This patch implements the new gdbarch method gdbarch_gdb_signal_to_target.
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
28e7fd62 5# Copyright (C) 1998-2013 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
97030eea 343i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 344i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
f3be58bc 472# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
473M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
474# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 475# deprecated_fp_regnum.
97030eea 476v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 477
a86c5fc9 478# See gdbint.texinfo. See infcall.c.
97030eea
UW
479M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
480v:int:call_dummy_location::::AT_ENTRY_POINT::0
481M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 482
97030eea
UW
483m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
484M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
486# MAP a GDB RAW register number onto a simulator register number. See
487# also include/...-sim.h.
e7faf938 488m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
489m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 491# setjmp/longjmp support.
97030eea 492F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 493#
97030eea 494v:int:believe_pcc_promotion:::::::
104c1213 495#
0abe36f5 496m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 497f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 498f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
499# Construct a value representing the contents of register REGNUM in
500# frame FRAME, interpreted as type TYPE. The routine needs to
501# allocate and return a struct value with all value attributes
502# (but not the value contents) filled in.
97030eea 503f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 504#
9898f801
UW
505m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 507M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 508
6a3a010b
MR
509# Return the return-value convention that will be used by FUNCTION
510# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
511# case the return convention is computed based only on VALTYPE.
512#
513# If READBUF is not NULL, extract the return value and save it in this buffer.
514#
515# If WRITEBUF is not NULL, it contains a return value which will be
516# stored into the appropriate register. This can be used when we want
517# to force the value returned by a function (see the "return" command
518# for instance).
6a3a010b 519M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 520
18648a37
YQ
521# Return true if the return value of function is stored in the first hidden
522# parameter. In theory, this feature should be language-dependent, specified
523# by language and its ABI, such as C++. Unfortunately, compiler may
524# implement it to a target-dependent feature. So that we need such hook here
525# to be aware of this in GDB.
526m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
527
6093d2eb 528m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 529M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 530f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 531m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
532# Return the adjusted address and kind to use for Z0/Z1 packets.
533# KIND is usually the memory length of the breakpoint, but may have a
534# different target-specific meaning.
0e05dfcb 535m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 536M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
537m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
538m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 539v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
540
541# A function can be addressed by either it's "pointer" (possibly a
542# descriptor address) or "entry point" (first executable instruction).
543# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 544# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
545# a simplified subset of that functionality - the function's address
546# corresponds to the "function pointer" and the function's start
547# corresponds to the "function entry point" - and hence is redundant.
548
97030eea 549v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 550
123dc839
DJ
551# Return the remote protocol register number associated with this
552# register. Normally the identity mapping.
97030eea 553m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 554
b2756930 555# Fetch the target specific address used to represent a load module.
97030eea 556F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 557#
97030eea
UW
558v:CORE_ADDR:frame_args_skip:::0:::0
559M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
560M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
561# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
562# frame-base. Enable frame-base before frame-unwind.
97030eea 563F:int:frame_num_args:struct frame_info *frame:frame
104c1213 564#
97030eea
UW
565M:CORE_ADDR:frame_align:CORE_ADDR address:address
566m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
567v:int:frame_red_zone_size
f0d4cc9e 568#
97030eea 569m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
570# On some machines there are bits in addresses which are not really
571# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 572# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
573# we get a "real" address such as one would find in a symbol table.
574# This is used only for addresses of instructions, and even then I'm
575# not sure it's used in all contexts. It exists to deal with there
576# being a few stray bits in the PC which would mislead us, not as some
577# sort of generic thing to handle alignment or segmentation (it's
578# possible it should be in TARGET_READ_PC instead).
24568a2c 579m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
580
581# FIXME/cagney/2001-01-18: This should be split in two. A target method that
582# indicates if the target needs software single step. An ISA method to
583# implement it.
584#
585# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
586# breakpoints using the breakpoint system instead of blatting memory directly
587# (as with rs6000).
64c4637f 588#
e6590a1b
UW
589# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
590# target can single step. If not, then implement single step using breakpoints.
64c4637f 591#
6f112b18 592# A return value of 1 means that the software_single_step breakpoints
e6590a1b 593# were inserted; 0 means they were not.
97030eea 594F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 595
3352ef37
AC
596# Return non-zero if the processor is executing a delay slot and a
597# further single-step is needed before the instruction finishes.
97030eea 598M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 599# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 600# disassembler. Perhaps objdump can handle it?
97030eea
UW
601f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
602f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
603
604
cfd8ab24 605# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
606# evaluates non-zero, this is the address where the debugger will place
607# a step-resume breakpoint to get us past the dynamic linker.
97030eea 608m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 609# Some systems also have trampoline code for returning from shared libs.
2c02bd72 610m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 611
c12260ac
CV
612# A target might have problems with watchpoints as soon as the stack
613# frame of the current function has been destroyed. This mostly happens
614# as the first action in a funtion's epilogue. in_function_epilogue_p()
615# is defined to return a non-zero value if either the given addr is one
616# instruction after the stack destroying instruction up to the trailing
617# return instruction or if we can figure out that the stack frame has
618# already been invalidated regardless of the value of addr. Targets
619# which don't suffer from that problem could just let this functionality
620# untouched.
97030eea 621m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
622f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
623f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
624v:int:cannot_step_breakpoint:::0:0::0
625v:int:have_nonsteppable_watchpoint:::0:0::0
626F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
627M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
628M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 629# Is a register in a group
97030eea 630m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 631# Fetch the pointer to the ith function argument.
97030eea 632F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
633
634# Return the appropriate register set for a core file section with
635# name SECT_NAME and size SECT_SIZE.
97030eea 636M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 637
17ea7499
CES
638# Supported register notes in a core file.
639v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
640
6432734d
UW
641# Create core file notes
642M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
643
b3ac9c77
SDJ
644# The elfcore writer hook to use to write Linux prpsinfo notes to core
645# files. Most Linux architectures use the same prpsinfo32 or
646# prpsinfo64 layouts, and so won't need to provide this hook, as we
647# call the Linux generic routines in bfd to write prpsinfo notes by
648# default.
649F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
650
35c2fab7
UW
651# Find core file memory regions
652M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
653
de584861
PA
654# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
655# core file into buffer READBUF with length LEN.
97030eea 656M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 657
356a5233
JB
658# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
659# libraries list from core file into buffer READBUF with length LEN.
660M:LONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
661
c0edd9ed 662# How the core target converts a PTID from a core file to a string.
28439f5e
PA
663M:char *:core_pid_to_str:ptid_t ptid:ptid
664
a78c2d62 665# BFD target to use when generating a core file.
86ba1042 666V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 667
0d5de010
DJ
668# If the elements of C++ vtables are in-place function descriptors rather
669# than normal function pointers (which may point to code or a descriptor),
670# set this to one.
97030eea 671v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
672
673# Set if the least significant bit of the delta is used instead of the least
674# significant bit of the pfn for pointers to virtual member functions.
97030eea 675v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
676
677# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 678F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 679
1668ae25 680# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
681V:ULONGEST:max_insn_length:::0:0
682
683# Copy the instruction at FROM to TO, and make any adjustments
684# necessary to single-step it at that address.
685#
686# REGS holds the state the thread's registers will have before
687# executing the copied instruction; the PC in REGS will refer to FROM,
688# not the copy at TO. The caller should update it to point at TO later.
689#
690# Return a pointer to data of the architecture's choice to be passed
691# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
692# the instruction's effects have been completely simulated, with the
693# resulting state written back to REGS.
694#
695# For a general explanation of displaced stepping and how GDB uses it,
696# see the comments in infrun.c.
697#
698# The TO area is only guaranteed to have space for
699# gdbarch_max_insn_length (arch) bytes, so this function must not
700# write more bytes than that to that area.
701#
702# If you do not provide this function, GDB assumes that the
703# architecture does not support displaced stepping.
