Eliminate make_cleanup_ui_file_delete / make ui_file a class hierarchy
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
61baf725 5# Copyright (C) 1998-2017 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
9b790ce7
UW
386# Returns the floating-point format to be used for values of length LENGTH.
387# NAME, if non-NULL, is the type name, which may be used to distinguish
388# different target formats of the same length.
389m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0
390
52204a0b
DT
391# For most targets, a pointer on the target and its representation as an
392# address in GDB have the same size and "look the same". For such a
17a912b6 393# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
394# / addr_bit will be set from it.
395#
17a912b6 396# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
397# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
398# gdbarch_address_to_pointer as well.
52204a0b
DT
399#
400# ptr_bit is the size of a pointer on the target
be7811ad 401v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 402# addr_bit is the size of a target address as represented in gdb
be7811ad 403v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 404#
8da614df
CV
405# dwarf2_addr_size is the target address size as used in the Dwarf debug
406# info. For .debug_frame FDEs, this is supposed to be the target address
407# size from the associated CU header, and which is equivalent to the
408# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
409# Unfortunately there is no good way to determine this value. Therefore
410# dwarf2_addr_size simply defaults to the target pointer size.
411#
412# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
413# defined using the target's pointer size so far.
414#
415# Note that dwarf2_addr_size only needs to be redefined by a target if the
416# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
417# and if Dwarf versions < 4 need to be supported.
418v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
419#
4e409299 420# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 421v:int:char_signed:::1:-1:1
4e409299 422#
97030eea
UW
423F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
424F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
425# Function for getting target's idea of a frame pointer. FIXME: GDB's
426# whole scheme for dealing with "frames" and "frame pointers" needs a
427# serious shakedown.
a54fba4c 428m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 429#
05d1431c 430M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
431# Read a register into a new struct value. If the register is wholly
432# or partly unavailable, this should call mark_value_bytes_unavailable
433# as appropriate. If this is defined, then pseudo_register_read will
434# never be called.
435M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 436M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 437#
97030eea 438v:int:num_regs:::0:-1
0aba1244
EZ
439# This macro gives the number of pseudo-registers that live in the
440# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
441# These pseudo-registers may be aliases for other registers,
442# combinations of other registers, or they may be computed by GDB.
97030eea 443v:int:num_pseudo_regs:::0:0::0
c2169756 444
175ff332
HZ
445# Assemble agent expression bytecode to collect pseudo-register REG.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
448
449# Assemble agent expression bytecode to push the value of pseudo-register
450# REG on the interpreter stack.
451# Return -1 if something goes wrong, 0 otherwise.
452M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
453
012b3a21
WT
454# Some targets/architectures can do extra processing/display of
455# segmentation faults. E.g., Intel MPX boundary faults.
456# Call the architecture dependent function to handle the fault.
457# UIOUT is the output stream where the handler will place information.
458M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
459
c2169756
AC
460# GDB's standard (or well known) register numbers. These can map onto
461# a real register or a pseudo (computed) register or not be defined at
1200cd6e 462# all (-1).
3e8c568d 463# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
464v:int:sp_regnum:::-1:-1::0
465v:int:pc_regnum:::-1:-1::0
466v:int:ps_regnum:::-1:-1::0
467v:int:fp0_regnum:::0:-1::0
88c72b7d 468# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 469m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 470# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 471m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 472# Convert from an sdb register number to an internal gdb register number.
d3f73121 473m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 474# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 475# Return -1 for bad REGNUM. Note: Several targets get this wrong.
d3f73121 476m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 477m:const char *:register_name:int regnr:regnr::0
9c04cab7 478
7b9ee6a8
DJ
479# Return the type of a register specified by the architecture. Only
480# the register cache should call this function directly; others should
481# use "register_type".
97030eea 482M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 483
669fac23
DJ
484M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
485# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 486# deprecated_fp_regnum.
97030eea 487v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 488
97030eea
UW
489M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
490v:int:call_dummy_location::::AT_ENTRY_POINT::0
491M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 492
7eb89530
YQ
493# Return true if the code of FRAME is writable.
494m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
495
97030eea 496m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 497m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 498M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
499# MAP a GDB RAW register number onto a simulator register number. See
500# also include/...-sim.h.
e7faf938 501m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
502m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
503m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
504
505# Determine the address where a longjmp will land and save this address
506# in PC. Return nonzero on success.
507#
508# FRAME corresponds to the longjmp frame.
97030eea 509F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 510
104c1213 511#
97030eea 512v:int:believe_pcc_promotion:::::::
104c1213 513#
0abe36f5 514m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 515f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 516f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 517# Construct a value representing the contents of register REGNUM in
2ed3c037 518# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
519# allocate and return a struct value with all value attributes
520# (but not the value contents) filled in.
2ed3c037 521m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 522#
9898f801
UW
523m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
524m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 525M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 526
6a3a010b
MR
527# Return the return-value convention that will be used by FUNCTION
528# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
529# case the return convention is computed based only on VALTYPE.
530#
531# If READBUF is not NULL, extract the return value and save it in this buffer.
532#
533# If WRITEBUF is not NULL, it contains a return value which will be
534# stored into the appropriate register. This can be used when we want
535# to force the value returned by a function (see the "return" command
536# for instance).
6a3a010b 537M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 538
18648a37
YQ
539# Return true if the return value of function is stored in the first hidden
540# parameter. In theory, this feature should be language-dependent, specified
541# by language and its ABI, such as C++. Unfortunately, compiler may
542# implement it to a target-dependent feature. So that we need such hook here
543# to be aware of this in GDB.
544m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
545
6093d2eb 546m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 547M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
548# On some platforms, a single function may provide multiple entry points,
549# e.g. one that is used for function-pointer calls and a different one
550# that is used for direct function calls.
551# In order to ensure that breakpoints set on the function will trigger
552# no matter via which entry point the function is entered, a platform
553# may provide the skip_entrypoint callback. It is called with IP set
554# to the main entry point of a function (as determined by the symbol table),
555# and should return the address of the innermost entry point, where the
556# actual breakpoint needs to be set. Note that skip_entrypoint is used
557# by GDB common code even when debugging optimized code, where skip_prologue
558# is not used.
559M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
560
97030eea 561f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
22f13eb8 562m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:0:default_breakpoint_from_pc::0
cd6c3b4f
YQ
563
564# Return the breakpoint kind for this target based on *PCPTR.
565m:int:breakpoint_kind_from_pc:CORE_ADDR *pcptr:pcptr::0:
566
567# Return the software breakpoint from KIND. KIND can have target
568# specific meaning like the Z0 kind parameter.
569# SIZE is set to the software breakpoint's length in memory.
570m:const gdb_byte *:sw_breakpoint_from_kind:int kind, int *size:kind, size::NULL::0
571
833b7ab5
YQ
572# Return the breakpoint kind for this target based on the current
573# processor state (e.g. the current instruction mode on ARM) and the
574# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
575m:int:breakpoint_kind_from_current_state:struct regcache *regcache, CORE_ADDR *pcptr:regcache, pcptr:0:default_breakpoint_kind_from_current_state::0
576
97030eea 577M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
578m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
579m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 580v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
581
582# A function can be addressed by either it's "pointer" (possibly a
583# descriptor address) or "entry point" (first executable instruction).
584# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 585# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
586# a simplified subset of that functionality - the function's address
587# corresponds to the "function pointer" and the function's start
588# corresponds to the "function entry point" - and hence is redundant.
589
97030eea 590v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 591
123dc839
DJ
592# Return the remote protocol register number associated with this
593# register. Normally the identity mapping.
97030eea 594m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 595
b2756930 596# Fetch the target specific address used to represent a load module.
97030eea 597F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 598#
97030eea
UW
599v:CORE_ADDR:frame_args_skip:::0:::0
600M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
601M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
602# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
603# frame-base. Enable frame-base before frame-unwind.
97030eea 604F:int:frame_num_args:struct frame_info *frame:frame
104c1213 605#
97030eea
UW
606M:CORE_ADDR:frame_align:CORE_ADDR address:address
607m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
608v:int:frame_red_zone_size
f0d4cc9e 609#
97030eea 610m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
611# On some machines there are bits in addresses which are not really
612# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 613# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
614# we get a "real" address such as one would find in a symbol table.
615# This is used only for addresses of instructions, and even then I'm
616# not sure it's used in all contexts. It exists to deal with there
617# being a few stray bits in the PC which would mislead us, not as some
618# sort of generic thing to handle alignment or segmentation (it's
619# possible it should be in TARGET_READ_PC instead).
24568a2c 620m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
621
622# FIXME/cagney/2001-01-18: This should be split in two. A target method that
623# indicates if the target needs software single step. An ISA method to
624# implement it.
625#
e6590a1b
UW
626# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
627# target can single step. If not, then implement single step using breakpoints.
64c4637f 628#
93f9a11f
YQ
629# Return a vector of addresses on which the software single step
630# breakpoints should be inserted. NULL means software single step is
631# not used.
