Remove gdb_string.h from gdbarch.sh
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
28e7fd62 5# Copyright (C) 1998-2013 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
97030eea 343i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 344i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea
UW
481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
482M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
502# Construct a value representing the contents of register REGNUM in
503# frame FRAME, interpreted as type TYPE. The routine needs to
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
97030eea 506f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 533f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 534m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
535# Return the adjusted address and kind to use for Z0/Z1 packets.
536# KIND is usually the memory length of the breakpoint, but may have a
537# different target-specific meaning.
0e05dfcb 538m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 539M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
540m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
541m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 542v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
543
544# A function can be addressed by either it's "pointer" (possibly a
545# descriptor address) or "entry point" (first executable instruction).
546# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 547# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
548# a simplified subset of that functionality - the function's address
549# corresponds to the "function pointer" and the function's start
550# corresponds to the "function entry point" - and hence is redundant.
551
97030eea 552v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 553
123dc839
DJ
554# Return the remote protocol register number associated with this
555# register. Normally the identity mapping.
97030eea 556m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 557
b2756930 558# Fetch the target specific address used to represent a load module.
97030eea 559F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 560#
97030eea
UW
561v:CORE_ADDR:frame_args_skip:::0:::0
562M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
563M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
564# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
565# frame-base. Enable frame-base before frame-unwind.
97030eea 566F:int:frame_num_args:struct frame_info *frame:frame
104c1213 567#
97030eea
UW
568M:CORE_ADDR:frame_align:CORE_ADDR address:address
569m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
570v:int:frame_red_zone_size
f0d4cc9e 571#
97030eea 572m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
573# On some machines there are bits in addresses which are not really
574# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 575# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
576# we get a "real" address such as one would find in a symbol table.
577# This is used only for addresses of instructions, and even then I'm
578# not sure it's used in all contexts. It exists to deal with there
579# being a few stray bits in the PC which would mislead us, not as some
580# sort of generic thing to handle alignment or segmentation (it's
581# possible it should be in TARGET_READ_PC instead).
24568a2c 582m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
583
584# FIXME/cagney/2001-01-18: This should be split in two. A target method that
585# indicates if the target needs software single step. An ISA method to
586# implement it.
587#
588# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
589# breakpoints using the breakpoint system instead of blatting memory directly
590# (as with rs6000).
64c4637f 591#
e6590a1b
UW
592# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
593# target can single step. If not, then implement single step using breakpoints.
64c4637f 594#
6f112b18 595# A return value of 1 means that the software_single_step breakpoints
e6590a1b 596# were inserted; 0 means they were not.
97030eea 597F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 598
3352ef37
AC
599# Return non-zero if the processor is executing a delay slot and a
600# further single-step is needed before the instruction finishes.
97030eea 601M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 602# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 603# disassembler. Perhaps objdump can handle it?
97030eea
UW
604f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
605f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
606
607
cfd8ab24 608# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
609# evaluates non-zero, this is the address where the debugger will place
610# a step-resume breakpoint to get us past the dynamic linker.
97030eea 611m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 612# Some systems also have trampoline code for returning from shared libs.
2c02bd72 613m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 614
c12260ac
CV
615# A target might have problems with watchpoints as soon as the stack
616# frame of the current function has been destroyed. This mostly happens
617# as the first action in a funtion's epilogue. in_function_epilogue_p()
618# is defined to return a non-zero value if either the given addr is one
619# instruction after the stack destroying instruction up to the trailing
620# return instruction or if we can figure out that the stack frame has
621# already been invalidated regardless of the value of addr. Targets
622# which don't suffer from that problem could just let this functionality
623# untouched.
97030eea 624m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
625f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
626f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
627v:int:cannot_step_breakpoint:::0:0::0
628v:int:have_nonsteppable_watchpoint:::0:0::0
629F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
630M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
631M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 632# Is a register in a group
97030eea 633m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 634# Fetch the pointer to the ith function argument.
97030eea 635F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
636
637# Return the appropriate register set for a core file section with
638# name SECT_NAME and size SECT_SIZE.
97030eea 639M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 640
17ea7499
CES
641# Supported register notes in a core file.
642v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
643
6432734d
UW
644# Create core file notes
645M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
646
b3ac9c77
SDJ
647# The elfcore writer hook to use to write Linux prpsinfo notes to core
648# files. Most Linux architectures use the same prpsinfo32 or
649# prpsinfo64 layouts, and so won't need to provide this hook, as we
650# call the Linux generic routines in bfd to write prpsinfo notes by
651# default.
652F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
653
35c2fab7
UW
654# Find core file memory regions
655M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
656
de584861
PA
657# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
658# core file into buffer READBUF with length LEN.
97030eea 659M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 660
356a5233
JB
661# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
662# libraries list from core file into buffer READBUF with length LEN.
663M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
664
c0edd9ed 665# How the core target converts a PTID from a core file to a string.
28439f5e
PA
666M:char *:core_pid_to_str:ptid_t ptid:ptid
667
a78c2d62 668# BFD target to use when generating a core file.
86ba1042 669V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 670
0d5de010
DJ
671# If the elements of C++ vtables are in-place function descriptors rather
672# than normal function pointers (which may point to code or a descriptor),
673# set this to one.
97030eea 674v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
675
676# Set if the least significant bit of the delta is used instead of the least
677# significant bit of the pfn for pointers to virtual member functions.
97030eea 678v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
679
680# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 681F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 682
1668ae25 683# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
684V:ULONGEST:max_insn_length:::0:0
685
686# Copy the instruction at FROM to TO, and make any adjustments
687# necessary to single-step it at that address.
688#
689# REGS holds the state the thread's registers will have before
690# executing the copied instruction; the PC in REGS will refer to FROM,
691# not the copy at TO. The caller should update it to point at TO later.
692#
693# Return a pointer to data of the architecture's choice to be passed
694# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
695# the instruction's effects have been completely simulated, with the
696# resulting state written back to REGS.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700#
701# The TO area is only guaranteed to have space for
702# gdbarch_max_insn_length (arch) bytes, so this function must not
703# write more bytes than that to that area.
704#
705# If you do not provide this function, GDB assumes that the
706# architecture does not support displaced stepping.
707#
708# If your architecture doesn't need to adjust instructions before
709# single-stepping them, consider using simple_displaced_step_copy_insn
710# here.
711M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
712
99e40580
UW
713# Return true if GDB should use hardware single-stepping to execute
714# the displaced instruction identified by CLOSURE. If false,
715# GDB will simply restart execution at the displaced instruction
716# location, and it is up to the target to ensure GDB will receive
717# control again (e.g. by placing a software breakpoint instruction
718# into the displaced instruction buffer).
719#
720# The default implementation returns false on all targets that
721# provide a gdbarch_software_single_step routine, and true otherwise.
722m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
723
237fc4c9
PA
724# Fix up the state resulting from successfully single-stepping a
725# displaced instruction, to give the result we would have gotten from
726# stepping the instruction in its original location.
727#
728# REGS is the register state resulting from single-stepping the
729# displaced instruction.
730#
731# CLOSURE is the result from the matching call to
732# gdbarch_displaced_step_copy_insn.
733#
734# If you provide gdbarch_displaced_step_copy_insn.but not this
735# function, then GDB assumes that no fixup is needed after
736# single-stepping the instruction.
737#
738# For a general explanation of displaced stepping and how GDB uses it,
739# see the comments in infrun.c.
740M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
741
742# Free a closure returned by gdbarch_displaced_step_copy_insn.
743#
744# If you provide gdbarch_displaced_step_copy_insn, you must provide
745# this function as well.
