New gdbarch methods breakpoint_kind_from_pc and sw_breakpoint_from_kind
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
618f726f 5# Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
9b790ce7
UW
386# Returns the floating-point format to be used for values of length LENGTH.
387# NAME, if non-NULL, is the type name, which may be used to distinguish
388# different target formats of the same length.
389m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0
390
52204a0b
DT
391# For most targets, a pointer on the target and its representation as an
392# address in GDB have the same size and "look the same". For such a
17a912b6 393# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
394# / addr_bit will be set from it.
395#
17a912b6 396# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
397# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
398# gdbarch_address_to_pointer as well.
52204a0b
DT
399#
400# ptr_bit is the size of a pointer on the target
be7811ad 401v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 402# addr_bit is the size of a target address as represented in gdb
be7811ad 403v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 404#
8da614df
CV
405# dwarf2_addr_size is the target address size as used in the Dwarf debug
406# info. For .debug_frame FDEs, this is supposed to be the target address
407# size from the associated CU header, and which is equivalent to the
408# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
409# Unfortunately there is no good way to determine this value. Therefore
410# dwarf2_addr_size simply defaults to the target pointer size.
411#
412# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
413# defined using the target's pointer size so far.
414#
415# Note that dwarf2_addr_size only needs to be redefined by a target if the
416# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
417# and if Dwarf versions < 4 need to be supported.
418v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
419#
4e409299 420# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 421v:int:char_signed:::1:-1:1
4e409299 422#
97030eea
UW
423F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
424F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
425# Function for getting target's idea of a frame pointer. FIXME: GDB's
426# whole scheme for dealing with "frames" and "frame pointers" needs a
427# serious shakedown.
a54fba4c 428m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 429#
05d1431c 430M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
431# Read a register into a new struct value. If the register is wholly
432# or partly unavailable, this should call mark_value_bytes_unavailable
433# as appropriate. If this is defined, then pseudo_register_read will
434# never be called.
435M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 436M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 437#
97030eea 438v:int:num_regs:::0:-1
0aba1244
EZ
439# This macro gives the number of pseudo-registers that live in the
440# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
441# These pseudo-registers may be aliases for other registers,
442# combinations of other registers, or they may be computed by GDB.
97030eea 443v:int:num_pseudo_regs:::0:0::0
c2169756 444
175ff332
HZ
445# Assemble agent expression bytecode to collect pseudo-register REG.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
448
449# Assemble agent expression bytecode to push the value of pseudo-register
450# REG on the interpreter stack.
451# Return -1 if something goes wrong, 0 otherwise.
452M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
453
012b3a21
WT
454# Some targets/architectures can do extra processing/display of
455# segmentation faults. E.g., Intel MPX boundary faults.
456# Call the architecture dependent function to handle the fault.
457# UIOUT is the output stream where the handler will place information.
458M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
459
c2169756
AC
460# GDB's standard (or well known) register numbers. These can map onto
461# a real register or a pseudo (computed) register or not be defined at
1200cd6e 462# all (-1).
3e8c568d 463# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
464v:int:sp_regnum:::-1:-1::0
465v:int:pc_regnum:::-1:-1::0
466v:int:ps_regnum:::-1:-1::0
467v:int:fp0_regnum:::0:-1::0
88c72b7d 468# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 469m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 470# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 471m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 472# Convert from an sdb register number to an internal gdb register number.
d3f73121 473m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 474# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 475# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 476m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 477m:const char *:register_name:int regnr:regnr::0
9c04cab7 478
7b9ee6a8
DJ
479# Return the type of a register specified by the architecture. Only
480# the register cache should call this function directly; others should
481# use "register_type".
97030eea 482M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 483
669fac23
DJ
484M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
485# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 486# deprecated_fp_regnum.
97030eea 487v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 488
97030eea
UW
489M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
490v:int:call_dummy_location::::AT_ENTRY_POINT::0
491M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 492
7eb89530
YQ
493# Return true if the code of FRAME is writable.
494m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
495
97030eea 496m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 497m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 498M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
499# MAP a GDB RAW register number onto a simulator register number. See
500# also include/...-sim.h.
e7faf938 501m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
502m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
503m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
504
505# Determine the address where a longjmp will land and save this address
506# in PC. Return nonzero on success.
507#
508# FRAME corresponds to the longjmp frame.
97030eea 509F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 510
104c1213 511#
97030eea 512v:int:believe_pcc_promotion:::::::
104c1213 513#
0abe36f5 514m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 515f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 516f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 517# Construct a value representing the contents of register REGNUM in
2ed3c037 518# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
519# allocate and return a struct value with all value attributes
520# (but not the value contents) filled in.
2ed3c037 521m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 522#
9898f801
UW
523m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
524m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 525M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 526
6a3a010b
MR
527# Return the return-value convention that will be used by FUNCTION
528# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
529# case the return convention is computed based only on VALTYPE.
530#
531# If READBUF is not NULL, extract the return value and save it in this buffer.
532#
533# If WRITEBUF is not NULL, it contains a return value which will be
534# stored into the appropriate register. This can be used when we want
535# to force the value returned by a function (see the "return" command
536# for instance).
6a3a010b 537M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 538
18648a37
YQ
539# Return true if the return value of function is stored in the first hidden
540# parameter. In theory, this feature should be language-dependent, specified
541# by language and its ABI, such as C++. Unfortunately, compiler may
542# implement it to a target-dependent feature. So that we need such hook here
543# to be aware of this in GDB.
544m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
545
6093d2eb 546m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 547M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
548# On some platforms, a single function may provide multiple entry points,
549# e.g. one that is used for function-pointer calls and a different one
550# that is used for direct function calls.
551# In order to ensure that breakpoints set on the function will trigger
552# no matter via which entry point the function is entered, a platform
553# may provide the skip_entrypoint callback. It is called with IP set
554# to the main entry point of a function (as determined by the symbol table),
555# and should return the address of the innermost entry point, where the
556# actual breakpoint needs to be set. Note that skip_entrypoint is used
557# by GDB common code even when debugging optimized code, where skip_prologue
558# is not used.
559M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
560
97030eea 561f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 562m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
cd6c3b4f
YQ
563
564# Return the breakpoint kind for this target based on *PCPTR.
565m:int:breakpoint_kind_from_pc:CORE_ADDR *pcptr:pcptr::0:
566
567# Return the software breakpoint from KIND. KIND can have target
568# specific meaning like the Z0 kind parameter.
569# SIZE is set to the software breakpoint's length in memory.
570m:const gdb_byte *:sw_breakpoint_from_kind:int kind, int *size:kind, size::NULL::0
571
a1dcb23a
DJ
572# Return the adjusted address and kind to use for Z0/Z1 packets.
573# KIND is usually the memory length of the breakpoint, but may have a
574# different target-specific meaning.
0e05dfcb 575m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 576M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
577m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
578m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 579v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
580
581# A function can be addressed by either it's "pointer" (possibly a
582# descriptor address) or "entry point" (first executable instruction).
583# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 584# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
585# a simplified subset of that functionality - the function's address
586# corresponds to the "function pointer" and the function's start
587# corresponds to the "function entry point" - and hence is redundant.
588
97030eea 589v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 590
123dc839
DJ
591# Return the remote protocol register number associated with this
592# register. Normally the identity mapping.
97030eea 593m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 594
b2756930 595# Fetch the target specific address used to represent a load module.
97030eea 596F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 597#
97030eea
UW
598v:CORE_ADDR:frame_args_skip:::0:::0
599M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
600M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
601# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
602# frame-base. Enable frame-base before frame-unwind.
97030eea 603F:int:frame_num_args:struct frame_info *frame:frame
104c1213 604#
97030eea
UW
605M:CORE_ADDR:frame_align:CORE_ADDR address:address
606m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
607v:int:frame_red_zone_size
f0d4cc9e 608#
97030eea 609m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
610# On some machines there are bits in addresses which are not really
611# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 612# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
613# we get a "real" address such as one would find in a symbol table.
614# This is used only for addresses of instructions, and even then I'm
615# not sure it's used in all contexts. It exists to deal with there
616# being a few stray bits in the PC which would mislead us, not as some
617# sort of generic thing to handle alignment or segmentation (it's
618# possible it should be in TARGET_READ_PC instead).
24568a2c 619m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
620
621# FIXME/cagney/2001-01-18: This should be split in two. A target method that
622# indicates if the target needs software single step. An ISA method to
623# implement it.
624#
e6590a1b
UW
625# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
626# target can single step. If not, then implement single step using breakpoints.
64c4637f 627#
6f112b18 628# A return value of 1 means that the software_single_step breakpoints
21edc42f
YQ
629# were inserted; 0 means they were not. Multiple breakpoints may be
630# inserted for some instructions such as conditional branch. However,
631# each implementation must always evaluate the condition and only put
632# the breakpoint at the branch destination if the condition is true, so
633# that we ensure forward progress when stepping past a conditional
634# branch to self.
97030eea 635F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 636
3352ef37
AC
637# Return non-zero if the processor is executing a delay slot and a
638# further single-step is needed before the instruction finishes.
