2003-07-10 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
1e698235 4# Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
104c1213
JM
5#
6# This file is part of GDB.
7#
8# This program is free software; you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation; either version 2 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the GNU General Public License
19# along with this program; if not, write to the Free Software
20# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21
d8864532
AC
22# Make certain that the script is running in an internationalized
23# environment.
24LANG=c ; export LANG
1bd316f0 25LC_ALL=c ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
0b8f9e4d 44read="class level macro returntype function formal actual attrib staticdefault predefault postdefault invalid_p fmt print print_p description"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
3d9a5942
AC
75 # .... and then going back through each field and strip out those
76 # that ended up with just that space character.
77 for r in ${read}
78 do
79 if eval test \"\${${r}}\" = \"\ \"
80 then
81 eval ${r}=""
82 fi
83 done
84
50248794
AC
85 case "${level}" in
86 1 ) gt_level=">= GDB_MULTI_ARCH_PARTIAL" ;;
87 2 ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
e669114a 88 "" ) gt_level="> GDB_MULTI_ARCH_PARTIAL" ;;
50248794
AC
89 * ) error "Error: bad level for ${function}" 1>&2 ; kill $$ ; exit 1 ;;
90 esac
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
06b25f14
AC
97
98 # come up with a format, use a few guesses for variables
99 case ":${class}:${fmt}:${print}:" in
100 :[vV]::: )
101 if [ "${returntype}" = int ]
102 then
103 fmt="%d"
104 print="${macro}"
105 elif [ "${returntype}" = long ]
106 then
107 fmt="%ld"
108 print="${macro}"
109 fi
110 ;;
111 esac
34620563
AC
112 test "${fmt}" || fmt="%ld"
113 test "${print}" || print="(long) ${macro}"
06b25f14 114
ae45cd16
AC
115 case "${class}" in
116 F | V | M )
117 case "${invalid_p}" in
34620563 118 "" )
f7968451 119 if test -n "${predefault}"
34620563
AC
120 then
121 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 122 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
123 elif class_is_variable_p
124 then
125 predicate="gdbarch->${function} != 0"
126 elif class_is_function_p
127 then
128 predicate="gdbarch->${function} != NULL"
34620563
AC
129 fi
130 ;;
ae45cd16 131 * )
1e9f55d0 132 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
133 kill $$
134 exit 1
135 ;;
136 esac
34620563
AC
137 esac
138
139 # PREDEFAULT is a valid fallback definition of MEMBER when
140 # multi-arch is not enabled. This ensures that the
141 # default value, when multi-arch is the same as the
142 # default value when not multi-arch. POSTDEFAULT is
143 # always a valid definition of MEMBER as this again
144 # ensures consistency.
145
72e74a21 146 if [ -n "${postdefault}" ]
34620563
AC
147 then
148 fallbackdefault="${postdefault}"
72e74a21 149 elif [ -n "${predefault}" ]
34620563
AC
150 then
151 fallbackdefault="${predefault}"
152 else
73d3c16e 153 fallbackdefault="0"
34620563
AC
154 fi
155
156 #NOT YET: See gdbarch.log for basic verification of
157 # database
158
159 break
f0d4cc9e 160 fi
34620563 161 done
72e74a21 162 if [ -n "${class}" ]
34620563
AC
163 then
164 true
c0e8c252
AC
165 else
166 false
167 fi
168}
169
104c1213 170
f0d4cc9e
AC
171fallback_default_p ()
172{
72e74a21
JB
173 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
174 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
175}
176
177class_is_variable_p ()
178{
4a5c6a1d
AC
179 case "${class}" in
180 *v* | *V* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_function_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *f* | *F* | *m* | *M* ) true ;;
189 * ) false ;;
190 esac
191}
192
193class_is_multiarch_p ()
194{
195 case "${class}" in
196 *m* | *M* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201class_is_predicate_p ()
202{
4a5c6a1d
AC
203 case "${class}" in
204 *F* | *V* | *M* ) true ;;
205 * ) false ;;
206 esac
f0d4cc9e
AC
207}
208
209class_is_info_p ()
210{
4a5c6a1d
AC
211 case "${class}" in
212 *i* ) true ;;
213 * ) false ;;
214 esac
f0d4cc9e
AC
215}
216
217
cff3e48b
JM
218# dump out/verify the doco
219for field in ${read}
220do
221 case ${field} in
222
223 class ) : ;;
c4093a6a 224
c0e8c252
AC
225 # # -> line disable
226 # f -> function
227 # hiding a function
2ada493a
AC
228 # F -> function + predicate
229 # hiding a function + predicate to test function validity
c0e8c252
AC
230 # v -> variable
231 # hiding a variable
2ada493a
AC
232 # V -> variable + predicate
233 # hiding a variable + predicate to test variables validity
c0e8c252
AC
234 # i -> set from info
235 # hiding something from the ``struct info'' object
4a5c6a1d
AC
236 # m -> multi-arch function
237 # hiding a multi-arch function (parameterised with the architecture)
238 # M -> multi-arch function + predicate
239 # hiding a multi-arch function + predicate to test function validity
cff3e48b
JM
240
241 level ) : ;;
242
c0e8c252
AC
243 # See GDB_MULTI_ARCH description. Having GDB_MULTI_ARCH >=
244 # LEVEL is a predicate on checking that a given method is
245 # initialized (using INVALID_P).
cff3e48b
JM
246
247 macro ) : ;;
248
c0e8c252 249 # The name of the MACRO that this method is to be accessed by.
cff3e48b
JM
250
251 returntype ) : ;;
252
c0e8c252 253 # For functions, the return type; for variables, the data type
cff3e48b
JM
254
255 function ) : ;;
256
c0e8c252
AC
257 # For functions, the member function name; for variables, the
258 # variable name. Member function names are always prefixed with
259 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
260
261 formal ) : ;;
262
c0e8c252
AC
263 # The formal argument list. It is assumed that the formal
264 # argument list includes the actual name of each list element.
265 # A function with no arguments shall have ``void'' as the
266 # formal argument list.
cff3e48b
JM
267
268 actual ) : ;;
269
c0e8c252
AC
270 # The list of actual arguments. The arguments specified shall
271 # match the FORMAL list given above. Functions with out
272 # arguments leave this blank.
cff3e48b
JM
273
274 attrib ) : ;;
275
c0e8c252
AC
276 # Any GCC attributes that should be attached to the function
277 # declaration. At present this field is unused.
cff3e48b 278
0b8f9e4d 279 staticdefault ) : ;;
c0e8c252
AC
280
281 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
cff3e48b 285
0b8f9e4d 286 # If STATICDEFAULT is empty, zero is used.
c0e8c252 287
0b8f9e4d 288 predefault ) : ;;
cff3e48b 289
10312cc4
AC
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
cff3e48b 294
0b8f9e4d
AC
295 # If PREDEFAULT is empty, zero is used.
296
10312cc4
AC
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
f0d4cc9e
AC
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
0b8f9e4d
AC
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
10312cc4
AC
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
f0d4cc9e
AC
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``gdbarch'' which will
327 # contain the current architecture. Care should be taken.
cff3e48b 328
c4093a6a 329 invalid_p ) : ;;
cff3e48b 330
0b8f9e4d 331 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 332 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
333 # initialize MEMBER or the initialized the member is invalid.
334 # If POSTDEFAULT is non-empty then MEMBER will be updated to
335 # that value. If POSTDEFAULT is empty then internal_error()
336 # is called.
337
338 # If INVALID_P is empty, a check that MEMBER is no longer
339 # equal to PREDEFAULT is used.
340
f0d4cc9e
AC
341 # The expression ``0'' disables the INVALID_P check making
342 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
343
344 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b
JM
345
346 fmt ) : ;;
347
c0e8c252
AC
348 # printf style format string that can be used to print out the
349 # MEMBER. Sometimes "%s" is useful. For functions, this is
350 # ignored and the function address is printed.
351
0b8f9e4d 352 # If FMT is empty, ``%ld'' is used.
cff3e48b
JM
353
354 print ) : ;;
355
c0e8c252
AC
356 # An optional equation that casts MEMBER to a value suitable
357 # for formatting by FMT.
358
0b8f9e4d 359 # If PRINT is empty, ``(long)'' is used.
cff3e48b
JM
360
361 print_p ) : ;;
362
c0e8c252
AC
363 # An optional indicator for any predicte to wrap around the
364 # print member code.
365
4b9b3959 366 # () -> Call a custom function to do the dump.
c0e8c252
AC
367 # exp -> Wrap print up in ``if (${print_p}) ...
368 # ``'' -> No predicate
cff3e48b 369
0b8f9e4d
AC
370 # If PRINT_P is empty, ``1'' is always used.
371
cff3e48b
JM
372 description ) : ;;
373
0b8f9e4d 374 # Currently unused.
cff3e48b 375
50248794
AC
376 *)
377 echo "Bad field ${field}"
378 exit 1;;
cff3e48b
JM
379 esac
380done
381
cff3e48b 382
104c1213
JM
383function_list ()
384{
cff3e48b 385 # See below (DOCO) for description of each field
34620563 386 cat <<EOF
0b8f9e4d 387i:2:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info::::&bfd_default_arch_struct::::%s:TARGET_ARCHITECTURE->printable_name:TARGET_ARCHITECTURE != NULL
104c1213 388#
d7449b42 389i:2:TARGET_BYTE_ORDER:int:byte_order::::BFD_ENDIAN_BIG
4be87837
DJ
390#
391i:2:TARGET_OSABI:enum gdb_osabi:osabi::::GDB_OSABI_UNKNOWN
66b43ecb
AC
392# Number of bits in a char or unsigned char for the target machine.
393# Just like CHAR_BIT in <limits.h> but describes the target machine.
e669114a 394# v:2:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
395#
396# Number of bits in a short or unsigned short for the target machine.
e669114a 397v:2:TARGET_SHORT_BIT:int:short_bit::::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 398# Number of bits in an int or unsigned int for the target machine.
e669114a 399v:2:TARGET_INT_BIT:int:int_bit::::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 400# Number of bits in a long or unsigned long for the target machine.
e669114a 401v:2:TARGET_LONG_BIT:int:long_bit::::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
402# Number of bits in a long long or unsigned long long for the target
403# machine.
e669114a 404v:2:TARGET_LONG_LONG_BIT:int:long_long_bit::::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
66b43ecb 405# Number of bits in a float for the target machine.
e669114a 406v:2:TARGET_FLOAT_BIT:int:float_bit::::8 * sizeof (float):4*TARGET_CHAR_BIT::0
66b43ecb 407# Number of bits in a double for the target machine.
e669114a 408v:2:TARGET_DOUBLE_BIT:int:double_bit::::8 * sizeof (double):8*TARGET_CHAR_BIT::0
66b43ecb 409# Number of bits in a long double for the target machine.
e669114a 410v:2:TARGET_LONG_DOUBLE_BIT:int:long_double_bit::::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
52204a0b
DT
411# For most targets, a pointer on the target and its representation as an
412# address in GDB have the same size and "look the same". For such a
413# target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
414# / addr_bit will be set from it.