746#
747# If your architecture uses closures that don't need to be freed, then
748# you can use simple_displaced_step_free_closure here.
749#
750# For a general explanation of displaced stepping and how GDB uses it,
751# see the comments in infrun.c.
752m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
753
754# Return the address of an appropriate place to put displaced
755# instructions while we step over them. There need only be one such
756# place, since we're only stepping one thread over a breakpoint at a
757# time.
758#
759# For a general explanation of displaced stepping and how GDB uses it,
760# see the comments in infrun.c.
761m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
762
dde08ee1
PA
763# Relocate an instruction to execute at a different address. OLDLOC
764# is the address in the inferior memory where the instruction to
765# relocate is currently at. On input, TO points to the destination
766# where we want the instruction to be copied (and possibly adjusted)
767# to. On output, it points to one past the end of the resulting
768# instruction(s). The effect of executing the instruction at TO shall
769# be the same as if executing it at FROM. For example, call
770# instructions that implicitly push the return address on the stack
771# should be adjusted to return to the instruction after OLDLOC;
772# relative branches, and other PC-relative instructions need the
773# offset adjusted; etc.
774M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
775
1c772458 776# Refresh overlay mapped state for section OSECT.
97030eea 777F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 778
97030eea 779M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
780
781# Handle special encoding of static variables in stabs debug info.
0d5cff50 782F:const char *:static_transform_name:const char *name:name
203c3895 783# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 784v:int:sofun_address_maybe_missing:::0:0::0
1cded358 785
0508c3ec
HZ
786# Parse the instruction at ADDR storing in the record execution log
787# the registers REGCACHE and memory ranges that will be affected when
788# the instruction executes, along with their current values.
789# Return -1 if something goes wrong, 0 otherwise.
790M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
791
3846b520
HZ
792# Save process state after a signal.
793# Return -1 if something goes wrong, 0 otherwise.
2ea28649 794M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 795
22203bbf 796# Signal translation: translate inferior's signal (target's) number
86b49880
PA
797# into GDB's representation. The implementation of this method must
798# be host independent. IOW, don't rely on symbols of the NAT_FILE
799# header (the nm-*.h files), the host <signal.h> header, or similar
800# headers. This is mainly used when cross-debugging core files ---
801# "Live" targets hide the translation behind the target interface
1f8cf220
PA
802# (target_wait, target_resume, etc.).
803M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 804
eb14d406
SDJ
805# Signal translation: translate the GDB's internal signal number into
806# the inferior's signal (target's) representation. The implementation
807# of this method must be host independent. IOW, don't rely on symbols
808# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
809# header, or similar headers.
810# Return the target signal number if found, or -1 if the GDB internal
811# signal number is invalid.
812M:int:gdb_signal_to_target:enum gdb_signal signal:signal
813
4aa995e1
PA
814# Extra signal info inspection.
815#
816# Return a type suitable to inspect extra signal information.
817M:struct type *:get_siginfo_type:void:
818
60c5725c
DJ
819# Record architecture-specific information from the symbol table.
820M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 821
a96d9b2e
SDJ
822# Function for the 'catch syscall' feature.
823
824# Get architecture-specific system calls information from registers.
825M:LONGEST:get_syscall_number:ptid_t ptid:ptid
826
55aa24fb
SDJ
827# SystemTap related fields and functions.
828
829# Prefix used to mark an integer constant on the architecture's assembly
830# For example, on x86 integer constants are written as:
831#
832# \$10 ;; integer constant 10
833#
834# in this case, this prefix would be the character \`\$\'.
08af7a40 835v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
55aa24fb
SDJ
836
837# Suffix used to mark an integer constant on the architecture's assembly.
08af7a40 838v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
55aa24fb
SDJ
839
840# Prefix used to mark a register name on the architecture's assembly.
841# For example, on x86 the register name is written as:
842#
843# \%eax ;; register eax
844#
845# in this case, this prefix would be the character \`\%\'.
08af7a40 846v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
55aa24fb
SDJ
847
848# Suffix used to mark a register name on the architecture's assembly
08af7a40 849v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
55aa24fb
SDJ
850
851# Prefix used to mark a register indirection on the architecture's assembly.
852# For example, on x86 the register indirection is written as:
853#
854# \(\%eax\) ;; indirecting eax
855#
856# in this case, this prefix would be the charater \`\(\'.
857#
858# Please note that we use the indirection prefix also for register
859# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 860v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
55aa24fb
SDJ
861
862# Suffix used to mark a register indirection on the architecture's assembly.
863# For example, on x86 the register indirection is written as:
864#
865# \(\%eax\) ;; indirecting eax
866#
867# in this case, this prefix would be the charater \`\)\'.
868#
869# Please note that we use the indirection suffix also for register
870# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 871v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
55aa24fb
SDJ
872
873# Prefix used to name a register using GDB's nomenclature.
874#
875# For example, on PPC a register is represented by a number in the assembly
876# language (e.g., \`10\' is the 10th general-purpose register). However,
877# inside GDB this same register has an \`r\' appended to its name, so the 10th
878# register would be represented as \`r10\' internally.
08af7a40 879v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
880
881# Suffix used to name a register using GDB's nomenclature.
08af7a40 882v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
883
884# Check if S is a single operand.
885#
886# Single operands can be:
887# \- Literal integers, e.g. \`\$10\' on x86
888# \- Register access, e.g. \`\%eax\' on x86
889# \- Register indirection, e.g. \`\(\%eax\)\' on x86
890# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
891#
892# This function should check for these patterns on the string
893# and return 1 if some were found, or zero otherwise. Please try to match
894# as much info as you can from the string, i.e., if you have to match
895# something like \`\(\%\', do not match just the \`\(\'.
896M:int:stap_is_single_operand:const char *s:s
897
898# Function used to handle a "special case" in the parser.
899#
900# A "special case" is considered to be an unknown token, i.e., a token
901# that the parser does not know how to parse. A good example of special
902# case would be ARM's register displacement syntax:
903#
904# [R0, #4] ;; displacing R0 by 4
905#
906# Since the parser assumes that a register displacement is of the form:
907#
908# <number> <indirection_prefix> <register_name> <indirection_suffix>
909#
910# it means that it will not be able to recognize and parse this odd syntax.
911# Therefore, we should add a special case function that will handle this token.
912#
913# This function should generate the proper expression form of the expression
914# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
915# and so on). It should also return 1 if the parsing was successful, or zero
916# if the token was not recognized as a special token (in this case, returning
917# zero means that the special parser is deferring the parsing to the generic
918# parser), and should advance the buffer pointer (p->arg).
919M:int:stap_parse_special_token:struct stap_parse_info *p:p
920
921
50c71eaf
PA
922# True if the list of shared libraries is one and only for all
923# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
924# This usually means that all processes, although may or may not share
925# an address space, will see the same set of symbols at the same
926# addresses.
50c71eaf 927v:int:has_global_solist:::0:0::0
2567c7d9
PA
928
929# On some targets, even though each inferior has its own private
930# address space, the debug interface takes care of making breakpoints
931# visible to all address spaces automatically. For such cases,
932# this property should be set to true.
933v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
934
935# True if inferiors share an address space (e.g., uClinux).
936m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
937
938# True if a fast tracepoint can be set at an address.
939m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 940
f870a310
TT
941# Return the "auto" target charset.
942f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
943# Return the "auto" target wide charset.
944f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
945
946# If non-empty, this is a file extension that will be opened in place
947# of the file extension reported by the shared library list.