632# Multiple breakpoints may be inserted for some instructions such as
633# conditional branch. However, each implementation must always evaluate
634# the condition and only put the breakpoint at the branch destination if
635# the condition is true, so that we ensure forward progress when stepping
636# past a conditional branch to self.
f5ea389a 637F:VEC (CORE_ADDR) *:software_single_step:struct regcache *regcache:regcache
e6590a1b 638
3352ef37
AC
639# Return non-zero if the processor is executing a delay slot and a
640# further single-step is needed before the instruction finishes.
97030eea 641M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 642# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 643# disassembler. Perhaps objdump can handle it?
97030eea
UW
644f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
645f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
646
647
cfd8ab24 648# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
649# evaluates non-zero, this is the address where the debugger will place
650# a step-resume breakpoint to get us past the dynamic linker.
97030eea 651m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 652# Some systems also have trampoline code for returning from shared libs.
2c02bd72 653m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 654
c12260ac
CV
655# A target might have problems with watchpoints as soon as the stack
656# frame of the current function has been destroyed. This mostly happens
c9cf6e20 657# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
658# is defined to return a non-zero value if either the given addr is one
659# instruction after the stack destroying instruction up to the trailing
660# return instruction or if we can figure out that the stack frame has
661# already been invalidated regardless of the value of addr. Targets
662# which don't suffer from that problem could just let this functionality
663# untouched.
c9cf6e20 664m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
3e29f34a
MR
665# Process an ELF symbol in the minimal symbol table in a backend-specific
666# way. Normally this hook is supposed to do nothing, however if required,
667# then this hook can be used to apply tranformations to symbols that are
668# considered special in some way. For example the MIPS backend uses it
669# to interpret \`st_other' information to mark compressed code symbols so
670# that they can be treated in the appropriate manner in the processing of
671# the main symbol table and DWARF-2 records.
672F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 673f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
674# Process a symbol in the main symbol table in a backend-specific way.
675# Normally this hook is supposed to do nothing, however if required,
676# then this hook can be used to apply tranformations to symbols that
677# are considered special in some way. This is currently used by the
678# MIPS backend to make sure compressed code symbols have the ISA bit
679# set. This in turn is needed for symbol values seen in GDB to match
680# the values used at the runtime by the program itself, for function
681# and label references.
682f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
683# Adjust the address retrieved from a DWARF-2 record other than a line
684# entry in a backend-specific way. Normally this hook is supposed to
685# return the address passed unchanged, however if that is incorrect for
686# any reason, then this hook can be used to fix the address up in the
687# required manner. This is currently used by the MIPS backend to make
688# sure addresses in FDE, range records, etc. referring to compressed
689# code have the ISA bit set, matching line information and the symbol
690# table.
691f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
692# Adjust the address updated by a line entry in a backend-specific way.
693# Normally this hook is supposed to return the address passed unchanged,
694# however in the case of inconsistencies in these records, this hook can
695# be used to fix them up in the required manner. This is currently used
696# by the MIPS backend to make sure all line addresses in compressed code
697# are presented with the ISA bit set, which is not always the case. This
698# in turn ensures breakpoint addresses are correctly matched against the
699# stop PC.
700f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
701v:int:cannot_step_breakpoint:::0:0::0
702v:int:have_nonsteppable_watchpoint:::0:0::0
703F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
704M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
705
706# Return the appropriate type_flags for the supplied address class.
707# This function should return 1 if the address class was recognized and
708# type_flags was set, zero otherwise.
97030eea 709M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 710# Is a register in a group
97030eea 711m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 712# Fetch the pointer to the ith function argument.
97030eea 713F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 714
5aa82d05
AA
715# Iterate over all supported register notes in a core file. For each
716# supported register note section, the iterator must call CB and pass
717# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
718# the supported register note sections based on the current register
719# values. Otherwise it should enumerate all supported register note
720# sections.
721M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 722
6432734d
UW
723# Create core file notes
724M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
725
b3ac9c77
SDJ
726# The elfcore writer hook to use to write Linux prpsinfo notes to core
727# files. Most Linux architectures use the same prpsinfo32 or
728# prpsinfo64 layouts, and so won't need to provide this hook, as we
729# call the Linux generic routines in bfd to write prpsinfo notes by
730# default.
731F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
732
35c2fab7
UW
733# Find core file memory regions
734M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
735
de584861 736# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
737# core file into buffer READBUF with length LEN. Return the number of bytes read
738# (zero indicates failure).
739# failed, otherwise, return the red length of READBUF.
740M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 741
356a5233
JB
742# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
743# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
744# Return the number of bytes read (zero indicates failure).
745M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 746
c0edd9ed 747# How the core target converts a PTID from a core file to a string.
28439f5e
PA
748M:char *:core_pid_to_str:ptid_t ptid:ptid
749
4dfc5dbc
JB
750# How the core target extracts the name of a thread from a core file.
751M:const char *:core_thread_name:struct thread_info *thr:thr
752
a78c2d62 753# BFD target to use when generating a core file.
86ba1042 754V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 755
0d5de010
DJ
756# If the elements of C++ vtables are in-place function descriptors rather
757# than normal function pointers (which may point to code or a descriptor),
758# set this to one.
97030eea 759v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
760
761# Set if the least significant bit of the delta is used instead of the least
762# significant bit of the pfn for pointers to virtual member functions.
97030eea 763v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
764
765# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 766f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 767
1668ae25 768# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
769V:ULONGEST:max_insn_length:::0:0
770
771# Copy the instruction at FROM to TO, and make any adjustments
772# necessary to single-step it at that address.
773#
774# REGS holds the state the thread's registers will have before
775# executing the copied instruction; the PC in REGS will refer to FROM,
776# not the copy at TO. The caller should update it to point at TO later.
777#
778# Return a pointer to data of the architecture's choice to be passed
779# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
780# the instruction's effects have been completely simulated, with the
781# resulting state written back to REGS.
782#
783# For a general explanation of displaced stepping and how GDB uses it,
784# see the comments in infrun.c.
785#
786# The TO area is only guaranteed to have space for
787# gdbarch_max_insn_length (arch) bytes, so this function must not
788# write more bytes than that to that area.
789#
790# If you do not provide this function, GDB assumes that the
791# architecture does not support displaced stepping.
792#
793# If your architecture doesn't need to adjust instructions before
794# single-stepping them, consider using simple_displaced_step_copy_insn
795# here.
7f03bd92
PA
796#
797# If the instruction cannot execute out of line, return NULL. The
798# core falls back to stepping past the instruction in-line instead in
799# that case.
237fc4c9
PA
800M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
801
99e40580
UW
802# Return true if GDB should use hardware single-stepping to execute
803# the displaced instruction identified by CLOSURE. If false,
804# GDB will simply restart execution at the displaced instruction
805# location, and it is up to the target to ensure GDB will receive
806# control again (e.g. by placing a software breakpoint instruction
807# into the displaced instruction buffer).
808#
809# The default implementation returns false on all targets that
810# provide a gdbarch_software_single_step routine, and true otherwise.
811m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
812
237fc4c9
PA
813# Fix up the state resulting from successfully single-stepping a
814# displaced instruction, to give the result we would have gotten from
815# stepping the instruction in its original location.
816#
817# REGS is the register state resulting from single-stepping the
818# displaced instruction.
819#
820# CLOSURE is the result from the matching call to
821# gdbarch_displaced_step_copy_insn.
822#
823# If you provide gdbarch_displaced_step_copy_insn.but not this
824# function, then GDB assumes that no fixup is needed after
825# single-stepping the instruction.
826#
827# For a general explanation of displaced stepping and how GDB uses it,
828# see the comments in infrun.c.
829M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
830
831# Free a closure returned by gdbarch_displaced_step_copy_insn.
832#
833# If you provide gdbarch_displaced_step_copy_insn, you must provide
834# this function as well.
835#
836# If your architecture uses closures that don't need to be freed, then
837# you can use simple_displaced_step_free_closure here.
838#
839# For a general explanation of displaced stepping and how GDB uses it,
840# see the comments in infrun.c.
841m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
842
843# Return the address of an appropriate place to put displaced
844# instructions while we step over them. There need only be one such
845# place, since we're only stepping one thread over a breakpoint at a
846# time.
847#
848# For a general explanation of displaced stepping and how GDB uses it,
849# see the comments in infrun.c.
850m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
851
dde08ee1
PA
852# Relocate an instruction to execute at a different address. OLDLOC
853# is the address in the inferior memory where the instruction to
854# relocate is currently at. On input, TO points to the destination
855# where we want the instruction to be copied (and possibly adjusted)
856# to. On output, it points to one past the end of the resulting
857# instruction(s). The effect of executing the instruction at TO shall
858# be the same as if executing it at FROM. For example, call
859# instructions that implicitly push the return address on the stack
860# should be adjusted to return to the instruction after OLDLOC;
861# relative branches, and other PC-relative instructions need the
862# offset adjusted; etc.
863M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
864
1c772458 865# Refresh overlay mapped state for section OSECT.
97030eea 866F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 867
97030eea 868M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
869
870# Handle special encoding of static variables in stabs debug info.