415#
416# If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
417# also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
418#
419# ptr_bit is the size of a pointer on the target
e669114a 420v:2:TARGET_PTR_BIT:int:ptr_bit::::8 * sizeof (void*):TARGET_INT_BIT::0
52204a0b 421# addr_bit is the size of a target address as represented in gdb
e669114a 422v:2:TARGET_ADDR_BIT:int:addr_bit::::8 * sizeof (void*):0:TARGET_PTR_BIT:
66b43ecb 423# Number of bits in a BFD_VMA for the target object file format.
e669114a 424v:2:TARGET_BFD_VMA_BIT:int:bfd_vma_bit::::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
104c1213 425#
4e409299 426# One if \`char' acts like \`signed char', zero if \`unsigned char'.
e669114a 427v:2:TARGET_CHAR_SIGNED:int:char_signed::::1:-1:1::::
4e409299 428#
cde9ea48 429F:2:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
e669114a 430f:2:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid::0:generic_target_write_pc::0
a9e5fdc2 431# UNWIND_SP is a direct replacement for TARGET_READ_SP.
bd1ce8ba 432F:2:TARGET_READ_SP:CORE_ADDR:read_sp:void
39d4ef09
AC
433# Function for getting target's idea of a frame pointer. FIXME: GDB's
434# whole scheme for dealing with "frames" and "frame pointers" needs a
435# serious shakedown.
e669114a 436f:2:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset::0:legacy_virtual_frame_pointer::0
66b43ecb 437#
f7968451
AC
438M:::void:pseudo_register_read:struct regcache *regcache, int cookednum, void *buf:regcache, cookednum, buf
439M:::void:pseudo_register_write:struct regcache *regcache, int cookednum, const void *buf:regcache, cookednum, buf
61a0eb5b 440#
104c1213 441v:2:NUM_REGS:int:num_regs::::0:-1
0aba1244
EZ
442# This macro gives the number of pseudo-registers that live in the
443# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
444# These pseudo-registers may be aliases for other registers,
445# combinations of other registers, or they may be computed by GDB.
0aba1244 446v:2:NUM_PSEUDO_REGS:int:num_pseudo_regs::::0:0::0:::
c2169756
AC
447
448# GDB's standard (or well known) register numbers. These can map onto
449# a real register or a pseudo (computed) register or not be defined at
1200cd6e 450# all (-1).
a9e5fdc2 451# SP_REGNUM will hopefully be replaced by UNWIND_SP.
1200cd6e 452v:2:SP_REGNUM:int:sp_regnum::::-1:-1::0
1200cd6e 453v:2:PC_REGNUM:int:pc_regnum::::-1:-1::0
c2169756 454v:2:PS_REGNUM:int:ps_regnum::::-1:-1::0
0b8f9e4d
AC
455v:2:FP0_REGNUM:int:fp0_regnum::::0:-1::0
456v:2:NPC_REGNUM:int:npc_regnum::::0:-1::0
88c72b7d
AC
457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
458f:2:STAB_REG_TO_REGNUM:int:stab_reg_to_regnum:int stab_regnr:stab_regnr:::no_op_reg_to_regnum::0
459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
460f:2:ECOFF_REG_TO_REGNUM:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr:::no_op_reg_to_regnum::0
461# Provide a default mapping from a DWARF register number to a gdb REGNUM.
462f:2:DWARF_REG_TO_REGNUM:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr:::no_op_reg_to_regnum::0
463# Convert from an sdb register number to an internal gdb register number.
464# This should be defined in tm.h, if REGISTER_NAMES is not set up
465# to map one to one onto the sdb register numbers.
466f:2:SDB_REG_TO_REGNUM:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr:::no_op_reg_to_regnum::0
467f:2:DWARF2_REG_TO_REGNUM:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr:::no_op_reg_to_regnum::0
e23457df 468f::REGISTER_NAME:const char *:register_name:int regnr:regnr
9c04cab7
AC
469
470# REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
f7968451 471M:2:REGISTER_TYPE:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 472# REGISTER_TYPE is a direct replacement for REGISTER_VIRTUAL_TYPE.
f7968451 473F:2:REGISTER_VIRTUAL_TYPE:struct type *:deprecated_register_virtual_type:int reg_nr:reg_nr
9c04cab7
AC
474# DEPRECATED_REGISTER_BYTES can be deleted. The value is computed
475# from REGISTER_TYPE.
b8b527c5 476v::DEPRECATED_REGISTER_BYTES:int:deprecated_register_bytes
f3be58bc
AC
477# If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
478# register offsets computed using just REGISTER_TYPE, this can be
479# deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
480# function with predicate has a valid (callable) initial value. As a
481# consequence, even when the predicate is false, the corresponding
482# function works. This simplifies the migration process - old code,
483# calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
9c04cab7 484F::REGISTER_BYTE:int:deprecated_register_byte:int reg_nr:reg_nr::generic_register_byte:generic_register_byte
f3be58bc
AC
485# If all registers have identical raw and virtual sizes and those
486# sizes agree with the value computed from REGISTER_TYPE,
487# DEPRECATED_REGISTER_RAW_SIZE can be deleted. See: maint print
488# registers.
dadd712e 489F:2:REGISTER_RAW_SIZE:int:deprecated_register_raw_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
f3be58bc
AC
490# If all registers have identical raw and virtual sizes and those
491# sizes agree with the value computed from REGISTER_TYPE,
492# DEPRECATED_REGISTER_VIRTUAL_SIZE can be deleted. See: maint print
493# registers.
dadd712e 494F:2:REGISTER_VIRTUAL_SIZE:int:deprecated_register_virtual_size:int reg_nr:reg_nr::generic_register_size:generic_register_size
9c04cab7
AC
495# DEPRECATED_MAX_REGISTER_RAW_SIZE can be deleted. It has been
496# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 497V:2:DEPRECATED_MAX_REGISTER_RAW_SIZE:int:deprecated_max_register_raw_size
9c04cab7
AC
498# DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE can be deleted. It has been
499# replaced by the constant MAX_REGISTER_SIZE.
a0ed5532 500V:2:DEPRECATED_MAX_REGISTER_VIRTUAL_SIZE:int:deprecated_max_register_virtual_size
9c04cab7 501
f3be58bc 502# See gdbint.texinfo, and PUSH_DUMMY_CALL.
f7968451 503M::UNWIND_DUMMY_ID:struct frame_id:unwind_dummy_id:struct frame_info *info:info
f3be58bc
AC
504# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
505# SAVE_DUMMY_FRAME_TOS.
a59fe496 506F:2:DEPRECATED_SAVE_DUMMY_FRAME_TOS:void:deprecated_save_dummy_frame_tos:CORE_ADDR sp:sp
f3be58bc
AC
507# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
508# DEPRECATED_FP_REGNUM.
509v:2:DEPRECATED_FP_REGNUM:int:deprecated_fp_regnum::::-1:-1::0
510# Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
511# DEPRECATED_TARGET_READ_FP.
512F::DEPRECATED_TARGET_READ_FP:CORE_ADDR:deprecated_target_read_fp:void
513
b8de8283
AC
514# See gdbint.texinfo. See infcall.c. New, all singing all dancing,
515# replacement for DEPRECATED_PUSH_ARGUMENTS.
516M::PUSH_DUMMY_CALL:CORE_ADDR:push_dummy_call:CORE_ADDR func_addr, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:func_addr, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
517# PUSH_DUMMY_CALL is a direct replacement for DEPRECATED_PUSH_ARGUMENTS.
518F:2:DEPRECATED_PUSH_ARGUMENTS:CORE_ADDR:deprecated_push_arguments:int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:nargs, args, sp, struct_return, struct_addr
519# DEPRECATED_USE_GENERIC_DUMMY_FRAMES can be deleted. Always true.
520v::DEPRECATED_USE_GENERIC_DUMMY_FRAMES:int:deprecated_use_generic_dummy_frames:::::1::0
521# Implement PUSH_RETURN_ADDRESS, and then merge in
522# DEPRECATED_PUSH_RETURN_ADDRESS.
f7968451 523F:2:DEPRECATED_PUSH_RETURN_ADDRESS:CORE_ADDR:deprecated_push_return_address:CORE_ADDR pc, CORE_ADDR sp:pc, sp
b8de8283
AC
524# Implement PUSH_DUMMY_CALL, then merge in DEPRECATED_DUMMY_WRITE_SP.
525F:2:DEPRECATED_DUMMY_WRITE_SP:void:deprecated_dummy_write_sp:CORE_ADDR val:val
526# DEPRECATED_REGISTER_SIZE can be deleted.
527v::DEPRECATED_REGISTER_SIZE:int:deprecated_register_size
528v::CALL_DUMMY_LOCATION:int:call_dummy_location:::::AT_ENTRY_POINT::0
529f::CALL_DUMMY_ADDRESS:CORE_ADDR:call_dummy_address:void::::entry_point_address::0
530# DEPRECATED_CALL_DUMMY_START_OFFSET can be deleted.
531v::DEPRECATED_CALL_DUMMY_START_OFFSET:CORE_ADDR:deprecated_call_dummy_start_offset
532# DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET can be deleted.
533v::DEPRECATED_CALL_DUMMY_BREAKPOINT_OFFSET:CORE_ADDR:deprecated_call_dummy_breakpoint_offset
534# DEPRECATED_CALL_DUMMY_LENGTH can be deleted.
535v::DEPRECATED_CALL_DUMMY_LENGTH:int:deprecated_call_dummy_length
536# DEPRECATED_CALL_DUMMY_WORDS can be deleted.
537v::DEPRECATED_CALL_DUMMY_WORDS:LONGEST *:deprecated_call_dummy_words::::0:legacy_call_dummy_words::0:0x%08lx
538# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_SIZEOF_CALL_DUMMY_WORDS.
539v::DEPRECATED_SIZEOF_CALL_DUMMY_WORDS:int:deprecated_sizeof_call_dummy_words::::0:legacy_sizeof_call_dummy_words::0
540# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_CALL_DUMMY_STACK_ADJUST.
f7968451 541V:2:DEPRECATED_CALL_DUMMY_STACK_ADJUST:int:deprecated_call_dummy_stack_adjust
b8de8283
AC
542# DEPRECATED_FIX_CALL_DUMMY can be deleted. For the SPARC, implement
543# PUSH_DUMMY_CODE and set CALL_DUMMY_LOCATION to ON_STACK.
544F::DEPRECATED_FIX_CALL_DUMMY:void:deprecated_fix_call_dummy:char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, struct value **args, struct type *type, int gcc_p:dummy, pc, fun, nargs, args, type, gcc_p
545# This is a replacement for DEPRECATED_FIX_CALL_DUMMY et.al.
f7968451 546M::PUSH_DUMMY_CODE:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
b8de8283 547# Implement PUSH_DUMMY_CALL, then delete DEPRECATED_PUSH_DUMMY_FRAME.
f7968451 548F:2:DEPRECATED_PUSH_DUMMY_FRAME:void:deprecated_push_dummy_frame:void:-
b8de8283
AC
549# Implement PUSH_DUMMY_CALL, then delete
550# DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED.