948#
949# This is most useful for toolchains that use a post-linker tool,
950# where the names of the files run on the target differ in extension
951# compared to the names of the files GDB should load for debug info.
952v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
953
954# If true, the target OS has DOS-based file system semantics. That
955# is, absolute paths include a drive name, and the backslash is
956# considered a directory separator.
957v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
958
959# Generate bytecodes to collect the return address in a frame.
960# Since the bytecodes run on the target, possibly with GDB not even
961# connected, the full unwinding machinery is not available, and
962# typically this function will issue bytecodes for one or more likely
963# places that the return address may be found.
964m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
965
3030c96e
UW
966# Implement the "info proc" command.
967M:void:info_proc:char *args, enum info_proc_what what:args, what
968
451b7c33
TT
969# Implement the "info proc" command for core files. Noe that there
970# are two "info_proc"-like methods on gdbarch -- one for core files,
971# one for live targets.
972M:void:core_info_proc:char *args, enum info_proc_what what:args, what
973
19630284
JB
974# Iterate over all objfiles in the order that makes the most sense
975# for the architecture to make global symbol searches.
976#
977# CB is a callback function where OBJFILE is the objfile to be searched,
978# and CB_DATA a pointer to user-defined data (the same data that is passed
979# when calling this gdbarch method). The iteration stops if this function
980# returns nonzero.
981#
982# CB_DATA is a pointer to some user-defined data to be passed to
983# the callback.
984#
985# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
986# inspected when the symbol search was requested.
987m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
988
7e35103a
JB
989# Ravenscar arch-dependent ops.
990v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
104c1213 991EOF
104c1213
JM
992}
993
0b8f9e4d
AC
994#
995# The .log file
996#
997exec > new-gdbarch.log
34620563 998function_list | while do_read
0b8f9e4d
AC
999do
1000 cat <<EOF
2f9b146e 1001${class} ${returntype} ${function} ($formal)
104c1213 1002EOF
3d9a5942
AC
1003 for r in ${read}
1004 do
1005 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1006 done
f0d4cc9e 1007 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1008 then
66d659b1 1009 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1010 kill $$
1011 exit 1
1012 fi
72e74a21 1013 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1014 then
1015 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1016 kill $$
1017 exit 1
1018 fi
a72293e2
AC
1019 if class_is_multiarch_p
1020 then
1021 if class_is_predicate_p ; then :
1022 elif test "x${predefault}" = "x"
1023 then
2f9b146e 1024 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1025 kill $$
1026 exit 1
1027 fi
1028 fi
3d9a5942 1029 echo ""
0b8f9e4d
AC
1030done
1031
1032exec 1>&2
1033compare_new gdbarch.log
1034
104c1213
JM
1035
1036copyright ()
1037{
1038cat <<EOF
c4bfde41
JK
1039/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1040/* vi:set ro: */
59233f88 1041
104c1213 1042/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1043
28e7fd62 1044 Copyright (C) 1998-2013 Free Software Foundation, Inc.
104c1213
JM
1045
1046 This file is part of GDB.
1047
1048 This program is free software; you can redistribute it and/or modify
1049 it under the terms of the GNU General Public License as published by
50efebf8 1050 the Free Software Foundation; either version 3 of the License, or
104c1213 1051 (at your option) any later version.
50efebf8 1052
104c1213
JM
1053 This program is distributed in the hope that it will be useful,
1054 but WITHOUT ANY WARRANTY; without even the implied warranty of
1055 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1056 GNU General Public License for more details.
50efebf8 1057
104c1213 1058 You should have received a copy of the GNU General Public License
50efebf8 1059 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1060
104c1213
JM
1061/* This file was created with the aid of \`\`gdbarch.sh''.
1062
52204a0b 1063 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1064 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1065 against the existing \`\`gdbarch.[hc]''. Any differences found
1066 being reported.
1067
1068 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1069 changes into that script. Conversely, when making sweeping changes
104c1213 1070 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1071 easier. */
104c1213
JM
1072
1073EOF
1074}
1075
1076#
1077# The .h file
1078#
1079
1080exec > new-gdbarch.h
1081copyright
1082cat <<EOF
1083#ifndef GDBARCH_H
1084#define GDBARCH_H
1085
da3331ec
AC
1086struct floatformat;
1087struct ui_file;
104c1213
JM
1088struct frame_info;
1089struct value;
b6af0555 1090struct objfile;
1c772458 1091struct obj_section;
a2cf933a 1092struct minimal_symbol;
049ee0e4 1093struct regcache;
b59ff9d5 1094struct reggroup;
6ce6d90f 1095struct regset;
a89aa300 1096struct disassemble_info;
e2d0e7eb 1097struct target_ops;
030f20e1 1098struct obstack;
8181d85f 1099struct bp_target_info;
424163ea 1100struct target_desc;
237fc4c9 1101struct displaced_step_closure;
17ea7499 1102struct core_regset_section;
a96d9b2e 1103struct syscall;
175ff332 1104struct agent_expr;
6710bf39 1105struct axs_value;
55aa24fb 1106struct stap_parse_info;
7e35103a 1107struct ravenscar_arch_ops;
b3ac9c77 1108struct elf_internal_linux_prpsinfo;
104c1213 1109
6ecd4729
PA
1110/* The architecture associated with the inferior through the
1111 connection to the target.
1112
1113 The architecture vector provides some information that is really a
1114 property of the inferior, accessed through a particular target:
1115 ptrace operations; the layout of certain RSP packets; the solib_ops
1116 vector; etc. To differentiate architecture accesses to
1117 per-inferior/target properties from
1118 per-thread/per-frame/per-objfile properties, accesses to
1119 per-inferior/target properties should be made through this
1120 gdbarch. */
1121
1122/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1123extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1124
1125/* The initial, default architecture. It uses host values (for want of a better
1126 choice). */
1127extern struct gdbarch startup_gdbarch;
1128
19630284
JB
1129
1130/* Callback type for the 'iterate_over_objfiles_in_search_order'
1131 gdbarch method. */
1132
1133typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1134 (struct objfile *objfile, void *cb_data);
104c1213
JM
1135EOF
1136
1137# function typedef's
3d9a5942
AC
1138printf "\n"
1139printf "\n"
0963b4bd 1140printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1141function_list | while do_read
104c1213 1142do
2ada493a
AC
1143 if class_is_info_p
1144 then
3d9a5942
AC
1145 printf "\n"
1146 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1147 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1148 fi
104c1213
JM
1149done
1150
1151# function typedef's
3d9a5942
AC
1152printf "\n"
1153printf "\n"
0963b4bd 1154printf "/* The following are initialized by the target dependent code. */\n"
34620563 1155function_list | while do_read
104c1213 1156do
72e74a21 1157 if [ -n "${comment}" ]
34620563
AC
1158 then
1159 echo "${comment}" | sed \
1160 -e '2 s,#,/*,' \
1161 -e '3,$ s,#, ,' \
1162 -e '$ s,$, */,'
1163 fi
412d5987
AC
1164
1165 if class_is_predicate_p
2ada493a 1166 then
412d5987
AC
1167 printf "\n"
1168 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1169 fi
2ada493a
AC
1170 if class_is_variable_p
1171 then
3d9a5942
AC
1172 printf "\n"
1173 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1174 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1175 fi
1176 if class_is_function_p
1177 then
3d9a5942 1178 printf "\n"
72e74a21 1179 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1180 then
1181 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1182 elif class_is_multiarch_p
1183 then
1184 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1185 else
1186 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1187 fi
72e74a21 1188 if [ "x${formal}" = "xvoid" ]
104c1213 1189 then
3d9a5942 1190 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1191 else
3d9a5942 1192 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1193 fi
3d9a5942 1194 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1195 fi
104c1213
JM
1196done
1197
1198# close it off
1199cat <<EOF
1200
a96d9b2e
SDJ
1201/* Definition for an unknown syscall, used basically in error-cases. */
1202#define UNKNOWN_SYSCALL (-1)
1203
104c1213
JM
1204extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1205
1206
1207/* Mechanism for co-ordinating the selection of a specific
1208 architecture.
