binutils/testsuite: Fix a crash with STN_UNDEF in relocation
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
e2882c85 5# Copyright (C) 1998-2018 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
ea480a30 352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
32c9a795 353
66b43ecb 354# Number of bits in a short or unsigned short for the target machine.
ea480a30 355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 356# Number of bits in an int or unsigned int for the target machine.
ea480a30 357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 358# Number of bits in a long or unsigned long for the target machine.
ea480a30 359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
360# Number of bits in a long long or unsigned long long for the target
361# machine.
ea480a30 362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
205c306f
DM
363# Alignment of a long long or unsigned long long for the target
364# machine.
ea480a30 365v;int;long_long_align_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 366
f9e9243a
UW
367# The ABI default bit-size and format for "half", "float", "double", and
368# "long double". These bit/format pairs should eventually be combined
369# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
370# Each format describes both the big and little endian layouts (if
371# useful).
456fcf94 372
ea480a30
SM
373v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
374v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
375v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
376v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
377v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
378v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
379v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
380v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 381
53375380
PA
382# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
383# starting with C++11.
ea480a30 384v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 385# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 386v;int;wchar_signed;;;1;-1;1
53375380 387
9b790ce7
UW
388# Returns the floating-point format to be used for values of length LENGTH.
389# NAME, if non-NULL, is the type name, which may be used to distinguish
390# different target formats of the same length.
ea480a30 391m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 392
52204a0b
DT
393# For most targets, a pointer on the target and its representation as an
394# address in GDB have the same size and "look the same". For such a
17a912b6 395# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
396# / addr_bit will be set from it.
397#
17a912b6 398# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
399# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
400# gdbarch_address_to_pointer as well.
52204a0b
DT
401#
402# ptr_bit is the size of a pointer on the target
ea480a30 403v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 404# addr_bit is the size of a target address as represented in gdb
ea480a30 405v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 406#
8da614df
CV
407# dwarf2_addr_size is the target address size as used in the Dwarf debug
408# info. For .debug_frame FDEs, this is supposed to be the target address
409# size from the associated CU header, and which is equivalent to the
410# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
411# Unfortunately there is no good way to determine this value. Therefore
412# dwarf2_addr_size simply defaults to the target pointer size.
413#
414# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
415# defined using the target's pointer size so far.
416#
417# Note that dwarf2_addr_size only needs to be redefined by a target if the
418# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
419# and if Dwarf versions < 4 need to be supported.
ea480a30 420v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 421#
4e409299 422# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 423v;int;char_signed;;;1;-1;1
4e409299 424#
c113ed0c 425F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 426F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
427# Function for getting target's idea of a frame pointer. FIXME: GDB's
428# whole scheme for dealing with "frames" and "frame pointers" needs a
429# serious shakedown.
ea480a30 430m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 431#
849d0ba8 432M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
433# Read a register into a new struct value. If the register is wholly
434# or partly unavailable, this should call mark_value_bytes_unavailable
435# as appropriate. If this is defined, then pseudo_register_read will
436# never be called.
849d0ba8 437M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 438M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 439#
ea480a30 440v;int;num_regs;;;0;-1
0aba1244
EZ
441# This macro gives the number of pseudo-registers that live in the
442# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
443# These pseudo-registers may be aliases for other registers,
444# combinations of other registers, or they may be computed by GDB.
ea480a30 445v;int;num_pseudo_regs;;;0;0;;0
c2169756 446
175ff332
HZ
447# Assemble agent expression bytecode to collect pseudo-register REG.
448# Return -1 if something goes wrong, 0 otherwise.
ea480a30 449M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
450
451# Assemble agent expression bytecode to push the value of pseudo-register
452# REG on the interpreter stack.
453# Return -1 if something goes wrong, 0 otherwise.
ea480a30 454M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 455
012b3a21
WT
456# Some targets/architectures can do extra processing/display of
457# segmentation faults. E.g., Intel MPX boundary faults.
458# Call the architecture dependent function to handle the fault.
459# UIOUT is the output stream where the handler will place information.
ea480a30 460M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 461
c2169756
AC
462# GDB's standard (or well known) register numbers. These can map onto
463# a real register or a pseudo (computed) register or not be defined at
1200cd6e 464# all (-1).
3e8c568d 465# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
466v;int;sp_regnum;;;-1;-1;;0
467v;int;pc_regnum;;;-1;-1;;0
468v;int;ps_regnum;;;-1;-1;;0
469v;int;fp0_regnum;;;0;-1;;0
88c72b7d 470# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 471m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 472# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 473m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 474# Convert from an sdb register number to an internal gdb register number.
ea480a30 475m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 476# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 477# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
478m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
479m;const char *;register_name;int regnr;regnr;;0
9c04cab7 480
7b9ee6a8
DJ
481# Return the type of a register specified by the architecture. Only
482# the register cache should call this function directly; others should
483# use "register_type".
ea480a30 484M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 485
ea480a30 486M;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame
669fac23 487# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 488# deprecated_fp_regnum.
ea480a30 489v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 490
ea480a30
SM
491M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
492v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
493M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 494
7eb89530 495# Return true if the code of FRAME is writable.
ea480a30 496m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 497
ea480a30
SM
498m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
499m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
500M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
501# MAP a GDB RAW register number onto a simulator register number. See
502# also include/...-sim.h.
ea480a30
SM
503m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
504m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
505m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
506
507# Determine the address where a longjmp will land and save this address
508# in PC. Return nonzero on success.
509#
510# FRAME corresponds to the longjmp frame.
ea480a30 511F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 512
104c1213 513#
ea480a30 514v;int;believe_pcc_promotion;;;;;;;
104c1213 515#
ea480a30
SM
516m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
517f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
518f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 519# Construct a value representing the contents of register REGNUM in
2ed3c037 520# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
521# allocate and return a struct value with all value attributes
522# (but not the value contents) filled in.
ea480a30 523m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 524#
ea480a30
SM
525m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
526m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
527M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 528
6a3a010b
MR
529# Return the return-value convention that will be used by FUNCTION
530# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
531# case the return convention is computed based only on VALTYPE.
532#
533# If READBUF is not NULL, extract the return value and save it in this buffer.
534#
535# If WRITEBUF is not NULL, it contains a return value which will be
536# stored into the appropriate register. This can be used when we want
537# to force the value returned by a function (see the "return" command
538# for instance).
ea480a30 539M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 540
18648a37
YQ
541# Return true if the return value of function is stored in the first hidden
542# parameter. In theory, this feature should be language-dependent, specified
543# by language and its ABI, such as C++. Unfortunately, compiler may
544# implement it to a target-dependent feature. So that we need such hook here
545# to be aware of this in GDB.
ea480a30 546m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 547
ea480a30
SM
548m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
549M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
550# On some platforms, a single function may provide multiple entry points,
551# e.g. one that is used for function-pointer calls and a different one
552# that is used for direct function calls.
553# In order to ensure that breakpoints set on the function will trigger
554# no matter via which entry point the function is entered, a platform
555# may provide the skip_entrypoint callback. It is called with IP set
556# to the main entry point of a function (as determined by the symbol table),
557# and should return the address of the innermost entry point, where the
558# actual breakpoint needs to be set. Note that skip_entrypoint is used
559# by GDB common code even when debugging optimized code, where skip_prologue
560# is not used.
ea480a30 561M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 562
ea480a30
SM
563f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
564m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
565
566# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 567m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
568
569# Return the software breakpoint from KIND. KIND can have target
570# specific meaning like the Z0 kind parameter.
571# SIZE is set to the software breakpoint's length in memory.
ea480a30 572m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 573
833b7ab5
YQ
574# Return the breakpoint kind for this target based on the current
575# processor state (e.g. the current instruction mode on ARM) and the
576# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 577m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 578
ea480a30
SM
579M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
580m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
581m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
582v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
583
584# A function can be addressed by either it's "pointer" (possibly a
585# descriptor address) or "entry point" (first executable instruction).
586# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 587# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
588# a simplified subset of that functionality - the function's address
589# corresponds to the "function pointer" and the function's start
590# corresponds to the "function entry point" - and hence is redundant.
591
ea480a30 592v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 593
123dc839
DJ
594# Return the remote protocol register number associated with this
595# register. Normally the identity mapping.
ea480a30 596m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 597
b2756930 598# Fetch the target specific address used to represent a load module.
ea480a30 599F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
104c1213 600#
ea480a30
SM
601v;CORE_ADDR;frame_args_skip;;;0;;;0
602M;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame
603M;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame
42efa47a
AC
604# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
605# frame-base. Enable frame-base before frame-unwind.
ea480a30 606F;int;frame_num_args;struct frame_info *frame;frame
104c1213 607#
ea480a30
SM
608M;CORE_ADDR;frame_align;CORE_ADDR address;address
609m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
610v;int;frame_red_zone_size
f0d4cc9e 611#
ea480a30 612m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
613# On some machines there are bits in addresses which are not really
614# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 615# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
616# we get a "real" address such as one would find in a symbol table.
617# This is used only for addresses of instructions, and even then I'm
618# not sure it's used in all contexts. It exists to deal with there
619# being a few stray bits in the PC which would mislead us, not as some
620# sort of generic thing to handle alignment or segmentation (it's
621# possible it should be in TARGET_READ_PC instead).
ea480a30 622m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 623
a738ea1d
YQ
624# On some machines, not all bits of an address word are significant.