97030eea 639M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 640# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 641# disassembler. Perhaps objdump can handle it?
97030eea
UW
642f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
643f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
644
645
cfd8ab24 646# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
647# evaluates non-zero, this is the address where the debugger will place
648# a step-resume breakpoint to get us past the dynamic linker.
97030eea 649m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 650# Some systems also have trampoline code for returning from shared libs.
2c02bd72 651m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 652
c12260ac
CV
653# A target might have problems with watchpoints as soon as the stack
654# frame of the current function has been destroyed. This mostly happens
c9cf6e20 655# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
656# is defined to return a non-zero value if either the given addr is one
657# instruction after the stack destroying instruction up to the trailing
658# return instruction or if we can figure out that the stack frame has
659# already been invalidated regardless of the value of addr. Targets
660# which don't suffer from that problem could just let this functionality
661# untouched.
c9cf6e20 662m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
663# Process an ELF symbol in the minimal symbol table in a backend-specific
664# way. Normally this hook is supposed to do nothing, however if required,
665# then this hook can be used to apply tranformations to symbols that are
666# considered special in some way. For example the MIPS backend uses it
667# to interpret \`st_other' information to mark compressed code symbols so
668# that they can be treated in the appropriate manner in the processing of
669# the main symbol table and DWARF-2 records.
670F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 671f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
672# Process a symbol in the main symbol table in a backend-specific way.
673# Normally this hook is supposed to do nothing, however if required,
674# then this hook can be used to apply tranformations to symbols that
675# are considered special in some way. This is currently used by the
676# MIPS backend to make sure compressed code symbols have the ISA bit
677# set. This in turn is needed for symbol values seen in GDB to match
678# the values used at the runtime by the program itself, for function
679# and label references.
680f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
681# Adjust the address retrieved from a DWARF-2 record other than a line
682# entry in a backend-specific way. Normally this hook is supposed to
683# return the address passed unchanged, however if that is incorrect for
684# any reason, then this hook can be used to fix the address up in the
685# required manner. This is currently used by the MIPS backend to make
686# sure addresses in FDE, range records, etc. referring to compressed
687# code have the ISA bit set, matching line information and the symbol
688# table.
689f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
690# Adjust the address updated by a line entry in a backend-specific way.
691# Normally this hook is supposed to return the address passed unchanged,
692# however in the case of inconsistencies in these records, this hook can
693# be used to fix them up in the required manner. This is currently used
694# by the MIPS backend to make sure all line addresses in compressed code
695# are presented with the ISA bit set, which is not always the case. This
696# in turn ensures breakpoint addresses are correctly matched against the
697# stop PC.
698f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
699v:int:cannot_step_breakpoint:::0:0::0
700v:int:have_nonsteppable_watchpoint:::0:0::0
701F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
702M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
703
704# Return the appropriate type_flags for the supplied address class.
705# This function should return 1 if the address class was recognized and
706# type_flags was set, zero otherwise.
97030eea 707M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 708# Is a register in a group
97030eea 709m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 710# Fetch the pointer to the ith function argument.
97030eea 711F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 712
5aa82d05
AA
713# Iterate over all supported register notes in a core file. For each
714# supported register note section, the iterator must call CB and pass
715# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
716# the supported register note sections based on the current register
717# values. Otherwise it should enumerate all supported register note
718# sections.
719M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 720
6432734d
UW
721# Create core file notes
722M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
723
b3ac9c77
SDJ
724# The elfcore writer hook to use to write Linux prpsinfo notes to core
725# files. Most Linux architectures use the same prpsinfo32 or
726# prpsinfo64 layouts, and so won't need to provide this hook, as we
727# call the Linux generic routines in bfd to write prpsinfo notes by
728# default.
729F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
730
35c2fab7
UW
731# Find core file memory regions
732M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
733
de584861 734# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
735# core file into buffer READBUF with length LEN. Return the number of bytes read
736# (zero indicates failure).
737# failed, otherwise, return the red length of READBUF.
738M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 739
356a5233
JB
740# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
741# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
742# Return the number of bytes read (zero indicates failure).
743M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 744
c0edd9ed 745# How the core target converts a PTID from a core file to a string.
28439f5e
PA
746M:char *:core_pid_to_str:ptid_t ptid:ptid
747
4dfc5dbc
JB
748# How the core target extracts the name of a thread from a core file.
749M:const char *:core_thread_name:struct thread_info *thr:thr
750
a78c2d62 751# BFD target to use when generating a core file.
86ba1042 752V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 753
0d5de010
DJ
754# If the elements of C++ vtables are in-place function descriptors rather
755# than normal function pointers (which may point to code or a descriptor),
756# set this to one.
97030eea 757v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
758
759# Set if the least significant bit of the delta is used instead of the least
760# significant bit of the pfn for pointers to virtual member functions.
97030eea 761v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
762
763# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 764f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 765
1668ae25 766# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
767V:ULONGEST:max_insn_length:::0:0
768
769# Copy the instruction at FROM to TO, and make any adjustments
770# necessary to single-step it at that address.
771#
772# REGS holds the state the thread's registers will have before
773# executing the copied instruction; the PC in REGS will refer to FROM,
774# not the copy at TO. The caller should update it to point at TO later.
775#
776# Return a pointer to data of the architecture's choice to be passed
777# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
778# the instruction's effects have been completely simulated, with the
779# resulting state written back to REGS.
780#
781# For a general explanation of displaced stepping and how GDB uses it,
782# see the comments in infrun.c.
783#
784# The TO area is only guaranteed to have space for
785# gdbarch_max_insn_length (arch) bytes, so this function must not
786# write more bytes than that to that area.
787#
788# If you do not provide this function, GDB assumes that the
789# architecture does not support displaced stepping.
790#
791# If your architecture doesn't need to adjust instructions before
792# single-stepping them, consider using simple_displaced_step_copy_insn
793# here.
7f03bd92
PA
794#
795# If the instruction cannot execute out of line, return NULL. The
796# core falls back to stepping past the instruction in-line instead in
797# that case.
237fc4c9
PA
798M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
799
99e40580
UW
800# Return true if GDB should use hardware single-stepping to execute
801# the displaced instruction identified by CLOSURE. If false,
802# GDB will simply restart execution at the displaced instruction
803# location, and it is up to the target to ensure GDB will receive
804# control again (e.g. by placing a software breakpoint instruction
805# into the displaced instruction buffer).
806#
807# The default implementation returns false on all targets that
808# provide a gdbarch_software_single_step routine, and true otherwise.
809m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
810
237fc4c9
PA
811# Fix up the state resulting from successfully single-stepping a
812# displaced instruction, to give the result we would have gotten from
813# stepping the instruction in its original location.
814#
815# REGS is the register state resulting from single-stepping the
816# displaced instruction.
817#
818# CLOSURE is the result from the matching call to
819# gdbarch_displaced_step_copy_insn.
820#
821# If you provide gdbarch_displaced_step_copy_insn.but not this
822# function, then GDB assumes that no fixup is needed after
823# single-stepping the instruction.
824#
825# For a general explanation of displaced stepping and how GDB uses it,
826# see the comments in infrun.c.
827M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
828
829# Free a closure returned by gdbarch_displaced_step_copy_insn.
830#
831# If you provide gdbarch_displaced_step_copy_insn, you must provide
832# this function as well.
833#
834# If your architecture uses closures that don't need to be freed, then
835# you can use simple_displaced_step_free_closure here.
836#
837# For a general explanation of displaced stepping and how GDB uses it,
838# see the comments in infrun.c.
839m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
840
841# Return the address of an appropriate place to put displaced
842# instructions while we step over them. There need only be one such
843# place, since we're only stepping one thread over a breakpoint at a
844# time.
845#
846# For a general explanation of displaced stepping and how GDB uses it,
847# see the comments in infrun.c.
848m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
849
dde08ee1
PA
850# Relocate an instruction to execute at a different address. OLDLOC
851# is the address in the inferior memory where the instruction to
852# relocate is currently at. On input, TO points to the destination
853# where we want the instruction to be copied (and possibly adjusted)
854# to. On output, it points to one past the end of the resulting
855# instruction(s). The effect of executing the instruction at TO shall
856# be the same as if executing it at FROM. For example, call
857# instructions that implicitly push the return address on the stack
858# should be adjusted to return to the instruction after OLDLOC;
859# relative branches, and other PC-relative instructions need the
860# offset adjusted; etc.
861M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
862
1c772458 863# Refresh overlay mapped state for section OSECT.
97030eea 864F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 865
97030eea 866M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
867
868# Handle special encoding of static variables in stabs debug info.
0d5cff50 869F:const char *:static_transform_name:const char *name:name
203c3895 870# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 871v:int:sofun_address_maybe_missing:::0:0::0
1cded358 872
0508c3ec
HZ
873# Parse the instruction at ADDR storing in the record execution log
874# the registers REGCACHE and memory ranges that will be affected when
875# the instruction executes, along with their current values.
876# Return -1 if something goes wrong, 0 otherwise.