1209
1210 GDB targets (*-tdep.c) can register an interest in a specific
1211 architecture. Other GDB components can register a need to maintain
1212 per-architecture data.
1213
1214 The mechanisms below ensures that there is only a loose connection
1215 between the set-architecture command and the various GDB
0fa6923a 1216 components. Each component can independently register their need
104c1213
JM
1217 to maintain architecture specific data with gdbarch.
1218
1219 Pragmatics:
1220
1221 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1222 didn't scale.
1223
1224 The more traditional mega-struct containing architecture specific
1225 data for all the various GDB components was also considered. Since
0fa6923a 1226 GDB is built from a variable number of (fairly independent)
104c1213 1227 components it was determined that the global aproach was not
0963b4bd 1228 applicable. */
104c1213
JM
1229
1230
1231/* Register a new architectural family with GDB.
1232
1233 Register support for the specified ARCHITECTURE with GDB. When
1234 gdbarch determines that the specified architecture has been
1235 selected, the corresponding INIT function is called.
1236
1237 --
1238
1239 The INIT function takes two parameters: INFO which contains the
1240 information available to gdbarch about the (possibly new)
1241 architecture; ARCHES which is a list of the previously created
1242 \`\`struct gdbarch'' for this architecture.
1243
0f79675b 1244 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1245 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1246
1247 The ARCHES parameter is a linked list (sorted most recently used)
1248 of all the previously created architures for this architecture
1249 family. The (possibly NULL) ARCHES->gdbarch can used to access
1250 values from the previously selected architecture for this
59837fe0 1251 architecture family.
104c1213
JM
1252
1253 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1254 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1255 gdbarch'' from the ARCHES list - indicating that the new
1256 architecture is just a synonym for an earlier architecture (see
1257 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1258 - that describes the selected architecture (see gdbarch_alloc()).
1259
1260 The DUMP_TDEP function shall print out all target specific values.
1261 Care should be taken to ensure that the function works in both the
0963b4bd 1262 multi-arch and non- multi-arch cases. */
104c1213
JM
1263
1264struct gdbarch_list
1265{
1266 struct gdbarch *gdbarch;
1267 struct gdbarch_list *next;
1268};
1269
1270struct gdbarch_info
1271{
0963b4bd 1272 /* Use default: NULL (ZERO). */
104c1213
JM
1273 const struct bfd_arch_info *bfd_arch_info;
1274
428721aa 1275 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1276 int byte_order;
1277
9d4fde75
SS
1278 int byte_order_for_code;
1279
0963b4bd 1280 /* Use default: NULL (ZERO). */
104c1213
JM
1281 bfd *abfd;
1282
0963b4bd 1283 /* Use default: NULL (ZERO). */
104c1213 1284 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1285
1286 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1287 enum gdb_osabi osabi;
424163ea
DJ
1288
1289 /* Use default: NULL (ZERO). */
1290 const struct target_desc *target_desc;
104c1213
JM
1291};
1292
1293typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1294typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1295
4b9b3959 1296/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1297extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1298
4b9b3959
AC
1299extern void gdbarch_register (enum bfd_architecture architecture,
1300 gdbarch_init_ftype *,
1301 gdbarch_dump_tdep_ftype *);
1302
104c1213 1303
b4a20239
AC
1304/* Return a freshly allocated, NULL terminated, array of the valid
1305 architecture names. Since architectures are registered during the
1306 _initialize phase this function only returns useful information
0963b4bd 1307 once initialization has been completed. */
b4a20239
AC
1308
1309extern const char **gdbarch_printable_names (void);
1310
1311
104c1213 1312/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1313 matches the information provided by INFO. */
104c1213 1314
424163ea 1315extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1316
1317
1318/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1319 basic initialization using values obtained from the INFO and TDEP
104c1213 1320 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1321 initialization of the object. */
104c1213
JM
1322
1323extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1324
1325
4b9b3959
AC
1326/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1327 It is assumed that the caller freeds the \`\`struct
0963b4bd 1328 gdbarch_tdep''. */
4b9b3959 1329
058f20d5
JB
1330extern void gdbarch_free (struct gdbarch *);
1331
1332
aebd7893
AC
1333/* Helper function. Allocate memory from the \`\`struct gdbarch''
1334 obstack. The memory is freed when the corresponding architecture
1335 is also freed. */
1336
1337extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1338#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1339#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1340
1341
0963b4bd 1342/* Helper function. Force an update of the current architecture.
104c1213 1343
b732d07d
AC
1344 The actual architecture selected is determined by INFO, \`\`(gdb) set
1345 architecture'' et.al., the existing architecture and BFD's default
1346 architecture. INFO should be initialized to zero and then selected
1347 fields should be updated.
104c1213 1348
0963b4bd 1349 Returns non-zero if the update succeeds. */
16f33e29
AC
1350
1351extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1352
1353
ebdba546
AC
1354/* Helper function. Find an architecture matching info.
1355
1356 INFO should be initialized using gdbarch_info_init, relevant fields
1357 set, and then finished using gdbarch_info_fill.
1358
1359 Returns the corresponding architecture, or NULL if no matching
59837fe0 1360 architecture was found. */
ebdba546
AC
1361
1362extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1363
1364
aff68abb 1365/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1366
aff68abb 1367extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1368
104c1213
JM
1369
1370/* Register per-architecture data-pointer.
1371
1372 Reserve space for a per-architecture data-pointer. An identifier
1373 for the reserved data-pointer is returned. That identifer should
95160752 1374 be saved in a local static variable.
104c1213 1375
fcc1c85c
AC
1376 Memory for the per-architecture data shall be allocated using
1377 gdbarch_obstack_zalloc. That memory will be deleted when the
1378 corresponding architecture object is deleted.
104c1213 1379
95160752
AC
1380 When a previously created architecture is re-selected, the
1381 per-architecture data-pointer for that previous architecture is
76860b5f 1382 restored. INIT() is not re-called.