704#
705# If your architecture doesn't need to adjust instructions before
706# single-stepping them, consider using simple_displaced_step_copy_insn
707# here.
708M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
709
99e40580
UW
710# Return true if GDB should use hardware single-stepping to execute
711# the displaced instruction identified by CLOSURE. If false,
712# GDB will simply restart execution at the displaced instruction
713# location, and it is up to the target to ensure GDB will receive
714# control again (e.g. by placing a software breakpoint instruction
715# into the displaced instruction buffer).
716#
717# The default implementation returns false on all targets that
718# provide a gdbarch_software_single_step routine, and true otherwise.
719m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
720
237fc4c9
PA
721# Fix up the state resulting from successfully single-stepping a
722# displaced instruction, to give the result we would have gotten from
723# stepping the instruction in its original location.
724#
725# REGS is the register state resulting from single-stepping the
726# displaced instruction.
727#
728# CLOSURE is the result from the matching call to
729# gdbarch_displaced_step_copy_insn.
730#
731# If you provide gdbarch_displaced_step_copy_insn.but not this
732# function, then GDB assumes that no fixup is needed after
733# single-stepping the instruction.
734#
735# For a general explanation of displaced stepping and how GDB uses it,
736# see the comments in infrun.c.
737M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
738
739# Free a closure returned by gdbarch_displaced_step_copy_insn.
740#
741# If you provide gdbarch_displaced_step_copy_insn, you must provide
742# this function as well.
743#
744# If your architecture uses closures that don't need to be freed, then
745# you can use simple_displaced_step_free_closure here.
746#
747# For a general explanation of displaced stepping and how GDB uses it,
748# see the comments in infrun.c.
749m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
750
751# Return the address of an appropriate place to put displaced
752# instructions while we step over them. There need only be one such
753# place, since we're only stepping one thread over a breakpoint at a
754# time.
755#
756# For a general explanation of displaced stepping and how GDB uses it,
757# see the comments in infrun.c.
758m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
759
dde08ee1
PA
760# Relocate an instruction to execute at a different address. OLDLOC
761# is the address in the inferior memory where the instruction to
762# relocate is currently at. On input, TO points to the destination
763# where we want the instruction to be copied (and possibly adjusted)
764# to. On output, it points to one past the end of the resulting
765# instruction(s). The effect of executing the instruction at TO shall
766# be the same as if executing it at FROM. For example, call
767# instructions that implicitly push the return address on the stack
768# should be adjusted to return to the instruction after OLDLOC;
769# relative branches, and other PC-relative instructions need the
770# offset adjusted; etc.
771M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
772
1c772458 773# Refresh overlay mapped state for section OSECT.
97030eea 774F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 775
97030eea 776M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
777
778# Handle special encoding of static variables in stabs debug info.
0d5cff50 779F:const char *:static_transform_name:const char *name:name
203c3895 780# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 781v:int:sofun_address_maybe_missing:::0:0::0
1cded358 782
0508c3ec
HZ
783# Parse the instruction at ADDR storing in the record execution log
784# the registers REGCACHE and memory ranges that will be affected when
785# the instruction executes, along with their current values.
786# Return -1 if something goes wrong, 0 otherwise.
787M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
788
3846b520
HZ
789# Save process state after a signal.
790# Return -1 if something goes wrong, 0 otherwise.
2ea28649 791M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 792
22203bbf 793# Signal translation: translate inferior's signal (target's) number
86b49880
PA
794# into GDB's representation. The implementation of this method must
795# be host independent. IOW, don't rely on symbols of the NAT_FILE
796# header (the nm-*.h files), the host <signal.h> header, or similar
797# headers. This is mainly used when cross-debugging core files ---
798# "Live" targets hide the translation behind the target interface
1f8cf220
PA
799# (target_wait, target_resume, etc.).
800M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 801
eb14d406
SDJ
802# Signal translation: translate the GDB's internal signal number into
803# the inferior's signal (target's) representation. The implementation
804# of this method must be host independent. IOW, don't rely on symbols
805# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
806# header, or similar headers.
807# Return the target signal number if found, or -1 if the GDB internal
808# signal number is invalid.
809M:int:gdb_signal_to_target:enum gdb_signal signal:signal
810
4aa995e1
PA
811# Extra signal info inspection.
812#
813# Return a type suitable to inspect extra signal information.
814M:struct type *:get_siginfo_type:void:
815
60c5725c
DJ
816# Record architecture-specific information from the symbol table.
817M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 818
a96d9b2e
SDJ
819# Function for the 'catch syscall' feature.
820
821# Get architecture-specific system calls information from registers.
822M:LONGEST:get_syscall_number:ptid_t ptid:ptid
823
55aa24fb
SDJ
824# SystemTap related fields and functions.
825
826# Prefix used to mark an integer constant on the architecture's assembly
827# For example, on x86 integer constants are written as:
828#
829# \$10 ;; integer constant 10
830#
831# in this case, this prefix would be the character \`\$\'.
08af7a40 832v:const char *:stap_integer_prefix:::0:0::0:pstring (gdbarch->stap_integer_prefix)
55aa24fb
SDJ
833
834# Suffix used to mark an integer constant on the architecture's assembly.
08af7a40 835v:const char *:stap_integer_suffix:::0:0::0:pstring (gdbarch->stap_integer_suffix)
55aa24fb
SDJ
836
837# Prefix used to mark a register name on the architecture's assembly.
838# For example, on x86 the register name is written as:
839#
840# \%eax ;; register eax
841#
842# in this case, this prefix would be the character \`\%\'.
08af7a40 843v:const char *:stap_register_prefix:::0:0::0:pstring (gdbarch->stap_register_prefix)
55aa24fb
SDJ
844
845# Suffix used to mark a register name on the architecture's assembly
08af7a40 846v:const char *:stap_register_suffix:::0:0::0:pstring (gdbarch->stap_register_suffix)
55aa24fb
SDJ
847
848# Prefix used to mark a register indirection on the architecture's assembly.
849# For example, on x86 the register indirection is written as:
850#
851# \(\%eax\) ;; indirecting eax
852#
853# in this case, this prefix would be the charater \`\(\'.
854#
855# Please note that we use the indirection prefix also for register
856# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 857v:const char *:stap_register_indirection_prefix:::0:0::0:pstring (gdbarch->stap_register_indirection_prefix)
55aa24fb
SDJ
858
859# Suffix used to mark a register indirection on the architecture's assembly.
860# For example, on x86 the register indirection is written as:
861#
862# \(\%eax\) ;; indirecting eax
863#
864# in this case, this prefix would be the charater \`\)\'.
865#
866# Please note that we use the indirection suffix also for register
867# displacement, e.g., \`4\(\%eax\)\' on x86.
08af7a40 868v:const char *:stap_register_indirection_suffix:::0:0::0:pstring (gdbarch->stap_register_indirection_suffix)
55aa24fb
SDJ
869
870# Prefix used to name a register using GDB's nomenclature.
871#
872# For example, on PPC a register is represented by a number in the assembly
873# language (e.g., \`10\' is the 10th general-purpose register). However,
874# inside GDB this same register has an \`r\' appended to its name, so the 10th
875# register would be represented as \`r10\' internally.
08af7a40 876v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
877
878# Suffix used to name a register using GDB's nomenclature.
08af7a40 879v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
880
881# Check if S is a single operand.
882#
883# Single operands can be:
884# \- Literal integers, e.g. \`\$10\' on x86
885# \- Register access, e.g. \`\%eax\' on x86
886# \- Register indirection, e.g. \`\(\%eax\)\' on x86
887# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
888#
889# This function should check for these patterns on the string
890# and return 1 if some were found, or zero otherwise. Please try to match
891# as much info as you can from the string, i.e., if you have to match
892# something like \`\(\%\', do not match just the \`\(\'.
893M:int:stap_is_single_operand:const char *s:s
894
895# Function used to handle a "special case" in the parser.