625# For example, on AArch64, the top bits of an address known as the "tag"
626# are ignored by the kernel, the hardware, etc. and can be regarded as
627# additional data associated with the address.
628v;int;significant_addr_bit;;;;;gdbarch_addr_bit (gdbarch);
629
e6590a1b
UW
630# FIXME/cagney/2001-01-18: This should be split in two. A target method that
631# indicates if the target needs software single step. An ISA method to
632# implement it.
633#
e6590a1b
UW
634# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
635# target can single step. If not, then implement single step using breakpoints.
64c4637f 636#
93f9a11f
YQ
637# Return a vector of addresses on which the software single step
638# breakpoints should be inserted. NULL means software single step is
639# not used.
640# Multiple breakpoints may be inserted for some instructions such as
641# conditional branch. However, each implementation must always evaluate
642# the condition and only put the breakpoint at the branch destination if
643# the condition is true, so that we ensure forward progress when stepping
644# past a conditional branch to self.
a0ff9e1a 645F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 646
3352ef37
AC
647# Return non-zero if the processor is executing a delay slot and a
648# further single-step is needed before the instruction finishes.
ea480a30 649M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 650# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 651# disassembler. Perhaps objdump can handle it?
39503f82 652f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 653f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
654
655
cfd8ab24 656# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
657# evaluates non-zero, this is the address where the debugger will place
658# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 659m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 660# Some systems also have trampoline code for returning from shared libs.
ea480a30 661m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 662
c12260ac
CV
663# A target might have problems with watchpoints as soon as the stack
664# frame of the current function has been destroyed. This mostly happens
c9cf6e20 665# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
666# is defined to return a non-zero value if either the given addr is one
667# instruction after the stack destroying instruction up to the trailing
668# return instruction or if we can figure out that the stack frame has
669# already been invalidated regardless of the value of addr. Targets
670# which don't suffer from that problem could just let this functionality
671# untouched.
ea480a30 672m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
673# Process an ELF symbol in the minimal symbol table in a backend-specific
674# way. Normally this hook is supposed to do nothing, however if required,
675# then this hook can be used to apply tranformations to symbols that are
676# considered special in some way. For example the MIPS backend uses it
677# to interpret \`st_other' information to mark compressed code symbols so
678# that they can be treated in the appropriate manner in the processing of
679# the main symbol table and DWARF-2 records.
ea480a30
SM
680F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
681f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
682# Process a symbol in the main symbol table in a backend-specific way.
683# Normally this hook is supposed to do nothing, however if required,
684# then this hook can be used to apply tranformations to symbols that
685# are considered special in some way. This is currently used by the
686# MIPS backend to make sure compressed code symbols have the ISA bit
687# set. This in turn is needed for symbol values seen in GDB to match
688# the values used at the runtime by the program itself, for function
689# and label references.
ea480a30 690f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
691# Adjust the address retrieved from a DWARF-2 record other than a line
692# entry in a backend-specific way. Normally this hook is supposed to
693# return the address passed unchanged, however if that is incorrect for
694# any reason, then this hook can be used to fix the address up in the
695# required manner. This is currently used by the MIPS backend to make
696# sure addresses in FDE, range records, etc. referring to compressed
697# code have the ISA bit set, matching line information and the symbol
698# table.
ea480a30 699f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
700# Adjust the address updated by a line entry in a backend-specific way.
701# Normally this hook is supposed to return the address passed unchanged,
702# however in the case of inconsistencies in these records, this hook can
703# be used to fix them up in the required manner. This is currently used
704# by the MIPS backend to make sure all line addresses in compressed code
705# are presented with the ISA bit set, which is not always the case. This
706# in turn ensures breakpoint addresses are correctly matched against the
707# stop PC.
ea480a30
SM
708f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
709v;int;cannot_step_breakpoint;;;0;0;;0
710v;int;have_nonsteppable_watchpoint;;;0;0;;0
711F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
712M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
713# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
714# FS are passed from the generic execute_cfa_program function.
ea480a30 715m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
716
717# Return the appropriate type_flags for the supplied address class.
718# This function should return 1 if the address class was recognized and
719# type_flags was set, zero otherwise.
ea480a30 720M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 721# Is a register in a group
ea480a30 722m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 723# Fetch the pointer to the ith function argument.
ea480a30 724F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 725
5aa82d05
AA
726# Iterate over all supported register notes in a core file. For each
727# supported register note section, the iterator must call CB and pass
728# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
729# the supported register note sections based on the current register
730# values. Otherwise it should enumerate all supported register note
731# sections.
ea480a30 732M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 733
6432734d 734# Create core file notes
ea480a30 735M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 736
35c2fab7 737# Find core file memory regions
ea480a30 738M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 739
de584861 740# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
741# core file into buffer READBUF with length LEN. Return the number of bytes read
742# (zero indicates failure).
743# failed, otherwise, return the red length of READBUF.
ea480a30 744M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 745
356a5233
JB
746# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
747# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 748# Return the number of bytes read (zero indicates failure).
ea480a30 749M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 750
c0edd9ed 751# How the core target converts a PTID from a core file to a string.
ea480a30 752M;const char *;core_pid_to_str;ptid_t ptid;ptid
28439f5e 753
4dfc5dbc 754# How the core target extracts the name of a thread from a core file.
ea480a30 755M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 756
382b69bb
JB
757# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
758# from core file into buffer READBUF with length LEN. Return the number
759# of bytes read (zero indicates EOF, a negative value indicates failure).
760M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
761
a78c2d62 762# BFD target to use when generating a core file.
ea480a30 763V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 764
0d5de010
DJ
765# If the elements of C++ vtables are in-place function descriptors rather
766# than normal function pointers (which may point to code or a descriptor),
767# set this to one.
ea480a30 768v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
769
770# Set if the least significant bit of the delta is used instead of the least
771# significant bit of the pfn for pointers to virtual member functions.
ea480a30 772v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
773
774# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 775f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 776
1668ae25 777# The maximum length of an instruction on this architecture in bytes.
ea480a30 778V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
779
780# Copy the instruction at FROM to TO, and make any adjustments
781# necessary to single-step it at that address.
782#
783# REGS holds the state the thread's registers will have before
784# executing the copied instruction; the PC in REGS will refer to FROM,
785# not the copy at TO. The caller should update it to point at TO later.
786#
787# Return a pointer to data of the architecture's choice to be passed
788# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
789# the instruction's effects have been completely simulated, with the
790# resulting state written back to REGS.
791#
792# For a general explanation of displaced stepping and how GDB uses it,
793# see the comments in infrun.c.
794#
795# The TO area is only guaranteed to have space for
796# gdbarch_max_insn_length (arch) bytes, so this function must not
797# write more bytes than that to that area.
798#
799# If you do not provide this function, GDB assumes that the
800# architecture does not support displaced stepping.
801#
7f03bd92
PA
802# If the instruction cannot execute out of line, return NULL. The
803# core falls back to stepping past the instruction in-line instead in
804# that case.
ea480a30 805M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 806
99e40580
UW
807# Return true if GDB should use hardware single-stepping to execute
808# the displaced instruction identified by CLOSURE. If false,
809# GDB will simply restart execution at the displaced instruction
810# location, and it is up to the target to ensure GDB will receive
811# control again (e.g. by placing a software breakpoint instruction
812# into the displaced instruction buffer).
813#
814# The default implementation returns false on all targets that
815# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 816m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 817
237fc4c9
PA
818# Fix up the state resulting from successfully single-stepping a
819# displaced instruction, to give the result we would have gotten from
820# stepping the instruction in its original location.
821#
822# REGS is the register state resulting from single-stepping the
823# displaced instruction.
824#
825# CLOSURE is the result from the matching call to
826# gdbarch_displaced_step_copy_insn.
827#
828# If you provide gdbarch_displaced_step_copy_insn.but not this
829# function, then GDB assumes that no fixup is needed after
830# single-stepping the instruction.
831#
832# For a general explanation of displaced stepping and how GDB uses it,
833# see the comments in infrun.c.
ea480a30 834M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 835
237fc4c9
PA
836# Return the address of an appropriate place to put displaced
837# instructions while we step over them. There need only be one such
838# place, since we're only stepping one thread over a breakpoint at a
839# time.
840#
841# For a general explanation of displaced stepping and how GDB uses it,
842# see the comments in infrun.c.
ea480a30 843m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 844
dde08ee1
PA
845# Relocate an instruction to execute at a different address. OLDLOC
846# is the address in the inferior memory where the instruction to
847# relocate is currently at. On input, TO points to the destination
848# where we want the instruction to be copied (and possibly adjusted)
849# to. On output, it points to one past the end of the resulting
850# instruction(s). The effect of executing the instruction at TO shall
851# be the same as if executing it at FROM. For example, call
852# instructions that implicitly push the return address on the stack
853# should be adjusted to return to the instruction after OLDLOC;
854# relative branches, and other PC-relative instructions need the
855# offset adjusted; etc.
ea480a30 856M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 857
1c772458 858# Refresh overlay mapped state for section OSECT.
ea480a30 859F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 860
ea480a30 861M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
862
863# Handle special encoding of static variables in stabs debug info.
ea480a30 864F;const char *;static_transform_name;const char *name;name
203c3895 865# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 866v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 867
0508c3ec
HZ
868# Parse the instruction at ADDR storing in the record execution log
869# the registers REGCACHE and memory ranges that will be affected when
870# the instruction executes, along with their current values.