0d5cff50 871F:const char *:static_transform_name:const char *name:name
203c3895 872# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 873v:int:sofun_address_maybe_missing:::0:0::0
1cded358 874
0508c3ec
HZ
875# Parse the instruction at ADDR storing in the record execution log
876# the registers REGCACHE and memory ranges that will be affected when
877# the instruction executes, along with their current values.
878# Return -1 if something goes wrong, 0 otherwise.
879M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
880
3846b520
HZ
881# Save process state after a signal.
882# Return -1 if something goes wrong, 0 otherwise.
2ea28649 883M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 884
22203bbf 885# Signal translation: translate inferior's signal (target's) number
86b49880
PA
886# into GDB's representation. The implementation of this method must
887# be host independent. IOW, don't rely on symbols of the NAT_FILE
888# header (the nm-*.h files), the host <signal.h> header, or similar
889# headers. This is mainly used when cross-debugging core files ---
890# "Live" targets hide the translation behind the target interface
1f8cf220
PA
891# (target_wait, target_resume, etc.).
892M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 893
eb14d406
SDJ
894# Signal translation: translate the GDB's internal signal number into
895# the inferior's signal (target's) representation. The implementation
896# of this method must be host independent. IOW, don't rely on symbols
897# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
898# header, or similar headers.
899# Return the target signal number if found, or -1 if the GDB internal
900# signal number is invalid.
901M:int:gdb_signal_to_target:enum gdb_signal signal:signal
902
4aa995e1
PA
903# Extra signal info inspection.
904#
905# Return a type suitable to inspect extra signal information.
906M:struct type *:get_siginfo_type:void:
907
60c5725c
DJ
908# Record architecture-specific information from the symbol table.
909M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 910
a96d9b2e
SDJ
911# Function for the 'catch syscall' feature.
912
913# Get architecture-specific system calls information from registers.
914M:LONGEST:get_syscall_number:ptid_t ptid:ptid
915
458c8db8
SDJ
916# The filename of the XML syscall for this architecture.
917v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
918
919# Information about system calls from this architecture
920v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
921
55aa24fb
SDJ
922# SystemTap related fields and functions.
923
05c0465e
SDJ
924# A NULL-terminated array of prefixes used to mark an integer constant
925# on the architecture's assembly.
55aa24fb
SDJ
926# For example, on x86 integer constants are written as:
927#
928# \$10 ;; integer constant 10
929#
930# in this case, this prefix would be the character \`\$\'.
05c0465e 931v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 932
05c0465e
SDJ
933# A NULL-terminated array of suffixes used to mark an integer constant
934# on the architecture's assembly.
935v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 936
05c0465e
SDJ
937# A NULL-terminated array of prefixes used to mark a register name on
938# the architecture's assembly.
55aa24fb
SDJ
939# For example, on x86 the register name is written as:
940#
941# \%eax ;; register eax
942#
943# in this case, this prefix would be the character \`\%\'.
05c0465e 944v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 945
05c0465e
SDJ
946# A NULL-terminated array of suffixes used to mark a register name on
947# the architecture's assembly.
948v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 949
05c0465e
SDJ
950# A NULL-terminated array of prefixes used to mark a register
951# indirection on the architecture's assembly.
55aa24fb
SDJ
952# For example, on x86 the register indirection is written as:
953#
954# \(\%eax\) ;; indirecting eax
955#
956# in this case, this prefix would be the charater \`\(\'.
957#
958# Please note that we use the indirection prefix also for register
959# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 960v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 961
05c0465e
SDJ
962# A NULL-terminated array of suffixes used to mark a register
963# indirection on the architecture's assembly.
55aa24fb
SDJ
964# For example, on x86 the register indirection is written as:
965#
966# \(\%eax\) ;; indirecting eax
967#
968# in this case, this prefix would be the charater \`\)\'.
969#
970# Please note that we use the indirection suffix also for register
971# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 972v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 973
05c0465e 974# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
975#
976# For example, on PPC a register is represented by a number in the assembly
977# language (e.g., \`10\' is the 10th general-purpose register). However,
978# inside GDB this same register has an \`r\' appended to its name, so the 10th
979# register would be represented as \`r10\' internally.
08af7a40 980v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
981
982# Suffix used to name a register using GDB's nomenclature.
08af7a40 983v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
984
985# Check if S is a single operand.
986#
987# Single operands can be:
988# \- Literal integers, e.g. \`\$10\' on x86
989# \- Register access, e.g. \`\%eax\' on x86
990# \- Register indirection, e.g. \`\(\%eax\)\' on x86
991# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
992#
993# This function should check for these patterns on the string
994# and return 1 if some were found, or zero otherwise. Please try to match
995# as much info as you can from the string, i.e., if you have to match
996# something like \`\(\%\', do not match just the \`\(\'.
997M:int:stap_is_single_operand:const char *s:s
998
999# Function used to handle a "special case" in the parser.
1000#
1001# A "special case" is considered to be an unknown token, i.e., a token
1002# that the parser does not know how to parse. A good example of special
1003# case would be ARM's register displacement syntax:
1004#
1005# [R0, #4] ;; displacing R0 by 4
1006#
1007# Since the parser assumes that a register displacement is of the form:
1008#
1009# <number> <indirection_prefix> <register_name> <indirection_suffix>
1010#
1011# it means that it will not be able to recognize and parse this odd syntax.
1012# Therefore, we should add a special case function that will handle this token.
1013#
1014# This function should generate the proper expression form of the expression
1015# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1016# and so on). It should also return 1 if the parsing was successful, or zero
1017# if the token was not recognized as a special token (in this case, returning
1018# zero means that the special parser is deferring the parsing to the generic
1019# parser), and should advance the buffer pointer (p->arg).
1020M:int:stap_parse_special_token:struct stap_parse_info *p:p
1021
8b367e17
JM
1022# DTrace related functions.
1023
1024# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1025# NARG must be >= 0.
1026M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1027
1028# True if the given ADDR does not contain the instruction sequence
1029# corresponding to a disabled DTrace is-enabled probe.
1030M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1031
1032# Enable a DTrace is-enabled probe at ADDR.
1033M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1034
1035# Disable a DTrace is-enabled probe at ADDR.
1036M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1037
50c71eaf
PA
1038# True if the list of shared libraries is one and only for all
1039# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1040# This usually means that all processes, although may or may not share
1041# an address space, will see the same set of symbols at the same
1042# addresses.
50c71eaf 1043v:int:has_global_solist:::0:0::0
2567c7d9
PA
1044
1045# On some targets, even though each inferior has its own private
1046# address space, the debug interface takes care of making breakpoints
1047# visible to all address spaces automatically. For such cases,
1048# this property should be set to true.
1049v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1050
1051# True if inferiors share an address space (e.g., uClinux).
1052m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1053
1054# True if a fast tracepoint can be set at an address.
6b940e6a 1055m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
75cebea9 1056
5f034a78
MK
1057# Guess register state based on tracepoint location. Used for tracepoints
1058# where no registers have been collected, but there's only one location,
1059# allowing us to guess the PC value, and perhaps some other registers.
1060# On entry, regcache has all registers marked as unavailable.
1061m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1062
f870a310
TT
1063# Return the "auto" target charset.
1064f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1065# Return the "auto" target wide charset.
1066f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1067
1068# If non-empty, this is a file extension that will be opened in place
1069# of the file extension reported by the shared library list.
1070#
1071# This is most useful for toolchains that use a post-linker tool,
1072# where the names of the files run on the target differ in extension
1073# compared to the names of the files GDB should load for debug info.
1074v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1075
1076# If true, the target OS has DOS-based file system semantics. That
1077# is, absolute paths include a drive name, and the backslash is
1078# considered a directory separator.
1079v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1080
1081# Generate bytecodes to collect the return address in a frame.
1082# Since the bytecodes run on the target, possibly with GDB not even
1083# connected, the full unwinding machinery is not available, and
1084# typically this function will issue bytecodes for one or more likely
1085# places that the return address may be found.
1086m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1087
3030c96e 1088# Implement the "info proc" command.
7bc112c1 1089M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1090
451b7c33
TT
1091# Implement the "info proc" command for core files. Noe that there
1092# are two "info_proc"-like methods on gdbarch -- one for core files,
1093# one for live targets.
7bc112c1 1094M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1095
19630284
JB
1096# Iterate over all objfiles in the order that makes the most sense
1097# for the architecture to make global symbol searches.
1098#
1099# CB is a callback function where OBJFILE is the objfile to be searched,
1100# and CB_DATA a pointer to user-defined data (the same data that is passed
1101# when calling this gdbarch method). The iteration stops if this function
1102# returns nonzero.
1103#
1104# CB_DATA is a pointer to some user-defined data to be passed to
1105# the callback.
1106#
1107# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1108# inspected when the symbol search was requested.
1109m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1110
7e35103a
JB
1111# Ravenscar arch-dependent ops.
1112v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1113
1114# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1115m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1116
1117# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1118m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1119
1120# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1121m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1122
1123# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1124# Return 0 if *READPTR is already at the end of the buffer.
1125# Return -1 if there is insufficient buffer for a whole entry.