896#
897# A "special case" is considered to be an unknown token, i.e., a token
898# that the parser does not know how to parse. A good example of special
899# case would be ARM's register displacement syntax:
900#
901# [R0, #4] ;; displacing R0 by 4
902#
903# Since the parser assumes that a register displacement is of the form:
904#
905# <number> <indirection_prefix> <register_name> <indirection_suffix>
906#
907# it means that it will not be able to recognize and parse this odd syntax.
908# Therefore, we should add a special case function that will handle this token.
909#
910# This function should generate the proper expression form of the expression
911# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
912# and so on). It should also return 1 if the parsing was successful, or zero
913# if the token was not recognized as a special token (in this case, returning
914# zero means that the special parser is deferring the parsing to the generic
915# parser), and should advance the buffer pointer (p->arg).
916M:int:stap_parse_special_token:struct stap_parse_info *p:p
917
918
50c71eaf
PA
919# True if the list of shared libraries is one and only for all
920# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
921# This usually means that all processes, although may or may not share
922# an address space, will see the same set of symbols at the same
923# addresses.
50c71eaf 924v:int:has_global_solist:::0:0::0
2567c7d9
PA
925
926# On some targets, even though each inferior has its own private
927# address space, the debug interface takes care of making breakpoints
928# visible to all address spaces automatically. For such cases,
929# this property should be set to true.
930v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
931
932# True if inferiors share an address space (e.g., uClinux).
933m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
934
935# True if a fast tracepoint can be set at an address.
936m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 937
f870a310
TT
938# Return the "auto" target charset.
939f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
940# Return the "auto" target wide charset.
941f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
942
943# If non-empty, this is a file extension that will be opened in place
944# of the file extension reported by the shared library list.
945#
946# This is most useful for toolchains that use a post-linker tool,
947# where the names of the files run on the target differ in extension
948# compared to the names of the files GDB should load for debug info.
949v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
950
951# If true, the target OS has DOS-based file system semantics. That
952# is, absolute paths include a drive name, and the backslash is
953# considered a directory separator.
954v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
955
956# Generate bytecodes to collect the return address in a frame.
957# Since the bytecodes run on the target, possibly with GDB not even
958# connected, the full unwinding machinery is not available, and
959# typically this function will issue bytecodes for one or more likely
960# places that the return address may be found.
961m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
962
3030c96e
UW
963# Implement the "info proc" command.
964M:void:info_proc:char *args, enum info_proc_what what:args, what
965
451b7c33
TT
966# Implement the "info proc" command for core files. Noe that there
967# are two "info_proc"-like methods on gdbarch -- one for core files,
968# one for live targets.
969M:void:core_info_proc:char *args, enum info_proc_what what:args, what
970
19630284
JB
971# Iterate over all objfiles in the order that makes the most sense
972# for the architecture to make global symbol searches.
973#
974# CB is a callback function where OBJFILE is the objfile to be searched,
975# and CB_DATA a pointer to user-defined data (the same data that is passed
976# when calling this gdbarch method). The iteration stops if this function
977# returns nonzero.
978#
979# CB_DATA is a pointer to some user-defined data to be passed to
980# the callback.
981#
982# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
983# inspected when the symbol search was requested.
984m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
985
7e35103a
JB
986# Ravenscar arch-dependent ops.
987v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
104c1213 988EOF
104c1213
JM
989}
990
0b8f9e4d
AC
991#
992# The .log file
993#
994exec > new-gdbarch.log
34620563 995function_list | while do_read
0b8f9e4d
AC
996do
997 cat <<EOF
2f9b146e 998${class} ${returntype} ${function} ($formal)
104c1213 999EOF
3d9a5942
AC
1000 for r in ${read}
1001 do
1002 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1003 done
f0d4cc9e 1004 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1005 then
66d659b1 1006 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1007 kill $$
1008 exit 1
1009 fi
72e74a21 1010 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1011 then
1012 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1013 kill $$
1014 exit 1
1015 fi
a72293e2
AC
1016 if class_is_multiarch_p
1017 then
1018 if class_is_predicate_p ; then :
1019 elif test "x${predefault}" = "x"
1020 then
2f9b146e 1021 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1022 kill $$
1023 exit 1
1024 fi
1025 fi
3d9a5942 1026 echo ""
0b8f9e4d
AC
1027done
1028
1029exec 1>&2
1030compare_new gdbarch.log
1031
104c1213
JM
1032
1033copyright ()
1034{
1035cat <<EOF
c4bfde41
JK
1036/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1037/* vi:set ro: */
59233f88 1038
104c1213 1039/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1040
28e7fd62 1041 Copyright (C) 1998-2013 Free Software Foundation, Inc.
104c1213
JM
1042
1043 This file is part of GDB.
1044
1045 This program is free software; you can redistribute it and/or modify
1046 it under the terms of the GNU General Public License as published by
50efebf8 1047 the Free Software Foundation; either version 3 of the License, or
104c1213 1048 (at your option) any later version.
50efebf8 1049
104c1213
JM
1050 This program is distributed in the hope that it will be useful,
1051 but WITHOUT ANY WARRANTY; without even the implied warranty of
1052 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1053 GNU General Public License for more details.
50efebf8 1054
104c1213 1055 You should have received a copy of the GNU General Public License
50efebf8 1056 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1057
104c1213
JM
1058/* This file was created with the aid of \`\`gdbarch.sh''.
1059
52204a0b 1060 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1061 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1062 against the existing \`\`gdbarch.[hc]''. Any differences found
1063 being reported.
1064
1065 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1066 changes into that script. Conversely, when making sweeping changes
104c1213 1067 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1068 easier. */
104c1213
JM
1069
1070EOF
1071}
1072
1073#
1074# The .h file
1075#
1076
1077exec > new-gdbarch.h
1078copyright
1079cat <<EOF
1080#ifndef GDBARCH_H
1081#define GDBARCH_H
1082
da3331ec
AC
1083struct floatformat;
1084struct ui_file;
104c1213
JM
1085struct frame_info;
1086struct value;
b6af0555 1087struct objfile;
1c772458 1088struct obj_section;
a2cf933a 1089struct minimal_symbol;
049ee0e4 1090struct regcache;
b59ff9d5 1091struct reggroup;
6ce6d90f 1092struct regset;
a89aa300 1093struct disassemble_info;
e2d0e7eb 1094struct target_ops;
030f20e1 1095struct obstack;
8181d85f 1096struct bp_target_info;
424163ea 1097struct target_desc;
237fc4c9 1098struct displaced_step_closure;
17ea7499 1099struct core_regset_section;
a96d9b2e 1100struct syscall;
175ff332 1101struct agent_expr;
6710bf39 1102struct axs_value;
55aa24fb 1103struct stap_parse_info;
7e35103a 1104struct ravenscar_arch_ops;
b3ac9c77 1105struct elf_internal_linux_prpsinfo;
104c1213 1106
6ecd4729
PA
1107/* The architecture associated with the inferior through the
1108 connection to the target.