877M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
878
3846b520
HZ
879# Save process state after a signal.
880# Return -1 if something goes wrong, 0 otherwise.
2ea28649 881M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 882
22203bbf 883# Signal translation: translate inferior's signal (target's) number
86b49880
PA
884# into GDB's representation. The implementation of this method must
885# be host independent. IOW, don't rely on symbols of the NAT_FILE
886# header (the nm-*.h files), the host <signal.h> header, or similar
887# headers. This is mainly used when cross-debugging core files ---
888# "Live" targets hide the translation behind the target interface
1f8cf220
PA
889# (target_wait, target_resume, etc.).
890M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 891
eb14d406
SDJ
892# Signal translation: translate the GDB's internal signal number into
893# the inferior's signal (target's) representation. The implementation
894# of this method must be host independent. IOW, don't rely on symbols
895# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
896# header, or similar headers.
897# Return the target signal number if found, or -1 if the GDB internal
898# signal number is invalid.
899M:int:gdb_signal_to_target:enum gdb_signal signal:signal
900
4aa995e1
PA
901# Extra signal info inspection.
902#
903# Return a type suitable to inspect extra signal information.
904M:struct type *:get_siginfo_type:void:
905
60c5725c
DJ
906# Record architecture-specific information from the symbol table.
907M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 908
a96d9b2e
SDJ
909# Function for the 'catch syscall' feature.
910
911# Get architecture-specific system calls information from registers.
912M:LONGEST:get_syscall_number:ptid_t ptid:ptid
913
458c8db8
SDJ
914# The filename of the XML syscall for this architecture.
915v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
916
917# Information about system calls from this architecture
918v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
919
55aa24fb
SDJ
920# SystemTap related fields and functions.
921
05c0465e
SDJ
922# A NULL-terminated array of prefixes used to mark an integer constant
923# on the architecture's assembly.
55aa24fb
SDJ
924# For example, on x86 integer constants are written as:
925#
926# \$10 ;; integer constant 10
927#
928# in this case, this prefix would be the character \`\$\'.
05c0465e 929v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 930
05c0465e
SDJ
931# A NULL-terminated array of suffixes used to mark an integer constant
932# on the architecture's assembly.
933v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 934
05c0465e
SDJ
935# A NULL-terminated array of prefixes used to mark a register name on
936# the architecture's assembly.
55aa24fb
SDJ
937# For example, on x86 the register name is written as:
938#
939# \%eax ;; register eax
940#
941# in this case, this prefix would be the character \`\%\'.
05c0465e 942v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 943
05c0465e
SDJ
944# A NULL-terminated array of suffixes used to mark a register name on
945# the architecture's assembly.
946v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 947
05c0465e
SDJ
948# A NULL-terminated array of prefixes used to mark a register
949# indirection on the architecture's assembly.
55aa24fb
SDJ
950# For example, on x86 the register indirection is written as:
951#
952# \(\%eax\) ;; indirecting eax
953#
954# in this case, this prefix would be the charater \`\(\'.
955#
956# Please note that we use the indirection prefix also for register
957# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 958v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 959
05c0465e
SDJ
960# A NULL-terminated array of suffixes used to mark a register
961# indirection on the architecture's assembly.
55aa24fb
SDJ
962# For example, on x86 the register indirection is written as:
963#
964# \(\%eax\) ;; indirecting eax
965#
966# in this case, this prefix would be the charater \`\)\'.
967#
968# Please note that we use the indirection suffix also for register
969# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 970v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 971
05c0465e 972# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
973#
974# For example, on PPC a register is represented by a number in the assembly
975# language (e.g., \`10\' is the 10th general-purpose register). However,
976# inside GDB this same register has an \`r\' appended to its name, so the 10th
977# register would be represented as \`r10\' internally.
08af7a40 978v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
979
980# Suffix used to name a register using GDB's nomenclature.
08af7a40 981v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
982
983# Check if S is a single operand.
984#
985# Single operands can be:
986# \- Literal integers, e.g. \`\$10\' on x86
987# \- Register access, e.g. \`\%eax\' on x86
988# \- Register indirection, e.g. \`\(\%eax\)\' on x86
989# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
990#
991# This function should check for these patterns on the string
992# and return 1 if some were found, or zero otherwise. Please try to match
993# as much info as you can from the string, i.e., if you have to match
994# something like \`\(\%\', do not match just the \`\(\'.
995M:int:stap_is_single_operand:const char *s:s
996
997# Function used to handle a "special case" in the parser.
998#
999# A "special case" is considered to be an unknown token, i.e., a token
1000# that the parser does not know how to parse. A good example of special
1001# case would be ARM's register displacement syntax:
1002#
1003# [R0, #4] ;; displacing R0 by 4
1004#
1005# Since the parser assumes that a register displacement is of the form:
1006#
1007# <number> <indirection_prefix> <register_name> <indirection_suffix>
1008#
1009# it means that it will not be able to recognize and parse this odd syntax.
1010# Therefore, we should add a special case function that will handle this token.
1011#
1012# This function should generate the proper expression form of the expression
1013# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1014# and so on). It should also return 1 if the parsing was successful, or zero
1015# if the token was not recognized as a special token (in this case, returning
1016# zero means that the special parser is deferring the parsing to the generic
1017# parser), and should advance the buffer pointer (p->arg).
1018M:int:stap_parse_special_token:struct stap_parse_info *p:p
1019
8b367e17
JM
1020# DTrace related functions.
1021
1022# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1023# NARG must be >= 0.
1024M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1025
1026# True if the given ADDR does not contain the instruction sequence
1027# corresponding to a disabled DTrace is-enabled probe.
1028M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1029
1030# Enable a DTrace is-enabled probe at ADDR.
1031M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1032
1033# Disable a DTrace is-enabled probe at ADDR.
1034M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1035
50c71eaf
PA
1036# True if the list of shared libraries is one and only for all
1037# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1038# This usually means that all processes, although may or may not share
1039# an address space, will see the same set of symbols at the same
1040# addresses.
50c71eaf 1041v:int:has_global_solist:::0:0::0
2567c7d9
PA
1042
1043# On some targets, even though each inferior has its own private
1044# address space, the debug interface takes care of making breakpoints
1045# visible to all address spaces automatically. For such cases,
1046# this property should be set to true.
1047v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1048
1049# True if inferiors share an address space (e.g., uClinux).
1050m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1051
1052# True if a fast tracepoint can be set at an address.
6b940e6a 1053m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1054
5f034a78
MK
1055# Guess register state based on tracepoint location. Used for tracepoints
1056# where no registers have been collected, but there's only one location,
1057# allowing us to guess the PC value, and perhaps some other registers.
1058# On entry, regcache has all registers marked as unavailable.
1059m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1060
f870a310
TT
1061# Return the "auto" target charset.
1062f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1063# Return the "auto" target wide charset.
1064f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1065
1066# If non-empty, this is a file extension that will be opened in place
1067# of the file extension reported by the shared library list.
1068#
1069# This is most useful for toolchains that use a post-linker tool,
1070# where the names of the files run on the target differ in extension
1071# compared to the names of the files GDB should load for debug info.
1072v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1073
1074# If true, the target OS has DOS-based file system semantics. That
1075# is, absolute paths include a drive name, and the backslash is
1076# considered a directory separator.
1077v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1078
1079# Generate bytecodes to collect the return address in a frame.
1080# Since the bytecodes run on the target, possibly with GDB not even
1081# connected, the full unwinding machinery is not available, and
1082# typically this function will issue bytecodes for one or more likely
1083# places that the return address may be found.
1084m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1085
3030c96e 1086# Implement the "info proc" command.
7bc112c1 1087M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1088
451b7c33
TT
1089# Implement the "info proc" command for core files. Noe that there
1090# are two "info_proc"-like methods on gdbarch -- one for core files,
1091# one for live targets.
7bc112c1 1092M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1093
19630284
JB
1094# Iterate over all objfiles in the order that makes the most sense
1095# for the architecture to make global symbol searches.
1096#
1097# CB is a callback function where OBJFILE is the objfile to be searched,
1098# and CB_DATA a pointer to user-defined data (the same data that is passed
1099# when calling this gdbarch method). The iteration stops if this function
1100# returns nonzero.
1101#
1102# CB_DATA is a pointer to some user-defined data to be passed to
1103# the callback.
1104#
1105# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1106# inspected when the symbol search was requested.
1107m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1108
7e35103a
JB
1109# Ravenscar arch-dependent ops.
1110v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1111
1112# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1113m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1114
1115# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1116m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1117
1118# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1119m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1120
1121# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1122# Return 0 if *READPTR is already at the end of the buffer.
1123# Return -1 if there is insufficient buffer for a whole entry.
1124# Return 1 if an entry was read into *TYPEP and *VALP.
1125M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d 1126
2faa3447
JB
1127# Print the description of a single auxv entry described by TYPE and VAL
1128# to FILE.
1129m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1130
3437254d
PA
1131# Find the address range of the current inferior's vsyscall/vDSO, and
1132# write it to *RANGE. If the vsyscall's length can't be determined, a
1133# range with zero length is returned. Returns true if the vsyscall is
1134# found, false otherwise.