104c1213
JM
1383
1384 Multiple registrarants for any architecture are allowed (and
1385 strongly encouraged). */
1386
95160752 1387struct gdbarch_data;
104c1213 1388
030f20e1
AC
1389typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1390extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1391typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1392extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1393extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1394 struct gdbarch_data *data,
1395 void *pointer);
104c1213 1396
451fbdda 1397extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1398
1399
0fa6923a 1400/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1401 byte-order, ...) using information found in the BFD. */
104c1213
JM
1402
1403extern void set_gdbarch_from_file (bfd *);
1404
1405
e514a9d6
JM
1406/* Initialize the current architecture to the "first" one we find on
1407 our list. */
1408
1409extern void initialize_current_architecture (void);
1410
104c1213 1411/* gdbarch trace variable */
ccce17b0 1412extern unsigned int gdbarch_debug;
104c1213 1413
4b9b3959 1414extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1415
1416#endif
1417EOF
1418exec 1>&2
1419#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1420compare_new gdbarch.h
104c1213
JM
1421
1422
1423#
1424# C file
1425#
1426
1427exec > new-gdbarch.c
1428copyright
1429cat <<EOF
1430
1431#include "defs.h"
7355ddba 1432#include "arch-utils.h"
104c1213 1433
104c1213 1434#include "gdbcmd.h"
faaf634c 1435#include "inferior.h"
104c1213
JM
1436#include "symcat.h"
1437
f0d4cc9e 1438#include "floatformat.h"
104c1213 1439
95160752 1440#include "gdb_assert.h"
e7b12392 1441#include <string.h>
b59ff9d5 1442#include "reggroups.h"
4be87837 1443#include "osabi.h"
aebd7893 1444#include "gdb_obstack.h"
383f836e 1445#include "observer.h"
a3ecef73 1446#include "regcache.h"
19630284 1447#include "objfiles.h"
95160752 1448
104c1213
JM
1449/* Static function declarations */
1450
b3cc3077 1451static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1452
104c1213
JM
1453/* Non-zero if we want to trace architecture code. */
1454
1455#ifndef GDBARCH_DEBUG
1456#define GDBARCH_DEBUG 0
1457#endif
ccce17b0 1458unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1459static void
1460show_gdbarch_debug (struct ui_file *file, int from_tty,
1461 struct cmd_list_element *c, const char *value)
1462{
1463 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1464}
104c1213 1465
456fcf94 1466static const char *
8da61cc4 1467pformat (const struct floatformat **format)
456fcf94
AC
1468{
1469 if (format == NULL)
1470 return "(null)";
1471 else
8da61cc4
DJ
1472 /* Just print out one of them - this is only for diagnostics. */
1473 return format[0]->name;
456fcf94
AC
1474}
1475
08105857
PA
1476static const char *
1477pstring (const char *string)
1478{
1479 if (string == NULL)
1480 return "(null)";
1481 return string;
1482}
1483
104c1213
JM
1484EOF
1485
1486# gdbarch open the gdbarch object
3d9a5942 1487printf "\n"
0963b4bd 1488printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1489printf "\n"
1490printf "struct gdbarch\n"
1491printf "{\n"
76860b5f
AC
1492printf " /* Has this architecture been fully initialized? */\n"
1493printf " int initialized_p;\n"
aebd7893
AC
1494printf "\n"
1495printf " /* An obstack bound to the lifetime of the architecture. */\n"
1496printf " struct obstack *obstack;\n"
1497printf "\n"
0963b4bd 1498printf " /* basic architectural information. */\n"
34620563 1499function_list | while do_read
104c1213 1500do
2ada493a
AC
1501 if class_is_info_p
1502 then
3d9a5942 1503 printf " ${returntype} ${function};\n"
2ada493a 1504 fi
104c1213 1505done
3d9a5942 1506printf "\n"
0963b4bd 1507printf " /* target specific vector. */\n"
3d9a5942
AC
1508printf " struct gdbarch_tdep *tdep;\n"
1509printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1510printf "\n"
0963b4bd 1511printf " /* per-architecture data-pointers. */\n"
95160752 1512printf " unsigned nr_data;\n"
3d9a5942
AC
1513printf " void **data;\n"
1514printf "\n"
104c1213
JM
1515cat <<EOF
1516 /* Multi-arch values.
1517
1518 When extending this structure you must:
1519
1520 Add the field below.
1521
1522 Declare set/get functions and define the corresponding
1523 macro in gdbarch.h.
1524
1525 gdbarch_alloc(): If zero/NULL is not a suitable default,
1526 initialize the new field.
1527
1528 verify_gdbarch(): Confirm that the target updated the field
1529 correctly.
1530
7e73cedf 1531 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1532 field is dumped out
1533
c0e8c252 1534 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1535 variable (base values on the host's c-type system).
1536
1537 get_gdbarch(): Implement the set/get functions (probably using
1538 the macro's as shortcuts).
1539
1540 */
1541
1542EOF
34620563 1543function_list | while do_read
104c1213 1544do
2ada493a
AC
1545 if class_is_variable_p
1546 then
3d9a5942 1547 printf " ${returntype} ${function};\n"
2ada493a
AC
1548 elif class_is_function_p
1549 then
2f9b146e 1550 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1551 fi
104c1213 1552done
3d9a5942 1553printf "};\n"
104c1213
JM
1554
1555# A pre-initialized vector
3d9a5942
AC
1556printf "\n"
1557printf "\n"
104c1213
JM
1558cat <<EOF
1559/* The default architecture uses host values (for want of a better
0963b4bd 1560 choice). */
104c1213 1561EOF
3d9a5942
AC
1562printf "\n"
1563printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1564printf "\n"
1565printf "struct gdbarch startup_gdbarch =\n"
1566printf "{\n"
76860b5f 1567printf " 1, /* Always initialized. */\n"
aebd7893 1568printf " NULL, /* The obstack. */\n"
0963b4bd 1569printf " /* basic architecture information. */\n"
4b9b3959 1570function_list | while do_read
104c1213 1571do
2ada493a
AC
1572 if class_is_info_p
1573 then
ec5cbaec 1574 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1575 fi
104c1213
JM
1576done
1577cat <<EOF
0963b4bd 1578 /* target specific vector and its dump routine. */
4b9b3959 1579 NULL, NULL,
c66fb220
TT
1580 /*per-architecture data-pointers. */
1581 0, NULL,
104c1213
JM
1582 /* Multi-arch values */
1583EOF
34620563 1584function_list | while do_read
104c1213 1585do
2ada493a
AC
1586 if class_is_function_p || class_is_variable_p
1587 then
ec5cbaec 1588 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1589 fi
104c1213
JM
1590done
1591cat <<EOF
c0e8c252 1592 /* startup_gdbarch() */
104c1213 1593};
4b9b3959 1594
104c1213
JM
1595EOF
1596
1597# Create a new gdbarch struct
104c1213 1598cat <<EOF
7de2341d 1599
66b43ecb 1600/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1601 \`\`struct gdbarch_info''. */
104c1213 1602EOF
3d9a5942 1603printf "\n"
104c1213
JM
1604cat <<EOF
1605struct gdbarch *
1606gdbarch_alloc (const struct gdbarch_info *info,
1607 struct gdbarch_tdep *tdep)
1608{
be7811ad 1609 struct gdbarch *gdbarch;
aebd7893
AC
1610
1611 /* Create an obstack for allocating all the per-architecture memory,
1612 then use that to allocate the architecture vector. */
1613 struct obstack *obstack = XMALLOC (struct obstack);
1614 obstack_init (obstack);
be7811ad
MD
1615 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1616 memset (gdbarch, 0, sizeof (*gdbarch));
1617 gdbarch->obstack = obstack;
85de9627 1618
be7811ad 1619 alloc_gdbarch_data (gdbarch);
85de9627 1620
be7811ad 1621 gdbarch->tdep = tdep;
104c1213 1622EOF
3d9a5942 1623printf "\n"
34620563 1624function_list | while do_read
104c1213 1625do
2ada493a
AC
1626 if class_is_info_p
1627 then
be7811ad 1628 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1629 fi
104c1213 1630done
3d9a5942 1631printf "\n"
0963b4bd 1632printf " /* Force the explicit initialization of these. */\n"
34620563 1633function_list | while do_read
104c1213 1634do
2ada493a
AC
1635 if class_is_function_p || class_is_variable_p
1636 then
72e74a21 1637 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1638 then
be7811ad 1639 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1640 fi
2ada493a 1641 fi
104c1213
JM
1642done
1643cat <<EOF
1644 /* gdbarch_alloc() */
1645
be7811ad 1646 return gdbarch;
104c1213
JM
1647}
1648EOF
1649
058f20d5 1650# Free a gdbarch struct.