1109
1110 The architecture vector provides some information that is really a
1111 property of the inferior, accessed through a particular target:
1112 ptrace operations; the layout of certain RSP packets; the solib_ops
1113 vector; etc. To differentiate architecture accesses to
1114 per-inferior/target properties from
1115 per-thread/per-frame/per-objfile properties, accesses to
1116 per-inferior/target properties should be made through this
1117 gdbarch. */
1118
1119/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1120extern struct gdbarch *target_gdbarch (void);
6ecd4729
PA
1121
1122/* The initial, default architecture. It uses host values (for want of a better
1123 choice). */
1124extern struct gdbarch startup_gdbarch;
1125
19630284
JB
1126
1127/* Callback type for the 'iterate_over_objfiles_in_search_order'
1128 gdbarch method. */
1129
1130typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1131 (struct objfile *objfile, void *cb_data);
104c1213
JM
1132EOF
1133
1134# function typedef's
3d9a5942
AC
1135printf "\n"
1136printf "\n"
0963b4bd 1137printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1138function_list | while do_read
104c1213 1139do
2ada493a
AC
1140 if class_is_info_p
1141 then
3d9a5942
AC
1142 printf "\n"
1143 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1144 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1145 fi
104c1213
JM
1146done
1147
1148# function typedef's
3d9a5942
AC
1149printf "\n"
1150printf "\n"
0963b4bd 1151printf "/* The following are initialized by the target dependent code. */\n"
34620563 1152function_list | while do_read
104c1213 1153do
72e74a21 1154 if [ -n "${comment}" ]
34620563
AC
1155 then
1156 echo "${comment}" | sed \
1157 -e '2 s,#,/*,' \
1158 -e '3,$ s,#, ,' \
1159 -e '$ s,$, */,'
1160 fi
412d5987
AC
1161
1162 if class_is_predicate_p
2ada493a 1163 then
412d5987
AC
1164 printf "\n"
1165 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1166 fi
2ada493a
AC
1167 if class_is_variable_p
1168 then
3d9a5942
AC
1169 printf "\n"
1170 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1171 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1172 fi
1173 if class_is_function_p
1174 then
3d9a5942 1175 printf "\n"
72e74a21 1176 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1177 then
1178 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1179 elif class_is_multiarch_p
1180 then
1181 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1182 else
1183 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1184 fi
72e74a21 1185 if [ "x${formal}" = "xvoid" ]
104c1213 1186 then
3d9a5942 1187 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1188 else
3d9a5942 1189 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1190 fi
3d9a5942 1191 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1192 fi
104c1213
JM
1193done
1194
1195# close it off
1196cat <<EOF
1197
a96d9b2e
SDJ
1198/* Definition for an unknown syscall, used basically in error-cases. */
1199#define UNKNOWN_SYSCALL (-1)
1200
104c1213
JM
1201extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1202
1203
1204/* Mechanism for co-ordinating the selection of a specific
1205 architecture.
1206
1207 GDB targets (*-tdep.c) can register an interest in a specific
1208 architecture. Other GDB components can register a need to maintain
1209 per-architecture data.
1210
1211 The mechanisms below ensures that there is only a loose connection
1212 between the set-architecture command and the various GDB
0fa6923a 1213 components. Each component can independently register their need
104c1213
JM
1214 to maintain architecture specific data with gdbarch.
1215
1216 Pragmatics:
1217
1218 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1219 didn't scale.
1220
1221 The more traditional mega-struct containing architecture specific
1222 data for all the various GDB components was also considered. Since
0fa6923a 1223 GDB is built from a variable number of (fairly independent)
104c1213 1224 components it was determined that the global aproach was not
0963b4bd 1225 applicable. */
104c1213
JM
1226
1227
1228/* Register a new architectural family with GDB.
1229
1230 Register support for the specified ARCHITECTURE with GDB. When
1231 gdbarch determines that the specified architecture has been
1232 selected, the corresponding INIT function is called.
1233
1234 --
1235
1236 The INIT function takes two parameters: INFO which contains the
1237 information available to gdbarch about the (possibly new)
1238 architecture; ARCHES which is a list of the previously created
1239 \`\`struct gdbarch'' for this architecture.
1240
0f79675b 1241 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1242 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1243
1244 The ARCHES parameter is a linked list (sorted most recently used)
1245 of all the previously created architures for this architecture
1246 family. The (possibly NULL) ARCHES->gdbarch can used to access
1247 values from the previously selected architecture for this
59837fe0 1248 architecture family.
104c1213
JM
1249
1250 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1251 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1252 gdbarch'' from the ARCHES list - indicating that the new
1253 architecture is just a synonym for an earlier architecture (see
1254 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1255 - that describes the selected architecture (see gdbarch_alloc()).
1256
1257 The DUMP_TDEP function shall print out all target specific values.
1258 Care should be taken to ensure that the function works in both the
0963b4bd 1259 multi-arch and non- multi-arch cases. */
104c1213
JM
1260
1261struct gdbarch_list
1262{
1263 struct gdbarch *gdbarch;
1264 struct gdbarch_list *next;
1265};
1266
1267struct gdbarch_info
1268{
0963b4bd 1269 /* Use default: NULL (ZERO). */
104c1213
JM
1270 const struct bfd_arch_info *bfd_arch_info;
1271
428721aa 1272 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1273 int byte_order;
1274
9d4fde75
SS
1275 int byte_order_for_code;
1276
0963b4bd 1277 /* Use default: NULL (ZERO). */
104c1213
JM
1278 bfd *abfd;
1279
0963b4bd 1280 /* Use default: NULL (ZERO). */
104c1213 1281 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1282
1283 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1284 enum gdb_osabi osabi;
424163ea
DJ
1285
1286 /* Use default: NULL (ZERO). */
1287 const struct target_desc *target_desc;
104c1213
JM
1288};
1289
1290typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1291typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1292
4b9b3959 1293/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1294extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1295
4b9b3959
AC
1296extern void gdbarch_register (enum bfd_architecture architecture,
1297 gdbarch_init_ftype *,
1298 gdbarch_dump_tdep_ftype *);
1299
104c1213 1300
b4a20239
AC
1301/* Return a freshly allocated, NULL terminated, array of the valid
1302 architecture names. Since architectures are registered during the
1303 _initialize phase this function only returns useful information
0963b4bd 1304 once initialization has been completed. */
b4a20239
AC
1305
1306extern const char **gdbarch_printable_names (void);
1307
1308
104c1213 1309/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1310 matches the information provided by INFO. */
104c1213 1311
424163ea 1312extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1313
1314
1315/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1316 basic initialization using values obtained from the INFO and TDEP
104c1213 1317 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1318 initialization of the object. */
104c1213
JM
1319
1320extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1321
1322
4b9b3959
AC
1323/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1324 It is assumed that the caller freeds the \`\`struct
0963b4bd 1325 gdbarch_tdep''. */
4b9b3959 1326
058f20d5
JB
1327extern void gdbarch_free (struct gdbarch *);
1328
1329
aebd7893
AC
1330/* Helper function. Allocate memory from the \`\`struct gdbarch''
1331 obstack. The memory is freed when the corresponding architecture
1332 is also freed. */
1333
1334extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1335#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1336#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1337
1338
0963b4bd 1339/* Helper function. Force an update of the current architecture.
104c1213 1340
b732d07d
AC
1341 The actual architecture selected is determined by INFO, \`\`(gdb) set
1342 architecture'' et.al., the existing architecture and BFD's default
1343 architecture. INFO should be initialized to zero and then selected
1344 fields should be updated.
104c1213 1345
0963b4bd 1346 Returns non-zero if the update succeeds. */
16f33e29
AC
1347
1348extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1349
1350
ebdba546
AC
1351/* Helper function. Find an architecture matching info.
1352
1353 INFO should be initialized using gdbarch_info_init, relevant fields
1354 set, and then finished using gdbarch_info_fill.
1355
1356 Returns the corresponding architecture, or NULL if no matching
59837fe0 1357 architecture was found. */
ebdba546
AC
1358
1359extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1360
1361
aff68abb 1362/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1363
aff68abb 1364extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1365
104c1213
JM
1366
1367/* Register per-architecture data-pointer.
1368
1369 Reserve space for a per-architecture data-pointer. An identifier
1370 for the reserved data-pointer is returned. That identifer should
95160752 1371 be saved in a local static variable.
104c1213 1372
fcc1c85c
AC
1373 Memory for the per-architecture data shall be allocated using
1374 gdbarch_obstack_zalloc. That memory will be deleted when the
1375 corresponding architecture object is deleted.
104c1213 1376
95160752
AC
1377 When a previously created architecture is re-selected, the
1378 per-architecture data-pointer for that previous architecture is
76860b5f 1379 restored. INIT() is not re-called.