1126# Return 1 if an entry was read into *TYPEP and *VALP.
1127M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d 1128
2faa3447
JB
1129# Print the description of a single auxv entry described by TYPE and VAL
1130# to FILE.
1131m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1132
3437254d
PA
1133# Find the address range of the current inferior's vsyscall/vDSO, and
1134# write it to *RANGE. If the vsyscall's length can't be determined, a
1135# range with zero length is returned. Returns true if the vsyscall is
1136# found, false otherwise.
1137m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1138
1139# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1140# PROT has GDB_MMAP_PROT_* bitmask format.
1141# Throw an error if it is not possible. Returned address is always valid.
1142f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1143
7f361056
JK
1144# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1145# Print a warning if it is not possible.
1146f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1147
f208eee0
JK
1148# Return string (caller has to use xfree for it) with options for GCC
1149# to produce code for this target, typically "-m64", "-m32" or "-m31".
1150# These options are put before CU's DW_AT_producer compilation options so that
1151# they can override it. Method may also return NULL.
1152m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1153
1154# Return a regular expression that matches names used by this
1155# architecture in GNU configury triplets. The result is statically
1156# allocated and must not be freed. The default implementation simply
1157# returns the BFD architecture name, which is correct in nearly every
1158# case.
1159m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
3374165f
SM
1160
1161# Return the size in 8-bit bytes of an addressable memory unit on this
1162# architecture. This corresponds to the number of 8-bit bytes associated to
1163# each address in memory.
1164m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1165
104c1213 1166EOF
104c1213
JM
1167}
1168
0b8f9e4d
AC
1169#
1170# The .log file
1171#
1172exec > new-gdbarch.log
34620563 1173function_list | while do_read
0b8f9e4d
AC
1174do
1175 cat <<EOF
2f9b146e 1176${class} ${returntype} ${function} ($formal)
104c1213 1177EOF
3d9a5942
AC
1178 for r in ${read}
1179 do
1180 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1181 done
f0d4cc9e 1182 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1183 then
66d659b1 1184 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1185 kill $$
1186 exit 1
1187 fi
72e74a21 1188 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1189 then
1190 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1191 kill $$
1192 exit 1
1193 fi
a72293e2
AC
1194 if class_is_multiarch_p
1195 then
1196 if class_is_predicate_p ; then :
1197 elif test "x${predefault}" = "x"
1198 then
2f9b146e 1199 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1200 kill $$
1201 exit 1
1202 fi
1203 fi
3d9a5942 1204 echo ""
0b8f9e4d
AC
1205done
1206
1207exec 1>&2
1208compare_new gdbarch.log
1209
104c1213
JM
1210
1211copyright ()
1212{
1213cat <<EOF
c4bfde41
JK
1214/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1215/* vi:set ro: */
59233f88 1216
104c1213 1217/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1218
61baf725 1219 Copyright (C) 1998-2017 Free Software Foundation, Inc.
104c1213
JM
1220
1221 This file is part of GDB.
1222
1223 This program is free software; you can redistribute it and/or modify
1224 it under the terms of the GNU General Public License as published by
50efebf8 1225 the Free Software Foundation; either version 3 of the License, or
104c1213 1226 (at your option) any later version.
618f726f 1227
104c1213
JM
1228 This program is distributed in the hope that it will be useful,
1229 but WITHOUT ANY WARRANTY; without even the implied warranty of
1230 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1231 GNU General Public License for more details.
618f726f 1232
104c1213 1233 You should have received a copy of the GNU General Public License
50efebf8 1234 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1235
104c1213
JM
1236/* This file was created with the aid of \`\`gdbarch.sh''.
1237
52204a0b 1238 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1239 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1240 against the existing \`\`gdbarch.[hc]''. Any differences found
1241 being reported.
1242
1243 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1244 changes into that script. Conversely, when making sweeping changes
104c1213 1245 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1246 easier. */
104c1213
JM
1247
1248EOF
1249}
1250
1251#
1252# The .h file
1253#
1254
1255exec > new-gdbarch.h
1256copyright
1257cat <<EOF
1258#ifndef GDBARCH_H
1259#define GDBARCH_H
1260
eb7a547a
JB
1261#include "frame.h"
1262
da3331ec
AC
1263struct floatformat;
1264struct ui_file;
104c1213 1265struct value;
b6af0555 1266struct objfile;
1c772458 1267struct obj_section;
a2cf933a 1268struct minimal_symbol;
049ee0e4 1269struct regcache;
b59ff9d5 1270struct reggroup;
6ce6d90f 1271struct regset;
a89aa300 1272struct disassemble_info;
e2d0e7eb 1273struct target_ops;
030f20e1 1274struct obstack;
8181d85f 1275struct bp_target_info;
424163ea 1276struct target_desc;
3e29f34a
MR
1277struct objfile;
1278struct symbol;
237fc4c9 1279struct displaced_step_closure;
a96d9b2e 1280struct syscall;
175ff332 1281struct agent_expr;
6710bf39 1282struct axs_value;
55aa24fb 1283struct stap_parse_info;
8b367e17 1284struct parser_state;
7e35103a 1285struct ravenscar_arch_ops;
b3ac9c77 1286struct elf_internal_linux_prpsinfo;
3437254d 1287struct mem_range;
458c8db8 1288struct syscalls_info;
4dfc5dbc 1289struct thread_info;
012b3a21 1290struct ui_out;
104c1213 1291
8a526fa6
PA
1292#include "regcache.h"
1293
6ecd4729
PA
1294/* The architecture associated with the inferior through the
1295 connection to the target.
1296
1297 The architecture vector provides some information that is really a
1298 property of the inferior, accessed through a particular target:
1299 ptrace operations; the layout of certain RSP packets; the solib_ops
1300 vector; etc. To differentiate architecture accesses to
1301 per-inferior/target properties from
1302 per-thread/per-frame/per-objfile properties, accesses to
1303 per-inferior/target properties should be made through this
1304 gdbarch. */
1305
1306/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1307extern struct gdbarch *target_gdbarch (void);
6ecd4729 1308
19630284
JB
1309/* Callback type for the 'iterate_over_objfiles_in_search_order'
1310 gdbarch method. */
1311
1312typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1313 (struct objfile *objfile, void *cb_data);
5aa82d05 1314
1528345d
AA
1315/* Callback type for regset section iterators. The callback usually
1316 invokes the REGSET's supply or collect method, to which it must
1317 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1318 section name, and HUMAN_NAME is used for diagnostic messages.
1319 CB_DATA should have been passed unchanged through the iterator. */
1320
5aa82d05 1321typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1322 (const char *sect_name, int size, const struct regset *regset,
1323 const char *human_name, void *cb_data);
104c1213
JM
1324EOF
1325
1326# function typedef's
3d9a5942
AC
1327printf "\n"
1328printf "\n"
0963b4bd 1329printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1330function_list | while do_read
104c1213 1331do
2ada493a
AC
1332 if class_is_info_p
1333 then
3d9a5942
AC
1334 printf "\n"
1335 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1336 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1337 fi
104c1213
JM
1338done
1339
1340# function typedef's
3d9a5942
AC
1341printf "\n"
1342printf "\n"
0963b4bd 1343printf "/* The following are initialized by the target dependent code. */\n"
34620563 1344function_list | while do_read
104c1213 1345do
72e74a21 1346 if [ -n "${comment}" ]
34620563
AC
1347 then
1348 echo "${comment}" | sed \
1349 -e '2 s,#,/*,' \
1350 -e '3,$ s,#, ,' \
1351 -e '$ s,$, */,'
1352 fi
412d5987
AC
1353
1354 if class_is_predicate_p
2ada493a 1355 then
412d5987
AC
1356 printf "\n"
1357 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1358 fi
2ada493a
AC
1359 if class_is_variable_p
1360 then
3d9a5942
AC
1361 printf "\n"
1362 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1363 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1364 fi
1365 if class_is_function_p
1366 then
3d9a5942 1367 printf "\n"
72e74a21 1368 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1369 then
1370 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1371 elif class_is_multiarch_p
1372 then
1373 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1374 else
1375 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1376 fi
72e74a21 1377 if [ "x${formal}" = "xvoid" ]
104c1213 1378 then
3d9a5942 1379 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1380 else
3d9a5942 1381 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1382 fi
3d9a5942 1383 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1384 fi
104c1213
JM
1385done
1386
1387# close it off
1388cat <<EOF
1389
a96d9b2e
SDJ
1390/* Definition for an unknown syscall, used basically in error-cases. */
1391#define UNKNOWN_SYSCALL (-1)
1392
104c1213
JM
1393extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1394
1395
1396/* Mechanism for co-ordinating the selection of a specific
1397 architecture.
1398
1399 GDB targets (*-tdep.c) can register an interest in a specific
1400 architecture. Other GDB components can register a need to maintain
1401 per-architecture data.
1402
1403 The mechanisms below ensures that there is only a loose connection
1404 between the set-architecture command and the various GDB
0fa6923a 1405 components. Each component can independently register their need
104c1213
JM
1406 to maintain architecture specific data with gdbarch.