1135m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1136
1137# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1138# PROT has GDB_MMAP_PROT_* bitmask format.
1139# Throw an error if it is not possible. Returned address is always valid.
1140f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1141
7f361056
JK
1142# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1143# Print a warning if it is not possible.
1144f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1145
f208eee0
JK
1146# Return string (caller has to use xfree for it) with options for GCC
1147# to produce code for this target, typically "-m64", "-m32" or "-m31".
1148# These options are put before CU's DW_AT_producer compilation options so that
1149# they can override it. Method may also return NULL.
1150m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1151
1152# Return a regular expression that matches names used by this
1153# architecture in GNU configury triplets. The result is statically
1154# allocated and must not be freed. The default implementation simply
1155# returns the BFD architecture name, which is correct in nearly every
1156# case.
1157m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1158
1159# Return the size in 8-bit bytes of an addressable memory unit on this
1160# architecture. This corresponds to the number of 8-bit bytes associated to
1161# each address in memory.
1162m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1163
104c1213 1164EOF
104c1213
JM
1165}
1166
0b8f9e4d
AC
1167#
1168# The .log file
1169#
1170exec > new-gdbarch.log
34620563 1171function_list | while do_read
0b8f9e4d
AC
1172do
1173 cat <<EOF
2f9b146e 1174${class} ${returntype} ${function} ($formal)
104c1213 1175EOF
3d9a5942
AC
1176 for r in ${read}
1177 do
1178 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1179 done
f0d4cc9e 1180 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1181 then
66d659b1 1182 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1183 kill $$
1184 exit 1
1185 fi
72e74a21 1186 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1187 then
1188 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1189 kill $$
1190 exit 1
1191 fi
a72293e2
AC
1192 if class_is_multiarch_p
1193 then
1194 if class_is_predicate_p ; then :
1195 elif test "x${predefault}" = "x"
1196 then
2f9b146e 1197 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1198 kill $$
1199 exit 1
1200 fi
1201 fi
3d9a5942 1202 echo ""
0b8f9e4d
AC
1203done
1204
1205exec 1>&2
1206compare_new gdbarch.log
1207
104c1213
JM
1208
1209copyright ()
1210{
1211cat <<EOF
c4bfde41
JK
1212/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1213/* vi:set ro: */
59233f88 1214
104c1213 1215/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1216
618f726f 1217 Copyright (C) 1998-2016 Free Software Foundation, Inc.
104c1213
JM
1218
1219 This file is part of GDB.
1220
1221 This program is free software; you can redistribute it and/or modify
1222 it under the terms of the GNU General Public License as published by
50efebf8 1223 the Free Software Foundation; either version 3 of the License, or
104c1213 1224 (at your option) any later version.
618f726f 1225
104c1213
JM
1226 This program is distributed in the hope that it will be useful,
1227 but WITHOUT ANY WARRANTY; without even the implied warranty of
1228 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1229 GNU General Public License for more details.
618f726f 1230
104c1213 1231 You should have received a copy of the GNU General Public License
50efebf8 1232 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1233
104c1213
JM
1234/* This file was created with the aid of \`\`gdbarch.sh''.
1235
52204a0b 1236 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1237 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1238 against the existing \`\`gdbarch.[hc]''. Any differences found
1239 being reported.
1240
1241 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1242 changes into that script. Conversely, when making sweeping changes
104c1213 1243 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1244 easier. */
104c1213
JM
1245
1246EOF
1247}
1248
1249#
1250# The .h file
1251#
1252
1253exec > new-gdbarch.h
1254copyright
1255cat <<EOF
1256#ifndef GDBARCH_H
1257#define GDBARCH_H
1258
eb7a547a
JB
1259#include "frame.h"
1260
da3331ec
AC
1261struct floatformat;
1262struct ui_file;
104c1213 1263struct value;
b6af0555 1264struct objfile;
1c772458 1265struct obj_section;
a2cf933a 1266struct minimal_symbol;
049ee0e4 1267struct regcache;
b59ff9d5 1268struct reggroup;
6ce6d90f 1269struct regset;
a89aa300 1270struct disassemble_info;
e2d0e7eb 1271struct target_ops;
030f20e1 1272struct obstack;
8181d85f 1273struct bp_target_info;
424163ea 1274struct target_desc;
3e29f34a
MR
1275struct objfile;
1276struct symbol;
237fc4c9 1277struct displaced_step_closure;
a96d9b2e 1278struct syscall;
175ff332 1279struct agent_expr;
6710bf39 1280struct axs_value;
55aa24fb 1281struct stap_parse_info;
8b367e17 1282struct parser_state;
7e35103a 1283struct ravenscar_arch_ops;
b3ac9c77 1284struct elf_internal_linux_prpsinfo;
3437254d 1285struct mem_range;
458c8db8 1286struct syscalls_info;
4dfc5dbc 1287struct thread_info;
012b3a21 1288struct ui_out;
104c1213 1289
8a526fa6
PA
1290#include "regcache.h"
1291
6ecd4729
PA
1292/* The architecture associated with the inferior through the
1293 connection to the target.
1294
1295 The architecture vector provides some information that is really a
1296 property of the inferior, accessed through a particular target:
1297 ptrace operations; the layout of certain RSP packets; the solib_ops
1298 vector; etc. To differentiate architecture accesses to
1299 per-inferior/target properties from
1300 per-thread/per-frame/per-objfile properties, accesses to
1301 per-inferior/target properties should be made through this
1302 gdbarch. */
1303
1304/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1305extern struct gdbarch *target_gdbarch (void);
6ecd4729 1306
19630284
JB
1307/* Callback type for the 'iterate_over_objfiles_in_search_order'
1308 gdbarch method. */
1309
1310typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1311 (struct objfile *objfile, void *cb_data);
5aa82d05 1312
1528345d
AA
1313/* Callback type for regset section iterators. The callback usually
1314 invokes the REGSET's supply or collect method, to which it must
1315 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1316 section name, and HUMAN_NAME is used for diagnostic messages.
1317 CB_DATA should have been passed unchanged through the iterator. */
1318
5aa82d05 1319typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1320 (const char *sect_name, int size, const struct regset *regset,
1321 const char *human_name, void *cb_data);
104c1213
JM
1322EOF
1323
1324# function typedef's
3d9a5942
AC
1325printf "\n"
1326printf "\n"
0963b4bd 1327printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1328function_list | while do_read
104c1213 1329do
2ada493a
AC
1330 if class_is_info_p
1331 then
3d9a5942
AC
1332 printf "\n"
1333 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1334 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1335 fi
104c1213
JM
1336done
1337
1338# function typedef's
3d9a5942
AC
1339printf "\n"
1340printf "\n"
0963b4bd 1341printf "/* The following are initialized by the target dependent code. */\n"
34620563 1342function_list | while do_read
104c1213 1343do
72e74a21 1344 if [ -n "${comment}" ]
34620563
AC
1345 then
1346 echo "${comment}" | sed \
1347 -e '2 s,#,/*,' \
1348 -e '3,$ s,#, ,' \
1349 -e '$ s,$, */,'
1350 fi
412d5987
AC
1351
1352 if class_is_predicate_p
2ada493a 1353 then
412d5987
AC
1354 printf "\n"
1355 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1356 fi
2ada493a
AC
1357 if class_is_variable_p
1358 then
3d9a5942
AC
1359 printf "\n"
1360 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1361 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1362 fi
1363 if class_is_function_p
1364 then
3d9a5942 1365 printf "\n"
72e74a21 1366 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1367 then
1368 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1369 elif class_is_multiarch_p
1370 then
1371 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1372 else
1373 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1374 fi
72e74a21 1375 if [ "x${formal}" = "xvoid" ]
104c1213 1376 then
3d9a5942 1377 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1378 else
3d9a5942 1379 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1380 fi
3d9a5942 1381 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1382 fi
104c1213
JM
1383done
1384
1385# close it off
1386cat <<EOF
1387
a96d9b2e
SDJ
1388/* Definition for an unknown syscall, used basically in error-cases. */
1389#define UNKNOWN_SYSCALL (-1)
1390
104c1213
JM
1391extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1392
1393
1394/* Mechanism for co-ordinating the selection of a specific
1395 architecture.
1396
1397 GDB targets (*-tdep.c) can register an interest in a specific
1398 architecture. Other GDB components can register a need to maintain
1399 per-architecture data.
1400
1401 The mechanisms below ensures that there is only a loose connection
1402 between the set-architecture command and the various GDB
0fa6923a 1403 components. Each component can independently register their need
104c1213
JM
1404 to maintain architecture specific data with gdbarch.
1405
1406 Pragmatics:
1407
1408 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1409 didn't scale.
1410
1411 The more traditional mega-struct containing architecture specific
1412 data for all the various GDB components was also considered. Since
0fa6923a 1413 GDB is built from a variable number of (fairly independent)
104c1213 1414 components it was determined that the global aproach was not
0963b4bd 1415 applicable. */
104c1213
JM
1416
1417
1418/* Register a new architectural family with GDB.