551v:2:DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED:int:deprecated_extra_stack_alignment_needed::::0:0::0:::
552
903ad3a6 553F:2:DEPRECATED_DO_REGISTERS_INFO:void:deprecated_do_registers_info:int reg_nr, int fpregs:reg_nr, fpregs
0ab7a791 554m:2:PRINT_REGISTERS_INFO:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all:::default_print_registers_info::0
23e3a7ac 555M:2:PRINT_FLOAT_INFO:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
e76f1f2e 556M:2:PRINT_VECTOR_INFO:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
557# MAP a GDB RAW register number onto a simulator register number. See
558# also include/...-sim.h.
8238d0bf 559f:2:REGISTER_SIM_REGNO:int:register_sim_regno:int reg_nr:reg_nr:::legacy_register_sim_regno::0
f7968451 560F:2:REGISTER_BYTES_OK:int:register_bytes_ok:long nr_bytes:nr_bytes
01fb7433
AC
561f:2:CANNOT_FETCH_REGISTER:int:cannot_fetch_register:int regnum:regnum:::cannot_register_not::0
562f:2:CANNOT_STORE_REGISTER:int:cannot_store_register:int regnum:regnum:::cannot_register_not::0
9df628e0 563# setjmp/longjmp support.
f7968451 564F:2:GET_LONGJMP_TARGET:int:get_longjmp_target:CORE_ADDR *pc:pc
ae45cd16
AC
565# NOTE: cagney/2002-11-24: This function with predicate has a valid
566# (callable) initial value. As a consequence, even when the predicate
567# is false, the corresponding function works. This simplifies the
568# migration process - old code, calling DEPRECATED_PC_IN_CALL_DUMMY(),
569# doesn't need to be modified.
55e1d7e7 570F::DEPRECATED_PC_IN_CALL_DUMMY:int:deprecated_pc_in_call_dummy:CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address:pc, sp, frame_address::generic_pc_in_call_dummy:generic_pc_in_call_dummy
97f46953 571F:2:DEPRECATED_INIT_FRAME_PC_FIRST:CORE_ADDR:deprecated_init_frame_pc_first:int fromleaf, struct frame_info *prev:fromleaf, prev
e669114a 572F:2:DEPRECATED_INIT_FRAME_PC:CORE_ADDR:deprecated_init_frame_pc:int fromleaf, struct frame_info *prev:fromleaf, prev
104c1213 573#
f0d4cc9e 574v:2:BELIEVE_PCC_PROMOTION:int:believe_pcc_promotion:::::::
e669114a 575v::BELIEVE_PCC_PROMOTION_TYPE:int:believe_pcc_promotion_type:::::::
129c1cd6 576F:2:DEPRECATED_GET_SAVED_REGISTER:void:deprecated_get_saved_register:char *raw_buffer, int *optimized, CORE_ADDR *addrp, struct frame_info *frame, int regnum, enum lval_type *lval:raw_buffer, optimized, addrp, frame, regnum, lval
104c1213 577#
781a750d
AC
578# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
579# For raw <-> cooked register conversions, replaced by pseudo registers.
580f:2:DEPRECATED_REGISTER_CONVERTIBLE:int:deprecated_register_convertible:int nr:nr:::deprecated_register_convertible_not::0
581# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
582# For raw <-> cooked register conversions, replaced by pseudo registers.
583f:2:DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL:void:deprecated_register_convert_to_virtual:int regnum, struct type *type, char *from, char *to:regnum, type, from, to:::0::0
584# For register <-> value conversions, replaced by CONVERT_REGISTER_P et.al.
585# For raw <-> cooked register conversions, replaced by pseudo registers.
586f:2:DEPRECATED_REGISTER_CONVERT_TO_RAW:void:deprecated_register_convert_to_raw:struct type *type, int regnum, const char *from, char *to:type, regnum, from, to:::0::0
13d01224 587#
ff2e87ac
AC
588f:1:CONVERT_REGISTER_P:int:convert_register_p:int regnum, struct type *type:regnum, type::0:legacy_convert_register_p::0
589f:1:REGISTER_TO_VALUE:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, void *buf:frame, regnum, type, buf::0:legacy_register_to_value::0
590f:1:VALUE_TO_REGISTER:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const void *buf:frame, regnum, type, buf::0:legacy_value_to_register::0
104c1213 591#
66140c26 592f:2:POINTER_TO_ADDRESS:CORE_ADDR:pointer_to_address:struct type *type, const void *buf:type, buf:::unsigned_pointer_to_address::0
ac2e2ef7 593f:2:ADDRESS_TO_POINTER:void:address_to_pointer:struct type *type, void *buf, CORE_ADDR addr:type, buf, addr:::unsigned_address_to_pointer::0
fc0c74b1 594F:2:INTEGER_TO_ADDRESS:CORE_ADDR:integer_to_address:struct type *type, void *buf:type, buf
4478b372 595#
0b8f9e4d 596f:2:RETURN_VALUE_ON_STACK:int:return_value_on_stack:struct type *type:type:::generic_return_value_on_stack_not::0
f7968451 597F:2:DEPRECATED_POP_FRAME:void:deprecated_pop_frame:void:-
4183d812 598# NOTE: cagney/2003-03-24: Replaced by PUSH_ARGUMENTS.
f7968451 599F:2:DEPRECATED_STORE_STRUCT_RETURN:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
ebba8386 600#
e669114a
AC
601f:2:EXTRACT_RETURN_VALUE:void:extract_return_value:struct type *type, struct regcache *regcache, void *valbuf:type, regcache, valbuf:::legacy_extract_return_value::0
602f:2:STORE_RETURN_VALUE:void:store_return_value:struct type *type, struct regcache *regcache, const void *valbuf:type, regcache, valbuf:::legacy_store_return_value::0
603f:2:DEPRECATED_EXTRACT_RETURN_VALUE:void:deprecated_extract_return_value:struct type *type, char *regbuf, char *valbuf:type, regbuf, valbuf
604f:2:DEPRECATED_STORE_RETURN_VALUE:void:deprecated_store_return_value:struct type *type, char *valbuf:type, valbuf
ebba8386 605#
f7968451
AC
606F:2:EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:extract_struct_value_address:struct regcache *regcache:regcache
607F:2:DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS:CORE_ADDR:deprecated_extract_struct_value_address:char *regbuf:regbuf
56f12751 608f:2:USE_STRUCT_CONVENTION:int:use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type:::generic_use_struct_convention::0
104c1213 609#
f7968451
AC
610F:2:DEPRECATED_FRAME_INIT_SAVED_REGS:void:deprecated_frame_init_saved_regs:struct frame_info *frame:frame
611F:2:DEPRECATED_INIT_EXTRA_FRAME_INFO:void:deprecated_init_extra_frame_info:int fromleaf, struct frame_info *frame:fromleaf, frame
104c1213
JM
612#
613f:2:SKIP_PROLOGUE:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip::0:0
0b8f9e4d 614f:2:PROLOGUE_FRAMELESS_P:int:prologue_frameless_p:CORE_ADDR ip:ip::0:generic_prologue_frameless_p::0
104c1213 615f:2:INNER_THAN:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs::0:0
aaab4dba 616f::BREAKPOINT_FROM_PC:const unsigned char *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:::0:
0b8f9e4d
AC
617f:2:MEMORY_INSERT_BREAKPOINT:int:memory_insert_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_insert_breakpoint::0
618f:2:MEMORY_REMOVE_BREAKPOINT:int:memory_remove_breakpoint:CORE_ADDR addr, char *contents_cache:addr, contents_cache::0:default_memory_remove_breakpoint::0
104c1213
JM
619v:2:DECR_PC_AFTER_BREAK:CORE_ADDR:decr_pc_after_break::::0:-1
620v:2:FUNCTION_START_OFFSET:CORE_ADDR:function_start_offset::::0:-1
621#
f6684c31 622m::REMOTE_TRANSLATE_XFER_ADDRESS:void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len:::generic_remote_translate_xfer_address::0
104c1213
JM
623#
624v:2:FRAME_ARGS_SKIP:CORE_ADDR:frame_args_skip::::0:-1
0b8f9e4d 625f:2:FRAMELESS_FUNCTION_INVOCATION:int:frameless_function_invocation:struct frame_info *fi:fi:::generic_frameless_function_invocation_not::0
f7968451
AC
626F:2:DEPRECATED_FRAME_CHAIN:CORE_ADDR:deprecated_frame_chain:struct frame_info *frame:frame
627F:2:DEPRECATED_FRAME_CHAIN_VALID:int:deprecated_frame_chain_valid:CORE_ADDR chain, struct frame_info *thisframe:chain, thisframe
8bedc050
AC
628# DEPRECATED_FRAME_SAVED_PC has been replaced by UNWIND_PC. Please
629# note, per UNWIND_PC's doco, that while the two have similar
630# interfaces they have very different underlying implementations.
f7968451
AC
631F:2:DEPRECATED_FRAME_SAVED_PC:CORE_ADDR:deprecated_frame_saved_pc:struct frame_info *fi:fi
632M::UNWIND_PC:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
633M::UNWIND_SP:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
634# DEPRECATED_FRAME_ARGS_ADDRESS as been replaced by the per-frame
635# frame-base. Enable frame-base before frame-unwind.
636F::DEPRECATED_FRAME_ARGS_ADDRESS:CORE_ADDR:deprecated_frame_args_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
637# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
638# frame-base. Enable frame-base before frame-unwind.
639F::DEPRECATED_FRAME_LOCALS_ADDRESS:CORE_ADDR:deprecated_frame_locals_address:struct frame_info *fi:fi::get_frame_base:get_frame_base
6913c89a 640F::DEPRECATED_SAVED_PC_AFTER_CALL:CORE_ADDR:deprecated_saved_pc_after_call:struct frame_info *frame:frame
983a287a 641F:2:FRAME_NUM_ARGS:int:frame_num_args:struct frame_info *frame:frame
104c1213 642#
f7968451 643F:2:STACK_ALIGN:CORE_ADDR:stack_align:CORE_ADDR sp:sp
dc604539 644M:::CORE_ADDR:frame_align:CORE_ADDR address:address
f7968451 645F:2:REG_STRUCT_HAS_ADDR:int:reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
58d5518e 646v:2:PARM_BOUNDARY:int:parm_boundary
f0d4cc9e 647#
52f87c51
AC
648v:2:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format::::::default_float_format (gdbarch)::%s:(TARGET_FLOAT_FORMAT)->name
649v:2:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format::::::default_double_format (gdbarch)::%s:(TARGET_DOUBLE_FORMAT)->name
650v:2:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format::::::default_double_format (gdbarch)::%s:(TARGET_LONG_DOUBLE_FORMAT)->name
875e1767
AC
651f:2:CONVERT_FROM_FUNC_PTR_ADDR:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr:addr:::core_addr_identity::0
652# On some machines there are bits in addresses which are not really
653# part of the address, but are used by the kernel, the hardware, etc.