104c1213
JM
1380
1381 Multiple registrarants for any architecture are allowed (and
1382 strongly encouraged). */
1383
95160752 1384struct gdbarch_data;
104c1213 1385
030f20e1
AC
1386typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1387extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1388typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1389extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1390extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1391 struct gdbarch_data *data,
1392 void *pointer);
104c1213 1393
451fbdda 1394extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1395
1396
0fa6923a 1397/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1398 byte-order, ...) using information found in the BFD. */
104c1213
JM
1399
1400extern void set_gdbarch_from_file (bfd *);
1401
1402
e514a9d6
JM
1403/* Initialize the current architecture to the "first" one we find on
1404 our list. */
1405
1406extern void initialize_current_architecture (void);
1407
104c1213 1408/* gdbarch trace variable */
ccce17b0 1409extern unsigned int gdbarch_debug;
104c1213 1410
4b9b3959 1411extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1412
1413#endif
1414EOF
1415exec 1>&2
1416#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1417compare_new gdbarch.h
104c1213
JM
1418
1419
1420#
1421# C file
1422#
1423
1424exec > new-gdbarch.c
1425copyright
1426cat <<EOF
1427
1428#include "defs.h"
7355ddba 1429#include "arch-utils.h"
104c1213 1430
104c1213 1431#include "gdbcmd.h"
faaf634c 1432#include "inferior.h"
104c1213
JM
1433#include "symcat.h"
1434
f0d4cc9e 1435#include "floatformat.h"
104c1213 1436
95160752 1437#include "gdb_assert.h"
b66d6d2e 1438#include "gdb_string.h"
b59ff9d5 1439#include "reggroups.h"
4be87837 1440#include "osabi.h"
aebd7893 1441#include "gdb_obstack.h"
383f836e 1442#include "observer.h"
a3ecef73 1443#include "regcache.h"
19630284 1444#include "objfiles.h"
95160752 1445
104c1213
JM
1446/* Static function declarations */
1447
b3cc3077 1448static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1449
104c1213
JM
1450/* Non-zero if we want to trace architecture code. */
1451
1452#ifndef GDBARCH_DEBUG
1453#define GDBARCH_DEBUG 0
1454#endif
ccce17b0 1455unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1456static void
1457show_gdbarch_debug (struct ui_file *file, int from_tty,
1458 struct cmd_list_element *c, const char *value)
1459{
1460 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1461}
104c1213 1462
456fcf94 1463static const char *
8da61cc4 1464pformat (const struct floatformat **format)
456fcf94
AC
1465{
1466 if (format == NULL)
1467 return "(null)";
1468 else
8da61cc4
DJ
1469 /* Just print out one of them - this is only for diagnostics. */
1470 return format[0]->name;
456fcf94
AC
1471}
1472
08105857
PA
1473static const char *
1474pstring (const char *string)
1475{
1476 if (string == NULL)
1477 return "(null)";
1478 return string;
1479}
1480
104c1213
JM
1481EOF
1482
1483# gdbarch open the gdbarch object
3d9a5942 1484printf "\n"
0963b4bd 1485printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1486printf "\n"
1487printf "struct gdbarch\n"
1488printf "{\n"
76860b5f
AC
1489printf " /* Has this architecture been fully initialized? */\n"
1490printf " int initialized_p;\n"
aebd7893
AC
1491printf "\n"
1492printf " /* An obstack bound to the lifetime of the architecture. */\n"
1493printf " struct obstack *obstack;\n"
1494printf "\n"
0963b4bd 1495printf " /* basic architectural information. */\n"
34620563 1496function_list | while do_read
104c1213 1497do
2ada493a
AC
1498 if class_is_info_p
1499 then
3d9a5942 1500 printf " ${returntype} ${function};\n"
2ada493a 1501 fi
104c1213 1502done
3d9a5942 1503printf "\n"
0963b4bd 1504printf " /* target specific vector. */\n"
3d9a5942
AC
1505printf " struct gdbarch_tdep *tdep;\n"
1506printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1507printf "\n"
0963b4bd 1508printf " /* per-architecture data-pointers. */\n"
95160752 1509printf " unsigned nr_data;\n"
3d9a5942
AC
1510printf " void **data;\n"
1511printf "\n"
104c1213
JM
1512cat <<EOF
1513 /* Multi-arch values.
1514
1515 When extending this structure you must:
1516
1517 Add the field below.
1518
1519 Declare set/get functions and define the corresponding
1520 macro in gdbarch.h.
1521
1522 gdbarch_alloc(): If zero/NULL is not a suitable default,
1523 initialize the new field.
1524
1525 verify_gdbarch(): Confirm that the target updated the field
1526 correctly.
1527
7e73cedf 1528 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1529 field is dumped out
1530
c0e8c252 1531 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1532 variable (base values on the host's c-type system).
1533
1534 get_gdbarch(): Implement the set/get functions (probably using
1535 the macro's as shortcuts).
1536
1537 */
1538
1539EOF
34620563 1540function_list | while do_read
104c1213 1541do
2ada493a
AC
1542 if class_is_variable_p
1543 then
3d9a5942 1544 printf " ${returntype} ${function};\n"
2ada493a
AC
1545 elif class_is_function_p
1546 then
2f9b146e 1547 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1548 fi
104c1213 1549done
3d9a5942 1550printf "};\n"
104c1213
JM
1551
1552# A pre-initialized vector
3d9a5942
AC
1553printf "\n"
1554printf "\n"
104c1213
JM
1555cat <<EOF
1556/* The default architecture uses host values (for want of a better
0963b4bd 1557 choice). */
104c1213 1558EOF
3d9a5942
AC
1559printf "\n"
1560printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1561printf "\n"
1562printf "struct gdbarch startup_gdbarch =\n"
1563printf "{\n"
76860b5f 1564printf " 1, /* Always initialized. */\n"
aebd7893 1565printf " NULL, /* The obstack. */\n"
0963b4bd 1566printf " /* basic architecture information. */\n"
4b9b3959 1567function_list | while do_read
104c1213 1568do
2ada493a
AC
1569 if class_is_info_p
1570 then
ec5cbaec 1571 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1572 fi
104c1213
JM
1573done
1574cat <<EOF
0963b4bd 1575 /* target specific vector and its dump routine. */
4b9b3959 1576 NULL, NULL,
c66fb220
TT
1577 /*per-architecture data-pointers. */
1578 0, NULL,
104c1213
JM
1579 /* Multi-arch values */
1580EOF
34620563 1581function_list | while do_read
104c1213 1582do
2ada493a
AC
1583 if class_is_function_p || class_is_variable_p
1584 then
ec5cbaec 1585 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1586 fi
104c1213
JM
1587done
1588cat <<EOF
c0e8c252 1589 /* startup_gdbarch() */
104c1213 1590};
4b9b3959 1591
104c1213
JM
1592EOF
1593
1594# Create a new gdbarch struct
104c1213 1595cat <<EOF
7de2341d 1596
66b43ecb 1597/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1598 \`\`struct gdbarch_info''. */
104c1213 1599EOF
3d9a5942 1600printf "\n"
104c1213
JM
1601cat <<EOF
1602struct gdbarch *
1603gdbarch_alloc (const struct gdbarch_info *info,
1604 struct gdbarch_tdep *tdep)
1605{
be7811ad 1606 struct gdbarch *gdbarch;
aebd7893
AC
1607
1608 /* Create an obstack for allocating all the per-architecture memory,
1609 then use that to allocate the architecture vector. */
1610 struct obstack *obstack = XMALLOC (struct obstack);
1611 obstack_init (obstack);
be7811ad
MD
1612 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1613 memset (gdbarch, 0, sizeof (*gdbarch));
1614 gdbarch->obstack = obstack;
85de9627 1615
be7811ad 1616 alloc_gdbarch_data (gdbarch);
85de9627 1617
be7811ad 1618 gdbarch->tdep = tdep;
104c1213 1619EOF
3d9a5942 1620printf "\n"
34620563 1621function_list | while do_read
104c1213 1622do
2ada493a
AC
1623 if class_is_info_p
1624 then
be7811ad 1625 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1626 fi
104c1213 1627done
3d9a5942 1628printf "\n"
0963b4bd 1629printf " /* Force the explicit initialization of these. */\n"
34620563 1630function_list | while do_read
104c1213 1631do
2ada493a
AC
1632 if class_is_function_p || class_is_variable_p
1633 then
72e74a21 1634 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1635 then
be7811ad 1636 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1637 fi
2ada493a 1638 fi
104c1213
JM
1639done
1640cat <<EOF
1641 /* gdbarch_alloc() */
1642
be7811ad 1643 return gdbarch;
104c1213
JM
1644}
1645EOF
1646
058f20d5 1647# Free a gdbarch struct.