871# Return -1 if something goes wrong, 0 otherwise.
ea480a30 872M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 873
3846b520
HZ
874# Save process state after a signal.
875# Return -1 if something goes wrong, 0 otherwise.
ea480a30 876M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 877
22203bbf 878# Signal translation: translate inferior's signal (target's) number
86b49880
PA
879# into GDB's representation. The implementation of this method must
880# be host independent. IOW, don't rely on symbols of the NAT_FILE
881# header (the nm-*.h files), the host <signal.h> header, or similar
882# headers. This is mainly used when cross-debugging core files ---
883# "Live" targets hide the translation behind the target interface
1f8cf220 884# (target_wait, target_resume, etc.).
ea480a30 885M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 886
eb14d406
SDJ
887# Signal translation: translate the GDB's internal signal number into
888# the inferior's signal (target's) representation. The implementation
889# of this method must be host independent. IOW, don't rely on symbols
890# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
891# header, or similar headers.
892# Return the target signal number if found, or -1 if the GDB internal
893# signal number is invalid.
ea480a30 894M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 895
4aa995e1
PA
896# Extra signal info inspection.
897#
898# Return a type suitable to inspect extra signal information.
ea480a30 899M;struct type *;get_siginfo_type;void;
4aa995e1 900
60c5725c 901# Record architecture-specific information from the symbol table.
ea480a30 902M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 903
a96d9b2e
SDJ
904# Function for the 'catch syscall' feature.
905
906# Get architecture-specific system calls information from registers.
ea480a30 907M;LONGEST;get_syscall_number;ptid_t ptid;ptid
a96d9b2e 908
458c8db8 909# The filename of the XML syscall for this architecture.
ea480a30 910v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
911
912# Information about system calls from this architecture
ea480a30 913v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 914
55aa24fb
SDJ
915# SystemTap related fields and functions.
916
05c0465e
SDJ
917# A NULL-terminated array of prefixes used to mark an integer constant
918# on the architecture's assembly.
55aa24fb
SDJ
919# For example, on x86 integer constants are written as:
920#
921# \$10 ;; integer constant 10
922#
923# in this case, this prefix would be the character \`\$\'.
ea480a30 924v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 925
05c0465e
SDJ
926# A NULL-terminated array of suffixes used to mark an integer constant
927# on the architecture's assembly.
ea480a30 928v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 929
05c0465e
SDJ
930# A NULL-terminated array of prefixes used to mark a register name on
931# the architecture's assembly.
55aa24fb
SDJ
932# For example, on x86 the register name is written as:
933#
934# \%eax ;; register eax
935#
936# in this case, this prefix would be the character \`\%\'.
ea480a30 937v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 938
05c0465e
SDJ
939# A NULL-terminated array of suffixes used to mark a register name on
940# the architecture's assembly.
ea480a30 941v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 942
05c0465e
SDJ
943# A NULL-terminated array of prefixes used to mark a register
944# indirection on the architecture's assembly.
55aa24fb
SDJ
945# For example, on x86 the register indirection is written as:
946#
947# \(\%eax\) ;; indirecting eax
948#
949# in this case, this prefix would be the charater \`\(\'.
950#
951# Please note that we use the indirection prefix also for register
952# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 953v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 954
05c0465e
SDJ
955# A NULL-terminated array of suffixes used to mark a register
956# indirection on the architecture's assembly.
55aa24fb
SDJ
957# For example, on x86 the register indirection is written as:
958#
959# \(\%eax\) ;; indirecting eax
960#
961# in this case, this prefix would be the charater \`\)\'.
962#
963# Please note that we use the indirection suffix also for register
964# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 965v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 966
05c0465e 967# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
968#
969# For example, on PPC a register is represented by a number in the assembly
970# language (e.g., \`10\' is the 10th general-purpose register). However,
971# inside GDB this same register has an \`r\' appended to its name, so the 10th
972# register would be represented as \`r10\' internally.
ea480a30 973v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
974
975# Suffix used to name a register using GDB's nomenclature.
ea480a30 976v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
977
978# Check if S is a single operand.
979#
980# Single operands can be:
981# \- Literal integers, e.g. \`\$10\' on x86
982# \- Register access, e.g. \`\%eax\' on x86
983# \- Register indirection, e.g. \`\(\%eax\)\' on x86
984# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
985#
986# This function should check for these patterns on the string
987# and return 1 if some were found, or zero otherwise. Please try to match
988# as much info as you can from the string, i.e., if you have to match
989# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 990M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
991
992# Function used to handle a "special case" in the parser.
993#
994# A "special case" is considered to be an unknown token, i.e., a token
995# that the parser does not know how to parse. A good example of special
996# case would be ARM's register displacement syntax:
997#
998# [R0, #4] ;; displacing R0 by 4
999#
1000# Since the parser assumes that a register displacement is of the form:
1001#
1002# <number> <indirection_prefix> <register_name> <indirection_suffix>
1003#
1004# it means that it will not be able to recognize and parse this odd syntax.
1005# Therefore, we should add a special case function that will handle this token.
1006#
1007# This function should generate the proper expression form of the expression
1008# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1009# and so on). It should also return 1 if the parsing was successful, or zero
1010# if the token was not recognized as a special token (in this case, returning
1011# zero means that the special parser is deferring the parsing to the generic
1012# parser), and should advance the buffer pointer (p->arg).
ea480a30 1013M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1014
8b367e17
JM
1015# DTrace related functions.
1016
1017# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1018# NARG must be >= 0.
ea480a30 1019M;void;dtrace_parse_probe_argument;struct parser_state *pstate, int narg;pstate, narg
8b367e17
JM
1020
1021# True if the given ADDR does not contain the instruction sequence
1022# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1023M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1024
1025# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1026M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1027
1028# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1029M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1030
50c71eaf
PA
1031# True if the list of shared libraries is one and only for all
1032# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1033# This usually means that all processes, although may or may not share
1034# an address space, will see the same set of symbols at the same
1035# addresses.
ea480a30 1036v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1037
1038# On some targets, even though each inferior has its own private
1039# address space, the debug interface takes care of making breakpoints
1040# visible to all address spaces automatically. For such cases,
1041# this property should be set to true.
ea480a30 1042v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1043
1044# True if inferiors share an address space (e.g., uClinux).
ea480a30 1045m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1046
1047# True if a fast tracepoint can be set at an address.
281d762b 1048m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1049
5f034a78
MK
1050# Guess register state based on tracepoint location. Used for tracepoints
1051# where no registers have been collected, but there's only one location,
1052# allowing us to guess the PC value, and perhaps some other registers.
1053# On entry, regcache has all registers marked as unavailable.
ea480a30 1054m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1055
f870a310 1056# Return the "auto" target charset.
ea480a30 1057f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1058# Return the "auto" target wide charset.
ea480a30 1059f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1060
1061# If non-empty, this is a file extension that will be opened in place
1062# of the file extension reported by the shared library list.
1063#
1064# This is most useful for toolchains that use a post-linker tool,
1065# where the names of the files run on the target differ in extension
1066# compared to the names of the files GDB should load for debug info.
ea480a30 1067v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1068
1069# If true, the target OS has DOS-based file system semantics. That
1070# is, absolute paths include a drive name, and the backslash is
1071# considered a directory separator.
ea480a30 1072v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1073
1074# Generate bytecodes to collect the return address in a frame.
1075# Since the bytecodes run on the target, possibly with GDB not even
1076# connected, the full unwinding machinery is not available, and
1077# typically this function will issue bytecodes for one or more likely
1078# places that the return address may be found.
ea480a30 1079m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1080
3030c96e 1081# Implement the "info proc" command.
ea480a30 1082M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1083
451b7c33
TT
1084# Implement the "info proc" command for core files. Noe that there
1085# are two "info_proc"-like methods on gdbarch -- one for core files,
1086# one for live targets.
ea480a30 1087M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1088
19630284
JB
1089# Iterate over all objfiles in the order that makes the most sense
1090# for the architecture to make global symbol searches.
1091#
1092# CB is a callback function where OBJFILE is the objfile to be searched,
1093# and CB_DATA a pointer to user-defined data (the same data that is passed
1094# when calling this gdbarch method). The iteration stops if this function
1095# returns nonzero.
1096#
1097# CB_DATA is a pointer to some user-defined data to be passed to
1098# the callback.
1099#
1100# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1101# inspected when the symbol search was requested.
ea480a30 1102m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1103
7e35103a 1104# Ravenscar arch-dependent ops.
ea480a30 1105v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1106
1107# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1108m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1109
1110# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1111m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1112
1113# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1114m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1115
1116# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1117# Return 0 if *READPTR is already at the end of the buffer.
1118# Return -1 if there is insufficient buffer for a whole entry.