654# for special purposes. ADDR_BITS_REMOVE takes out any such bits so
655# we get a "real" address such as one would find in a symbol table.
656# This is used only for addresses of instructions, and even then I'm
657# not sure it's used in all contexts. It exists to deal with there
658# being a few stray bits in the PC which would mislead us, not as some
659# sort of generic thing to handle alignment or segmentation (it's
660# possible it should be in TARGET_READ_PC instead).
661f:2:ADDR_BITS_REMOVE:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr:::core_addr_identity::0
181c1381
RE
662# It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
663# ADDR_BITS_REMOVE.
664f:2:SMASH_TEXT_ADDRESS:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr:::core_addr_identity::0
64c4637f
AC
665# FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
666# the target needs software single step. An ISA method to implement it.
667#
668# FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
669# using the breakpoint system instead of blatting memory directly (as with rs6000).
670#
671# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
672# single step. If not, then implement single step using breakpoints.
f7968451 673F:2:SOFTWARE_SINGLE_STEP:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
2bf0cb65 674f:2:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, disassemble_info *info:vma, info:::legacy_print_insn::0
bdcd319a 675f:2:SKIP_TRAMPOLINE_CODE:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc:::generic_skip_trampoline_code::0
d50355b6
MS
676
677
68e9cc94
CV
678# For SVR4 shared libraries, each call goes through a small piece of
679# trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
d50355b6 680# to nonzero if we are currently stopped in one of these.
68e9cc94 681f:2:IN_SOLIB_CALL_TRAMPOLINE:int:in_solib_call_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_call_trampoline::0
d50355b6
MS
682
683# Some systems also have trampoline code for returning from shared libs.
684f:2:IN_SOLIB_RETURN_TRAMPOLINE:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name:::generic_in_solib_return_trampoline::0
685
d7bd68ca
AC
686# Sigtramp is a routine that the kernel calls (which then calls the
687# signal handler). On most machines it is a library routine that is
688# linked into the executable.
689#
690# This macro, given a program counter value and the name of the
691# function in which that PC resides (which can be null if the name is
692# not known), returns nonzero if the PC and name show that we are in
693# sigtramp.
694#
695# On most machines just see if the name is sigtramp (and if we have
696# no name, assume we are not in sigtramp).
697#
698# FIXME: cagney/2002-04-21: The function find_pc_partial_function
699# calls find_pc_sect_partial_function() which calls PC_IN_SIGTRAMP.
700# This means PC_IN_SIGTRAMP function can't be implemented by doing its
701# own local NAME lookup.
702#
703# FIXME: cagney/2002-04-21: PC_IN_SIGTRAMP is something of a mess.
704# Some code also depends on SIGTRAMP_START and SIGTRAMP_END but other
705# does not.
706f:2:PC_IN_SIGTRAMP:int:pc_in_sigtramp:CORE_ADDR pc, char *name:pc, name:::legacy_pc_in_sigtramp::0
43156d82 707F:2:SIGTRAMP_START:CORE_ADDR:sigtramp_start:CORE_ADDR pc:pc
e669114a 708F:2:SIGTRAMP_END:CORE_ADDR:sigtramp_end:CORE_ADDR pc:pc
c12260ac
CV
709# A target might have problems with watchpoints as soon as the stack
710# frame of the current function has been destroyed. This mostly happens
711# as the first action in a funtion's epilogue. in_function_epilogue_p()
712# is defined to return a non-zero value if either the given addr is one
713# instruction after the stack destroying instruction up to the trailing
714# return instruction or if we can figure out that the stack frame has
715# already been invalidated regardless of the value of addr. Targets
716# which don't suffer from that problem could just let this functionality
717# untouched.
718m:::int:in_function_epilogue_p:CORE_ADDR addr:addr::0:generic_in_function_epilogue_p::0
552c04a7
TT
719# Given a vector of command-line arguments, return a newly allocated
720# string which, when passed to the create_inferior function, will be
721# parsed (on Unix systems, by the shell) to yield the same vector.
722# This function should call error() if the argument vector is not
723# representable for this target or if this target does not support
724# command-line arguments.
725# ARGC is the number of elements in the vector.
726# ARGV is an array of strings, one per argument.
727m::CONSTRUCT_INFERIOR_ARGUMENTS:char *:construct_inferior_arguments:int argc, char **argv:argc, argv:::construct_inferior_arguments::0
f7968451 728F:2:DWARF2_BUILD_FRAME_INFO:void:dwarf2_build_frame_info:struct objfile *objfile:objfile
a2cf933a
EZ
729f:2:ELF_MAKE_MSYMBOL_SPECIAL:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym:::default_elf_make_msymbol_special::0
730f:2:COFF_MAKE_MSYMBOL_SPECIAL:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym:::default_coff_make_msymbol_special::0
e669114a
AC
731v:2:NAME_OF_MALLOC:const char *:name_of_malloc::::"malloc":"malloc"::0:%s:NAME_OF_MALLOC
732v:2:CANNOT_STEP_BREAKPOINT:int:cannot_step_breakpoint::::0:0::0
733v:2:HAVE_NONSTEPPABLE_WATCHPOINT:int:have_nonsteppable_watchpoint::::0:0::0
8b2dbe47 734F:2:ADDRESS_CLASS_TYPE_FLAGS:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
f7968451 735M:2:ADDRESS_CLASS_TYPE_FLAGS_TO_NAME:const char *:address_class_type_flags_to_name:int type_flags:type_flags
321432c0 736M:2:ADDRESS_CLASS_NAME_TO_TYPE_FLAGS:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 737# Is a register in a group
7e20f3fb 738m:::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup:::default_register_reggroup_p::0
143985b7 739# Fetch the pointer to the ith function argument.
f7968451 740F::FETCH_POINTER_ARGUMENT:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
104c1213 741EOF
104c1213
JM
742}
743
0b8f9e4d
AC
744#
745# The .log file
746#
747exec > new-gdbarch.log
34620563 748function_list | while do_read
0b8f9e4d
AC
749do
750 cat <<EOF
104c1213
JM
751${class} ${macro}(${actual})
752 ${returntype} ${function} ($formal)${attrib}
104c1213 753EOF
3d9a5942
AC
754 for r in ${read}
755 do
756 eval echo \"\ \ \ \ ${r}=\${${r}}\"
757 done
f0d4cc9e 758 if class_is_predicate_p && fallback_default_p
0b8f9e4d 759 then
66b43ecb 760 echo "Error: predicate function ${macro} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
761 kill $$
762 exit 1
763 fi
72e74a21 764 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
765 then
766 echo "Error: postdefault is useless when invalid_p=0" 1>&2
767 kill $$
768 exit 1
769 fi
a72293e2
AC
770 if class_is_multiarch_p
771 then
772 if class_is_predicate_p ; then :
773 elif test "x${predefault}" = "x"
774 then
775 echo "Error: pure multi-arch function must have a predefault" 1>&2
776 kill $$
777 exit 1
778 fi
779 fi
3d9a5942 780 echo ""
0b8f9e4d
AC
781done
782
783exec 1>&2
784compare_new gdbarch.log
785
104c1213
JM
786
787copyright ()
788{
789cat <<EOF
59233f88
AC
790/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
791
104c1213 792/* Dynamic architecture support for GDB, the GNU debugger.
1e698235 793 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
104c1213
JM
794
795 This file is part of GDB.
796
797 This program is free software; you can redistribute it and/or modify
798 it under the terms of the GNU General Public License as published by
799 the Free Software Foundation; either version 2 of the License, or
800 (at your option) any later version.
801
802 This program is distributed in the hope that it will be useful,
803 but WITHOUT ANY WARRANTY; without even the implied warranty of
804 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
805 GNU General Public License for more details.
806
807 You should have received a copy of the GNU General Public License
808 along with this program; if not, write to the Free Software
809 Foundation, Inc., 59 Temple Place - Suite 330,
810 Boston, MA 02111-1307, USA. */
811
104c1213
JM
812/* This file was created with the aid of \`\`gdbarch.sh''.
813
52204a0b 814 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
815 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
816 against the existing \`\`gdbarch.[hc]''. Any differences found
817 being reported.
818
819 If editing this file, please also run gdbarch.sh and merge any
52204a0b 820 changes into that script. Conversely, when making sweeping changes
104c1213
JM
821 to this file, modifying gdbarch.sh and using its output may prove
822 easier. */
823
824EOF
825}
826
827#
828# The .h file
829#
830
831exec > new-gdbarch.h
832copyright
833cat <<EOF
834#ifndef GDBARCH_H
835#define GDBARCH_H
836
2bf0cb65 837#include "dis-asm.h" /* Get defs for disassemble_info, which unfortunately is a typedef. */
fd0407d6 838#if !GDB_MULTI_ARCH
67a2b77e 839/* Pull in function declarations refered to, indirectly, via macros. */
67a2b77e 840#include "inferior.h" /* For unsigned_address_to_pointer(). */
e9a2674e 841#include "symfile.h" /* For entry_point_address(). */
fd0407d6 842#endif
2bf0cb65 843
da3331ec
AC
844struct floatformat;
845struct ui_file;
104c1213
JM
846struct frame_info;
847struct value;
b6af0555 848struct objfile;
a2cf933a 849struct minimal_symbol;
049ee0e4 850struct regcache;
b59ff9d5 851struct reggroup;
104c1213 852
104c1213
JM
853extern struct gdbarch *current_gdbarch;
854
855
104c1213
JM
856/* If any of the following are defined, the target wasn't correctly
857 converted. */
858
83905903
AC
859#if (GDB_MULTI_ARCH >= GDB_MULTI_ARCH_PURE) && defined (GDB_TM_FILE)
860#error "GDB_TM_FILE: Pure multi-arch targets do not have a tm.h file."