1419
1420 Register support for the specified ARCHITECTURE with GDB. When
1421 gdbarch determines that the specified architecture has been
1422 selected, the corresponding INIT function is called.
1423
1424 --
1425
1426 The INIT function takes two parameters: INFO which contains the
1427 information available to gdbarch about the (possibly new)
1428 architecture; ARCHES which is a list of the previously created
1429 \`\`struct gdbarch'' for this architecture.
1430
0f79675b 1431 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1432 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1433
1434 The ARCHES parameter is a linked list (sorted most recently used)
1435 of all the previously created architures for this architecture
1436 family. The (possibly NULL) ARCHES->gdbarch can used to access
1437 values from the previously selected architecture for this
59837fe0 1438 architecture family.
104c1213
JM
1439
1440 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1441 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1442 gdbarch'' from the ARCHES list - indicating that the new
1443 architecture is just a synonym for an earlier architecture (see
1444 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1445 - that describes the selected architecture (see gdbarch_alloc()).
1446
1447 The DUMP_TDEP function shall print out all target specific values.
1448 Care should be taken to ensure that the function works in both the
0963b4bd 1449 multi-arch and non- multi-arch cases. */
104c1213
JM
1450
1451struct gdbarch_list
1452{
1453 struct gdbarch *gdbarch;
1454 struct gdbarch_list *next;
1455};
1456
1457struct gdbarch_info
1458{
0963b4bd 1459 /* Use default: NULL (ZERO). */
104c1213
JM
1460 const struct bfd_arch_info *bfd_arch_info;
1461
428721aa 1462 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1463 enum bfd_endian byte_order;
104c1213 1464
94123b4f 1465 enum bfd_endian byte_order_for_code;
9d4fde75 1466
0963b4bd 1467 /* Use default: NULL (ZERO). */
104c1213
JM
1468 bfd *abfd;
1469
0963b4bd 1470 /* Use default: NULL (ZERO). */
ede5f151 1471 void *tdep_info;
4be87837
DJ
1472
1473 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1474 enum gdb_osabi osabi;
424163ea
DJ
1475
1476 /* Use default: NULL (ZERO). */
1477 const struct target_desc *target_desc;
104c1213
JM
1478};
1479
1480typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1481typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1482
4b9b3959 1483/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1484extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1485
4b9b3959
AC
1486extern void gdbarch_register (enum bfd_architecture architecture,
1487 gdbarch_init_ftype *,
1488 gdbarch_dump_tdep_ftype *);
1489
104c1213 1490
b4a20239
AC
1491/* Return a freshly allocated, NULL terminated, array of the valid
1492 architecture names. Since architectures are registered during the
1493 _initialize phase this function only returns useful information
0963b4bd 1494 once initialization has been completed. */
b4a20239
AC
1495
1496extern const char **gdbarch_printable_names (void);
1497
1498
104c1213 1499/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1500 matches the information provided by INFO. */
104c1213 1501
424163ea 1502extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1503
1504
1505/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1506 basic initialization using values obtained from the INFO and TDEP
104c1213 1507 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1508 initialization of the object. */
104c1213
JM
1509
1510extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1511
1512
4b9b3959
AC
1513/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1514 It is assumed that the caller freeds the \`\`struct
0963b4bd 1515 gdbarch_tdep''. */
4b9b3959 1516
058f20d5
JB
1517extern void gdbarch_free (struct gdbarch *);
1518
1519
aebd7893
AC
1520/* Helper function. Allocate memory from the \`\`struct gdbarch''
1521 obstack. The memory is freed when the corresponding architecture
1522 is also freed. */
1523
1524extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1525#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1526#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1527
6c214e7c
PP
1528/* Duplicate STRING, returning an equivalent string that's allocated on the
1529 obstack associated with GDBARCH. The string is freed when the corresponding
1530 architecture is also freed. */
1531
1532extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1533
0963b4bd 1534/* Helper function. Force an update of the current architecture.
104c1213 1535
b732d07d
AC
1536 The actual architecture selected is determined by INFO, \`\`(gdb) set
1537 architecture'' et.al., the existing architecture and BFD's default
1538 architecture. INFO should be initialized to zero and then selected
1539 fields should be updated.
104c1213 1540
0963b4bd 1541 Returns non-zero if the update succeeds. */
16f33e29
AC
1542
1543extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1544
1545
ebdba546
AC
1546/* Helper function. Find an architecture matching info.
1547
1548 INFO should be initialized using gdbarch_info_init, relevant fields
1549 set, and then finished using gdbarch_info_fill.
1550
1551 Returns the corresponding architecture, or NULL if no matching
59837fe0 1552 architecture was found. */
ebdba546
AC
1553
1554extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1555
1556
aff68abb 1557/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1558
aff68abb 1559extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1560
104c1213
JM
1561
1562/* Register per-architecture data-pointer.
1563
1564 Reserve space for a per-architecture data-pointer. An identifier
1565 for the reserved data-pointer is returned. That identifer should
95160752 1566 be saved in a local static variable.
104c1213 1567
fcc1c85c
AC
1568 Memory for the per-architecture data shall be allocated using
1569 gdbarch_obstack_zalloc. That memory will be deleted when the
1570 corresponding architecture object is deleted.
104c1213 1571
95160752
AC
1572 When a previously created architecture is re-selected, the
1573 per-architecture data-pointer for that previous architecture is
76860b5f 1574 restored. INIT() is not re-called.
104c1213
JM
1575
1576 Multiple registrarants for any architecture are allowed (and
1577 strongly encouraged). */
1578
95160752 1579struct gdbarch_data;
104c1213 1580
030f20e1
AC
1581typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1582extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1583typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1584extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1585extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1586 struct gdbarch_data *data,
1587 void *pointer);
104c1213 1588
451fbdda 1589extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1590
1591
0fa6923a 1592/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1593 byte-order, ...) using information found in the BFD. */
104c1213
JM
1594
1595extern void set_gdbarch_from_file (bfd *);
1596
1597
e514a9d6
JM
1598/* Initialize the current architecture to the "first" one we find on
1599 our list. */
1600
1601extern void initialize_current_architecture (void);
1602
104c1213 1603/* gdbarch trace variable */
ccce17b0 1604extern unsigned int gdbarch_debug;
104c1213 1605
4b9b3959 1606extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1607
1608#endif
1609EOF
1610exec 1>&2
1611#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1612compare_new gdbarch.h
104c1213
JM
1613
1614
1615#
1616# C file
1617#
1618
1619exec > new-gdbarch.c
1620copyright
1621cat <<EOF
1622
1623#include "defs.h"
7355ddba 1624#include "arch-utils.h"
104c1213 1625
104c1213 1626#include "gdbcmd.h"
faaf634c 1627#include "inferior.h"
104c1213
JM
1628#include "symcat.h"
1629
f0d4cc9e 1630#include "floatformat.h"
b59ff9d5 1631#include "reggroups.h"
4be87837 1632#include "osabi.h"
aebd7893 1633#include "gdb_obstack.h"
383f836e 1634#include "observer.h"
a3ecef73 1635#include "regcache.h"
19630284 1636#include "objfiles.h"
2faa3447 1637#include "auxv.h"
95160752 1638
104c1213
JM
1639/* Static function declarations */
1640
b3cc3077 1641static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1642
104c1213
JM
1643/* Non-zero if we want to trace architecture code. */
1644
1645#ifndef GDBARCH_DEBUG
1646#define GDBARCH_DEBUG 0
1647#endif
ccce17b0 1648unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1649static void
1650show_gdbarch_debug (struct ui_file *file, int from_tty,
1651 struct cmd_list_element *c, const char *value)
1652{
1653 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1654}
104c1213 1655
456fcf94 1656static const char *
8da61cc4 1657pformat (const struct floatformat **format)
456fcf94
AC
1658{
1659 if (format == NULL)
1660 return "(null)";
1661 else
8da61cc4
DJ
1662 /* Just print out one of them - this is only for diagnostics. */
1663 return format[0]->name;
456fcf94
AC
1664}
1665
08105857
PA
1666static const char *
1667pstring (const char *string)
1668{
1669 if (string == NULL)
1670 return "(null)";
1671 return string;
05c0465e
SDJ
1672}
1673
1674/* Helper function to print a list of strings, represented as "const
1675 char *const *". The list is printed comma-separated. */
1676
1677static char *
1678pstring_list (const char *const *list)
1679{
1680 static char ret[100];
1681 const char *const *p;
1682 size_t offset = 0;
1683
1684 if (list == NULL)
1685 return "(null)";
1686
1687 ret[0] = '\0';
1688 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1689 {
1690 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1691 offset += 2 + s;
1692 }
1693
1694 if (offset > 0)
1695 {
1696 gdb_assert (offset - 2 < sizeof (ret));
1697 ret[offset - 2] = '\0';
1698 }
1699
1700 return ret;
08105857
PA
1701}
1702
104c1213
JM
1703EOF
1704
1705# gdbarch open the gdbarch object
3d9a5942 1706printf "\n"
0963b4bd 1707printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1708printf "\n"
1709printf "struct gdbarch\n"
1710printf "{\n"
76860b5f
AC
1711printf " /* Has this architecture been fully initialized? */\n"
1712printf " int initialized_p;\n"
aebd7893
AC
1713printf "\n"
1714printf " /* An obstack bound to the lifetime of the architecture. */\n"
1715printf " struct obstack *obstack;\n"
1716printf "\n"
0963b4bd 1717printf " /* basic architectural information. */\n"
34620563 1718function_list | while do_read
104c1213 1719do
2ada493a
AC
1720 if class_is_info_p
1721 then
3d9a5942 1722 printf " ${returntype} ${function};\n"
2ada493a 1723 fi
104c1213 1724done
3d9a5942 1725printf "\n"
0963b4bd 1726printf " /* target specific vector. */\n"
3d9a5942
AC
1727printf " struct gdbarch_tdep *tdep;\n"
1728printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1729printf "\n"
0963b4bd 1730printf " /* per-architecture data-pointers. */\n"
95160752 1731printf " unsigned nr_data;\n"
3d9a5942
AC
1732printf " void **data;\n"
1733printf "\n"
104c1213
JM
1734cat <<EOF
1735 /* Multi-arch values.