1407
1408 Pragmatics:
1409
1410 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1411 didn't scale.
1412
1413 The more traditional mega-struct containing architecture specific
1414 data for all the various GDB components was also considered. Since
0fa6923a 1415 GDB is built from a variable number of (fairly independent)
104c1213 1416 components it was determined that the global aproach was not
0963b4bd 1417 applicable. */
104c1213
JM
1418
1419
1420/* Register a new architectural family with GDB.
1421
1422 Register support for the specified ARCHITECTURE with GDB. When
1423 gdbarch determines that the specified architecture has been
1424 selected, the corresponding INIT function is called.
1425
1426 --
1427
1428 The INIT function takes two parameters: INFO which contains the
1429 information available to gdbarch about the (possibly new)
1430 architecture; ARCHES which is a list of the previously created
1431 \`\`struct gdbarch'' for this architecture.
1432
0f79675b 1433 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1434 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1435
1436 The ARCHES parameter is a linked list (sorted most recently used)
1437 of all the previously created architures for this architecture
1438 family. The (possibly NULL) ARCHES->gdbarch can used to access
1439 values from the previously selected architecture for this
59837fe0 1440 architecture family.
104c1213
JM
1441
1442 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1443 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1444 gdbarch'' from the ARCHES list - indicating that the new
1445 architecture is just a synonym for an earlier architecture (see
1446 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1447 - that describes the selected architecture (see gdbarch_alloc()).
1448
1449 The DUMP_TDEP function shall print out all target specific values.
1450 Care should be taken to ensure that the function works in both the
0963b4bd 1451 multi-arch and non- multi-arch cases. */
104c1213
JM
1452
1453struct gdbarch_list
1454{
1455 struct gdbarch *gdbarch;
1456 struct gdbarch_list *next;
1457};
1458
1459struct gdbarch_info
1460{
0963b4bd 1461 /* Use default: NULL (ZERO). */
104c1213
JM
1462 const struct bfd_arch_info *bfd_arch_info;
1463
428721aa 1464 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1465 enum bfd_endian byte_order;
104c1213 1466
94123b4f 1467 enum bfd_endian byte_order_for_code;
9d4fde75 1468
0963b4bd 1469 /* Use default: NULL (ZERO). */
104c1213
JM
1470 bfd *abfd;
1471
0963b4bd 1472 /* Use default: NULL (ZERO). */
ede5f151 1473 void *tdep_info;
4be87837
DJ
1474
1475 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1476 enum gdb_osabi osabi;
424163ea
DJ
1477
1478 /* Use default: NULL (ZERO). */
1479 const struct target_desc *target_desc;
104c1213
JM
1480};
1481
1482typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1483typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1484
4b9b3959 1485/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1486extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1487
4b9b3959
AC
1488extern void gdbarch_register (enum bfd_architecture architecture,
1489 gdbarch_init_ftype *,
1490 gdbarch_dump_tdep_ftype *);
1491
104c1213 1492
b4a20239
AC
1493/* Return a freshly allocated, NULL terminated, array of the valid
1494 architecture names. Since architectures are registered during the
1495 _initialize phase this function only returns useful information
0963b4bd 1496 once initialization has been completed. */
b4a20239
AC
1497
1498extern const char **gdbarch_printable_names (void);
1499
1500
104c1213 1501/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1502 matches the information provided by INFO. */
104c1213 1503
424163ea 1504extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1505
1506
1507/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1508 basic initialization using values obtained from the INFO and TDEP
104c1213 1509 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1510 initialization of the object. */
104c1213
JM
1511
1512extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1513
1514
4b9b3959
AC
1515/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1516 It is assumed that the caller freeds the \`\`struct
0963b4bd 1517 gdbarch_tdep''. */
4b9b3959 1518
058f20d5
JB
1519extern void gdbarch_free (struct gdbarch *);
1520
1521
aebd7893
AC
1522/* Helper function. Allocate memory from the \`\`struct gdbarch''
1523 obstack. The memory is freed when the corresponding architecture
1524 is also freed. */
1525
1526extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1527#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1528#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1529
6c214e7c
PP
1530/* Duplicate STRING, returning an equivalent string that's allocated on the
1531 obstack associated with GDBARCH. The string is freed when the corresponding
1532 architecture is also freed. */
1533
1534extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1535
0963b4bd 1536/* Helper function. Force an update of the current architecture.
104c1213 1537
b732d07d
AC
1538 The actual architecture selected is determined by INFO, \`\`(gdb) set
1539 architecture'' et.al., the existing architecture and BFD's default
1540 architecture. INFO should be initialized to zero and then selected
1541 fields should be updated.
104c1213 1542
0963b4bd 1543 Returns non-zero if the update succeeds. */
16f33e29
AC
1544
1545extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1546
1547
ebdba546
AC
1548/* Helper function. Find an architecture matching info.
1549
1550 INFO should be initialized using gdbarch_info_init, relevant fields
1551 set, and then finished using gdbarch_info_fill.
1552
1553 Returns the corresponding architecture, or NULL if no matching
59837fe0 1554 architecture was found. */
ebdba546
AC
1555
1556extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1557
1558
aff68abb 1559/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1560
aff68abb 1561extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1562
104c1213
JM
1563
1564/* Register per-architecture data-pointer.
1565
1566 Reserve space for a per-architecture data-pointer. An identifier
1567 for the reserved data-pointer is returned. That identifer should
95160752 1568 be saved in a local static variable.
104c1213 1569
fcc1c85c
AC
1570 Memory for the per-architecture data shall be allocated using
1571 gdbarch_obstack_zalloc. That memory will be deleted when the
1572 corresponding architecture object is deleted.
104c1213 1573
95160752
AC
1574 When a previously created architecture is re-selected, the
1575 per-architecture data-pointer for that previous architecture is
76860b5f 1576 restored. INIT() is not re-called.
104c1213
JM
1577
1578 Multiple registrarants for any architecture are allowed (and
1579 strongly encouraged). */
1580
95160752 1581struct gdbarch_data;
104c1213 1582
030f20e1
AC
1583typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1584extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1585typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1586extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1587extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1588 struct gdbarch_data *data,
1589 void *pointer);
104c1213 1590
451fbdda 1591extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1592
1593
0fa6923a 1594/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1595 byte-order, ...) using information found in the BFD. */
104c1213
JM
1596
1597extern void set_gdbarch_from_file (bfd *);
1598
1599
e514a9d6
JM
1600/* Initialize the current architecture to the "first" one we find on
1601 our list. */
1602
1603extern void initialize_current_architecture (void);
1604
104c1213 1605/* gdbarch trace variable */
ccce17b0 1606extern unsigned int gdbarch_debug;
104c1213 1607
4b9b3959 1608extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1609
1610#endif
1611EOF
1612exec 1>&2
1613#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1614compare_new gdbarch.h
104c1213
JM
1615
1616
1617#
1618# C file
1619#
1620
1621exec > new-gdbarch.c
1622copyright
1623cat <<EOF
1624
1625#include "defs.h"
7355ddba 1626#include "arch-utils.h"
104c1213 1627
104c1213 1628#include "gdbcmd.h"
faaf634c 1629#include "inferior.h"
104c1213
JM
1630#include "symcat.h"
1631
f0d4cc9e 1632#include "floatformat.h"
b59ff9d5 1633#include "reggroups.h"
4be87837 1634#include "osabi.h"
aebd7893 1635#include "gdb_obstack.h"
383f836e 1636#include "observer.h"
a3ecef73 1637#include "regcache.h"
19630284 1638#include "objfiles.h"
2faa3447 1639#include "auxv.h"
95160752 1640
104c1213
JM
1641/* Static function declarations */
1642
b3cc3077 1643static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1644
104c1213
JM
1645/* Non-zero if we want to trace architecture code. */
1646
1647#ifndef GDBARCH_DEBUG
1648#define GDBARCH_DEBUG 0
1649#endif
ccce17b0 1650unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1651static void
1652show_gdbarch_debug (struct ui_file *file, int from_tty,
1653 struct cmd_list_element *c, const char *value)
1654{
1655 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1656}
104c1213 1657
456fcf94 1658static const char *
8da61cc4 1659pformat (const struct floatformat **format)
456fcf94
AC
1660{
1661 if (format == NULL)
1662 return "(null)";
1663 else
8da61cc4
DJ
1664 /* Just print out one of them - this is only for diagnostics. */
1665 return format[0]->name;
456fcf94
AC
1666}
1667
08105857
PA
1668static const char *
1669pstring (const char *string)
1670{
1671 if (string == NULL)
1672 return "(null)";
1673 return string;
05c0465e
SDJ
1674}
1675
1676/* Helper function to print a list of strings, represented as "const
1677 char *const *". The list is printed comma-separated. */
1678
1679static char *
1680pstring_list (const char *const *list)
1681{
1682 static char ret[100];
1683 const char *const *p;
1684 size_t offset = 0;
1685
1686 if (list == NULL)
1687 return "(null)";
1688
1689 ret[0] = '\0';
1690 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1691 {
1692 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1693 offset += 2 + s;
1694 }
1695
1696 if (offset > 0)
1697 {
1698 gdb_assert (offset - 2 < sizeof (ret));
1699 ret[offset - 2] = '\0';
1700 }
1701
1702 return ret;
08105857
PA
1703}
1704
104c1213
JM
1705EOF
1706
1707# gdbarch open the gdbarch object
3d9a5942 1708printf "\n"
0963b4bd 1709printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1710printf "\n"
1711printf "struct gdbarch\n"
1712printf "{\n"
76860b5f
AC
1713printf " /* Has this architecture been fully initialized? */\n"
1714printf " int initialized_p;\n"
aebd7893
AC
1715printf "\n"
1716printf " /* An obstack bound to the lifetime of the architecture. */\n"
1717printf " struct obstack *obstack;\n"
1718printf "\n"
0963b4bd 1719printf " /* basic architectural information. */\n"
34620563 1720function_list | while do_read
104c1213 1721do
2ada493a
AC
1722 if class_is_info_p
1723 then
3d9a5942 1724 printf " ${returntype} ${function};\n"
2ada493a 1725 fi
104c1213 1726done
3d9a5942 1727printf "\n"
0963b4bd 1728printf " /* target specific vector. */\n"
3d9a5942
AC
1729printf " struct gdbarch_tdep *tdep;\n"
1730printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1731printf "\n"
0963b4bd 1732printf " /* per-architecture data-pointers. */\n"
95160752 1733printf " unsigned nr_data;\n"
3d9a5942
AC
1734printf " void **data;\n"
1735printf "\n"
104c1213
JM
1736cat <<EOF
1737 /* Multi-arch values.