1119# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1120M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1121
2faa3447
JB
1122# Print the description of a single auxv entry described by TYPE and VAL
1123# to FILE.
ea480a30 1124m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1125
3437254d
PA
1126# Find the address range of the current inferior's vsyscall/vDSO, and
1127# write it to *RANGE. If the vsyscall's length can't be determined, a
1128# range with zero length is returned. Returns true if the vsyscall is
1129# found, false otherwise.
ea480a30 1130m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1131
1132# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1133# PROT has GDB_MMAP_PROT_* bitmask format.
1134# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1135f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1136
7f361056
JK
1137# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1138# Print a warning if it is not possible.
ea480a30 1139f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1140
f208eee0
JK
1141# Return string (caller has to use xfree for it) with options for GCC
1142# to produce code for this target, typically "-m64", "-m32" or "-m31".
1143# These options are put before CU's DW_AT_producer compilation options so that
1144# they can override it. Method may also return NULL.
ea480a30 1145m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1146
1147# Return a regular expression that matches names used by this
1148# architecture in GNU configury triplets. The result is statically
1149# allocated and must not be freed. The default implementation simply
1150# returns the BFD architecture name, which is correct in nearly every
1151# case.
ea480a30 1152m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1153
1154# Return the size in 8-bit bytes of an addressable memory unit on this
1155# architecture. This corresponds to the number of 8-bit bytes associated to
1156# each address in memory.
ea480a30 1157m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1158
65b48a81 1159# Functions for allowing a target to modify its disassembler options.
ea480a30
SM
1160v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1161v;const disasm_options_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1162
104c1213 1163EOF
104c1213
JM
1164}
1165
0b8f9e4d
AC
1166#
1167# The .log file
1168#
1169exec > new-gdbarch.log
34620563 1170function_list | while do_read
0b8f9e4d
AC
1171do
1172 cat <<EOF
2f9b146e 1173${class} ${returntype} ${function} ($formal)
104c1213 1174EOF
3d9a5942
AC
1175 for r in ${read}
1176 do
1177 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1178 done
f0d4cc9e 1179 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1180 then
66d659b1 1181 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1182 kill $$
1183 exit 1
1184 fi
72e74a21 1185 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1186 then
1187 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1188 kill $$
1189 exit 1
1190 fi
a72293e2
AC
1191 if class_is_multiarch_p
1192 then
1193 if class_is_predicate_p ; then :
1194 elif test "x${predefault}" = "x"
1195 then
2f9b146e 1196 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1197 kill $$
1198 exit 1
1199 fi
1200 fi
3d9a5942 1201 echo ""
0b8f9e4d
AC
1202done
1203
1204exec 1>&2
1205compare_new gdbarch.log
1206
104c1213
JM
1207
1208copyright ()
1209{
1210cat <<EOF
c4bfde41
JK
1211/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1212/* vi:set ro: */
59233f88 1213
104c1213 1214/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1215
e2882c85 1216 Copyright (C) 1998-2018 Free Software Foundation, Inc.
104c1213
JM
1217
1218 This file is part of GDB.
1219
1220 This program is free software; you can redistribute it and/or modify
1221 it under the terms of the GNU General Public License as published by
50efebf8 1222 the Free Software Foundation; either version 3 of the License, or
104c1213 1223 (at your option) any later version.
618f726f 1224
104c1213
JM
1225 This program is distributed in the hope that it will be useful,
1226 but WITHOUT ANY WARRANTY; without even the implied warranty of
1227 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1228 GNU General Public License for more details.
618f726f 1229
104c1213 1230 You should have received a copy of the GNU General Public License
50efebf8 1231 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1232
104c1213
JM
1233/* This file was created with the aid of \`\`gdbarch.sh''.
1234
52204a0b 1235 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1236 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1237 against the existing \`\`gdbarch.[hc]''. Any differences found
1238 being reported.
1239
1240 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1241 changes into that script. Conversely, when making sweeping changes
104c1213 1242 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1243 easier. */
104c1213
JM
1244
1245EOF
1246}
1247
1248#
1249# The .h file
1250#
1251
1252exec > new-gdbarch.h
1253copyright
1254cat <<EOF
1255#ifndef GDBARCH_H
1256#define GDBARCH_H
1257
a0ff9e1a 1258#include <vector>
eb7a547a 1259#include "frame.h"
65b48a81 1260#include "dis-asm.h"
eb7a547a 1261
da3331ec
AC
1262struct floatformat;
1263struct ui_file;
104c1213 1264struct value;
b6af0555 1265struct objfile;
1c772458 1266struct obj_section;
a2cf933a 1267struct minimal_symbol;
049ee0e4 1268struct regcache;
b59ff9d5 1269struct reggroup;
6ce6d90f 1270struct regset;
a89aa300 1271struct disassemble_info;
e2d0e7eb 1272struct target_ops;
030f20e1 1273struct obstack;
8181d85f 1274struct bp_target_info;
424163ea 1275struct target_desc;
3e29f34a 1276struct symbol;
237fc4c9 1277struct displaced_step_closure;
a96d9b2e 1278struct syscall;
175ff332 1279struct agent_expr;
6710bf39 1280struct axs_value;
55aa24fb 1281struct stap_parse_info;
8b367e17 1282struct parser_state;
7e35103a 1283struct ravenscar_arch_ops;
3437254d 1284struct mem_range;
458c8db8 1285struct syscalls_info;
4dfc5dbc 1286struct thread_info;
012b3a21 1287struct ui_out;
104c1213 1288
8a526fa6
PA
1289#include "regcache.h"
1290
6ecd4729
PA
1291/* The architecture associated with the inferior through the
1292 connection to the target.
1293
1294 The architecture vector provides some information that is really a
1295 property of the inferior, accessed through a particular target:
1296 ptrace operations; the layout of certain RSP packets; the solib_ops
1297 vector; etc. To differentiate architecture accesses to
1298 per-inferior/target properties from
1299 per-thread/per-frame/per-objfile properties, accesses to
1300 per-inferior/target properties should be made through this
1301 gdbarch. */
1302
1303/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1304extern struct gdbarch *target_gdbarch (void);
6ecd4729 1305
19630284
JB
1306/* Callback type for the 'iterate_over_objfiles_in_search_order'
1307 gdbarch method. */
1308
1309typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1310 (struct objfile *objfile, void *cb_data);
5aa82d05 1311
1528345d
AA
1312/* Callback type for regset section iterators. The callback usually
1313 invokes the REGSET's supply or collect method, to which it must
1314 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1315 section name, and HUMAN_NAME is used for diagnostic messages.
1316 CB_DATA should have been passed unchanged through the iterator. */
1317
5aa82d05 1318typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1319 (const char *sect_name, int size, const struct regset *regset,
1320 const char *human_name, void *cb_data);
104c1213
JM
1321EOF
1322
1323# function typedef's
3d9a5942
AC
1324printf "\n"
1325printf "\n"
0963b4bd 1326printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1327function_list | while do_read
104c1213 1328do
2ada493a
AC
1329 if class_is_info_p
1330 then
3d9a5942
AC
1331 printf "\n"
1332 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1333 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1334 fi
104c1213
JM
1335done
1336
1337# function typedef's
3d9a5942
AC
1338printf "\n"
1339printf "\n"
0963b4bd 1340printf "/* The following are initialized by the target dependent code. */\n"
34620563 1341function_list | while do_read
104c1213 1342do
72e74a21 1343 if [ -n "${comment}" ]
34620563
AC
1344 then
1345 echo "${comment}" | sed \
1346 -e '2 s,#,/*,' \
1347 -e '3,$ s,#, ,' \
1348 -e '$ s,$, */,'
1349 fi
412d5987
AC
1350
1351 if class_is_predicate_p
2ada493a 1352 then
412d5987
AC
1353 printf "\n"
1354 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1355 fi
2ada493a
AC
1356 if class_is_variable_p
1357 then
3d9a5942
AC
1358 printf "\n"
1359 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1360 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1361 fi
1362 if class_is_function_p
1363 then
3d9a5942 1364 printf "\n"
72e74a21 1365 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1366 then
1367 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1368 elif class_is_multiarch_p
1369 then
1370 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1371 else
1372 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1373 fi
72e74a21 1374 if [ "x${formal}" = "xvoid" ]
104c1213 1375 then
3d9a5942 1376 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1377 else
3d9a5942 1378 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1379 fi
3d9a5942 1380 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1381 fi
104c1213
JM
1382done
1383
1384# close it off
1385cat <<EOF
1386
a96d9b2e
SDJ
1387/* Definition for an unknown syscall, used basically in error-cases. */
1388#define UNKNOWN_SYSCALL (-1)
1389
104c1213
JM
1390extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1391
1392
1393/* Mechanism for co-ordinating the selection of a specific
1394 architecture.
1395
1396 GDB targets (*-tdep.c) can register an interest in a specific
1397 architecture. Other GDB components can register a need to maintain
1398 per-architecture data.
1399
1400 The mechanisms below ensures that there is only a loose connection
1401 between the set-architecture command and the various GDB
0fa6923a 1402 components. Each component can independently register their need
104c1213
JM
1403 to maintain architecture specific data with gdbarch.
1404
1405 Pragmatics:
1406
1407 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1408 didn't scale.