861#endif
104c1213
JM
862EOF
863
864# function typedef's
3d9a5942
AC
865printf "\n"
866printf "\n"
867printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 868function_list | while do_read
104c1213 869do
2ada493a
AC
870 if class_is_info_p
871 then
3d9a5942
AC
872 printf "\n"
873 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
874 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
028c194b 875 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
876 printf "#error \"Non multi-arch definition of ${macro}\"\n"
877 printf "#endif\n"
c25083af 878 printf "#if !defined (${macro})\n"
3d9a5942
AC
879 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
880 printf "#endif\n"
2ada493a 881 fi
104c1213
JM
882done
883
884# function typedef's
3d9a5942
AC
885printf "\n"
886printf "\n"
887printf "/* The following are initialized by the target dependent code. */\n"
34620563 888function_list | while do_read
104c1213 889do
72e74a21 890 if [ -n "${comment}" ]
34620563
AC
891 then
892 echo "${comment}" | sed \
893 -e '2 s,#,/*,' \
894 -e '3,$ s,#, ,' \
895 -e '$ s,$, */,'
896 fi
b77be6cf 897 if class_is_multiarch_p
2ada493a 898 then
b77be6cf
AC
899 if class_is_predicate_p
900 then
901 printf "\n"
902 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
903 fi
904 else
905 if class_is_predicate_p
906 then
907 printf "\n"
908 printf "#if defined (${macro})\n"
909 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
910 #printf "#if (GDB_MULTI_ARCH <= GDB_MULTI_ARCH_PARTIAL) && defined (${macro})\n"
eee30e78 911 printf "#if !defined (${macro}_P)\n"
b77be6cf
AC
912 printf "#define ${macro}_P() (1)\n"
913 printf "#endif\n"
eee30e78 914 printf "#endif\n"
b77be6cf
AC
915 printf "\n"
916 printf "/* Default predicate for non- multi-arch targets. */\n"
917 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro}_P)\n"
918 printf "#define ${macro}_P() (0)\n"
919 printf "#endif\n"
920 printf "\n"
921 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
028c194b 922 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro}_P)\n"
83905903
AC
923 printf "#error \"Non multi-arch definition of ${macro}\"\n"
924 printf "#endif\n"
028c194b 925 printf "#if (GDB_MULTI_ARCH ${gt_level}) || !defined (${macro}_P)\n"
b77be6cf
AC
926 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
927 printf "#endif\n"
928 fi
4a5c6a1d 929 fi
2ada493a
AC
930 if class_is_variable_p
931 then
f0d4cc9e 932 if fallback_default_p || class_is_predicate_p
33489c5b 933 then
3d9a5942
AC
934 printf "\n"
935 printf "/* Default (value) for non- multi-arch platforms. */\n"
936 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
f0d4cc9e
AC
937 echo "#define ${macro} (${fallbackdefault})" \
938 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
3d9a5942 939 printf "#endif\n"
33489c5b 940 fi
3d9a5942
AC
941 printf "\n"
942 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
943 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
028c194b 944 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
945 printf "#error \"Non multi-arch definition of ${macro}\"\n"
946 printf "#endif\n"
c25083af
AC
947 printf "#if !defined (${macro})\n"
948 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
949 printf "#endif\n"
2ada493a
AC
950 fi
951 if class_is_function_p
952 then
b77be6cf
AC
953 if class_is_multiarch_p ; then :
954 elif fallback_default_p || class_is_predicate_p
33489c5b 955 then
3d9a5942
AC
956 printf "\n"
957 printf "/* Default (function) for non- multi-arch platforms. */\n"
958 printf "#if (!GDB_MULTI_ARCH) && !defined (${macro})\n"
72e74a21 959 if [ "x${fallbackdefault}" = "x0" ]
33489c5b 960 then
dedc2a2b
AC
961 if [ "x${actual}" = "x-" ]
962 then
963 printf "#define ${macro} (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
dedc2a2b
AC
964 else
965 printf "#define ${macro}(${actual}) (internal_error (__FILE__, __LINE__, \"${macro}\"), 0)\n"
966 fi
33489c5b 967 else
f0d4cc9e
AC
968 # FIXME: Should be passing current_gdbarch through!
969 echo "#define ${macro}(${actual}) (${fallbackdefault} (${actual}))" \
970 | sed -e 's/\([^a-z_]\)\(gdbarch[^a-z_]\)/\1current_\2/g'
33489c5b 971 fi
3d9a5942 972 printf "#endif\n"
33489c5b 973 fi
3d9a5942 974 printf "\n"
72e74a21 975 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
976 then
977 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
978 elif class_is_multiarch_p
979 then
980 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
981 else
982 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
983 fi
72e74a21 984 if [ "x${formal}" = "xvoid" ]
104c1213 985 then
3d9a5942 986 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 987 else
3d9a5942 988 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 989 fi
3d9a5942 990 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
b77be6cf
AC
991 if class_is_multiarch_p ; then :
992 else
028c194b 993 printf "#if (GDB_MULTI_ARCH ${gt_level}) && defined (${macro})\n"
83905903
AC
994 printf "#error \"Non multi-arch definition of ${macro}\"\n"
995 printf "#endif\n"
c25083af
AC
996 if [ "x${actual}" = "x" ]
997 then
998 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
999 elif [ "x${actual}" = "x-" ]
1000 then
1001 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
1002 else
1003 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
1004 fi
1005 printf "#if !defined (${macro})\n"
72e74a21 1006 if [ "x${actual}" = "x" ]
4a5c6a1d
AC
1007 then
1008 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
72e74a21 1009 elif [ "x${actual}" = "x-" ]
4a5c6a1d
AC
1010 then
1011 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
1012 else
1013 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
1014 fi
1015 printf "#endif\n"
104c1213 1016 fi
2ada493a 1017 fi
104c1213
JM
1018done
1019
1020# close it off
1021cat <<EOF
1022
1023extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1024
1025
1026/* Mechanism for co-ordinating the selection of a specific
1027 architecture.
1028
1029 GDB targets (*-tdep.c) can register an interest in a specific
1030 architecture. Other GDB components can register a need to maintain
1031 per-architecture data.
1032
1033 The mechanisms below ensures that there is only a loose connection
1034 between the set-architecture command and the various GDB
0fa6923a 1035 components. Each component can independently register their need
104c1213
JM
1036 to maintain architecture specific data with gdbarch.
1037
1038 Pragmatics:
1039
1040 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1041 didn't scale.
1042
1043 The more traditional mega-struct containing architecture specific
1044 data for all the various GDB components was also considered. Since
0fa6923a 1045 GDB is built from a variable number of (fairly independent)
104c1213
JM
1046 components it was determined that the global aproach was not
1047 applicable. */
1048
1049
1050/* Register a new architectural family with GDB.
1051
1052 Register support for the specified ARCHITECTURE with GDB. When
1053 gdbarch determines that the specified architecture has been
1054 selected, the corresponding INIT function is called.
1055
1056 --
1057
1058 The INIT function takes two parameters: INFO which contains the
1059 information available to gdbarch about the (possibly new)
1060 architecture; ARCHES which is a list of the previously created
1061 \`\`struct gdbarch'' for this architecture.
1062
0f79675b
AC
1063 The INFO parameter is, as far as possible, be pre-initialized with
1064 information obtained from INFO.ABFD or the previously selected
1065 architecture.
1066
1067 The ARCHES parameter is a linked list (sorted most recently used)
1068 of all the previously created architures for this architecture
1069 family. The (possibly NULL) ARCHES->gdbarch can used to access
1070 values from the previously selected architecture for this
1071 architecture family. The global \`\`current_gdbarch'' shall not be
1072 used.
104c1213
JM
1073
1074 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1075 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1076 gdbarch'' from the ARCHES list - indicating that the new
1077 architecture is just a synonym for an earlier architecture (see
1078 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1079 - that describes the selected architecture (see gdbarch_alloc()).
1080
1081 The DUMP_TDEP function shall print out all target specific values.
1082 Care should be taken to ensure that the function works in both the
1083 multi-arch and non- multi-arch cases. */
104c1213
JM
1084
1085struct gdbarch_list
1086{
1087 struct gdbarch *gdbarch;
1088 struct gdbarch_list *next;
1089};
1090
1091struct gdbarch_info
1092{
104c1213
JM
1093 /* Use default: NULL (ZERO). */
1094 const struct bfd_arch_info *bfd_arch_info;
1095
428721aa 1096 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1097 int byte_order;
1098
1099 /* Use default: NULL (ZERO). */
1100 bfd *abfd;
1101
1102 /* Use default: NULL (ZERO). */
1103 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1104
1105 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1106 enum gdb_osabi osabi;
104c1213
JM
1107};
1108
1109typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1110typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1111
4b9b3959 1112/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1113extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1114
4b9b3959
AC
1115extern void gdbarch_register (enum bfd_architecture architecture,
1116 gdbarch_init_ftype *,
1117 gdbarch_dump_tdep_ftype *);
1118
104c1213 1119
b4a20239
AC
1120/* Return a freshly allocated, NULL terminated, array of the valid
1121 architecture names. Since architectures are registered during the
1122 _initialize phase this function only returns useful information
1123 once initialization has been completed. */
1124
1125extern const char **gdbarch_printable_names (void);
1126
1127
104c1213
JM
1128/* Helper function. Search the list of ARCHES for a GDBARCH that
1129 matches the information provided by INFO. */
1130
1131extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1132
1133
1134/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1135 basic initialization using values obtained from the INFO andTDEP
1136 parameters. set_gdbarch_*() functions are called to complete the
1137 initialization of the object. */
1138
1139extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1140
1141
4b9b3959
AC
1142/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1143 It is assumed that the caller freeds the \`\`struct
1144 gdbarch_tdep''. */
1145
058f20d5
JB
1146extern void gdbarch_free (struct gdbarch *);
1147
1148
b732d07d 1149/* Helper function. Force an update of the current architecture.
104c1213 1150
b732d07d
AC
1151 The actual architecture selected is determined by INFO, \`\`(gdb) set
1152 architecture'' et.al., the existing architecture and BFD's default
1153 architecture. INFO should be initialized to zero and then selected
1154 fields should be updated.
104c1213 1155
16f33e29
AC
1156 Returns non-zero if the update succeeds */
1157
1158extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1159
1160
1161
1162/* Register per-architecture data-pointer.
1163
1164 Reserve space for a per-architecture data-pointer. An identifier
1165 for the reserved data-pointer is returned. That identifer should
95160752 1166 be saved in a local static variable.
104c1213 1167
76860b5f
AC
1168 The per-architecture data-pointer is either initialized explicitly
1169 (set_gdbarch_data()) or implicitly (by INIT() via a call to
1170 gdbarch_data()). FREE() is called to delete either an existing
2af496cb 1171 data-pointer overridden by set_gdbarch_data() or when the
76860b5f 1172 architecture object is being deleted.
104c1213 1173
95160752
AC
1174 When a previously created architecture is re-selected, the
1175 per-architecture data-pointer for that previous architecture is
76860b5f 1176 restored. INIT() is not re-called.
104c1213
JM
1177
1178 Multiple registrarants for any architecture are allowed (and
1179 strongly encouraged). */
1180
95160752 1181struct gdbarch_data;
104c1213 1182
95160752
AC
1183typedef void *(gdbarch_data_init_ftype) (struct gdbarch *gdbarch);
1184typedef void (gdbarch_data_free_ftype) (struct gdbarch *gdbarch,
1185 void *pointer);
1186extern struct gdbarch_data *register_gdbarch_data (gdbarch_data_init_ftype *init,
1187 gdbarch_data_free_ftype *free);
1188extern void set_gdbarch_data (struct gdbarch *gdbarch,
1189 struct gdbarch_data *data,
1190 void *pointer);
104c1213 1191
451fbdda 1192extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1193
1194
104c1213
JM
1195/* Register per-architecture memory region.
1196
1197 Provide a memory-region swap mechanism. Per-architecture memory
1198 region are created. These memory regions are swapped whenever the
1199 architecture is changed. For a new architecture, the memory region
1200 is initialized with zero (0) and the INIT function is called.
1201
1202 Memory regions are swapped / initialized in the order that they are
1203 registered. NULL DATA and/or INIT values can be specified.