3d9a5942
AC
1648printf "\n"
1649printf "\n"
058f20d5 1650cat <<EOF
aebd7893
AC
1651/* Allocate extra space using the per-architecture obstack. */
1652
1653void *
1654gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1655{
1656 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1657
aebd7893
AC
1658 memset (data, 0, size);
1659 return data;
1660}
1661
1662
058f20d5
JB
1663/* Free a gdbarch struct. This should never happen in normal
1664 operation --- once you've created a gdbarch, you keep it around.
1665 However, if an architecture's init function encounters an error
1666 building the structure, it may need to clean up a partially
1667 constructed gdbarch. */
4b9b3959 1668
058f20d5
JB
1669void
1670gdbarch_free (struct gdbarch *arch)
1671{
aebd7893 1672 struct obstack *obstack;
05c547f6 1673
95160752 1674 gdb_assert (arch != NULL);
aebd7893
AC
1675 gdb_assert (!arch->initialized_p);
1676 obstack = arch->obstack;
1677 obstack_free (obstack, 0); /* Includes the ARCH. */
1678 xfree (obstack);
058f20d5
JB
1679}
1680EOF
1681
104c1213 1682# verify a new architecture
104c1213 1683cat <<EOF
db446970
AC
1684
1685
1686/* Ensure that all values in a GDBARCH are reasonable. */
1687
104c1213 1688static void
be7811ad 1689verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1690{
f16a1923
AC
1691 struct ui_file *log;
1692 struct cleanup *cleanups;
759ef836 1693 long length;
f16a1923 1694 char *buf;
05c547f6 1695
f16a1923
AC
1696 log = mem_fileopen ();
1697 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1698 /* fundamental */
be7811ad 1699 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1700 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1701 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1702 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1703 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1704EOF
34620563 1705function_list | while do_read
104c1213 1706do
2ada493a
AC
1707 if class_is_function_p || class_is_variable_p
1708 then
72e74a21 1709 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1710 then
3d9a5942 1711 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1712 elif class_is_predicate_p
1713 then
0963b4bd 1714 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1715 # FIXME: See do_read for potential simplification
72e74a21 1716 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1717 then
3d9a5942 1718 printf " if (${invalid_p})\n"
be7811ad 1719 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1720 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1721 then
be7811ad
MD
1722 printf " if (gdbarch->${function} == ${predefault})\n"
1723 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1724 elif [ -n "${postdefault}" ]
f0d4cc9e 1725 then
be7811ad
MD
1726 printf " if (gdbarch->${function} == 0)\n"
1727 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1728 elif [ -n "${invalid_p}" ]
104c1213 1729 then
4d60522e 1730 printf " if (${invalid_p})\n"
f16a1923 1731 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1732 elif [ -n "${predefault}" ]
104c1213 1733 then
be7811ad 1734 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1735 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1736 fi
2ada493a 1737 fi
104c1213
JM
1738done
1739cat <<EOF
759ef836 1740 buf = ui_file_xstrdup (log, &length);
f16a1923 1741 make_cleanup (xfree, buf);
759ef836 1742 if (length > 0)
f16a1923 1743 internal_error (__FILE__, __LINE__,
85c07804 1744 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1745 buf);
1746 do_cleanups (cleanups);
104c1213
JM
1747}
1748EOF
1749
1750# dump the structure
3d9a5942
AC
1751printf "\n"
1752printf "\n"
104c1213 1753cat <<EOF
0963b4bd 1754/* Print out the details of the current architecture. */
4b9b3959 1755
104c1213 1756void
be7811ad 1757gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1758{
b78960be 1759 const char *gdb_nm_file = "<not-defined>";
05c547f6 1760
b78960be
AC
1761#if defined (GDB_NM_FILE)
1762 gdb_nm_file = GDB_NM_FILE;
1763#endif
1764 fprintf_unfiltered (file,
1765 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1766 gdb_nm_file);
104c1213 1767EOF
97030eea 1768function_list | sort -t: -k 3 | while do_read
104c1213 1769do
1e9f55d0
AC
1770 # First the predicate
1771 if class_is_predicate_p
1772 then
7996bcec 1773 printf " fprintf_unfiltered (file,\n"
48f7351b 1774 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1775 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1776 fi
48f7351b 1777 # Print the corresponding value.
283354d8 1778 if class_is_function_p
4b9b3959 1779 then
7996bcec 1780 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1781 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1782 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1783 else
48f7351b 1784 # It is a variable
2f9b146e
AC
1785 case "${print}:${returntype}" in
1786 :CORE_ADDR )
0b1553bc
UW
1787 fmt="%s"
1788 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1789 ;;
2f9b146e 1790 :* )
48f7351b 1791 fmt="%s"
623d3eb1 1792 print="plongest (gdbarch->${function})"
48f7351b
AC
1793 ;;
1794 * )
2f9b146e 1795 fmt="%s"
48f7351b
AC
1796 ;;
1797 esac
3d9a5942 1798 printf " fprintf_unfiltered (file,\n"
48f7351b 1799 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1800 printf " ${print});\n"
2ada493a 1801 fi
104c1213 1802done
381323f4 1803cat <<EOF
be7811ad
MD
1804 if (gdbarch->dump_tdep != NULL)
1805 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1806}
1807EOF
104c1213
JM
1808
1809
1810# GET/SET
3d9a5942 1811printf "\n"
104c1213
JM
1812cat <<EOF
1813struct gdbarch_tdep *
1814gdbarch_tdep (struct gdbarch *gdbarch)
1815{
1816 if (gdbarch_debug >= 2)
3d9a5942 1817 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1818 return gdbarch->tdep;
1819}
1820EOF
3d9a5942 1821printf "\n"
34620563 1822function_list | while do_read
104c1213 1823do
2ada493a
AC
1824 if class_is_predicate_p
1825 then
3d9a5942
AC
1826 printf "\n"
1827 printf "int\n"
1828 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1829 printf "{\n"
8de9bdc4 1830 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1831 printf " return ${predicate};\n"
3d9a5942 1832 printf "}\n"
2ada493a
AC
1833 fi
1834 if class_is_function_p
1835 then
3d9a5942
AC
1836 printf "\n"
1837 printf "${returntype}\n"
72e74a21 1838 if [ "x${formal}" = "xvoid" ]
104c1213 1839 then
3d9a5942 1840 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1841 else
3d9a5942 1842 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1843 fi
3d9a5942 1844 printf "{\n"
8de9bdc4 1845 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1846 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1847 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1848 then
1849 # Allow a call to a function with a predicate.