1409
1410 The more traditional mega-struct containing architecture specific
1411 data for all the various GDB components was also considered. Since
0fa6923a 1412 GDB is built from a variable number of (fairly independent)
104c1213 1413 components it was determined that the global aproach was not
0963b4bd 1414 applicable. */
104c1213
JM
1415
1416
1417/* Register a new architectural family with GDB.
1418
1419 Register support for the specified ARCHITECTURE with GDB. When
1420 gdbarch determines that the specified architecture has been
1421 selected, the corresponding INIT function is called.
1422
1423 --
1424
1425 The INIT function takes two parameters: INFO which contains the
1426 information available to gdbarch about the (possibly new)
1427 architecture; ARCHES which is a list of the previously created
1428 \`\`struct gdbarch'' for this architecture.
1429
0f79675b 1430 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1431 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1432
1433 The ARCHES parameter is a linked list (sorted most recently used)
1434 of all the previously created architures for this architecture
1435 family. The (possibly NULL) ARCHES->gdbarch can used to access
1436 values from the previously selected architecture for this
59837fe0 1437 architecture family.
104c1213
JM
1438
1439 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1440 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1441 gdbarch'' from the ARCHES list - indicating that the new
1442 architecture is just a synonym for an earlier architecture (see
1443 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1444 - that describes the selected architecture (see gdbarch_alloc()).
1445
1446 The DUMP_TDEP function shall print out all target specific values.
1447 Care should be taken to ensure that the function works in both the
0963b4bd 1448 multi-arch and non- multi-arch cases. */
104c1213
JM
1449
1450struct gdbarch_list
1451{
1452 struct gdbarch *gdbarch;
1453 struct gdbarch_list *next;
1454};
1455
1456struct gdbarch_info
1457{
0963b4bd 1458 /* Use default: NULL (ZERO). */
104c1213
JM
1459 const struct bfd_arch_info *bfd_arch_info;
1460
428721aa 1461 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1462 enum bfd_endian byte_order;
104c1213 1463
94123b4f 1464 enum bfd_endian byte_order_for_code;
9d4fde75 1465
0963b4bd 1466 /* Use default: NULL (ZERO). */
104c1213
JM
1467 bfd *abfd;
1468
0963b4bd 1469 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1470 union
1471 {
1472 /* Architecture-specific information. The generic form for targets
1473 that have extra requirements. */
1474 struct gdbarch_tdep_info *tdep_info;
1475
1476 /* Architecture-specific target description data. Numerous targets
1477 need only this, so give them an easy way to hold it. */
1478 struct tdesc_arch_data *tdesc_data;
1479
1480 /* SPU file system ID. This is a single integer, so using the
1481 generic form would only complicate code. Other targets may
1482 reuse this member if suitable. */
1483 int *id;
1484 };
4be87837
DJ
1485
1486 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1487 enum gdb_osabi osabi;
424163ea
DJ
1488
1489 /* Use default: NULL (ZERO). */
1490 const struct target_desc *target_desc;
104c1213
JM
1491};
1492
1493typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1494typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1495
4b9b3959 1496/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1497extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1498
4b9b3959
AC
1499extern void gdbarch_register (enum bfd_architecture architecture,
1500 gdbarch_init_ftype *,
1501 gdbarch_dump_tdep_ftype *);
1502
104c1213 1503
b4a20239
AC
1504/* Return a freshly allocated, NULL terminated, array of the valid
1505 architecture names. Since architectures are registered during the
1506 _initialize phase this function only returns useful information
0963b4bd 1507 once initialization has been completed. */
b4a20239
AC
1508
1509extern const char **gdbarch_printable_names (void);
1510
1511
104c1213 1512/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1513 matches the information provided by INFO. */
104c1213 1514
424163ea 1515extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1516
1517
1518/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1519 basic initialization using values obtained from the INFO and TDEP
104c1213 1520 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1521 initialization of the object. */
104c1213
JM
1522
1523extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1524
1525
4b9b3959
AC
1526/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1527 It is assumed that the caller freeds the \`\`struct
0963b4bd 1528 gdbarch_tdep''. */
4b9b3959 1529
058f20d5
JB
1530extern void gdbarch_free (struct gdbarch *);
1531
1532
aebd7893
AC
1533/* Helper function. Allocate memory from the \`\`struct gdbarch''
1534 obstack. The memory is freed when the corresponding architecture
1535 is also freed. */
1536
1537extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1538#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1539#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1540
6c214e7c
PP
1541/* Duplicate STRING, returning an equivalent string that's allocated on the
1542 obstack associated with GDBARCH. The string is freed when the corresponding
1543 architecture is also freed. */
1544
1545extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1546
0963b4bd 1547/* Helper function. Force an update of the current architecture.
104c1213 1548
b732d07d
AC
1549 The actual architecture selected is determined by INFO, \`\`(gdb) set
1550 architecture'' et.al., the existing architecture and BFD's default
1551 architecture. INFO should be initialized to zero and then selected
1552 fields should be updated.
104c1213 1553
0963b4bd 1554 Returns non-zero if the update succeeds. */
16f33e29
AC
1555
1556extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1557
1558
ebdba546
AC
1559/* Helper function. Find an architecture matching info.
1560
1561 INFO should be initialized using gdbarch_info_init, relevant fields
1562 set, and then finished using gdbarch_info_fill.
1563
1564 Returns the corresponding architecture, or NULL if no matching
59837fe0 1565 architecture was found. */
ebdba546
AC
1566
1567extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1568
1569
aff68abb 1570/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1571
aff68abb 1572extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1573
104c1213
JM
1574
1575/* Register per-architecture data-pointer.
1576
1577 Reserve space for a per-architecture data-pointer. An identifier
1578 for the reserved data-pointer is returned. That identifer should
95160752 1579 be saved in a local static variable.
104c1213 1580
fcc1c85c
AC
1581 Memory for the per-architecture data shall be allocated using
1582 gdbarch_obstack_zalloc. That memory will be deleted when the
1583 corresponding architecture object is deleted.
104c1213 1584
95160752
AC
1585 When a previously created architecture is re-selected, the
1586 per-architecture data-pointer for that previous architecture is
76860b5f 1587 restored. INIT() is not re-called.
104c1213
JM
1588
1589 Multiple registrarants for any architecture are allowed (and
1590 strongly encouraged). */
1591
95160752 1592struct gdbarch_data;
104c1213 1593
030f20e1
AC
1594typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1595extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1596typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1597extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1598extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1599 struct gdbarch_data *data,
1600 void *pointer);
104c1213 1601
451fbdda 1602extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1603
1604
0fa6923a 1605/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1606 byte-order, ...) using information found in the BFD. */
104c1213
JM
1607
1608extern void set_gdbarch_from_file (bfd *);
1609
1610
e514a9d6
JM
1611/* Initialize the current architecture to the "first" one we find on
1612 our list. */
1613
1614extern void initialize_current_architecture (void);
1615
104c1213 1616/* gdbarch trace variable */
ccce17b0 1617extern unsigned int gdbarch_debug;
104c1213 1618
4b9b3959 1619extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1620
1621#endif
1622EOF
1623exec 1>&2
1624#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1625compare_new gdbarch.h
104c1213
JM
1626
1627
1628#
1629# C file
1630#
1631
1632exec > new-gdbarch.c
1633copyright
1634cat <<EOF
1635
1636#include "defs.h"
7355ddba 1637#include "arch-utils.h"
104c1213 1638
104c1213 1639#include "gdbcmd.h"
faaf634c 1640#include "inferior.h"
104c1213
JM
1641#include "symcat.h"
1642
f0d4cc9e 1643#include "floatformat.h"
b59ff9d5 1644#include "reggroups.h"
4be87837 1645#include "osabi.h"
aebd7893 1646#include "gdb_obstack.h"
383f836e 1647#include "observer.h"
a3ecef73 1648#include "regcache.h"
19630284 1649#include "objfiles.h"
2faa3447 1650#include "auxv.h"
95160752 1651
104c1213
JM
1652/* Static function declarations */
1653
b3cc3077 1654static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1655
104c1213
JM
1656/* Non-zero if we want to trace architecture code. */
1657
1658#ifndef GDBARCH_DEBUG
1659#define GDBARCH_DEBUG 0
1660#endif
ccce17b0 1661unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1662static void
1663show_gdbarch_debug (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c, const char *value)
1665{
1666 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1667}
104c1213 1668
456fcf94 1669static const char *
8da61cc4 1670pformat (const struct floatformat **format)
456fcf94
AC
1671{
1672 if (format == NULL)
1673 return "(null)";
1674 else
8da61cc4
DJ
1675 /* Just print out one of them - this is only for diagnostics. */
1676 return format[0]->name;
456fcf94
AC
1677}
1678
08105857
PA
1679static const char *
1680pstring (const char *string)
1681{
1682 if (string == NULL)
1683 return "(null)";
1684 return string;
05c0465e
SDJ
1685}
1686
a121b7c1 1687static const char *
f7bb4e3a
PB
1688pstring_ptr (char **string)
1689{
1690 if (string == NULL || *string == NULL)
1691 return "(null)";
1692 return *string;
1693}
1694
05c0465e
SDJ
1695/* Helper function to print a list of strings, represented as "const
1696 char *const *". The list is printed comma-separated. */
1697
a121b7c1 1698static const char *
05c0465e
SDJ
1699pstring_list (const char *const *list)
1700{
1701 static char ret[100];
1702 const char *const *p;
1703 size_t offset = 0;
1704
1705 if (list == NULL)
1706 return "(null)";
1707
1708 ret[0] = '\0';
1709 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1710 {
1711 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1712 offset += 2 + s;
1713 }
1714
1715 if (offset > 0)
1716 {
1717 gdb_assert (offset - 2 < sizeof (ret));
1718 ret[offset - 2] = '\0';
1719 }
1720
1721 return ret;
08105857
PA
1722}
1723
104c1213
JM
1724EOF
1725
1726# gdbarch open the gdbarch object
3d9a5942 1727printf "\n"
0963b4bd 1728printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1729printf "\n"
1730printf "struct gdbarch\n"
1731printf "{\n"
76860b5f
AC
1732printf " /* Has this architecture been fully initialized? */\n"
1733printf " int initialized_p;\n"
aebd7893
AC
1734printf "\n"
1735printf " /* An obstack bound to the lifetime of the architecture. */\n"
1736printf " struct obstack *obstack;\n"
1737printf "\n"
0963b4bd 1738printf " /* basic architectural information. */\n"
34620563 1739function_list | while do_read
104c1213 1740do
2ada493a
AC
1741 if class_is_info_p
1742 then
3d9a5942 1743 printf " ${returntype} ${function};\n"
2ada493a 1744 fi
104c1213 1745done
3d9a5942 1746printf "\n"
0963b4bd 1747printf " /* target specific vector. */\n"
3d9a5942
AC
1748printf " struct gdbarch_tdep *tdep;\n"
1749printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1750printf "\n"
0963b4bd 1751printf " /* per-architecture data-pointers. */\n"
95160752 1752printf " unsigned nr_data;\n"
3d9a5942
AC
1753printf " void **data;\n"
1754printf "\n"
104c1213
JM
1755cat <<EOF
1756 /* Multi-arch values.