1204
1205 New code should use register_gdbarch_data(). */
1206
1207typedef void (gdbarch_swap_ftype) (void);
1208extern void register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
e514a9d6 1209#define REGISTER_GDBARCH_SWAP(VAR) register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
104c1213
JM
1210
1211
1212
0fa6923a 1213/* The target-system-dependent byte order is dynamic */
104c1213 1214
104c1213 1215extern int target_byte_order;
104c1213
JM
1216#ifndef TARGET_BYTE_ORDER
1217#define TARGET_BYTE_ORDER (target_byte_order + 0)
1218#endif
1219
1220extern int target_byte_order_auto;
1221#ifndef TARGET_BYTE_ORDER_AUTO
1222#define TARGET_BYTE_ORDER_AUTO (target_byte_order_auto + 0)
1223#endif
1224
1225
1226
0fa6923a 1227/* The target-system-dependent BFD architecture is dynamic */
104c1213
JM
1228
1229extern int target_architecture_auto;
1230#ifndef TARGET_ARCHITECTURE_AUTO
1231#define TARGET_ARCHITECTURE_AUTO (target_architecture_auto + 0)
1232#endif
1233
1234extern const struct bfd_arch_info *target_architecture;
1235#ifndef TARGET_ARCHITECTURE
1236#define TARGET_ARCHITECTURE (target_architecture + 0)
1237#endif
1238
104c1213 1239
0fa6923a 1240/* The target-system-dependent disassembler is semi-dynamic */
104c1213 1241
810ecf9f 1242/* Use gdb_disassemble, and gdbarch_print_insn instead. */
d7a27068 1243extern int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info*);
104c1213 1244
810ecf9f
AC
1245/* Use set_gdbarch_print_insn instead. */
1246extern disassemble_info deprecated_tm_print_insn_info;
104c1213 1247
0fa6923a 1248/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1249 byte-order, ...) using information found in the BFD */
1250
1251extern void set_gdbarch_from_file (bfd *);
1252
1253
e514a9d6
JM
1254/* Initialize the current architecture to the "first" one we find on
1255 our list. */
1256
1257extern void initialize_current_architecture (void);
1258
ceaa8edf
JB
1259/* For non-multiarched targets, do any initialization of the default
1260 gdbarch object necessary after the _initialize_MODULE functions
1261 have run. */
5ae5f592 1262extern void initialize_non_multiarch (void);
104c1213
JM
1263
1264/* gdbarch trace variable */
1265extern int gdbarch_debug;
1266
4b9b3959 1267extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1268
1269#endif
1270EOF
1271exec 1>&2
1272#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1273compare_new gdbarch.h
104c1213
JM
1274
1275
1276#
1277# C file
1278#
1279
1280exec > new-gdbarch.c
1281copyright
1282cat <<EOF
1283
1284#include "defs.h"
7355ddba 1285#include "arch-utils.h"
104c1213
JM
1286
1287#if GDB_MULTI_ARCH
1288#include "gdbcmd.h"
1289#include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1290#else
1291/* Just include everything in sight so that the every old definition
1292 of macro is visible. */
1293#include "gdb_string.h"
1294#include <ctype.h>
1295#include "symtab.h"
1296#include "frame.h"
1297#include "inferior.h"
1298#include "breakpoint.h"
0596389c 1299#include "gdb_wait.h"
104c1213
JM
1300#include "gdbcore.h"
1301#include "gdbcmd.h"
1302#include "target.h"
1303#include "gdbthread.h"
1304#include "annotate.h"
1305#include "symfile.h" /* for overlay functions */
fd0407d6 1306#include "value.h" /* For old tm.h/nm.h macros. */
104c1213
JM
1307#endif
1308#include "symcat.h"
1309
f0d4cc9e 1310#include "floatformat.h"
104c1213 1311
95160752 1312#include "gdb_assert.h"
b66d6d2e 1313#include "gdb_string.h"
67c2c32c 1314#include "gdb-events.h"
b59ff9d5 1315#include "reggroups.h"
4be87837 1316#include "osabi.h"
e9a2674e 1317#include "symfile.h" /* For entry_point_address. */
95160752 1318
104c1213
JM
1319/* Static function declarations */
1320
1321static void verify_gdbarch (struct gdbarch *gdbarch);
b3cc3077 1322static void alloc_gdbarch_data (struct gdbarch *);
95160752 1323static void free_gdbarch_data (struct gdbarch *);
104c1213 1324static void init_gdbarch_swap (struct gdbarch *);
40af4b0c 1325static void clear_gdbarch_swap (struct gdbarch *);
104c1213
JM
1326static void swapout_gdbarch_swap (struct gdbarch *);
1327static void swapin_gdbarch_swap (struct gdbarch *);
1328
104c1213
JM
1329/* Non-zero if we want to trace architecture code. */
1330
1331#ifndef GDBARCH_DEBUG
1332#define GDBARCH_DEBUG 0
1333#endif
1334int gdbarch_debug = GDBARCH_DEBUG;
1335
1336EOF
1337
1338# gdbarch open the gdbarch object
3d9a5942
AC
1339printf "\n"
1340printf "/* Maintain the struct gdbarch object */\n"
1341printf "\n"
1342printf "struct gdbarch\n"
1343printf "{\n"
76860b5f
AC
1344printf " /* Has this architecture been fully initialized? */\n"
1345printf " int initialized_p;\n"
3d9a5942 1346printf " /* basic architectural information */\n"
34620563 1347function_list | while do_read
104c1213 1348do
2ada493a
AC
1349 if class_is_info_p
1350 then
3d9a5942 1351 printf " ${returntype} ${function};\n"
2ada493a 1352 fi
104c1213 1353done
3d9a5942
AC
1354printf "\n"
1355printf " /* target specific vector. */\n"
1356printf " struct gdbarch_tdep *tdep;\n"
1357printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1358printf "\n"
1359printf " /* per-architecture data-pointers */\n"
95160752 1360printf " unsigned nr_data;\n"
3d9a5942
AC
1361printf " void **data;\n"
1362printf "\n"
1363printf " /* per-architecture swap-regions */\n"
1364printf " struct gdbarch_swap *swap;\n"
1365printf "\n"
104c1213
JM
1366cat <<EOF
1367 /* Multi-arch values.
1368
1369 When extending this structure you must:
1370
1371 Add the field below.
1372
1373 Declare set/get functions and define the corresponding
1374 macro in gdbarch.h.
1375
1376 gdbarch_alloc(): If zero/NULL is not a suitable default,
1377 initialize the new field.
1378
1379 verify_gdbarch(): Confirm that the target updated the field
1380 correctly.
1381
7e73cedf 1382 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1383 field is dumped out
1384
c0e8c252 1385 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1386 variable (base values on the host's c-type system).
1387
1388 get_gdbarch(): Implement the set/get functions (probably using
1389 the macro's as shortcuts).
1390
1391 */
1392
1393EOF
34620563 1394function_list | while do_read
104c1213 1395do
2ada493a
AC
1396 if class_is_variable_p
1397 then
3d9a5942 1398 printf " ${returntype} ${function};\n"
2ada493a
AC
1399 elif class_is_function_p
1400 then
3d9a5942 1401 printf " gdbarch_${function}_ftype *${function}${attrib};\n"
2ada493a 1402 fi
104c1213 1403done
3d9a5942 1404printf "};\n"
104c1213
JM
1405
1406# A pre-initialized vector
3d9a5942
AC
1407printf "\n"
1408printf "\n"
104c1213
JM
1409cat <<EOF
1410/* The default architecture uses host values (for want of a better
1411 choice). */
1412EOF
3d9a5942
AC
1413printf "\n"
1414printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1415printf "\n"
1416printf "struct gdbarch startup_gdbarch =\n"
1417printf "{\n"
76860b5f 1418printf " 1, /* Always initialized. */\n"
3d9a5942 1419printf " /* basic architecture information */\n"
4b9b3959 1420function_list | while do_read
104c1213 1421do
2ada493a
AC
1422 if class_is_info_p
1423 then
ec5cbaec 1424 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1425 fi
104c1213
JM
1426done
1427cat <<EOF
4b9b3959
AC
1428 /* target specific vector and its dump routine */
1429 NULL, NULL,
104c1213
JM
1430 /*per-architecture data-pointers and swap regions */
1431 0, NULL, NULL,
1432 /* Multi-arch values */
1433EOF
34620563 1434function_list | while do_read
104c1213 1435do
2ada493a
AC
1436 if class_is_function_p || class_is_variable_p
1437 then
ec5cbaec 1438 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1439 fi
104c1213
JM
1440done
1441cat <<EOF
c0e8c252 1442 /* startup_gdbarch() */
104c1213 1443};
4b9b3959 1444
c0e8c252 1445struct gdbarch *current_gdbarch = &startup_gdbarch;
ceaa8edf
JB
1446
1447/* Do any initialization needed for a non-multiarch configuration
1448 after the _initialize_MODULE functions have been run. */
1449void
5ae5f592 1450initialize_non_multiarch (void)
ceaa8edf
JB
1451{
1452 alloc_gdbarch_data (&startup_gdbarch);
40af4b0c
AC
1453 /* Ensure that all swap areas are zeroed so that they again think
1454 they are starting from scratch. */
1455 clear_gdbarch_swap (&startup_gdbarch);
6c1e5d11 1456 init_gdbarch_swap (&startup_gdbarch);
ceaa8edf 1457}
104c1213
JM
1458EOF
1459
1460# Create a new gdbarch struct
3d9a5942
AC
1461printf "\n"
1462printf "\n"
104c1213 1463cat <<EOF
66b43ecb 1464/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1465 \`\`struct gdbarch_info''. */
1466EOF
3d9a5942 1467printf "\n"
104c1213
JM
1468cat <<EOF
1469struct gdbarch *
1470gdbarch_alloc (const struct gdbarch_info *info,
1471 struct gdbarch_tdep *tdep)
1472{
85de9627
AC
1473 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1474 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1475 the current local architecture and not the previous global
1476 architecture. This ensures that the new architectures initial
1477 values are not influenced by the previous architecture. Once
1478 everything is parameterised with gdbarch, this will go away. */
1479 struct gdbarch *current_gdbarch = XMALLOC (struct gdbarch);
1480 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1481
1482 alloc_gdbarch_data (current_gdbarch);
1483
1484 current_gdbarch->tdep = tdep;
104c1213 1485EOF
3d9a5942 1486printf "\n"
34620563 1487function_list | while do_read
104c1213 1488do
2ada493a
AC
1489 if class_is_info_p
1490 then
85de9627 1491 printf " current_gdbarch->${function} = info->${function};\n"
2ada493a 1492 fi
104c1213 1493done
3d9a5942
AC
1494printf "\n"
1495printf " /* Force the explicit initialization of these. */\n"
34620563 1496function_list | while do_read
104c1213 1497do
2ada493a
AC
1498 if class_is_function_p || class_is_variable_p
1499 then
72e74a21 1500 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1501 then
85de9627 1502 printf " current_gdbarch->${function} = ${predefault};\n"
104c1213 1503 fi
2ada493a 1504 fi
104c1213
JM
1505done
1506cat <<EOF
1507 /* gdbarch_alloc() */
1508
85de9627 1509 return current_gdbarch;
104c1213
JM
1510}
1511EOF
1512
058f20d5 1513# Free a gdbarch struct.
