferior ()->gdbarch;
2605}
2606
a1237872 2607void _initialize_gdbarch ();
104c1213 2608void
a1237872 2609_initialize_gdbarch ()
104c1213 2610{
ccce17b0 2611 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2612Set architecture debugging."), _("\\
2613Show architecture debugging."), _("\\
2614When non-zero, architecture debugging is enabled."),
2615 NULL,
920d2a44 2616 show_gdbarch_debug,
85c07804 2617 &setdebuglist, &showdebuglist);
104c1213
JM
2618}
2619EOF
2620
2621# close things off
2622exec 1>&2
2623#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2624compare_new gdbarch.c
This page took 1.829495 seconds and 4 git commands to generate.