1757
1758 When extending this structure you must:
1759
1760 Add the field below.
1761
1762 Declare set/get functions and define the corresponding
1763 macro in gdbarch.h.
1764
1765 gdbarch_alloc(): If zero/NULL is not a suitable default,
1766 initialize the new field.
1767
1768 verify_gdbarch(): Confirm that the target updated the field
1769 correctly.
1770
7e73cedf 1771 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1772 field is dumped out
1773
104c1213
JM
1774 get_gdbarch(): Implement the set/get functions (probably using
1775 the macro's as shortcuts).
1776
1777 */
1778
1779EOF
34620563 1780function_list | while do_read
104c1213 1781do
2ada493a
AC
1782 if class_is_variable_p
1783 then
3d9a5942 1784 printf " ${returntype} ${function};\n"
2ada493a
AC
1785 elif class_is_function_p
1786 then
2f9b146e 1787 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1788 fi
104c1213 1789done
3d9a5942 1790printf "};\n"
104c1213 1791
104c1213 1792# Create a new gdbarch struct
104c1213 1793cat <<EOF
7de2341d 1794
66b43ecb 1795/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1796 \`\`struct gdbarch_info''. */
104c1213 1797EOF
3d9a5942 1798printf "\n"
104c1213
JM
1799cat <<EOF
1800struct gdbarch *
1801gdbarch_alloc (const struct gdbarch_info *info,
1802 struct gdbarch_tdep *tdep)
1803{
be7811ad 1804 struct gdbarch *gdbarch;
aebd7893
AC
1805
1806 /* Create an obstack for allocating all the per-architecture memory,
1807 then use that to allocate the architecture vector. */
70ba0933 1808 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1809 obstack_init (obstack);
8d749320 1810 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1811 memset (gdbarch, 0, sizeof (*gdbarch));
1812 gdbarch->obstack = obstack;
85de9627 1813
be7811ad 1814 alloc_gdbarch_data (gdbarch);
85de9627 1815
be7811ad 1816 gdbarch->tdep = tdep;
104c1213 1817EOF
3d9a5942 1818printf "\n"
34620563 1819function_list | while do_read
104c1213 1820do
2ada493a
AC
1821 if class_is_info_p
1822 then
be7811ad 1823 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1824 fi
104c1213 1825done
3d9a5942 1826printf "\n"
0963b4bd 1827printf " /* Force the explicit initialization of these. */\n"
34620563 1828function_list | while do_read
104c1213 1829do
2ada493a
AC
1830 if class_is_function_p || class_is_variable_p
1831 then
72e74a21 1832 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1833 then
be7811ad 1834 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1835 fi
2ada493a 1836 fi
104c1213
JM
1837done
1838cat <<EOF
1839 /* gdbarch_alloc() */
1840
be7811ad 1841 return gdbarch;
104c1213
JM
1842}
1843EOF
1844
058f20d5 1845# Free a gdbarch struct.
3d9a5942
AC
1846printf "\n"
1847printf "\n"
058f20d5 1848cat <<EOF
aebd7893
AC
1849/* Allocate extra space using the per-architecture obstack. */
1850
1851void *
1852gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1853{
1854 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1855
aebd7893
AC
1856 memset (data, 0, size);
1857 return data;
1858}
1859
6c214e7c
PP
1860/* See gdbarch.h. */
1861
1862char *
1863gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1864{
1865 return obstack_strdup (arch->obstack, string);
1866}
1867
aebd7893 1868
058f20d5
JB
1869/* Free a gdbarch struct. This should never happen in normal
1870 operation --- once you've created a gdbarch, you keep it around.
1871 However, if an architecture's init function encounters an error
1872 building the structure, it may need to clean up a partially
1873 constructed gdbarch. */
4b9b3959 1874
058f20d5
JB
1875void
1876gdbarch_free (struct gdbarch *arch)
1877{
aebd7893 1878 struct obstack *obstack;
05c547f6 1879
95160752 1880 gdb_assert (arch != NULL);
aebd7893
AC
1881 gdb_assert (!arch->initialized_p);
1882 obstack = arch->obstack;
1883 obstack_free (obstack, 0); /* Includes the ARCH. */
1884 xfree (obstack);
058f20d5
JB
1885}
1886EOF
1887
104c1213 1888# verify a new architecture
104c1213 1889cat <<EOF
db446970
AC
1890
1891
1892/* Ensure that all values in a GDBARCH are reasonable. */
1893
104c1213 1894static void
be7811ad 1895verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1896{
d7e74731 1897 string_file log;
05c547f6 1898
104c1213 1899 /* fundamental */
be7811ad 1900 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1901 log.puts ("\n\tbyte-order");
be7811ad 1902 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1903 log.puts ("\n\tbfd_arch_info");
0963b4bd 1904 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1905EOF
34620563 1906function_list | while do_read
104c1213 1907do
2ada493a
AC
1908 if class_is_function_p || class_is_variable_p
1909 then
72e74a21 1910 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1911 then
3d9a5942 1912 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1913 elif class_is_predicate_p
1914 then
0963b4bd 1915 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1916 # FIXME: See do_read for potential simplification
72e74a21 1917 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1918 then
3d9a5942 1919 printf " if (${invalid_p})\n"
be7811ad 1920 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1921 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1922 then
be7811ad
MD
1923 printf " if (gdbarch->${function} == ${predefault})\n"
1924 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1925 elif [ -n "${postdefault}" ]
f0d4cc9e 1926 then
be7811ad
MD
1927 printf " if (gdbarch->${function} == 0)\n"
1928 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1929 elif [ -n "${invalid_p}" ]
104c1213 1930 then
4d60522e 1931 printf " if (${invalid_p})\n"
d7e74731 1932 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1933 elif [ -n "${predefault}" ]
104c1213 1934 then
be7811ad 1935 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1936 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1937 fi
2ada493a 1938 fi
104c1213
JM
1939done
1940cat <<EOF
d7e74731 1941 if (!log.empty ())
f16a1923 1942 internal_error (__FILE__, __LINE__,
85c07804 1943 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1944 log.c_str ());
104c1213
JM
1945}
1946EOF
1947
1948# dump the structure
3d9a5942
AC
1949printf "\n"
1950printf "\n"
104c1213 1951cat <<EOF
0963b4bd 1952/* Print out the details of the current architecture. */
4b9b3959 1953
104c1213 1954void
be7811ad 1955gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1956{
b78960be 1957 const char *gdb_nm_file = "<not-defined>";
05c547f6 1958
b78960be
AC
1959#if defined (GDB_NM_FILE)
1960 gdb_nm_file = GDB_NM_FILE;
1961#endif
1962 fprintf_unfiltered (file,
1963 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1964 gdb_nm_file);
104c1213 1965EOF
ea480a30 1966function_list | sort '-t;' -k 3 | while do_read
104c1213 1967do
1e9f55d0
AC
1968 # First the predicate
1969 if class_is_predicate_p
1970 then
7996bcec 1971 printf " fprintf_unfiltered (file,\n"
48f7351b 1972 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1973 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1974 fi
48f7351b 1975 # Print the corresponding value.