3d9a5942
AC
1514printf "\n"
1515printf "\n"
058f20d5
JB
1516cat <<EOF
1517/* Free a gdbarch struct. This should never happen in normal
1518 operation --- once you've created a gdbarch, you keep it around.
1519 However, if an architecture's init function encounters an error
1520 building the structure, it may need to clean up a partially
1521 constructed gdbarch. */
4b9b3959 1522
058f20d5
JB
1523void
1524gdbarch_free (struct gdbarch *arch)
1525{
95160752
AC
1526 gdb_assert (arch != NULL);
1527 free_gdbarch_data (arch);
338d7c5c 1528 xfree (arch);
058f20d5
JB
1529}
1530EOF
1531
104c1213 1532# verify a new architecture
3d9a5942
AC
1533printf "\n"
1534printf "\n"
1535printf "/* Ensure that all values in a GDBARCH are reasonable. */\n"
1536printf "\n"
104c1213
JM
1537cat <<EOF
1538static void
1539verify_gdbarch (struct gdbarch *gdbarch)
1540{
f16a1923
AC
1541 struct ui_file *log;
1542 struct cleanup *cleanups;
1543 long dummy;
1544 char *buf;
104c1213 1545 /* Only perform sanity checks on a multi-arch target. */
6166d547 1546 if (!GDB_MULTI_ARCH)
104c1213 1547 return;
f16a1923
AC
1548 log = mem_fileopen ();
1549 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1550 /* fundamental */
428721aa 1551 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1552 fprintf_unfiltered (log, "\n\tbyte-order");
104c1213 1553 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1554 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1555 /* Check those that need to be defined for the given multi-arch level. */
1556EOF
34620563 1557function_list | while do_read
104c1213 1558do
2ada493a
AC
1559 if class_is_function_p || class_is_variable_p
1560 then
72e74a21 1561 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1562 then
3d9a5942 1563 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1564 elif class_is_predicate_p
1565 then
3d9a5942 1566 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1567 # FIXME: See do_read for potential simplification
72e74a21 1568 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1569 then
3d9a5942
AC
1570 printf " if (${invalid_p})\n"
1571 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1572 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1573 then
3d9a5942
AC
1574 printf " if (gdbarch->${function} == ${predefault})\n"
1575 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1576 elif [ -n "${postdefault}" ]
f0d4cc9e 1577 then
3d9a5942
AC
1578 printf " if (gdbarch->${function} == 0)\n"
1579 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1580 elif [ -n "${invalid_p}" ]
104c1213 1581 then
50248794 1582 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1583 printf " && (${invalid_p}))\n"
f16a1923 1584 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1585 elif [ -n "${predefault}" ]
104c1213 1586 then
50248794 1587 printf " if ((GDB_MULTI_ARCH ${gt_level})\n"
3d9a5942 1588 printf " && (gdbarch->${function} == ${predefault}))\n"
f16a1923 1589 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1590 fi
2ada493a 1591 fi
104c1213
JM
1592done
1593cat <<EOF
f16a1923
AC
1594 buf = ui_file_xstrdup (log, &dummy);
1595 make_cleanup (xfree, buf);
1596 if (strlen (buf) > 0)
1597 internal_error (__FILE__, __LINE__,
1598 "verify_gdbarch: the following are invalid ...%s",
1599 buf);
1600 do_cleanups (cleanups);
104c1213
JM
1601}
1602EOF
1603
1604# dump the structure
3d9a5942
AC
1605printf "\n"
1606printf "\n"
104c1213 1607cat <<EOF
4b9b3959
AC
1608/* Print out the details of the current architecture. */
1609
1610/* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1611 just happens to match the global variable \`\`current_gdbarch''. That
1612 way macros refering to that variable get the local and not the global
1613 version - ulgh. Once everything is parameterised with gdbarch, this
1614 will go away. */
1615
104c1213 1616void
4b9b3959 1617gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1618{
4b9b3959
AC
1619 fprintf_unfiltered (file,
1620 "gdbarch_dump: GDB_MULTI_ARCH = %d\\n",
1621 GDB_MULTI_ARCH);
104c1213 1622EOF
9ba8d803 1623function_list | sort -t: -k 3 | while do_read
104c1213 1624do
1e9f55d0
AC
1625 # First the predicate
1626 if class_is_predicate_p
1627 then
1628 if class_is_multiarch_p
1629 then
1630 printf " if (GDB_MULTI_ARCH)\n"
1631 printf " fprintf_unfiltered (file,\n"
1632 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1633 printf " gdbarch_${function}_p (current_gdbarch));\n"
1634 else
1635 printf "#ifdef ${macro}_P\n"
1636 printf " fprintf_unfiltered (file,\n"
1637 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1638 printf " \"${macro}_P()\",\n"
1639 printf " XSTRING (${macro}_P ()));\n"
1640 printf " fprintf_unfiltered (file,\n"
1641 printf " \"gdbarch_dump: ${macro}_P() = %%d\\\\n\",\n"
1642 printf " ${macro}_P ());\n"
1643 printf "#endif\n"
1644 fi
1645 fi
4a5c6a1d 1646 # multiarch functions don't have macros.
08e45a40
AC
1647 if class_is_multiarch_p
1648 then
1649 printf " if (GDB_MULTI_ARCH)\n"
1650 printf " fprintf_unfiltered (file,\n"
1651 printf " \"gdbarch_dump: ${function} = 0x%%08lx\\\\n\",\n"
1652 printf " (long) current_gdbarch->${function});\n"
1653 continue
1654 fi
06b25f14 1655 # Print the macro definition.
08e45a40 1656 printf "#ifdef ${macro}\n"
72e74a21 1657 if [ "x${returntype}" = "xvoid" ]
63e69063 1658 then
08e45a40 1659 printf "#if GDB_MULTI_ARCH\n"
3d9a5942 1660 printf " /* Macro might contain \`[{}]' when not multi-arch */\n"
63e69063 1661 fi
2ada493a
AC
1662 if class_is_function_p
1663 then
3d9a5942
AC
1664 printf " fprintf_unfiltered (file,\n"
1665 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1666 printf " \"${macro}(${actual})\",\n"
1667 printf " XSTRING (${macro} (${actual})));\n"
2ada493a 1668 else
3d9a5942
AC
1669 printf " fprintf_unfiltered (file,\n"
1670 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1671 printf " XSTRING (${macro}));\n"
4b9b3959 1672 fi
06b25f14 1673 # Print the architecture vector value
08e45a40 1674 if [ "x${returntype}" = "xvoid" ]
4a5c6a1d 1675 then
08e45a40 1676 printf "#endif\n"
4a5c6a1d 1677 fi
72e74a21 1678 if [ "x${print_p}" = "x()" ]
4b9b3959 1679 then
4a5c6a1d 1680 printf " gdbarch_dump_${function} (current_gdbarch);\n"
72e74a21 1681 elif [ "x${print_p}" = "x0" ]
4b9b3959 1682 then
4a5c6a1d 1683 printf " /* skip print of ${macro}, print_p == 0. */\n"
72e74a21 1684 elif [ -n "${print_p}" ]
4b9b3959 1685 then
4a5c6a1d 1686 printf " if (${print_p})\n"
3d9a5942
AC
1687 printf " fprintf_unfiltered (file,\n"
1688 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1689 printf " ${print});\n"
4b9b3959
AC
1690 elif class_is_function_p
1691 then
3d9a5942
AC
1692 printf " if (GDB_MULTI_ARCH)\n"
1693 printf " fprintf_unfiltered (file,\n"
6cbda714 1694 printf " \"gdbarch_dump: ${macro} = <0x%%08lx>\\\\n\",\n"
3d9a5942
AC
1695 printf " (long) current_gdbarch->${function}\n"
1696 printf " /*${macro} ()*/);\n"
4b9b3959 1697 else
3d9a5942
AC
1698 printf " fprintf_unfiltered (file,\n"
1699 printf " \"gdbarch_dump: ${macro} = %s\\\\n\",\n" "${fmt}"
1700 printf " ${print});\n"
2ada493a 1701 fi
3d9a5942 1702 printf "#endif\n"
104c1213 1703done
381323f4 1704cat <<EOF
4b9b3959
AC
1705 if (current_gdbarch->dump_tdep != NULL)
1706 current_gdbarch->dump_tdep (current_gdbarch, file);
381323f4
AC
1707}
1708EOF
104c1213
JM
1709
1710
1711# GET/SET
3d9a5942 1712printf "\n"
104c1213
JM
1713cat <<EOF
1714struct gdbarch_tdep *
1715gdbarch_tdep (struct gdbarch *gdbarch)
1716{
1717 if (gdbarch_debug >= 2)
3d9a5942 1718 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1719 return gdbarch->tdep;
1720}
1721EOF
3d9a5942 1722printf "\n"
34620563 1723function_list | while do_read
104c1213 1724do
2ada493a
AC
1725 if class_is_predicate_p
1726 then
3d9a5942
AC
1727 printf "\n"
1728 printf "int\n"
1729 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1730 printf "{\n"
8de9bdc4 1731 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1732 printf " return ${predicate};\n"
3d9a5942 1733 printf "}\n"
2ada493a
AC
1734 fi
1735 if class_is_function_p
1736 then
3d9a5942
AC
1737 printf "\n"
1738 printf "${returntype}\n"
72e74a21 1739 if [ "x${formal}" = "xvoid" ]
104c1213 1740 then
3d9a5942 1741 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1742 else
3d9a5942 1743 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1744 fi
3d9a5942 1745 printf "{\n"
8de9bdc4 1746 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1747 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1748 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1749 then
1750 # Allow a call to a function with a predicate.