1738
1739 When extending this structure you must:
1740
1741 Add the field below.
1742
1743 Declare set/get functions and define the corresponding
1744 macro in gdbarch.h.
1745
1746 gdbarch_alloc(): If zero/NULL is not a suitable default,
1747 initialize the new field.
1748
1749 verify_gdbarch(): Confirm that the target updated the field
1750 correctly.
1751
7e73cedf 1752 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1753 field is dumped out
1754
104c1213
JM
1755 get_gdbarch(): Implement the set/get functions (probably using
1756 the macro's as shortcuts).
1757
1758 */
1759
1760EOF
34620563 1761function_list | while do_read
104c1213 1762do
2ada493a
AC
1763 if class_is_variable_p
1764 then
3d9a5942 1765 printf " ${returntype} ${function};\n"
2ada493a
AC
1766 elif class_is_function_p
1767 then
2f9b146e 1768 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1769 fi
104c1213 1770done
3d9a5942 1771printf "};\n"
104c1213 1772
104c1213 1773# Create a new gdbarch struct
104c1213 1774cat <<EOF
7de2341d 1775
66b43ecb 1776/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1777 \`\`struct gdbarch_info''. */
104c1213 1778EOF
3d9a5942 1779printf "\n"
104c1213
JM
1780cat <<EOF
1781struct gdbarch *
1782gdbarch_alloc (const struct gdbarch_info *info,
1783 struct gdbarch_tdep *tdep)
1784{
be7811ad 1785 struct gdbarch *gdbarch;
aebd7893
AC
1786
1787 /* Create an obstack for allocating all the per-architecture memory,
1788 then use that to allocate the architecture vector. */
70ba0933 1789 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1790 obstack_init (obstack);
8d749320 1791 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1792 memset (gdbarch, 0, sizeof (*gdbarch));
1793 gdbarch->obstack = obstack;
85de9627 1794
be7811ad 1795 alloc_gdbarch_data (gdbarch);
85de9627 1796
be7811ad 1797 gdbarch->tdep = tdep;
104c1213 1798EOF
3d9a5942 1799printf "\n"
34620563 1800function_list | while do_read
104c1213 1801do
2ada493a
AC
1802 if class_is_info_p
1803 then
be7811ad 1804 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1805 fi
104c1213 1806done
3d9a5942 1807printf "\n"
0963b4bd 1808printf " /* Force the explicit initialization of these. */\n"
34620563 1809function_list | while do_read
104c1213 1810do
2ada493a
AC
1811 if class_is_function_p || class_is_variable_p
1812 then
72e74a21 1813 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1814 then
be7811ad 1815 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1816 fi
2ada493a 1817 fi
104c1213
JM
1818done
1819cat <<EOF
1820 /* gdbarch_alloc() */
1821
be7811ad 1822 return gdbarch;
104c1213
JM
1823}
1824EOF
1825
058f20d5 1826# Free a gdbarch struct.
3d9a5942
AC
1827printf "\n"
1828printf "\n"
058f20d5 1829cat <<EOF
aebd7893
AC
1830/* Allocate extra space using the per-architecture obstack. */
1831
1832void *
1833gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1834{
1835 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1836
aebd7893
AC
1837 memset (data, 0, size);
1838 return data;
1839}
1840
6c214e7c
PP
1841/* See gdbarch.h. */
1842
1843char *
1844gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1845{
1846 return obstack_strdup (arch->obstack, string);
1847}
1848
aebd7893 1849
058f20d5
JB
1850/* Free a gdbarch struct. This should never happen in normal
1851 operation --- once you've created a gdbarch, you keep it around.
1852 However, if an architecture's init function encounters an error
1853 building the structure, it may need to clean up a partially
1854 constructed gdbarch. */
4b9b3959 1855
058f20d5
JB
1856void
1857gdbarch_free (struct gdbarch *arch)
1858{
aebd7893 1859 struct obstack *obstack;
05c547f6 1860
95160752 1861 gdb_assert (arch != NULL);
aebd7893
AC
1862 gdb_assert (!arch->initialized_p);
1863 obstack = arch->obstack;
1864 obstack_free (obstack, 0); /* Includes the ARCH. */
1865 xfree (obstack);
058f20d5
JB
1866}
1867EOF
1868
104c1213 1869# verify a new architecture
104c1213 1870cat <<EOF
db446970
AC
1871
1872
1873/* Ensure that all values in a GDBARCH are reasonable. */
1874
104c1213 1875static void
be7811ad 1876verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1877{
d7e74731 1878 string_file log;
05c547f6 1879
104c1213 1880 /* fundamental */
be7811ad 1881 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1882 log.puts ("\n\tbyte-order");
be7811ad 1883 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1884 log.puts ("\n\tbfd_arch_info");
0963b4bd 1885 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1886EOF
34620563 1887function_list | while do_read
104c1213 1888do
2ada493a
AC
1889 if class_is_function_p || class_is_variable_p
1890 then
72e74a21 1891 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1892 then
3d9a5942 1893 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1894 elif class_is_predicate_p
1895 then
0963b4bd 1896 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1897 # FIXME: See do_read for potential simplification
72e74a21 1898 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1899 then
3d9a5942 1900 printf " if (${invalid_p})\n"
be7811ad 1901 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1902 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1903 then
be7811ad
MD
1904 printf " if (gdbarch->${function} == ${predefault})\n"
1905 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1906 elif [ -n "${postdefault}" ]
f0d4cc9e 1907 then
be7811ad
MD
1908 printf " if (gdbarch->${function} == 0)\n"
1909 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1910 elif [ -n "${invalid_p}" ]
104c1213 1911 then
4d60522e 1912 printf " if (${invalid_p})\n"
d7e74731 1913 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 1914 elif [ -n "${predefault}" ]
104c1213 1915 then
be7811ad 1916 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 1917 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 1918 fi
2ada493a 1919 fi
104c1213
JM
1920done
1921cat <<EOF
d7e74731 1922 if (!log.empty ())
f16a1923 1923 internal_error (__FILE__, __LINE__,
85c07804 1924 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 1925 log.c_str ());
104c1213
JM
1926}
1927EOF
1928
1929# dump the structure
3d9a5942
AC
1930printf "\n"
1931printf "\n"
104c1213 1932cat <<EOF
0963b4bd 1933/* Print out the details of the current architecture. */
4b9b3959 1934
104c1213 1935void
be7811ad 1936gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1937{
b78960be 1938 const char *gdb_nm_file = "<not-defined>";
05c547f6 1939
b78960be
AC
1940#if defined (GDB_NM_FILE)
1941 gdb_nm_file = GDB_NM_FILE;
1942#endif
1943 fprintf_unfiltered (file,
1944 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1945 gdb_nm_file);
104c1213 1946EOF
97030eea 1947function_list | sort -t: -k 3 | while do_read
104c1213 1948do
1e9f55d0
AC
1949 # First the predicate
1950 if class_is_predicate_p
1951 then
7996bcec 1952 printf " fprintf_unfiltered (file,\n"
48f7351b 1953 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1954 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1955 fi
48f7351b 1956 # Print the corresponding value.