1736
1737 When extending this structure you must:
1738
1739 Add the field below.
1740
1741 Declare set/get functions and define the corresponding
1742 macro in gdbarch.h.
1743
1744 gdbarch_alloc(): If zero/NULL is not a suitable default,
1745 initialize the new field.
1746
1747 verify_gdbarch(): Confirm that the target updated the field
1748 correctly.
1749
7e73cedf 1750 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1751 field is dumped out
1752
104c1213
JM
1753 get_gdbarch(): Implement the set/get functions (probably using
1754 the macro's as shortcuts).
1755
1756 */
1757
1758EOF
34620563 1759function_list | while do_read
104c1213 1760do
2ada493a
AC
1761 if class_is_variable_p
1762 then
3d9a5942 1763 printf " ${returntype} ${function};\n"
2ada493a
AC
1764 elif class_is_function_p
1765 then
2f9b146e 1766 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1767 fi
104c1213 1768done
3d9a5942 1769printf "};\n"
104c1213 1770
104c1213 1771# Create a new gdbarch struct
104c1213 1772cat <<EOF
7de2341d 1773
66b43ecb 1774/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1775 \`\`struct gdbarch_info''. */
104c1213 1776EOF
3d9a5942 1777printf "\n"
104c1213
JM
1778cat <<EOF
1779struct gdbarch *
1780gdbarch_alloc (const struct gdbarch_info *info,
1781 struct gdbarch_tdep *tdep)
1782{
be7811ad 1783 struct gdbarch *gdbarch;
aebd7893
AC
1784
1785 /* Create an obstack for allocating all the per-architecture memory,
1786 then use that to allocate the architecture vector. */
70ba0933 1787 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1788 obstack_init (obstack);
8d749320 1789 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1790 memset (gdbarch, 0, sizeof (*gdbarch));
1791 gdbarch->obstack = obstack;
85de9627 1792
be7811ad 1793 alloc_gdbarch_data (gdbarch);
85de9627 1794
be7811ad 1795 gdbarch->tdep = tdep;
104c1213 1796EOF
3d9a5942 1797printf "\n"
34620563 1798function_list | while do_read
104c1213 1799do
2ada493a
AC
1800 if class_is_info_p
1801 then
be7811ad 1802 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1803 fi
104c1213 1804done
3d9a5942 1805printf "\n"
0963b4bd 1806printf " /* Force the explicit initialization of these. */\n"
34620563 1807function_list | while do_read
104c1213 1808do
2ada493a
AC
1809 if class_is_function_p || class_is_variable_p
1810 then
72e74a21 1811 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1812 then
be7811ad 1813 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1814 fi
2ada493a 1815 fi
104c1213
JM
1816done
1817cat <<EOF
1818 /* gdbarch_alloc() */
1819
be7811ad 1820 return gdbarch;
104c1213
JM
1821}
1822EOF
1823
058f20d5 1824# Free a gdbarch struct.
3d9a5942
AC
1825printf "\n"
1826printf "\n"
058f20d5 1827cat <<EOF
aebd7893
AC
1828/* Allocate extra space using the per-architecture obstack. */
1829
1830void *
1831gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1832{
1833 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1834
aebd7893
AC
1835 memset (data, 0, size);
1836 return data;
1837}
1838
6c214e7c
PP
1839/* See gdbarch.h. */
1840
1841char *
1842gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1843{
1844 return obstack_strdup (arch->obstack, string);
1845}
1846
aebd7893 1847
058f20d5
JB
1848/* Free a gdbarch struct. This should never happen in normal
1849 operation --- once you've created a gdbarch, you keep it around.
1850 However, if an architecture's init function encounters an error
1851 building the structure, it may need to clean up a partially
1852 constructed gdbarch. */
4b9b3959 1853
058f20d5
JB
1854void
1855gdbarch_free (struct gdbarch *arch)
1856{
aebd7893 1857 struct obstack *obstack;
05c547f6 1858
95160752 1859 gdb_assert (arch != NULL);
aebd7893
AC
1860 gdb_assert (!arch->initialized_p);
1861 obstack = arch->obstack;
1862 obstack_free (obstack, 0); /* Includes the ARCH. */
1863 xfree (obstack);
058f20d5
JB
1864}
1865EOF
1866
104c1213 1867# verify a new architecture
104c1213 1868cat <<EOF
db446970
AC
1869
1870
1871/* Ensure that all values in a GDBARCH are reasonable. */
1872
104c1213 1873static void
be7811ad 1874verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1875{
f16a1923
AC
1876 struct ui_file *log;
1877 struct cleanup *cleanups;
759ef836 1878 long length;
f16a1923 1879 char *buf;
05c547f6 1880
f16a1923
AC
1881 log = mem_fileopen ();
1882 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1883 /* fundamental */
be7811ad 1884 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1885 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1886 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1887 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1888 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1889EOF
34620563 1890function_list | while do_read
104c1213 1891do
2ada493a
AC
1892 if class_is_function_p || class_is_variable_p
1893 then
72e74a21 1894 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1895 then
3d9a5942 1896 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1897 elif class_is_predicate_p
1898 then
0963b4bd 1899 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1900 # FIXME: See do_read for potential simplification
72e74a21 1901 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1902 then
3d9a5942 1903 printf " if (${invalid_p})\n"
be7811ad 1904 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1905 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1906 then
be7811ad
MD
1907 printf " if (gdbarch->${function} == ${predefault})\n"
1908 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1909 elif [ -n "${postdefault}" ]
f0d4cc9e 1910 then
be7811ad
MD
1911 printf " if (gdbarch->${function} == 0)\n"
1912 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1913 elif [ -n "${invalid_p}" ]
104c1213 1914 then
4d60522e 1915 printf " if (${invalid_p})\n"
f16a1923 1916 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1917 elif [ -n "${predefault}" ]
104c1213 1918 then
be7811ad 1919 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1920 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1921 fi
2ada493a 1922 fi
104c1213
JM
1923done
1924cat <<EOF
759ef836 1925 buf = ui_file_xstrdup (log, &length);
f16a1923 1926 make_cleanup (xfree, buf);
759ef836 1927 if (length > 0)
f16a1923 1928 internal_error (__FILE__, __LINE__,
85c07804 1929 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1930 buf);
1931 do_cleanups (cleanups);
104c1213
JM
1932}
1933EOF
1934
1935# dump the structure
3d9a5942
AC
1936printf "\n"
1937printf "\n"
104c1213 1938cat <<EOF
0963b4bd 1939/* Print out the details of the current architecture. */
4b9b3959 1940
104c1213 1941void
be7811ad 1942gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1943{
b78960be 1944 const char *gdb_nm_file = "<not-defined>";
05c547f6 1945
b78960be
AC
1946#if defined (GDB_NM_FILE)
1947 gdb_nm_file = GDB_NM_FILE;
1948#endif
1949 fprintf_unfiltered (file,
1950 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1951 gdb_nm_file);
104c1213 1952EOF
97030eea 1953function_list | sort -t: -k 3 | while do_read
104c1213 1954do
1e9f55d0
AC
1955 # First the predicate
1956 if class_is_predicate_p
1957 then
7996bcec 1958 printf " fprintf_unfiltered (file,\n"
48f7351b 1959 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1960 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1961 fi
48f7351b 1962 # Print the corresponding value.