283354d8 1976 if class_is_function_p
4b9b3959 1977 then
7996bcec 1978 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1979 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1980 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1981 else
48f7351b 1982 # It is a variable
2f9b146e
AC
1983 case "${print}:${returntype}" in
1984 :CORE_ADDR )
0b1553bc
UW
1985 fmt="%s"
1986 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1987 ;;
2f9b146e 1988 :* )
48f7351b 1989 fmt="%s"
623d3eb1 1990 print="plongest (gdbarch->${function})"
48f7351b
AC
1991 ;;
1992 * )
2f9b146e 1993 fmt="%s"
48f7351b
AC
1994 ;;
1995 esac
3d9a5942 1996 printf " fprintf_unfiltered (file,\n"
48f7351b 1997 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1998 printf " ${print});\n"
2ada493a 1999 fi
104c1213 2000done
381323f4 2001cat <<EOF
be7811ad
MD
2002 if (gdbarch->dump_tdep != NULL)
2003 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2004}
2005EOF
104c1213
JM
2006
2007
2008# GET/SET
3d9a5942 2009printf "\n"
104c1213
JM
2010cat <<EOF
2011struct gdbarch_tdep *
2012gdbarch_tdep (struct gdbarch *gdbarch)
2013{
2014 if (gdbarch_debug >= 2)
3d9a5942 2015 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2016 return gdbarch->tdep;
2017}
2018EOF
3d9a5942 2019printf "\n"
34620563 2020function_list | while do_read
104c1213 2021do
2ada493a
AC
2022 if class_is_predicate_p
2023 then
3d9a5942
AC
2024 printf "\n"
2025 printf "int\n"
2026 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2027 printf "{\n"
8de9bdc4 2028 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2029 printf " return ${predicate};\n"
3d9a5942 2030 printf "}\n"
2ada493a
AC
2031 fi
2032 if class_is_function_p
2033 then
3d9a5942
AC
2034 printf "\n"
2035 printf "${returntype}\n"
72e74a21 2036 if [ "x${formal}" = "xvoid" ]
104c1213 2037 then
3d9a5942 2038 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2039 else
3d9a5942 2040 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2041 fi
3d9a5942 2042 printf "{\n"
8de9bdc4 2043 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2044 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2045 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2046 then
2047 # Allow a call to a function with a predicate.
956ac328 2048 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2049 fi
3d9a5942
AC
2050 printf " if (gdbarch_debug >= 2)\n"
2051 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2052 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2053 then
2054 if class_is_multiarch_p
2055 then
2056 params="gdbarch"
2057 else
2058 params=""
2059 fi
2060 else
2061 if class_is_multiarch_p
2062 then
2063 params="gdbarch, ${actual}"
2064 else
2065 params="${actual}"
2066 fi
2067 fi
72e74a21 2068 if [ "x${returntype}" = "xvoid" ]
104c1213 2069 then
4a5c6a1d 2070 printf " gdbarch->${function} (${params});\n"
104c1213 2071 else
4a5c6a1d 2072 printf " return gdbarch->${function} (${params});\n"
104c1213 2073 fi
3d9a5942
AC
2074 printf "}\n"
2075 printf "\n"
2076 printf "void\n"
2077 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2078 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2079 printf "{\n"
2080 printf " gdbarch->${function} = ${function};\n"
2081 printf "}\n"
2ada493a
AC
2082 elif class_is_variable_p
2083 then
3d9a5942
AC
2084 printf "\n"
2085 printf "${returntype}\n"
2086 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2087 printf "{\n"
8de9bdc4 2088 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2089 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2090 then
3d9a5942 2091 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2092 elif [ -n "${invalid_p}" ]
104c1213 2093 then
956ac328
AC
2094 printf " /* Check variable is valid. */\n"
2095 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2096 elif [ -n "${predefault}" ]
104c1213 2097 then
956ac328
AC
2098 printf " /* Check variable changed from pre-default. */\n"
2099 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2100 fi
3d9a5942
AC
2101 printf " if (gdbarch_debug >= 2)\n"
2102 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2103 printf " return gdbarch->${function};\n"
2104 printf "}\n"
2105 printf "\n"
2106 printf "void\n"
2107 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2108 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2109 printf "{\n"
2110 printf " gdbarch->${function} = ${function};\n"
2111 printf "}\n"
2ada493a
AC
2112 elif class_is_info_p
2113 then
3d9a5942
AC
2114 printf "\n"
2115 printf "${returntype}\n"
2116 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2117 printf "{\n"
8de9bdc4 2118 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2119 printf " if (gdbarch_debug >= 2)\n"
2120 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2121 printf " return gdbarch->${function};\n"
2122 printf "}\n"
2ada493a 2123 fi
104c1213
JM
2124done
2125
2126# All the trailing guff
2127cat <<EOF
2128
2129
f44c642f 2130/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2131 modules. */
104c1213
JM
2132
2133struct gdbarch_data
2134{
95160752 2135 unsigned index;
76860b5f 2136 int init_p;
030f20e1
AC
2137 gdbarch_data_pre_init_ftype *pre_init;
2138 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2139};
2140
2141struct gdbarch_data_registration
2142{
104c1213
JM
2143 struct gdbarch_data *data;
2144 struct gdbarch_data_registration *next;
2145};
2146
f44c642f 2147struct gdbarch_data_registry
104c1213 2148{
95160752 2149 unsigned nr;
104c1213
JM
2150 struct gdbarch_data_registration *registrations;
2151};
2152
f44c642f 2153struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2154{
2155 0, NULL,
2156};
2157
030f20e1
AC
2158static struct gdbarch_data *
2159gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2160 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2161{
2162 struct gdbarch_data_registration **curr;
05c547f6
MS
2163
2164 /* Append the new registration. */
f44c642f 2165 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2166 (*curr) != NULL;
2167 curr = &(*curr)->next);
70ba0933 2168 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2169 (*curr)->next = NULL;
70ba0933 2170 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2171 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2172 (*curr)->data->pre_init = pre_init;
2173 (*curr)->data->post_init = post_init;
76860b5f 2174 (*curr)->data->init_p = 1;
104c1213
JM
2175 return (*curr)->data;
2176}
2177
030f20e1
AC
2178struct gdbarch_data *
2179gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2180{
2181 return gdbarch_data_register (pre_init, NULL);
2182}
2183
2184struct gdbarch_data *
2185gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2186{
2187 return gdbarch_data_register (NULL, post_init);
2188}
104c1213 2189
0963b4bd 2190/* Create/delete the gdbarch data vector. */
95160752
AC
2191
2192static void
b3cc3077 2193alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2194{
b3cc3077
JB
2195 gdb_assert (gdbarch->data == NULL);
2196 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2197 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2198}
3c875b6f 2199
76860b5f 2200/* Initialize the current value of the specified per-architecture
0963b4bd 2201 data-pointer. */
b3cc3077 2202
95160752 2203void
030f20e1
AC
2204deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2205 struct gdbarch_data *data,
2206 void *pointer)
95160752
AC
2207{
2208 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2209 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2210 gdb_assert (data->pre_init == NULL);
95160752
AC
2211 gdbarch->data[data->index] = pointer;
2212}
2213
104c1213 2214/* Return the current value of the specified per-architecture
0963b4bd 2215 data-pointer. */
104c1213
JM
2216
2217void *
451fbdda 2218gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2219{
451fbdda 2220 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2221 if (gdbarch->data[data->index] == NULL)
76860b5f 2222 {
030f20e1
AC
2223 /* The data-pointer isn't initialized, call init() to get a
2224 value. */
2225 if (data->pre_init != NULL)
2226 /* Mid architecture creation: pass just the obstack, and not
2227 the entire architecture, as that way it isn't possible for
2228 pre-init code to refer to undefined architecture
2229 fields. */
2230 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2231 else if (gdbarch->initialized_p
2232 && data->post_init != NULL)
2233 /* Post architecture creation: pass the entire architecture
2234 (as all fields are valid), but be careful to also detect
2235 recursive references. */
2236 {
2237 gdb_assert (data->init_p);
2238 data->init_p = 0;
2239 gdbarch->data[data->index] = data->post_init (gdbarch);
2240 data->init_p = 1;
2241 }
2242 else
2243 /* The architecture initialization hasn't completed - punt -
2244 hope that the caller knows what they are doing. Once
2245 deprecated_set_gdbarch_data has been initialized, this can be
2246 changed to an internal error. */
2247 return NULL;
76860b5f
AC
2248 gdb_assert (gdbarch->data[data->index] != NULL);
2249 }
451fbdda 2250 return gdbarch->data[data->index];
104c1213
JM
2251}
2252
2253
0963b4bd 2254/* Keep a registry of the architectures known by GDB. */
104c1213 2255
4b9b3959 2256struct gdbarch_registration
104c1213
JM
2257{
2258 enum bfd_architecture bfd_architecture;
2259 gdbarch_init_ftype *init;
4b9b3959 2260 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2261 struct gdbarch_list *arches;
4b9b3959 2262 struct gdbarch_registration *next;
104c1213
JM
2263};
2264