956ac328 1850 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1851 fi
3d9a5942
AC
1852 printf " if (gdbarch_debug >= 2)\n"
1853 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1854 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1855 then
1856 if class_is_multiarch_p
1857 then
1858 params="gdbarch"
1859 else
1860 params=""
1861 fi
1862 else
1863 if class_is_multiarch_p
1864 then
1865 params="gdbarch, ${actual}"
1866 else
1867 params="${actual}"
1868 fi
1869 fi
72e74a21 1870 if [ "x${returntype}" = "xvoid" ]
104c1213 1871 then
4a5c6a1d 1872 printf " gdbarch->${function} (${params});\n"
104c1213 1873 else
4a5c6a1d 1874 printf " return gdbarch->${function} (${params});\n"
104c1213 1875 fi
3d9a5942
AC
1876 printf "}\n"
1877 printf "\n"
1878 printf "void\n"
1879 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1880 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1881 printf "{\n"
1882 printf " gdbarch->${function} = ${function};\n"
1883 printf "}\n"
2ada493a
AC
1884 elif class_is_variable_p
1885 then
3d9a5942
AC
1886 printf "\n"
1887 printf "${returntype}\n"
1888 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1889 printf "{\n"
8de9bdc4 1890 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1891 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1892 then
3d9a5942 1893 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1894 elif [ -n "${invalid_p}" ]
104c1213 1895 then
956ac328
AC
1896 printf " /* Check variable is valid. */\n"
1897 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1898 elif [ -n "${predefault}" ]
104c1213 1899 then
956ac328
AC
1900 printf " /* Check variable changed from pre-default. */\n"
1901 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1902 fi
3d9a5942
AC
1903 printf " if (gdbarch_debug >= 2)\n"
1904 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1905 printf " return gdbarch->${function};\n"
1906 printf "}\n"
1907 printf "\n"
1908 printf "void\n"
1909 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1910 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1911 printf "{\n"
1912 printf " gdbarch->${function} = ${function};\n"
1913 printf "}\n"
2ada493a
AC
1914 elif class_is_info_p
1915 then
3d9a5942
AC
1916 printf "\n"
1917 printf "${returntype}\n"
1918 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1919 printf "{\n"
8de9bdc4 1920 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1921 printf " if (gdbarch_debug >= 2)\n"
1922 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1923 printf " return gdbarch->${function};\n"
1924 printf "}\n"
2ada493a 1925 fi
104c1213
JM
1926done
1927
1928# All the trailing guff
1929cat <<EOF
1930
1931
f44c642f 1932/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1933 modules. */
104c1213
JM
1934
1935struct gdbarch_data
1936{
95160752 1937 unsigned index;
76860b5f 1938 int init_p;
030f20e1
AC
1939 gdbarch_data_pre_init_ftype *pre_init;
1940 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1941};
1942
1943struct gdbarch_data_registration
1944{
104c1213
JM
1945 struct gdbarch_data *data;
1946 struct gdbarch_data_registration *next;
1947};
1948
f44c642f 1949struct gdbarch_data_registry
104c1213 1950{
95160752 1951 unsigned nr;
104c1213
JM
1952 struct gdbarch_data_registration *registrations;
1953};
1954
f44c642f 1955struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1956{
1957 0, NULL,
1958};
1959
030f20e1
AC
1960static struct gdbarch_data *
1961gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1962 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1963{
1964 struct gdbarch_data_registration **curr;
05c547f6
MS
1965
1966 /* Append the new registration. */
f44c642f 1967 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1968 (*curr) != NULL;
1969 curr = &(*curr)->next);
1970 (*curr) = XMALLOC (struct gdbarch_data_registration);
1971 (*curr)->next = NULL;
104c1213 1972 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1973 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1974 (*curr)->data->pre_init = pre_init;
1975 (*curr)->data->post_init = post_init;
76860b5f 1976 (*curr)->data->init_p = 1;
104c1213
JM
1977 return (*curr)->data;
1978}
1979
030f20e1
AC
1980struct gdbarch_data *
1981gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1982{
1983 return gdbarch_data_register (pre_init, NULL);
1984}
1985
1986struct gdbarch_data *
1987gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1988{
1989 return gdbarch_data_register (NULL, post_init);
1990}
104c1213 1991
0963b4bd 1992/* Create/delete the gdbarch data vector. */
95160752
AC
1993
1994static void
b3cc3077 1995alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1996{
b3cc3077
JB
1997 gdb_assert (gdbarch->data == NULL);
1998 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1999 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2000}
3c875b6f 2001
76860b5f 2002/* Initialize the current value of the specified per-architecture
0963b4bd 2003 data-pointer. */
b3cc3077 2004
95160752 2005void
030f20e1
AC
2006deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2007 struct gdbarch_data *data,
2008 void *pointer)
95160752
AC
2009{
2010 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2011 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2012 gdb_assert (data->pre_init == NULL);
95160752
AC
2013 gdbarch->data[data->index] = pointer;
2014}
2015
104c1213 2016/* Return the current value of the specified per-architecture
0963b4bd 2017 data-pointer. */
104c1213
JM
2018
2019void *
451fbdda 2020gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2021{
451fbdda 2022 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2023 if (gdbarch->data[data->index] == NULL)
76860b5f 2024 {
030f20e1
AC
2025 /* The data-pointer isn't initialized, call init() to get a
2026 value. */
2027 if (data->pre_init != NULL)
2028 /* Mid architecture creation: pass just the obstack, and not
2029 the entire architecture, as that way it isn't possible for
2030 pre-init code to refer to undefined architecture
2031 fields. */
2032 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2033 else if (gdbarch->initialized_p
2034 && data->post_init != NULL)
2035 /* Post architecture creation: pass the entire architecture
2036 (as all fields are valid), but be careful to also detect
2037 recursive references. */
2038 {
2039 gdb_assert (data->init_p);
2040 data->init_p = 0;
2041 gdbarch->data[data->index] = data->post_init (gdbarch);
2042 data->init_p = 1;
2043 }
2044 else
2045 /* The architecture initialization hasn't completed - punt -
2046 hope that the caller knows what they are doing. Once
2047 deprecated_set_gdbarch_data has been initialized, this can be
2048 changed to an internal error. */
2049 return NULL;
76860b5f
AC
2050 gdb_assert (gdbarch->data[data->index] != NULL);
2051 }
451fbdda 2052 return gdbarch->data[data->index];
104c1213
JM
2053}
2054
2055
0963b4bd 2056/* Keep a registry of the architectures known by GDB. */
104c1213 2057
4b9b3959 2058struct gdbarch_registration
104c1213
JM
2059{
2060 enum bfd_architecture bfd_architecture;
2061 gdbarch_init_ftype *init;
4b9b3959 2062 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2063 struct gdbarch_list *arches;
4b9b3959 2064 struct gdbarch_registration *next;
104c1213
JM
2065};
2066
f44c642f 2067static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2068
b4a20239
AC
2069static void
2070append_name (const char ***buf, int *nr, const char *name)
2071{
2072 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2073 (*buf)[*nr] = name;
2074 *nr += 1;
2075}
2076
2077const char **
2078gdbarch_printable_names (void)
2079{
7996bcec 2080 /* Accumulate a list of names based on the registed list of
0963b4bd 2081 architectures. */
7996bcec
AC
2082 int nr_arches = 0;
2083 const char **arches = NULL;
2084 struct gdbarch_registration *rego;
05c547f6 2085
7996bcec
AC
2086 for (rego = gdbarch_registry;
2087 rego != NULL;
2088 rego = rego->next)
b4a20239 2089 {
7996bcec
AC
2090 const struct bfd_arch_info *ap;
2091 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2092 if (ap == NULL)
2093 internal_error (__FILE__, __LINE__,
85c07804 2094 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2095 do
2096 {
2097 append_name (&arches, &nr_arches, ap->printable_name);
2098 ap = ap->next;
2099 }
2100 while (ap != NULL);
b4a20239 2101 }
7996bcec
AC
2102 append_name (&arches, &nr_arches, NULL);
2103 return arches;
b4a20239
AC
2104}
2105
2106