3d9a5942
AC
1651printf "\n"
1652printf "\n"
058f20d5 1653cat <<EOF
aebd7893
AC
1654/* Allocate extra space using the per-architecture obstack. */
1655
1656void *
1657gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1658{
1659 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1660
aebd7893
AC
1661 memset (data, 0, size);
1662 return data;
1663}
1664
1665
058f20d5
JB
1666/* Free a gdbarch struct. This should never happen in normal
1667 operation --- once you've created a gdbarch, you keep it around.
1668 However, if an architecture's init function encounters an error
1669 building the structure, it may need to clean up a partially
1670 constructed gdbarch. */
4b9b3959 1671
058f20d5
JB
1672void
1673gdbarch_free (struct gdbarch *arch)
1674{
aebd7893 1675 struct obstack *obstack;
05c547f6 1676
95160752 1677 gdb_assert (arch != NULL);
aebd7893
AC
1678 gdb_assert (!arch->initialized_p);
1679 obstack = arch->obstack;
1680 obstack_free (obstack, 0); /* Includes the ARCH. */
1681 xfree (obstack);
058f20d5
JB
1682}
1683EOF
1684
104c1213 1685# verify a new architecture
104c1213 1686cat <<EOF
db446970
AC
1687
1688
1689/* Ensure that all values in a GDBARCH are reasonable. */
1690
104c1213 1691static void
be7811ad 1692verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1693{
f16a1923
AC
1694 struct ui_file *log;
1695 struct cleanup *cleanups;
759ef836 1696 long length;
f16a1923 1697 char *buf;
05c547f6 1698
f16a1923
AC
1699 log = mem_fileopen ();
1700 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1701 /* fundamental */
be7811ad 1702 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1703 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1704 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1705 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1706 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1707EOF
34620563 1708function_list | while do_read
104c1213 1709do
2ada493a
AC
1710 if class_is_function_p || class_is_variable_p
1711 then
72e74a21 1712 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1713 then
3d9a5942 1714 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1715 elif class_is_predicate_p
1716 then
0963b4bd 1717 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1718 # FIXME: See do_read for potential simplification
72e74a21 1719 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1720 then
3d9a5942 1721 printf " if (${invalid_p})\n"
be7811ad 1722 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1723 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1724 then
be7811ad
MD
1725 printf " if (gdbarch->${function} == ${predefault})\n"
1726 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1727 elif [ -n "${postdefault}" ]
f0d4cc9e 1728 then
be7811ad
MD
1729 printf " if (gdbarch->${function} == 0)\n"
1730 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1731 elif [ -n "${invalid_p}" ]
104c1213 1732 then
4d60522e 1733 printf " if (${invalid_p})\n"
f16a1923 1734 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1735 elif [ -n "${predefault}" ]
104c1213 1736 then
be7811ad 1737 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1738 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1739 fi
2ada493a 1740 fi
104c1213
JM
1741done
1742cat <<EOF
759ef836 1743 buf = ui_file_xstrdup (log, &length);
f16a1923 1744 make_cleanup (xfree, buf);
759ef836 1745 if (length > 0)
f16a1923 1746 internal_error (__FILE__, __LINE__,
85c07804 1747 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1748 buf);
1749 do_cleanups (cleanups);
104c1213
JM
1750}
1751EOF
1752
1753# dump the structure
3d9a5942
AC
1754printf "\n"
1755printf "\n"
104c1213 1756cat <<EOF
0963b4bd 1757/* Print out the details of the current architecture. */
4b9b3959 1758
104c1213 1759void
be7811ad 1760gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1761{
b78960be 1762 const char *gdb_nm_file = "<not-defined>";
05c547f6 1763
b78960be
AC
1764#if defined (GDB_NM_FILE)
1765 gdb_nm_file = GDB_NM_FILE;
1766#endif
1767 fprintf_unfiltered (file,
1768 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1769 gdb_nm_file);
104c1213 1770EOF
97030eea 1771function_list | sort -t: -k 3 | while do_read
104c1213 1772do
1e9f55d0
AC
1773 # First the predicate
1774 if class_is_predicate_p
1775 then
7996bcec 1776 printf " fprintf_unfiltered (file,\n"
48f7351b 1777 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1778 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1779 fi
48f7351b 1780 # Print the corresponding value.
283354d8 1781 if class_is_function_p
4b9b3959 1782 then
7996bcec 1783 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1784 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1785 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1786 else
48f7351b 1787 # It is a variable
2f9b146e
AC
1788 case "${print}:${returntype}" in
1789 :CORE_ADDR )
0b1553bc
UW
1790 fmt="%s"
1791 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1792 ;;
2f9b146e 1793 :* )
48f7351b 1794 fmt="%s"
623d3eb1 1795 print="plongest (gdbarch->${function})"
48f7351b
AC
1796 ;;
1797 * )
2f9b146e 1798 fmt="%s"
48f7351b
AC
1799 ;;
1800 esac
3d9a5942 1801 printf " fprintf_unfiltered (file,\n"
48f7351b 1802 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1803 printf " ${print});\n"
2ada493a 1804 fi
104c1213 1805done
381323f4 1806cat <<EOF
be7811ad
MD
1807 if (gdbarch->dump_tdep != NULL)
1808 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1809}
1810EOF
104c1213
JM
1811
1812
1813# GET/SET
3d9a5942 1814printf "\n"
104c1213
JM
1815cat <<EOF
1816struct gdbarch_tdep *
1817gdbarch_tdep (struct gdbarch *gdbarch)
1818{
1819 if (gdbarch_debug >= 2)
3d9a5942 1820 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1821 return gdbarch->tdep;
1822}
1823EOF
3d9a5942 1824printf "\n"
34620563 1825function_list | while do_read
104c1213 1826do
2ada493a
AC
1827 if class_is_predicate_p
1828 then
3d9a5942
AC
1829 printf "\n"
1830 printf "int\n"
1831 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1832 printf "{\n"
8de9bdc4 1833 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1834 printf " return ${predicate};\n"
3d9a5942 1835 printf "}\n"
2ada493a
AC
1836 fi
1837 if class_is_function_p
1838 then
3d9a5942
AC
1839 printf "\n"
1840 printf "${returntype}\n"
72e74a21 1841 if [ "x${formal}" = "xvoid" ]
104c1213 1842 then
3d9a5942 1843 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1844 else
3d9a5942 1845 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1846 fi
3d9a5942 1847 printf "{\n"
8de9bdc4 1848 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1849 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1850 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1851 then
1852 # Allow a call to a function with a predicate.