283354d8 1963 if class_is_function_p
4b9b3959 1964 then
7996bcec 1965 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1966 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1967 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1968 else
48f7351b 1969 # It is a variable
2f9b146e
AC
1970 case "${print}:${returntype}" in
1971 :CORE_ADDR )
0b1553bc
UW
1972 fmt="%s"
1973 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1974 ;;
2f9b146e 1975 :* )
48f7351b 1976 fmt="%s"
623d3eb1 1977 print="plongest (gdbarch->${function})"
48f7351b
AC
1978 ;;
1979 * )
2f9b146e 1980 fmt="%s"
48f7351b
AC
1981 ;;
1982 esac
3d9a5942 1983 printf " fprintf_unfiltered (file,\n"
48f7351b 1984 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1985 printf " ${print});\n"
2ada493a 1986 fi
104c1213 1987done
381323f4 1988cat <<EOF
be7811ad
MD
1989 if (gdbarch->dump_tdep != NULL)
1990 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1991}
1992EOF
104c1213
JM
1993
1994
1995# GET/SET
3d9a5942 1996printf "\n"
104c1213
JM
1997cat <<EOF
1998struct gdbarch_tdep *
1999gdbarch_tdep (struct gdbarch *gdbarch)
2000{
2001 if (gdbarch_debug >= 2)
3d9a5942 2002 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2003 return gdbarch->tdep;
2004}
2005EOF
3d9a5942 2006printf "\n"
34620563 2007function_list | while do_read
104c1213 2008do
2ada493a
AC
2009 if class_is_predicate_p
2010 then
3d9a5942
AC
2011 printf "\n"
2012 printf "int\n"
2013 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2014 printf "{\n"
8de9bdc4 2015 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2016 printf " return ${predicate};\n"
3d9a5942 2017 printf "}\n"
2ada493a
AC
2018 fi
2019 if class_is_function_p
2020 then
3d9a5942
AC
2021 printf "\n"
2022 printf "${returntype}\n"
72e74a21 2023 if [ "x${formal}" = "xvoid" ]
104c1213 2024 then
3d9a5942 2025 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2026 else
3d9a5942 2027 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2028 fi
3d9a5942 2029 printf "{\n"
8de9bdc4 2030 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2031 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2032 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2033 then
2034 # Allow a call to a function with a predicate.
956ac328 2035 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2036 fi
3d9a5942
AC
2037 printf " if (gdbarch_debug >= 2)\n"
2038 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2039 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2040 then
2041 if class_is_multiarch_p
2042 then
2043 params="gdbarch"
2044 else
2045 params=""
2046 fi
2047 else
2048 if class_is_multiarch_p
2049 then
2050 params="gdbarch, ${actual}"
2051 else
2052 params="${actual}"
2053 fi
2054 fi
72e74a21 2055 if [ "x${returntype}" = "xvoid" ]
104c1213 2056 then
4a5c6a1d 2057 printf " gdbarch->${function} (${params});\n"
104c1213 2058 else
4a5c6a1d 2059 printf " return gdbarch->${function} (${params});\n"
104c1213 2060 fi
3d9a5942
AC
2061 printf "}\n"
2062 printf "\n"
2063 printf "void\n"
2064 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2065 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2066 printf "{\n"
2067 printf " gdbarch->${function} = ${function};\n"
2068 printf "}\n"
2ada493a
AC
2069 elif class_is_variable_p
2070 then
3d9a5942
AC
2071 printf "\n"
2072 printf "${returntype}\n"
2073 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2074 printf "{\n"
8de9bdc4 2075 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2076 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2077 then
3d9a5942 2078 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2079 elif [ -n "${invalid_p}" ]
104c1213 2080 then
956ac328
AC
2081 printf " /* Check variable is valid. */\n"
2082 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2083 elif [ -n "${predefault}" ]
104c1213 2084 then
956ac328
AC
2085 printf " /* Check variable changed from pre-default. */\n"
2086 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2087 fi
3d9a5942
AC
2088 printf " if (gdbarch_debug >= 2)\n"
2089 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2090 printf " return gdbarch->${function};\n"
2091 printf "}\n"
2092 printf "\n"
2093 printf "void\n"
2094 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2095 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2096 printf "{\n"
2097 printf " gdbarch->${function} = ${function};\n"
2098 printf "}\n"
2ada493a
AC
2099 elif class_is_info_p
2100 then
3d9a5942
AC
2101 printf "\n"
2102 printf "${returntype}\n"
2103 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2104 printf "{\n"
8de9bdc4 2105 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2106 printf " if (gdbarch_debug >= 2)\n"
2107 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2108 printf " return gdbarch->${function};\n"
2109 printf "}\n"
2ada493a 2110 fi
104c1213
JM
2111done
2112
2113# All the trailing guff
2114cat <<EOF
2115
2116
f44c642f 2117/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2118 modules. */
104c1213
JM
2119
2120struct gdbarch_data
2121{
95160752 2122 unsigned index;
76860b5f 2123 int init_p;
030f20e1
AC
2124 gdbarch_data_pre_init_ftype *pre_init;
2125 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2126};
2127
2128struct gdbarch_data_registration
2129{
104c1213
JM
2130 struct gdbarch_data *data;
2131 struct gdbarch_data_registration *next;
2132};
2133
f44c642f 2134struct gdbarch_data_registry
104c1213 2135{
95160752 2136 unsigned nr;
104c1213
JM
2137 struct gdbarch_data_registration *registrations;
2138};
2139
f44c642f 2140struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2141{
2142 0, NULL,
2143};
2144
030f20e1
AC
2145static struct gdbarch_data *
2146gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2147 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2148{
2149 struct gdbarch_data_registration **curr;
05c547f6
MS
2150
2151 /* Append the new registration. */
f44c642f 2152 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2153 (*curr) != NULL;
2154 curr = &(*curr)->next);
70ba0933 2155 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2156 (*curr)->next = NULL;
70ba0933 2157 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2158 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2159 (*curr)->data->pre_init = pre_init;
2160 (*curr)->data->post_init = post_init;
76860b5f 2161 (*curr)->data->init_p = 1;
104c1213
JM
2162 return (*curr)->data;
2163}
2164
030f20e1
AC
2165struct gdbarch_data *
2166gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2167{
2168 return gdbarch_data_register (pre_init, NULL);
2169}
2170
2171struct gdbarch_data *
2172gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2173{
2174 return gdbarch_data_register (NULL, post_init);
2175}
104c1213 2176
0963b4bd 2177/* Create/delete the gdbarch data vector. */
95160752
AC
2178
2179static void
b3cc3077 2180alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2181{
b3cc3077
JB
2182 gdb_assert (gdbarch->data == NULL);
2183 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2184 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2185}
3c875b6f 2186
76860b5f 2187/* Initialize the current value of the specified per-architecture
0963b4bd 2188 data-pointer. */
b3cc3077 2189
95160752 2190void
030f20e1
AC
2191deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2192 struct gdbarch_data *data,
2193 void *pointer)
95160752
AC
2194{
2195 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2196 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2197 gdb_assert (data->pre_init == NULL);
95160752
AC
2198 gdbarch->data[data->index] = pointer;
2199}
2200
104c1213 2201/* Return the current value of the specified per-architecture
0963b4bd 2202 data-pointer. */
104c1213
JM
2203
2204void *
451fbdda 2205gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2206{
451fbdda 2207 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2208 if (gdbarch->data[data->index] == NULL)
76860b5f 2209 {
030f20e1
AC
2210 /* The data-pointer isn't initialized, call init() to get a
2211 value. */
2212 if (data->pre_init != NULL)
2213 /* Mid architecture creation: pass just the obstack, and not
2214 the entire architecture, as that way it isn't possible for
2215 pre-init code to refer to undefined architecture
2216 fields. */
2217 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2218 else if (gdbarch->initialized_p
2219 && data->post_init != NULL)
2220 /* Post architecture creation: pass the entire architecture
2221 (as all fields are valid), but be careful to also detect
2222 recursive references. */
2223 {
2224 gdb_assert (data->init_p);
2225 data->init_p = 0;
2226 gdbarch->data[data->index] = data->post_init (gdbarch);
2227 data->init_p = 1;
2228 }
2229 else
2230 /* The architecture initialization hasn't completed - punt -
2231 hope that the caller knows what they are doing. Once
2232 deprecated_set_gdbarch_data has been initialized, this can be
2233 changed to an internal error. */
2234 return NULL;
76860b5f
AC
2235 gdb_assert (gdbarch->data[data->index] != NULL);
2236 }
451fbdda 2237 return gdbarch->data[data->index];
104c1213
JM
2238}
2239
2240
0963b4bd 2241/* Keep a registry of the architectures known by GDB. */
104c1213 2242
4b9b3959 2243struct gdbarch_registration
104c1213
JM
2244{
2245 enum bfd_architecture bfd_architecture;
2246 gdbarch_init_ftype *init;
4b9b3959 2247 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2248 struct gdbarch_list *arches;
4b9b3959 2249 struct gdbarch_registration *next;
104c1213
JM
2250};
2251
f44c642f 2252static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2253