283354d8 1957 if class_is_function_p
4b9b3959 1958 then
7996bcec 1959 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1960 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1961 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1962 else
48f7351b 1963 # It is a variable
2f9b146e
AC
1964 case "${print}:${returntype}" in
1965 :CORE_ADDR )
0b1553bc
UW
1966 fmt="%s"
1967 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1968 ;;
2f9b146e 1969 :* )
48f7351b 1970 fmt="%s"
623d3eb1 1971 print="plongest (gdbarch->${function})"
48f7351b
AC
1972 ;;
1973 * )
2f9b146e 1974 fmt="%s"
48f7351b
AC
1975 ;;
1976 esac
3d9a5942 1977 printf " fprintf_unfiltered (file,\n"
48f7351b 1978 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1979 printf " ${print});\n"
2ada493a 1980 fi
104c1213 1981done
381323f4 1982cat <<EOF
be7811ad
MD
1983 if (gdbarch->dump_tdep != NULL)
1984 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1985}
1986EOF
104c1213
JM
1987
1988
1989# GET/SET
3d9a5942 1990printf "\n"
104c1213
JM
1991cat <<EOF
1992struct gdbarch_tdep *
1993gdbarch_tdep (struct gdbarch *gdbarch)
1994{
1995 if (gdbarch_debug >= 2)
3d9a5942 1996 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1997 return gdbarch->tdep;
1998}
1999EOF
3d9a5942 2000printf "\n"
34620563 2001function_list | while do_read
104c1213 2002do
2ada493a
AC
2003 if class_is_predicate_p
2004 then
3d9a5942
AC
2005 printf "\n"
2006 printf "int\n"
2007 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2008 printf "{\n"
8de9bdc4 2009 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2010 printf " return ${predicate};\n"
3d9a5942 2011 printf "}\n"
2ada493a
AC
2012 fi
2013 if class_is_function_p
2014 then
3d9a5942
AC
2015 printf "\n"
2016 printf "${returntype}\n"
72e74a21 2017 if [ "x${formal}" = "xvoid" ]
104c1213 2018 then
3d9a5942 2019 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2020 else
3d9a5942 2021 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2022 fi
3d9a5942 2023 printf "{\n"
8de9bdc4 2024 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2025 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2026 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2027 then
2028 # Allow a call to a function with a predicate.
956ac328 2029 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2030 fi
3d9a5942
AC
2031 printf " if (gdbarch_debug >= 2)\n"
2032 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2033 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2034 then
2035 if class_is_multiarch_p
2036 then
2037 params="gdbarch"
2038 else
2039 params=""
2040 fi
2041 else
2042 if class_is_multiarch_p
2043 then
2044 params="gdbarch, ${actual}"
2045 else
2046 params="${actual}"
2047 fi
2048 fi
72e74a21 2049 if [ "x${returntype}" = "xvoid" ]
104c1213 2050 then
4a5c6a1d 2051 printf " gdbarch->${function} (${params});\n"
104c1213 2052 else
4a5c6a1d 2053 printf " return gdbarch->${function} (${params});\n"
104c1213 2054 fi
3d9a5942
AC
2055 printf "}\n"
2056 printf "\n"
2057 printf "void\n"
2058 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2059 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2060 printf "{\n"
2061 printf " gdbarch->${function} = ${function};\n"
2062 printf "}\n"
2ada493a
AC
2063 elif class_is_variable_p
2064 then
3d9a5942
AC
2065 printf "\n"
2066 printf "${returntype}\n"
2067 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2068 printf "{\n"
8de9bdc4 2069 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2070 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2071 then
3d9a5942 2072 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2073 elif [ -n "${invalid_p}" ]
104c1213 2074 then
956ac328
AC
2075 printf " /* Check variable is valid. */\n"
2076 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2077 elif [ -n "${predefault}" ]
104c1213 2078 then
956ac328
AC
2079 printf " /* Check variable changed from pre-default. */\n"
2080 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2081 fi
3d9a5942
AC
2082 printf " if (gdbarch_debug >= 2)\n"
2083 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2084 printf " return gdbarch->${function};\n"
2085 printf "}\n"
2086 printf "\n"
2087 printf "void\n"
2088 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2089 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2090 printf "{\n"
2091 printf " gdbarch->${function} = ${function};\n"
2092 printf "}\n"
2ada493a
AC
2093 elif class_is_info_p
2094 then
3d9a5942
AC
2095 printf "\n"
2096 printf "${returntype}\n"
2097 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2098 printf "{\n"
8de9bdc4 2099 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2100 printf " if (gdbarch_debug >= 2)\n"
2101 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2102 printf " return gdbarch->${function};\n"
2103 printf "}\n"
2ada493a 2104 fi
104c1213
JM
2105done
2106
2107# All the trailing guff
2108cat <<EOF
2109
2110
f44c642f 2111/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2112 modules. */
104c1213
JM
2113
2114struct gdbarch_data
2115{
95160752 2116 unsigned index;
76860b5f 2117 int init_p;
030f20e1
AC
2118 gdbarch_data_pre_init_ftype *pre_init;
2119 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2120};
2121
2122struct gdbarch_data_registration
2123{
104c1213
JM
2124 struct gdbarch_data *data;
2125 struct gdbarch_data_registration *next;
2126};
2127
f44c642f 2128struct gdbarch_data_registry
104c1213 2129{
95160752 2130 unsigned nr;
104c1213
JM
2131 struct gdbarch_data_registration *registrations;
2132};
2133
f44c642f 2134struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2135{
2136 0, NULL,
2137};
2138
030f20e1
AC
2139static struct gdbarch_data *
2140gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2141 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2142{
2143 struct gdbarch_data_registration **curr;
05c547f6
MS
2144
2145 /* Append the new registration. */
f44c642f 2146 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2147 (*curr) != NULL;
2148 curr = &(*curr)->next);
70ba0933 2149 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2150 (*curr)->next = NULL;
70ba0933 2151 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2152 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2153 (*curr)->data->pre_init = pre_init;
2154 (*curr)->data->post_init = post_init;
76860b5f 2155 (*curr)->data->init_p = 1;
104c1213
JM
2156 return (*curr)->data;
2157}
2158
030f20e1
AC
2159struct gdbarch_data *
2160gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2161{
2162 return gdbarch_data_register (pre_init, NULL);
2163}
2164
2165struct gdbarch_data *
2166gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2167{
2168 return gdbarch_data_register (NULL, post_init);
2169}
104c1213 2170
0963b4bd 2171/* Create/delete the gdbarch data vector. */
95160752
AC
2172
2173static void
b3cc3077 2174alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2175{
b3cc3077
JB
2176 gdb_assert (gdbarch->data == NULL);
2177 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2178 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2179}
3c875b6f 2180
76860b5f 2181/* Initialize the current value of the specified per-architecture
0963b4bd 2182 data-pointer. */
b3cc3077 2183
95160752 2184void
030f20e1
AC
2185deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2186 struct gdbarch_data *data,
2187 void *pointer)
95160752
AC
2188{
2189 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2190 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2191 gdb_assert (data->pre_init == NULL);
95160752
AC
2192 gdbarch->data[data->index] = pointer;
2193}
2194
104c1213 2195/* Return the current value of the specified per-architecture
0963b4bd 2196 data-pointer. */
104c1213
JM
2197
2198void *
451fbdda 2199gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2200{
451fbdda 2201 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2202 if (gdbarch->data[data->index] == NULL)
76860b5f 2203 {
030f20e1
AC
2204 /* The data-pointer isn't initialized, call init() to get a
2205 value. */
2206 if (data->pre_init != NULL)
2207 /* Mid architecture creation: pass just the obstack, and not
2208 the entire architecture, as that way it isn't possible for
2209 pre-init code to refer to undefined architecture
2210 fields. */
2211 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2212 else if (gdbarch->initialized_p
2213 && data->post_init != NULL)
2214 /* Post architecture creation: pass the entire architecture
2215 (as all fields are valid), but be careful to also detect
2216 recursive references. */
2217 {
2218 gdb_assert (data->init_p);
2219 data->init_p = 0;
2220 gdbarch->data[data->index] = data->post_init (gdbarch);
2221 data->init_p = 1;
2222 }
2223 else
2224 /* The architecture initialization hasn't completed - punt -
2225 hope that the caller knows what they are doing. Once
2226 deprecated_set_gdbarch_data has been initialized, this can be
2227 changed to an internal error. */
2228 return NULL;
76860b5f
AC
2229 gdb_assert (gdbarch->data[data->index] != NULL);
2230 }
451fbdda 2231 return gdbarch->data[data->index];
104c1213
JM
2232}
2233
2234
0963b4bd 2235/* Keep a registry of the architectures known by GDB. */
104c1213 2236
4b9b3959 2237struct gdbarch_registration
104c1213
JM
2238{
2239 enum bfd_architecture bfd_architecture;
2240 gdbarch_init_ftype *init;
4b9b3959 2241 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2242 struct gdbarch_list *arches;
4b9b3959 2243 struct gdbarch_registration *next;
104c1213
JM
2244};
2245
f44c642f 2246static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2247