956ac328 1853 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1854 fi
3d9a5942
AC
1855 printf " if (gdbarch_debug >= 2)\n"
1856 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1857 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1858 then
1859 if class_is_multiarch_p
1860 then
1861 params="gdbarch"
1862 else
1863 params=""
1864 fi
1865 else
1866 if class_is_multiarch_p
1867 then
1868 params="gdbarch, ${actual}"
1869 else
1870 params="${actual}"
1871 fi
1872 fi
72e74a21 1873 if [ "x${returntype}" = "xvoid" ]
104c1213 1874 then
4a5c6a1d 1875 printf " gdbarch->${function} (${params});\n"
104c1213 1876 else
4a5c6a1d 1877 printf " return gdbarch->${function} (${params});\n"
104c1213 1878 fi
3d9a5942
AC
1879 printf "}\n"
1880 printf "\n"
1881 printf "void\n"
1882 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1883 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1884 printf "{\n"
1885 printf " gdbarch->${function} = ${function};\n"
1886 printf "}\n"
2ada493a
AC
1887 elif class_is_variable_p
1888 then
3d9a5942
AC
1889 printf "\n"
1890 printf "${returntype}\n"
1891 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1892 printf "{\n"
8de9bdc4 1893 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1894 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1895 then
3d9a5942 1896 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1897 elif [ -n "${invalid_p}" ]
104c1213 1898 then
956ac328
AC
1899 printf " /* Check variable is valid. */\n"
1900 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1901 elif [ -n "${predefault}" ]
104c1213 1902 then
956ac328
AC
1903 printf " /* Check variable changed from pre-default. */\n"
1904 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1905 fi
3d9a5942
AC
1906 printf " if (gdbarch_debug >= 2)\n"
1907 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1908 printf " return gdbarch->${function};\n"
1909 printf "}\n"
1910 printf "\n"
1911 printf "void\n"
1912 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1913 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1914 printf "{\n"
1915 printf " gdbarch->${function} = ${function};\n"
1916 printf "}\n"
2ada493a
AC
1917 elif class_is_info_p
1918 then
3d9a5942
AC
1919 printf "\n"
1920 printf "${returntype}\n"
1921 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1922 printf "{\n"
8de9bdc4 1923 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1924 printf " if (gdbarch_debug >= 2)\n"
1925 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1926 printf " return gdbarch->${function};\n"
1927 printf "}\n"
2ada493a 1928 fi
104c1213
JM
1929done
1930
1931# All the trailing guff
1932cat <<EOF
1933
1934
f44c642f 1935/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1936 modules. */
104c1213
JM
1937
1938struct gdbarch_data
1939{
95160752 1940 unsigned index;
76860b5f 1941 int init_p;
030f20e1
AC
1942 gdbarch_data_pre_init_ftype *pre_init;
1943 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1944};
1945
1946struct gdbarch_data_registration
1947{
104c1213
JM
1948 struct gdbarch_data *data;
1949 struct gdbarch_data_registration *next;
1950};
1951
f44c642f 1952struct gdbarch_data_registry
104c1213 1953{
95160752 1954 unsigned nr;
104c1213
JM
1955 struct gdbarch_data_registration *registrations;
1956};
1957
f44c642f 1958struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1959{
1960 0, NULL,
1961};
1962
030f20e1
AC
1963static struct gdbarch_data *
1964gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1965 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1966{
1967 struct gdbarch_data_registration **curr;
05c547f6
MS
1968
1969 /* Append the new registration. */
f44c642f 1970 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1971 (*curr) != NULL;
1972 curr = &(*curr)->next);
1973 (*curr) = XMALLOC (struct gdbarch_data_registration);
1974 (*curr)->next = NULL;
104c1213 1975 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1976 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1977 (*curr)->data->pre_init = pre_init;
1978 (*curr)->data->post_init = post_init;
76860b5f 1979 (*curr)->data->init_p = 1;
104c1213
JM
1980 return (*curr)->data;
1981}
1982
030f20e1
AC
1983struct gdbarch_data *
1984gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1985{
1986 return gdbarch_data_register (pre_init, NULL);
1987}
1988
1989struct gdbarch_data *
1990gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1991{
1992 return gdbarch_data_register (NULL, post_init);
1993}
104c1213 1994
0963b4bd 1995/* Create/delete the gdbarch data vector. */
95160752
AC
1996
1997static void
b3cc3077 1998alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1999{
b3cc3077
JB
2000 gdb_assert (gdbarch->data == NULL);
2001 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2002 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2003}
3c875b6f 2004
76860b5f 2005/* Initialize the current value of the specified per-architecture
0963b4bd 2006 data-pointer. */
b3cc3077 2007
95160752 2008void
030f20e1
AC
2009deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2010 struct gdbarch_data *data,
2011 void *pointer)
95160752
AC
2012{
2013 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2014 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2015 gdb_assert (data->pre_init == NULL);
95160752
AC
2016 gdbarch->data[data->index] = pointer;
2017}
2018
104c1213 2019/* Return the current value of the specified per-architecture
0963b4bd 2020 data-pointer. */
104c1213
JM
2021
2022void *
451fbdda 2023gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2024{
451fbdda 2025 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2026 if (gdbarch->data[data->index] == NULL)
76860b5f 2027 {
030f20e1
AC
2028 /* The data-pointer isn't initialized, call init() to get a
2029 value. */
2030 if (data->pre_init != NULL)
2031 /* Mid architecture creation: pass just the obstack, and not
2032 the entire architecture, as that way it isn't possible for
2033 pre-init code to refer to undefined architecture
2034 fields. */
2035 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2036 else if (gdbarch->initialized_p
2037 && data->post_init != NULL)
2038 /* Post architecture creation: pass the entire architecture
2039 (as all fields are valid), but be careful to also detect
2040 recursive references. */
2041 {
2042 gdb_assert (data->init_p);
2043 data->init_p = 0;
2044 gdbarch->data[data->index] = data->post_init (gdbarch);
2045 data->init_p = 1;
2046 }
2047 else
2048 /* The architecture initialization hasn't completed - punt -
2049 hope that the caller knows what they are doing. Once
2050 deprecated_set_gdbarch_data has been initialized, this can be
2051 changed to an internal error. */
2052 return NULL;
76860b5f
AC
2053 gdb_assert (gdbarch->data[data->index] != NULL);
2054 }
451fbdda 2055 return gdbarch->data[data->index];
104c1213
JM
2056}
2057
2058
0963b4bd 2059/* Keep a registry of the architectures known by GDB. */
104c1213 2060
4b9b3959 2061struct gdbarch_registration
104c1213
JM
2062{
2063 enum bfd_architecture bfd_architecture;
2064 gdbarch_init_ftype *init;
4b9b3959 2065 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2066 struct gdbarch_list *arches;
4b9b3959 2067 struct gdbarch_registration *next;
104c1213
JM
2068};
2069
f44c642f 2070static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2071
b4a20239
AC
2072static void
2073append_name (const char ***buf, int *nr, const char *name)
2074{
2075 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2076 (*buf)[*nr] = name;
2077 *nr += 1;
2078}
2079
2080const char **
2081gdbarch_printable_names (void)
2082{
7996bcec 2083 /* Accumulate a list of names based on the registed list of
0963b4bd 2084 architectures. */
7996bcec
AC
2085 int nr_arches = 0;
2086 const char **arches = NULL;
2087 struct gdbarch_registration *rego;
05c547f6 2088
7996bcec
AC
2089 for (rego = gdbarch_registry;
2090 rego != NULL;
2091 rego = rego->next)
b4a20239 2092 {
7996bcec
AC
2093 const struct bfd_arch_info *ap;
2094 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2095 if (ap == NULL)
2096 internal_error (__FILE__, __LINE__,
85c07804 2097 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2098 do
2099 {
2100 append_name (&arches, &nr_arches, ap->printable_name);
2101 ap = ap->next;
2102 }
2103 while (ap != NULL);
b4a20239 2104 }
7996bcec
AC
2105 append_name (&arches, &nr_arches, NULL);
2106 return arches;
b4a20239
AC
2107}
2108
2109