f44c642f 2265static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2266
b4a20239
AC
2267static void
2268append_name (const char ***buf, int *nr, const char *name)
2269{
1dc7a623 2270 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2271 (*buf)[*nr] = name;
2272 *nr += 1;
2273}
2274
2275const char **
2276gdbarch_printable_names (void)
2277{
7996bcec 2278 /* Accumulate a list of names based on the registed list of
0963b4bd 2279 architectures. */
7996bcec
AC
2280 int nr_arches = 0;
2281 const char **arches = NULL;
2282 struct gdbarch_registration *rego;
05c547f6 2283
7996bcec
AC
2284 for (rego = gdbarch_registry;
2285 rego != NULL;
2286 rego = rego->next)
b4a20239 2287 {
7996bcec
AC
2288 const struct bfd_arch_info *ap;
2289 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2290 if (ap == NULL)
2291 internal_error (__FILE__, __LINE__,
85c07804 2292 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2293 do
2294 {
2295 append_name (&arches, &nr_arches, ap->printable_name);
2296 ap = ap->next;
2297 }
2298 while (ap != NULL);
b4a20239 2299 }
7996bcec
AC
2300 append_name (&arches, &nr_arches, NULL);
2301 return arches;
b4a20239
AC
2302}
2303
2304
104c1213 2305void
4b9b3959
AC
2306gdbarch_register (enum bfd_architecture bfd_architecture,
2307 gdbarch_init_ftype *init,
2308 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2309{
4b9b3959 2310 struct gdbarch_registration **curr;
104c1213 2311 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2312
ec3d358c 2313 /* Check that BFD recognizes this architecture */
104c1213
JM
2314 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2315 if (bfd_arch_info == NULL)
2316 {
8e65ff28 2317 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2318 _("gdbarch: Attempt to register "
2319 "unknown architecture (%d)"),
8e65ff28 2320 bfd_architecture);
104c1213 2321 }
0963b4bd 2322 /* Check that we haven't seen this architecture before. */
f44c642f 2323 for (curr = &gdbarch_registry;
104c1213
JM
2324 (*curr) != NULL;
2325 curr = &(*curr)->next)
2326 {
2327 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2328 internal_error (__FILE__, __LINE__,
64b9b334 2329 _("gdbarch: Duplicate registration "
0963b4bd 2330 "of architecture (%s)"),
8e65ff28 2331 bfd_arch_info->printable_name);
104c1213
JM
2332 }
2333 /* log it */
2334 if (gdbarch_debug)
30737ed9 2335 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2336 bfd_arch_info->printable_name,
30737ed9 2337 host_address_to_string (init));
104c1213 2338 /* Append it */
70ba0933 2339 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2340 (*curr)->bfd_architecture = bfd_architecture;
2341 (*curr)->init = init;
4b9b3959 2342 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2343 (*curr)->arches = NULL;
2344 (*curr)->next = NULL;
4b9b3959
AC
2345}
2346
2347void
2348register_gdbarch_init (enum bfd_architecture bfd_architecture,
2349 gdbarch_init_ftype *init)
2350{
2351 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2352}
104c1213
JM
2353
2354
424163ea 2355/* Look for an architecture using gdbarch_info. */
104c1213
JM
2356
2357struct gdbarch_list *
2358gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2359 const struct gdbarch_info *info)
2360{
2361 for (; arches != NULL; arches = arches->next)
2362 {
2363 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2364 continue;
2365 if (info->byte_order != arches->gdbarch->byte_order)
2366 continue;
4be87837
DJ
2367 if (info->osabi != arches->gdbarch->osabi)
2368 continue;
424163ea
DJ
2369 if (info->target_desc != arches->gdbarch->target_desc)
2370 continue;
104c1213
JM
2371 return arches;
2372 }
2373 return NULL;
2374}
2375
2376
ebdba546 2377/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2378 architecture if needed. Return that new architecture. */
104c1213 2379
59837fe0
UW
2380struct gdbarch *
2381gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2382{
2383 struct gdbarch *new_gdbarch;
4b9b3959 2384 struct gdbarch_registration *rego;
104c1213 2385
b732d07d 2386 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2387 sources: "set ..."; INFOabfd supplied; and the global
2388 defaults. */
2389 gdbarch_info_fill (&info);
4be87837 2390
0963b4bd 2391 /* Must have found some sort of architecture. */
b732d07d 2392 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2393
2394 if (gdbarch_debug)
2395 {
2396 fprintf_unfiltered (gdb_stdlog,
59837fe0 2397 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2398 (info.bfd_arch_info != NULL
2399 ? info.bfd_arch_info->printable_name
2400 : "(null)"));
2401 fprintf_unfiltered (gdb_stdlog,
59837fe0 2402 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2403 info.byte_order,
d7449b42 2404 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2405 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2406 : "default"));
4be87837 2407 fprintf_unfiltered (gdb_stdlog,
59837fe0 2408 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2409 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2410 fprintf_unfiltered (gdb_stdlog,
59837fe0 2411 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2412 host_address_to_string (info.abfd));
104c1213 2413 fprintf_unfiltered (gdb_stdlog,
59837fe0 2414 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2415 host_address_to_string (info.tdep_info));
104c1213
JM
2416 }
2417
ebdba546 2418 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2419 for (rego = gdbarch_registry;
2420 rego != NULL;
2421 rego = rego->next)
2422 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2423 break;
2424 if (rego == NULL)
2425 {
2426 if (gdbarch_debug)
59837fe0 2427 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2428 "No matching architecture\n");
b732d07d
AC
2429 return 0;
2430 }
2431
ebdba546 2432 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2433 new_gdbarch = rego->init (info, rego->arches);
2434
ebdba546
AC
2435 /* Did the tdep code like it? No. Reject the change and revert to
2436 the old architecture. */
104c1213
JM
2437 if (new_gdbarch == NULL)
2438 {
2439 if (gdbarch_debug)
59837fe0 2440 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2441 "Target rejected architecture\n");
2442 return NULL;
104c1213
JM
2443 }
2444
ebdba546
AC
2445 /* Is this a pre-existing architecture (as determined by already
2446 being initialized)? Move it to the front of the architecture
2447 list (keeping the list sorted Most Recently Used). */
2448 if (new_gdbarch->initialized_p)
104c1213 2449 {
ebdba546 2450 struct gdbarch_list **list;
fe978cb0 2451 struct gdbarch_list *self;
104c1213 2452 if (gdbarch_debug)
59837fe0 2453 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2454 "Previous architecture %s (%s) selected\n",
2455 host_address_to_string (new_gdbarch),
104c1213 2456 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2457 /* Find the existing arch in the list. */
2458 for (list = &rego->arches;
2459 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2460 list = &(*list)->next);
2461 /* It had better be in the list of architectures. */
2462 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2463 /* Unlink SELF. */
2464 self = (*list);
2465 (*list) = self->next;
2466 /* Insert SELF at the front. */
2467 self->next = rego->arches;
2468 rego->arches = self;
ebdba546
AC
2469 /* Return it. */
2470 return new_gdbarch;
104c1213
JM
2471 }
2472
ebdba546
AC
2473 /* It's a new architecture. */
2474 if (gdbarch_debug)
59837fe0 2475 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2476 "New architecture %s (%s) selected\n",
2477 host_address_to_string (new_gdbarch),
ebdba546
AC
2478 new_gdbarch->bfd_arch_info->printable_name);
2479
2480 /* Insert the new architecture into the front of the architecture
2481 list (keep the list sorted Most Recently Used). */
0f79675b 2482 {
fe978cb0
PA
2483 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2484 self->next = rego->arches;
2485 self->gdbarch = new_gdbarch;
2486 rego->arches = self;
0f79675b 2487 }
104c1213 2488
4b9b3959
AC
2489 /* Check that the newly installed architecture is valid. Plug in
2490 any post init values. */
2491 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2492 verify_gdbarch (new_gdbarch);
ebdba546 2493 new_gdbarch->initialized_p = 1;
104c1213 2494
4b9b3959 2495 if (gdbarch_debug)
ebdba546
AC
2496 gdbarch_dump (new_gdbarch, gdb_stdlog);
2497
2498 return new_gdbarch;
2499}
2500
e487cc15 2501/* Make the specified architecture current. */
ebdba546
AC
2502
2503void
aff68abb 2504set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2505{
2506 gdb_assert (new_gdbarch != NULL);
ebdba546 2507 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2508 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2509 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2510 registers_changed ();
ebdba546 2511}
104c1213 2512
f5656ead 2513/* Return the current inferior's arch. */
6ecd4729
PA
2514
2515struct gdbarch *
f5656ead 2516target_gdbarch (void)
6ecd4729
PA
2517{
2518 return current_inferior ()->gdbarch;
2519}
2520
104c1213 2521void
34620563 2522_initialize_gdbarch (void)
104c1213 2523{
ccce17b0 2524 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2525Set architecture debugging."), _("\\
2526Show architecture debugging."), _("\\
2527When non-zero, architecture debugging is enabled."),
2528 NULL,
920d2a44 2529 show_gdbarch_debug,
85c07804 2530 &setdebuglist, &showdebuglist);
104c1213
JM
2531}
2532EOF
2533
2534# close things off
2535exec 1>&2
2536#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2537compare_new gdbarch.c
This page took 2.340199 seconds and 4 git commands to generate.