104c1213 2107void
4b9b3959
AC
2108gdbarch_register (enum bfd_architecture bfd_architecture,
2109 gdbarch_init_ftype *init,
2110 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2111{
4b9b3959 2112 struct gdbarch_registration **curr;
104c1213 2113 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2114
ec3d358c 2115 /* Check that BFD recognizes this architecture */
104c1213
JM
2116 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2117 if (bfd_arch_info == NULL)
2118 {
8e65ff28 2119 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2120 _("gdbarch: Attempt to register "
2121 "unknown architecture (%d)"),
8e65ff28 2122 bfd_architecture);
104c1213 2123 }
0963b4bd 2124 /* Check that we haven't seen this architecture before. */
f44c642f 2125 for (curr = &gdbarch_registry;
104c1213
JM
2126 (*curr) != NULL;
2127 curr = &(*curr)->next)
2128 {
2129 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2130 internal_error (__FILE__, __LINE__,
64b9b334 2131 _("gdbarch: Duplicate registration "
0963b4bd 2132 "of architecture (%s)"),
8e65ff28 2133 bfd_arch_info->printable_name);
104c1213
JM
2134 }
2135 /* log it */
2136 if (gdbarch_debug)
30737ed9 2137 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2138 bfd_arch_info->printable_name,
30737ed9 2139 host_address_to_string (init));
104c1213 2140 /* Append it */
4b9b3959 2141 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2142 (*curr)->bfd_architecture = bfd_architecture;
2143 (*curr)->init = init;
4b9b3959 2144 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2145 (*curr)->arches = NULL;
2146 (*curr)->next = NULL;
4b9b3959
AC
2147}
2148
2149void
2150register_gdbarch_init (enum bfd_architecture bfd_architecture,
2151 gdbarch_init_ftype *init)
2152{
2153 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2154}
104c1213
JM
2155
2156
424163ea 2157/* Look for an architecture using gdbarch_info. */
104c1213
JM
2158
2159struct gdbarch_list *
2160gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2161 const struct gdbarch_info *info)
2162{
2163 for (; arches != NULL; arches = arches->next)
2164 {
2165 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2166 continue;
2167 if (info->byte_order != arches->gdbarch->byte_order)
2168 continue;
4be87837
DJ
2169 if (info->osabi != arches->gdbarch->osabi)
2170 continue;
424163ea
DJ
2171 if (info->target_desc != arches->gdbarch->target_desc)
2172 continue;
104c1213
JM
2173 return arches;
2174 }
2175 return NULL;
2176}
2177
2178
ebdba546 2179/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2180 architecture if needed. Return that new architecture. */
104c1213 2181
59837fe0
UW
2182struct gdbarch *
2183gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2184{
2185 struct gdbarch *new_gdbarch;
4b9b3959 2186 struct gdbarch_registration *rego;
104c1213 2187
b732d07d 2188 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2189 sources: "set ..."; INFOabfd supplied; and the global
2190 defaults. */
2191 gdbarch_info_fill (&info);
4be87837 2192
0963b4bd 2193 /* Must have found some sort of architecture. */
b732d07d 2194 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2195
2196 if (gdbarch_debug)
2197 {
2198 fprintf_unfiltered (gdb_stdlog,
59837fe0 2199 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2200 (info.bfd_arch_info != NULL
2201 ? info.bfd_arch_info->printable_name
2202 : "(null)"));
2203 fprintf_unfiltered (gdb_stdlog,
59837fe0 2204 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2205 info.byte_order,
d7449b42 2206 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2207 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2208 : "default"));
4be87837 2209 fprintf_unfiltered (gdb_stdlog,
59837fe0 2210 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2211 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2212 fprintf_unfiltered (gdb_stdlog,
59837fe0 2213 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2214 host_address_to_string (info.abfd));
104c1213 2215 fprintf_unfiltered (gdb_stdlog,
59837fe0 2216 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2217 host_address_to_string (info.tdep_info));
104c1213
JM
2218 }
2219
ebdba546 2220 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2221 for (rego = gdbarch_registry;
2222 rego != NULL;
2223 rego = rego->next)
2224 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2225 break;
2226 if (rego == NULL)
2227 {
2228 if (gdbarch_debug)
59837fe0 2229 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2230 "No matching architecture\n");
b732d07d
AC
2231 return 0;
2232 }
2233
ebdba546 2234 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2235 new_gdbarch = rego->init (info, rego->arches);
2236
ebdba546
AC
2237 /* Did the tdep code like it? No. Reject the change and revert to
2238 the old architecture. */
104c1213
JM
2239 if (new_gdbarch == NULL)
2240 {
2241 if (gdbarch_debug)
59837fe0 2242 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2243 "Target rejected architecture\n");
2244 return NULL;
104c1213
JM
2245 }
2246
ebdba546
AC
2247 /* Is this a pre-existing architecture (as determined by already
2248 being initialized)? Move it to the front of the architecture
2249 list (keeping the list sorted Most Recently Used). */
2250 if (new_gdbarch->initialized_p)
104c1213 2251 {
ebdba546
AC
2252 struct gdbarch_list **list;
2253 struct gdbarch_list *this;
104c1213 2254 if (gdbarch_debug)
59837fe0 2255 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2256 "Previous architecture %s (%s) selected\n",
2257 host_address_to_string (new_gdbarch),
104c1213 2258 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2259 /* Find the existing arch in the list. */
2260 for (list = &rego->arches;
2261 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2262 list = &(*list)->next);
2263 /* It had better be in the list of architectures. */
2264 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2265 /* Unlink THIS. */
2266 this = (*list);
2267 (*list) = this->next;
2268 /* Insert THIS at the front. */
2269 this->next = rego->arches;
2270 rego->arches = this;
2271 /* Return it. */
2272 return new_gdbarch;
104c1213
JM
2273 }
2274
ebdba546
AC
2275 /* It's a new architecture. */
2276 if (gdbarch_debug)
59837fe0 2277 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2278 "New architecture %s (%s) selected\n",
2279 host_address_to_string (new_gdbarch),
ebdba546
AC
2280 new_gdbarch->bfd_arch_info->printable_name);
2281
2282 /* Insert the new architecture into the front of the architecture
2283 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2284 {
2285 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2286 this->next = rego->arches;
2287 this->gdbarch = new_gdbarch;
2288 rego->arches = this;
2289 }
104c1213 2290
4b9b3959
AC
2291 /* Check that the newly installed architecture is valid. Plug in
2292 any post init values. */
2293 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2294 verify_gdbarch (new_gdbarch);
ebdba546 2295 new_gdbarch->initialized_p = 1;
104c1213 2296
4b9b3959 2297 if (gdbarch_debug)
ebdba546
AC
2298 gdbarch_dump (new_gdbarch, gdb_stdlog);
2299
2300 return new_gdbarch;
2301}
2302
e487cc15 2303/* Make the specified architecture current. */
ebdba546
AC
2304
2305void
aff68abb 2306set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2307{
2308 gdb_assert (new_gdbarch != NULL);
ebdba546 2309 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2310 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2311 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2312 registers_changed ();
ebdba546 2313}
104c1213 2314
f5656ead 2315/* Return the current inferior's arch. */
6ecd4729
PA
2316
2317struct gdbarch *
f5656ead 2318target_gdbarch (void)
6ecd4729
PA
2319{
2320 return current_inferior ()->gdbarch;
2321}
2322
104c1213 2323extern void _initialize_gdbarch (void);
b4a20239 2324
104c1213 2325void
34620563 2326_initialize_gdbarch (void)
104c1213 2327{
ccce17b0 2328 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2329Set architecture debugging."), _("\\
2330Show architecture debugging."), _("\\
2331When non-zero, architecture debugging is enabled."),
2332 NULL,
920d2a44 2333 show_gdbarch_debug,
85c07804 2334 &setdebuglist, &showdebuglist);
104c1213
JM
2335}
2336EOF
2337
2338# close things off
2339exec 1>&2
2340#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2341compare_new gdbarch.c
This page took 1.181453 seconds and 4 git commands to generate.