b4a20239
AC
2254static void
2255append_name (const char ***buf, int *nr, const char *name)
2256{
1dc7a623 2257 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2258 (*buf)[*nr] = name;
2259 *nr += 1;
2260}
2261
2262const char **
2263gdbarch_printable_names (void)
2264{
7996bcec 2265 /* Accumulate a list of names based on the registed list of
0963b4bd 2266 architectures. */
7996bcec
AC
2267 int nr_arches = 0;
2268 const char **arches = NULL;
2269 struct gdbarch_registration *rego;
05c547f6 2270
7996bcec
AC
2271 for (rego = gdbarch_registry;
2272 rego != NULL;
2273 rego = rego->next)
b4a20239 2274 {
7996bcec
AC
2275 const struct bfd_arch_info *ap;
2276 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2277 if (ap == NULL)
2278 internal_error (__FILE__, __LINE__,
85c07804 2279 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2280 do
2281 {
2282 append_name (&arches, &nr_arches, ap->printable_name);
2283 ap = ap->next;
2284 }
2285 while (ap != NULL);
b4a20239 2286 }
7996bcec
AC
2287 append_name (&arches, &nr_arches, NULL);
2288 return arches;
b4a20239
AC
2289}
2290
2291
104c1213 2292void
4b9b3959
AC
2293gdbarch_register (enum bfd_architecture bfd_architecture,
2294 gdbarch_init_ftype *init,
2295 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2296{
4b9b3959 2297 struct gdbarch_registration **curr;
104c1213 2298 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2299
ec3d358c 2300 /* Check that BFD recognizes this architecture */
104c1213
JM
2301 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2302 if (bfd_arch_info == NULL)
2303 {
8e65ff28 2304 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2305 _("gdbarch: Attempt to register "
2306 "unknown architecture (%d)"),
8e65ff28 2307 bfd_architecture);
104c1213 2308 }
0963b4bd 2309 /* Check that we haven't seen this architecture before. */
f44c642f 2310 for (curr = &gdbarch_registry;
104c1213
JM
2311 (*curr) != NULL;
2312 curr = &(*curr)->next)
2313 {
2314 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2315 internal_error (__FILE__, __LINE__,
64b9b334 2316 _("gdbarch: Duplicate registration "
0963b4bd 2317 "of architecture (%s)"),
8e65ff28 2318 bfd_arch_info->printable_name);
104c1213
JM
2319 }
2320 /* log it */
2321 if (gdbarch_debug)
30737ed9 2322 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2323 bfd_arch_info->printable_name,
30737ed9 2324 host_address_to_string (init));
104c1213 2325 /* Append it */
70ba0933 2326 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2327 (*curr)->bfd_architecture = bfd_architecture;
2328 (*curr)->init = init;
4b9b3959 2329 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2330 (*curr)->arches = NULL;
2331 (*curr)->next = NULL;
4b9b3959
AC
2332}
2333
2334void
2335register_gdbarch_init (enum bfd_architecture bfd_architecture,
2336 gdbarch_init_ftype *init)
2337{
2338 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2339}
104c1213
JM
2340
2341
424163ea 2342/* Look for an architecture using gdbarch_info. */
104c1213
JM
2343
2344struct gdbarch_list *
2345gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2346 const struct gdbarch_info *info)
2347{
2348 for (; arches != NULL; arches = arches->next)
2349 {
2350 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2351 continue;
2352 if (info->byte_order != arches->gdbarch->byte_order)
2353 continue;
4be87837
DJ
2354 if (info->osabi != arches->gdbarch->osabi)
2355 continue;
424163ea
DJ
2356 if (info->target_desc != arches->gdbarch->target_desc)
2357 continue;
104c1213
JM
2358 return arches;
2359 }
2360 return NULL;
2361}
2362
2363
ebdba546 2364/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2365 architecture if needed. Return that new architecture. */
104c1213 2366
59837fe0
UW
2367struct gdbarch *
2368gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2369{
2370 struct gdbarch *new_gdbarch;
4b9b3959 2371 struct gdbarch_registration *rego;
104c1213 2372
b732d07d 2373 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2374 sources: "set ..."; INFOabfd supplied; and the global
2375 defaults. */
2376 gdbarch_info_fill (&info);
4be87837 2377
0963b4bd 2378 /* Must have found some sort of architecture. */
b732d07d 2379 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2380
2381 if (gdbarch_debug)
2382 {
2383 fprintf_unfiltered (gdb_stdlog,
59837fe0 2384 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2385 (info.bfd_arch_info != NULL
2386 ? info.bfd_arch_info->printable_name
2387 : "(null)"));
2388 fprintf_unfiltered (gdb_stdlog,
59837fe0 2389 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2390 info.byte_order,
d7449b42 2391 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2392 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2393 : "default"));
4be87837 2394 fprintf_unfiltered (gdb_stdlog,
59837fe0 2395 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2396 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2397 fprintf_unfiltered (gdb_stdlog,
59837fe0 2398 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2399 host_address_to_string (info.abfd));
104c1213 2400 fprintf_unfiltered (gdb_stdlog,
59837fe0 2401 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2402 host_address_to_string (info.tdep_info));
104c1213
JM
2403 }
2404
ebdba546 2405 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2406 for (rego = gdbarch_registry;
2407 rego != NULL;
2408 rego = rego->next)
2409 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2410 break;
2411 if (rego == NULL)
2412 {
2413 if (gdbarch_debug)
59837fe0 2414 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2415 "No matching architecture\n");
b732d07d
AC
2416 return 0;
2417 }
2418
ebdba546 2419 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2420 new_gdbarch = rego->init (info, rego->arches);
2421
ebdba546
AC
2422 /* Did the tdep code like it? No. Reject the change and revert to
2423 the old architecture. */
104c1213
JM
2424 if (new_gdbarch == NULL)
2425 {
2426 if (gdbarch_debug)
59837fe0 2427 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2428 "Target rejected architecture\n");
2429 return NULL;
104c1213
JM
2430 }
2431
ebdba546
AC
2432 /* Is this a pre-existing architecture (as determined by already
2433 being initialized)? Move it to the front of the architecture
2434 list (keeping the list sorted Most Recently Used). */
2435 if (new_gdbarch->initialized_p)
104c1213 2436 {
ebdba546 2437 struct gdbarch_list **list;
fe978cb0 2438 struct gdbarch_list *self;
104c1213 2439 if (gdbarch_debug)
59837fe0 2440 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2441 "Previous architecture %s (%s) selected\n",
2442 host_address_to_string (new_gdbarch),
104c1213 2443 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2444 /* Find the existing arch in the list. */
2445 for (list = &rego->arches;
2446 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2447 list = &(*list)->next);
2448 /* It had better be in the list of architectures. */
2449 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2450 /* Unlink SELF. */
2451 self = (*list);
2452 (*list) = self->next;
2453 /* Insert SELF at the front. */
2454 self->next = rego->arches;
2455 rego->arches = self;
ebdba546
AC
2456 /* Return it. */
2457 return new_gdbarch;
104c1213
JM
2458 }
2459
ebdba546
AC
2460 /* It's a new architecture. */
2461 if (gdbarch_debug)
59837fe0 2462 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2463 "New architecture %s (%s) selected\n",
2464 host_address_to_string (new_gdbarch),
ebdba546
AC
2465 new_gdbarch->bfd_arch_info->printable_name);
2466
2467 /* Insert the new architecture into the front of the architecture
2468 list (keep the list sorted Most Recently Used). */
0f79675b 2469 {
fe978cb0
PA
2470 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2471 self->next = rego->arches;
2472 self->gdbarch = new_gdbarch;
2473 rego->arches = self;
0f79675b 2474 }
104c1213 2475
4b9b3959
AC
2476 /* Check that the newly installed architecture is valid. Plug in
2477 any post init values. */
2478 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2479 verify_gdbarch (new_gdbarch);
ebdba546 2480 new_gdbarch->initialized_p = 1;
104c1213 2481
4b9b3959 2482 if (gdbarch_debug)
ebdba546
AC
2483 gdbarch_dump (new_gdbarch, gdb_stdlog);
2484
2485 return new_gdbarch;
2486}
2487
e487cc15 2488/* Make the specified architecture current. */
ebdba546
AC
2489
2490void
aff68abb 2491set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2492{
2493 gdb_assert (new_gdbarch != NULL);
ebdba546 2494 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2495 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2496 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2497 registers_changed ();
ebdba546 2498}
104c1213 2499
f5656ead 2500/* Return the current inferior's arch. */
6ecd4729
PA
2501
2502struct gdbarch *
f5656ead 2503target_gdbarch (void)
6ecd4729
PA
2504{
2505 return current_inferior ()->gdbarch;
2506}
2507
104c1213 2508extern void _initialize_gdbarch (void);
b4a20239 2509
104c1213 2510void
34620563 2511_initialize_gdbarch (void)
104c1213 2512{
ccce17b0 2513 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2514Set architecture debugging."), _("\\
2515Show architecture debugging."), _("\\
2516When non-zero, architecture debugging is enabled."),
2517 NULL,
920d2a44 2518 show_gdbarch_debug,
85c07804 2519 &setdebuglist, &showdebuglist);
104c1213
JM
2520}
2521EOF
2522
2523# close things off
2524exec 1>&2
2525#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2526compare_new gdbarch.c
This page took 1.407356 seconds and 4 git commands to generate.