b4a20239
AC
2248static void
2249append_name (const char ***buf, int *nr, const char *name)
2250{
1dc7a623 2251 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2252 (*buf)[*nr] = name;
2253 *nr += 1;
2254}
2255
2256const char **
2257gdbarch_printable_names (void)
2258{
7996bcec 2259 /* Accumulate a list of names based on the registed list of
0963b4bd 2260 architectures. */
7996bcec
AC
2261 int nr_arches = 0;
2262 const char **arches = NULL;
2263 struct gdbarch_registration *rego;
05c547f6 2264
7996bcec
AC
2265 for (rego = gdbarch_registry;
2266 rego != NULL;
2267 rego = rego->next)
b4a20239 2268 {
7996bcec
AC
2269 const struct bfd_arch_info *ap;
2270 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2271 if (ap == NULL)
2272 internal_error (__FILE__, __LINE__,
85c07804 2273 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2274 do
2275 {
2276 append_name (&arches, &nr_arches, ap->printable_name);
2277 ap = ap->next;
2278 }
2279 while (ap != NULL);
b4a20239 2280 }
7996bcec
AC
2281 append_name (&arches, &nr_arches, NULL);
2282 return arches;
b4a20239
AC
2283}
2284
2285
104c1213 2286void
4b9b3959
AC
2287gdbarch_register (enum bfd_architecture bfd_architecture,
2288 gdbarch_init_ftype *init,
2289 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2290{
4b9b3959 2291 struct gdbarch_registration **curr;
104c1213 2292 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2293
ec3d358c 2294 /* Check that BFD recognizes this architecture */
104c1213
JM
2295 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2296 if (bfd_arch_info == NULL)
2297 {
8e65ff28 2298 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2299 _("gdbarch: Attempt to register "
2300 "unknown architecture (%d)"),
8e65ff28 2301 bfd_architecture);
104c1213 2302 }
0963b4bd 2303 /* Check that we haven't seen this architecture before. */
f44c642f 2304 for (curr = &gdbarch_registry;
104c1213
JM
2305 (*curr) != NULL;
2306 curr = &(*curr)->next)
2307 {
2308 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2309 internal_error (__FILE__, __LINE__,
64b9b334 2310 _("gdbarch: Duplicate registration "
0963b4bd 2311 "of architecture (%s)"),
8e65ff28 2312 bfd_arch_info->printable_name);
104c1213
JM
2313 }
2314 /* log it */
2315 if (gdbarch_debug)
30737ed9 2316 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2317 bfd_arch_info->printable_name,
30737ed9 2318 host_address_to_string (init));
104c1213 2319 /* Append it */
70ba0933 2320 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2321 (*curr)->bfd_architecture = bfd_architecture;
2322 (*curr)->init = init;
4b9b3959 2323 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2324 (*curr)->arches = NULL;
2325 (*curr)->next = NULL;
4b9b3959
AC
2326}
2327
2328void
2329register_gdbarch_init (enum bfd_architecture bfd_architecture,
2330 gdbarch_init_ftype *init)
2331{
2332 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2333}
104c1213
JM
2334
2335
424163ea 2336/* Look for an architecture using gdbarch_info. */
104c1213
JM
2337
2338struct gdbarch_list *
2339gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2340 const struct gdbarch_info *info)
2341{
2342 for (; arches != NULL; arches = arches->next)
2343 {
2344 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2345 continue;
2346 if (info->byte_order != arches->gdbarch->byte_order)
2347 continue;
4be87837
DJ
2348 if (info->osabi != arches->gdbarch->osabi)
2349 continue;
424163ea
DJ
2350 if (info->target_desc != arches->gdbarch->target_desc)
2351 continue;
104c1213
JM
2352 return arches;
2353 }
2354 return NULL;
2355}
2356
2357
ebdba546 2358/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2359 architecture if needed. Return that new architecture. */
104c1213 2360
59837fe0
UW
2361struct gdbarch *
2362gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2363{
2364 struct gdbarch *new_gdbarch;
4b9b3959 2365 struct gdbarch_registration *rego;
104c1213 2366
b732d07d 2367 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2368 sources: "set ..."; INFOabfd supplied; and the global
2369 defaults. */
2370 gdbarch_info_fill (&info);
4be87837 2371
0963b4bd 2372 /* Must have found some sort of architecture. */
b732d07d 2373 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2374
2375 if (gdbarch_debug)
2376 {
2377 fprintf_unfiltered (gdb_stdlog,
59837fe0 2378 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2379 (info.bfd_arch_info != NULL
2380 ? info.bfd_arch_info->printable_name
2381 : "(null)"));
2382 fprintf_unfiltered (gdb_stdlog,
59837fe0 2383 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2384 info.byte_order,
d7449b42 2385 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2386 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2387 : "default"));
4be87837 2388 fprintf_unfiltered (gdb_stdlog,
59837fe0 2389 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2390 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2391 fprintf_unfiltered (gdb_stdlog,
59837fe0 2392 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2393 host_address_to_string (info.abfd));
104c1213 2394 fprintf_unfiltered (gdb_stdlog,
59837fe0 2395 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2396 host_address_to_string (info.tdep_info));
104c1213
JM
2397 }
2398
ebdba546 2399 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2400 for (rego = gdbarch_registry;
2401 rego != NULL;
2402 rego = rego->next)
2403 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2404 break;
2405 if (rego == NULL)
2406 {
2407 if (gdbarch_debug)
59837fe0 2408 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2409 "No matching architecture\n");
b732d07d
AC
2410 return 0;
2411 }
2412
ebdba546 2413 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2414 new_gdbarch = rego->init (info, rego->arches);
2415
ebdba546
AC
2416 /* Did the tdep code like it? No. Reject the change and revert to
2417 the old architecture. */
104c1213
JM
2418 if (new_gdbarch == NULL)
2419 {
2420 if (gdbarch_debug)
59837fe0 2421 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2422 "Target rejected architecture\n");
2423 return NULL;
104c1213
JM
2424 }
2425
ebdba546
AC
2426 /* Is this a pre-existing architecture (as determined by already
2427 being initialized)? Move it to the front of the architecture
2428 list (keeping the list sorted Most Recently Used). */
2429 if (new_gdbarch->initialized_p)
104c1213 2430 {
ebdba546 2431 struct gdbarch_list **list;
fe978cb0 2432 struct gdbarch_list *self;
104c1213 2433 if (gdbarch_debug)
59837fe0 2434 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2435 "Previous architecture %s (%s) selected\n",
2436 host_address_to_string (new_gdbarch),
104c1213 2437 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2438 /* Find the existing arch in the list. */
2439 for (list = &rego->arches;
2440 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2441 list = &(*list)->next);
2442 /* It had better be in the list of architectures. */
2443 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2444 /* Unlink SELF. */
2445 self = (*list);
2446 (*list) = self->next;
2447 /* Insert SELF at the front. */
2448 self->next = rego->arches;
2449 rego->arches = self;
ebdba546
AC
2450 /* Return it. */
2451 return new_gdbarch;
104c1213
JM
2452 }
2453
ebdba546
AC
2454 /* It's a new architecture. */
2455 if (gdbarch_debug)
59837fe0 2456 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2457 "New architecture %s (%s) selected\n",
2458 host_address_to_string (new_gdbarch),
ebdba546
AC
2459 new_gdbarch->bfd_arch_info->printable_name);
2460
2461 /* Insert the new architecture into the front of the architecture
2462 list (keep the list sorted Most Recently Used). */
0f79675b 2463 {
fe978cb0
PA
2464 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2465 self->next = rego->arches;
2466 self->gdbarch = new_gdbarch;
2467 rego->arches = self;
0f79675b 2468 }
104c1213 2469
4b9b3959
AC
2470 /* Check that the newly installed architecture is valid. Plug in
2471 any post init values. */
2472 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2473 verify_gdbarch (new_gdbarch);
ebdba546 2474 new_gdbarch->initialized_p = 1;
104c1213 2475
4b9b3959 2476 if (gdbarch_debug)
ebdba546
AC
2477 gdbarch_dump (new_gdbarch, gdb_stdlog);
2478
2479 return new_gdbarch;
2480}
2481
e487cc15 2482/* Make the specified architecture current. */
ebdba546
AC
2483
2484void
aff68abb 2485set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2486{
2487 gdb_assert (new_gdbarch != NULL);
ebdba546 2488 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2489 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2490 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2491 registers_changed ();
ebdba546 2492}
104c1213 2493
f5656ead 2494/* Return the current inferior's arch. */
6ecd4729
PA
2495
2496struct gdbarch *
f5656ead 2497target_gdbarch (void)
6ecd4729
PA
2498{
2499 return current_inferior ()->gdbarch;
2500}
2501
104c1213 2502extern void _initialize_gdbarch (void);
b4a20239 2503
104c1213 2504void
34620563 2505_initialize_gdbarch (void)
104c1213 2506{
ccce17b0 2507 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2508Set architecture debugging."), _("\\
2509Show architecture debugging."), _("\\
2510When non-zero, architecture debugging is enabled."),
2511 NULL,
920d2a44 2512 show_gdbarch_debug,
85c07804 2513 &setdebuglist, &showdebuglist);
104c1213
JM
2514}
2515EOF
2516
2517# close things off
2518exec 1>&2
2519#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2520compare_new gdbarch.c
This page took 1.790071 seconds and 4 git commands to generate.