104c1213 2110void
4b9b3959
AC
2111gdbarch_register (enum bfd_architecture bfd_architecture,
2112 gdbarch_init_ftype *init,
2113 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2114{
4b9b3959 2115 struct gdbarch_registration **curr;
104c1213 2116 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2117
ec3d358c 2118 /* Check that BFD recognizes this architecture */
104c1213
JM
2119 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2120 if (bfd_arch_info == NULL)
2121 {
8e65ff28 2122 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2123 _("gdbarch: Attempt to register "
2124 "unknown architecture (%d)"),
8e65ff28 2125 bfd_architecture);
104c1213 2126 }
0963b4bd 2127 /* Check that we haven't seen this architecture before. */
f44c642f 2128 for (curr = &gdbarch_registry;
104c1213
JM
2129 (*curr) != NULL;
2130 curr = &(*curr)->next)
2131 {
2132 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2133 internal_error (__FILE__, __LINE__,
64b9b334 2134 _("gdbarch: Duplicate registration "
0963b4bd 2135 "of architecture (%s)"),
8e65ff28 2136 bfd_arch_info->printable_name);
104c1213
JM
2137 }
2138 /* log it */
2139 if (gdbarch_debug)
30737ed9 2140 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2141 bfd_arch_info->printable_name,
30737ed9 2142 host_address_to_string (init));
104c1213 2143 /* Append it */
4b9b3959 2144 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2145 (*curr)->bfd_architecture = bfd_architecture;
2146 (*curr)->init = init;
4b9b3959 2147 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2148 (*curr)->arches = NULL;
2149 (*curr)->next = NULL;
4b9b3959
AC
2150}
2151
2152void
2153register_gdbarch_init (enum bfd_architecture bfd_architecture,
2154 gdbarch_init_ftype *init)
2155{
2156 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2157}
104c1213
JM
2158
2159
424163ea 2160/* Look for an architecture using gdbarch_info. */
104c1213
JM
2161
2162struct gdbarch_list *
2163gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2164 const struct gdbarch_info *info)
2165{
2166 for (; arches != NULL; arches = arches->next)
2167 {
2168 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2169 continue;
2170 if (info->byte_order != arches->gdbarch->byte_order)
2171 continue;
4be87837
DJ
2172 if (info->osabi != arches->gdbarch->osabi)
2173 continue;
424163ea
DJ
2174 if (info->target_desc != arches->gdbarch->target_desc)
2175 continue;
104c1213
JM
2176 return arches;
2177 }
2178 return NULL;
2179}
2180
2181
ebdba546 2182/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2183 architecture if needed. Return that new architecture. */
104c1213 2184
59837fe0
UW
2185struct gdbarch *
2186gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2187{
2188 struct gdbarch *new_gdbarch;
4b9b3959 2189 struct gdbarch_registration *rego;
104c1213 2190
b732d07d 2191 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2192 sources: "set ..."; INFOabfd supplied; and the global
2193 defaults. */
2194 gdbarch_info_fill (&info);
4be87837 2195
0963b4bd 2196 /* Must have found some sort of architecture. */
b732d07d 2197 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2198
2199 if (gdbarch_debug)
2200 {
2201 fprintf_unfiltered (gdb_stdlog,
59837fe0 2202 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2203 (info.bfd_arch_info != NULL
2204 ? info.bfd_arch_info->printable_name
2205 : "(null)"));
2206 fprintf_unfiltered (gdb_stdlog,
59837fe0 2207 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2208 info.byte_order,
d7449b42 2209 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2210 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2211 : "default"));
4be87837 2212 fprintf_unfiltered (gdb_stdlog,
59837fe0 2213 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2214 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2215 fprintf_unfiltered (gdb_stdlog,
59837fe0 2216 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2217 host_address_to_string (info.abfd));
104c1213 2218 fprintf_unfiltered (gdb_stdlog,
59837fe0 2219 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2220 host_address_to_string (info.tdep_info));
104c1213
JM
2221 }
2222
ebdba546 2223 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2224 for (rego = gdbarch_registry;
2225 rego != NULL;
2226 rego = rego->next)
2227 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2228 break;
2229 if (rego == NULL)
2230 {
2231 if (gdbarch_debug)
59837fe0 2232 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2233 "No matching architecture\n");
b732d07d
AC
2234 return 0;
2235 }
2236
ebdba546 2237 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2238 new_gdbarch = rego->init (info, rego->arches);
2239
ebdba546
AC
2240 /* Did the tdep code like it? No. Reject the change and revert to
2241 the old architecture. */
104c1213
JM
2242 if (new_gdbarch == NULL)
2243 {
2244 if (gdbarch_debug)
59837fe0 2245 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2246 "Target rejected architecture\n");
2247 return NULL;
104c1213
JM
2248 }
2249
ebdba546
AC
2250 /* Is this a pre-existing architecture (as determined by already
2251 being initialized)? Move it to the front of the architecture
2252 list (keeping the list sorted Most Recently Used). */
2253 if (new_gdbarch->initialized_p)
104c1213 2254 {
ebdba546
AC
2255 struct gdbarch_list **list;
2256 struct gdbarch_list *this;
104c1213 2257 if (gdbarch_debug)
59837fe0 2258 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2259 "Previous architecture %s (%s) selected\n",
2260 host_address_to_string (new_gdbarch),
104c1213 2261 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2262 /* Find the existing arch in the list. */
2263 for (list = &rego->arches;
2264 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2265 list = &(*list)->next);
2266 /* It had better be in the list of architectures. */
2267 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2268 /* Unlink THIS. */
2269 this = (*list);
2270 (*list) = this->next;
2271 /* Insert THIS at the front. */
2272 this->next = rego->arches;
2273 rego->arches = this;
2274 /* Return it. */
2275 return new_gdbarch;
104c1213
JM
2276 }
2277
ebdba546
AC
2278 /* It's a new architecture. */
2279 if (gdbarch_debug)
59837fe0 2280 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2281 "New architecture %s (%s) selected\n",
2282 host_address_to_string (new_gdbarch),
ebdba546
AC
2283 new_gdbarch->bfd_arch_info->printable_name);
2284
2285 /* Insert the new architecture into the front of the architecture
2286 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2287 {
2288 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2289 this->next = rego->arches;
2290 this->gdbarch = new_gdbarch;
2291 rego->arches = this;
2292 }
104c1213 2293
4b9b3959
AC
2294 /* Check that the newly installed architecture is valid. Plug in
2295 any post init values. */
2296 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2297 verify_gdbarch (new_gdbarch);
ebdba546 2298 new_gdbarch->initialized_p = 1;
104c1213 2299
4b9b3959 2300 if (gdbarch_debug)
ebdba546
AC
2301 gdbarch_dump (new_gdbarch, gdb_stdlog);
2302
2303 return new_gdbarch;
2304}
2305
e487cc15 2306/* Make the specified architecture current. */
ebdba546
AC
2307
2308void
aff68abb 2309set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2310{
2311 gdb_assert (new_gdbarch != NULL);
ebdba546 2312 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2313 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2314 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2315 registers_changed ();
ebdba546 2316}
104c1213 2317
f5656ead 2318/* Return the current inferior's arch. */
6ecd4729
PA
2319
2320struct gdbarch *
f5656ead 2321target_gdbarch (void)
6ecd4729
PA
2322{
2323 return current_inferior ()->gdbarch;
2324}
2325
104c1213 2326extern void _initialize_gdbarch (void);
b4a20239 2327
104c1213 2328void
34620563 2329_initialize_gdbarch (void)
104c1213 2330{
ccce17b0 2331 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2332Set architecture debugging."), _("\\
2333Show architecture debugging."), _("\\
2334When non-zero, architecture debugging is enabled."),
2335 NULL,
920d2a44 2336 show_gdbarch_debug,
85c07804 2337 &setdebuglist, &showdebuglist);
104c1213
JM
2338}
2339EOF
2340
2341# close things off
2342exec 1>&2
2343#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2344compare_new gdbarch.c
This page took 1.188059 seconds and 4 git commands to generate.