956ac328 1751 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1752 fi
3d9a5942
AC
1753 printf " if (gdbarch_debug >= 2)\n"
1754 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1755 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1756 then
1757 if class_is_multiarch_p
1758 then
1759 params="gdbarch"
1760 else
1761 params=""
1762 fi
1763 else
1764 if class_is_multiarch_p
1765 then
1766 params="gdbarch, ${actual}"
1767 else
1768 params="${actual}"
1769 fi
1770 fi
72e74a21 1771 if [ "x${returntype}" = "xvoid" ]
104c1213 1772 then
4a5c6a1d 1773 printf " gdbarch->${function} (${params});\n"
104c1213 1774 else
4a5c6a1d 1775 printf " return gdbarch->${function} (${params});\n"
104c1213 1776 fi
3d9a5942
AC
1777 printf "}\n"
1778 printf "\n"
1779 printf "void\n"
1780 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1781 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1782 printf "{\n"
1783 printf " gdbarch->${function} = ${function};\n"
1784 printf "}\n"
2ada493a
AC
1785 elif class_is_variable_p
1786 then
3d9a5942
AC
1787 printf "\n"
1788 printf "${returntype}\n"
1789 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1790 printf "{\n"
8de9bdc4 1791 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1792 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1793 then
3d9a5942 1794 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1795 elif [ -n "${invalid_p}" ]
104c1213 1796 then
956ac328
AC
1797 printf " /* Check variable is valid. */\n"
1798 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1799 elif [ -n "${predefault}" ]
104c1213 1800 then
956ac328
AC
1801 printf " /* Check variable changed from pre-default. */\n"
1802 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1803 fi
3d9a5942
AC
1804 printf " if (gdbarch_debug >= 2)\n"
1805 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1806 printf " return gdbarch->${function};\n"
1807 printf "}\n"
1808 printf "\n"
1809 printf "void\n"
1810 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1811 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1812 printf "{\n"
1813 printf " gdbarch->${function} = ${function};\n"
1814 printf "}\n"
2ada493a
AC
1815 elif class_is_info_p
1816 then
3d9a5942
AC
1817 printf "\n"
1818 printf "${returntype}\n"
1819 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1820 printf "{\n"
8de9bdc4 1821 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1822 printf " if (gdbarch_debug >= 2)\n"
1823 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1824 printf " return gdbarch->${function};\n"
1825 printf "}\n"
2ada493a 1826 fi
104c1213
JM
1827done
1828
1829# All the trailing guff
1830cat <<EOF
1831
1832
f44c642f 1833/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1834 modules. */
1835
1836struct gdbarch_data
1837{
95160752 1838 unsigned index;
76860b5f 1839 int init_p;
95160752
AC
1840 gdbarch_data_init_ftype *init;
1841 gdbarch_data_free_ftype *free;
104c1213
JM
1842};
1843
1844struct gdbarch_data_registration
1845{
104c1213
JM
1846 struct gdbarch_data *data;
1847 struct gdbarch_data_registration *next;
1848};
1849
f44c642f 1850struct gdbarch_data_registry
104c1213 1851{
95160752 1852 unsigned nr;
104c1213
JM
1853 struct gdbarch_data_registration *registrations;
1854};
1855
f44c642f 1856struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1857{
1858 0, NULL,
1859};
1860
1861struct gdbarch_data *
95160752
AC
1862register_gdbarch_data (gdbarch_data_init_ftype *init,
1863 gdbarch_data_free_ftype *free)
104c1213
JM
1864{
1865 struct gdbarch_data_registration **curr;
76860b5f 1866 /* Append the new registraration. */
f44c642f 1867 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1868 (*curr) != NULL;
1869 curr = &(*curr)->next);
1870 (*curr) = XMALLOC (struct gdbarch_data_registration);
1871 (*curr)->next = NULL;
104c1213 1872 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1873 (*curr)->data->index = gdbarch_data_registry.nr++;
95160752 1874 (*curr)->data->init = init;
76860b5f 1875 (*curr)->data->init_p = 1;
95160752 1876 (*curr)->data->free = free;
104c1213
JM
1877 return (*curr)->data;
1878}
1879
1880
b3cc3077 1881/* Create/delete the gdbarch data vector. */
95160752
AC
1882
1883static void
b3cc3077 1884alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1885{
b3cc3077
JB
1886 gdb_assert (gdbarch->data == NULL);
1887 gdbarch->nr_data = gdbarch_data_registry.nr;
1888 gdbarch->data = xcalloc (gdbarch->nr_data, sizeof (void*));
1889}
3c875b6f 1890
b3cc3077
JB
1891static void
1892free_gdbarch_data (struct gdbarch *gdbarch)
1893{
1894 struct gdbarch_data_registration *rego;
1895 gdb_assert (gdbarch->data != NULL);
1896 for (rego = gdbarch_data_registry.registrations;
1897 rego != NULL;
1898 rego = rego->next)
95160752 1899 {
b3cc3077
JB
1900 struct gdbarch_data *data = rego->data;
1901 gdb_assert (data->index < gdbarch->nr_data);
1902 if (data->free != NULL && gdbarch->data[data->index] != NULL)
95160752 1903 {
b3cc3077
JB
1904 data->free (gdbarch, gdbarch->data[data->index]);
1905 gdbarch->data[data->index] = NULL;
95160752 1906 }
104c1213 1907 }
b3cc3077
JB
1908 xfree (gdbarch->data);
1909 gdbarch->data = NULL;
104c1213
JM
1910}
1911
1912
76860b5f 1913/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1914 data-pointer. */
1915
95160752
AC
1916void
1917set_gdbarch_data (struct gdbarch *gdbarch,
1918 struct gdbarch_data *data,
1919 void *pointer)
1920{
1921 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1922 if (gdbarch->data[data->index] != NULL)
1923 {
1924 gdb_assert (data->free != NULL);
1925 data->free (gdbarch, gdbarch->data[data->index]);
1926 }
95160752
AC
1927 gdbarch->data[data->index] = pointer;
1928}
1929
104c1213
JM
1930/* Return the current value of the specified per-architecture
1931 data-pointer. */
1932
1933void *
451fbdda 1934gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1935{
451fbdda 1936 gdb_assert (data->index < gdbarch->nr_data);
76860b5f
AC
1937 /* The data-pointer isn't initialized, call init() to get a value but
1938 only if the architecture initializaiton has completed. Otherwise
1939 punt - hope that the caller knows what they are doing. */
1940 if (gdbarch->data[data->index] == NULL
1941 && gdbarch->initialized_p)
1942 {
1943 /* Be careful to detect an initialization cycle. */
1944 gdb_assert (data->init_p);
1945 data->init_p = 0;
1946 gdb_assert (data->init != NULL);
1947 gdbarch->data[data->index] = data->init (gdbarch);
1948 data->init_p = 1;
1949 gdb_assert (gdbarch->data[data->index] != NULL);
1950 }
451fbdda 1951 return gdbarch->data[data->index];
104c1213
JM
1952}
1953
1954
1955
f44c642f 1956/* Keep a registry of swapped data required by GDB modules. */
104c1213
JM
1957
1958struct gdbarch_swap
1959{
1960 void *swap;
1961 struct gdbarch_swap_registration *source;
1962 struct gdbarch_swap *next;
1963};
1964
1965struct gdbarch_swap_registration
1966{
1967 void *data;
1968 unsigned long sizeof_data;
1969 gdbarch_swap_ftype *init;
1970 struct gdbarch_swap_registration *next;
1971};
1972
f44c642f 1973struct gdbarch_swap_registry
104c1213
JM
1974{
1975 int nr;
1976 struct gdbarch_swap_registration *registrations;
1977};
1978
f44c642f 1979struct gdbarch_swap_registry gdbarch_swap_registry =
104c1213
JM
1980{
1981 0, NULL,
1982};
1983
1984void
1985register_gdbarch_swap (void *data,
1986 unsigned long sizeof_data,
1987 gdbarch_swap_ftype *init)
1988{
1989 struct gdbarch_swap_registration **rego;
f44c642f 1990 for (rego = &gdbarch_swap_registry.registrations;
104c1213
JM
1991 (*rego) != NULL;
1992 rego = &(*rego)->next);
1993 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1994 (*rego)->next = NULL;
1995 (*rego)->init = init;
1996 (*rego)->data = data;
1997 (*rego)->sizeof_data = sizeof_data;
1998}
1999
40af4b0c
AC
2000static void
2001clear_gdbarch_swap (struct gdbarch *gdbarch)
2002{
2003 struct gdbarch_swap *curr;
2004 for (curr = gdbarch->swap;
2005 curr != NULL;
2006 curr = curr->next)
2007 {
2008 memset (curr->source->data, 0, curr->source->sizeof_data);
2009 }
2010}
104c1213
JM
2011
2012static void
2013init_gdbarch_swap (struct gdbarch *gdbarch)
2014{
2015 struct gdbarch_swap_registration *rego;
2016 struct gdbarch_swap **curr = &gdbarch->swap;
f44c642f 2017 for (rego = gdbarch_swap_registry.registrations;
104c1213
JM
2018 rego != NULL;
2019 rego = rego->next)
2020 {
2021 if (rego->data != NULL)
2022 {
2023 (*curr) = XMALLOC (struct gdbarch_swap);
2024 (*curr)->source = rego;
2025 (*curr)->swap = xmalloc (rego->sizeof_data);
2026 (*curr)->next = NULL;
104c1213
JM
2027 curr = &(*curr)->next;
2028 }
2029 if (rego->init != NULL)
2030 rego->init ();
2031 }
2032}
2033
2034static void
2035swapout_gdbarch_swap (struct gdbarch *gdbarch)
2036{
2037 struct gdbarch_swap *curr;
2038 for (curr = gdbarch->swap;
2039 curr != NULL;
2040 curr = curr->next)
2041 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
2042}
2043
2044static void
2045swapin_gdbarch_swap (struct gdbarch *gdbarch)
2046{
2047 struct gdbarch_swap *curr;
2048 for (curr = gdbarch->swap;
2049 curr != NULL;
2050 curr = curr->next)
2051 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
2052}
2053
2054
f44c642f 2055/* Keep a registry of the architectures known by GDB. */
104c1213 2056
4b9b3959 2057struct gdbarch_registration
104c1213
JM
2058{
2059 enum bfd_architecture bfd_architecture;
2060 gdbarch_init_ftype *init;
4b9b3959 2061 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2062 struct gdbarch_list *arches;
4b9b3959 2063 struct gdbarch_registration *next;
104c1213
JM
2064};
2065
f44c642f 2066static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2067
b4a20239
AC
2068static void
2069append_name (const char ***buf, int *nr, const char *name)
2070{
2071 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2072 (*buf)[*nr] = name;
2073 *nr += 1;
2074}
2075
2076const char **
2077gdbarch_printable_names (void)
2078{
2079 if (GDB_MULTI_ARCH)
2080 {
2081 /* Accumulate a list of names based on the registed list of
2082 architectures. */
2083 enum bfd_architecture a;
2084 int nr_arches = 0;
2085 const char **arches = NULL;
4b9b3959 2086 struct gdbarch_registration *rego;
f44c642f 2087 for (rego = gdbarch_registry;
b4a20239
AC
2088 rego != NULL;
2089 rego = rego->next)
2090 {
2091 const struct bfd_arch_info *ap;
2092 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2093 if (ap == NULL)
8e65ff28
AC
2094 internal_error (__FILE__, __LINE__,
2095 "gdbarch_architecture_names: multi-arch unknown");
b4a20239
AC
2096 do
2097 {
2098 append_name (&arches, &nr_arches, ap->printable_name);
2099 ap = ap->next;
2100 }
2101 while (ap != NULL);
2102 }
2103 append_name (&arches, &nr_arches, NULL);
2104 return arches;
2105 }
2106 else
2107 /* Just return all the architectures that BFD knows. Assume that
2108 the legacy architecture framework supports them. */
2109 return bfd_arch_list ();
2110}
2111
2112
104c1213 2113void
4b9b3959
AC
2114gdbarch_register (enum bfd_architecture bfd_architecture,
2115 gdbarch_init_ftype *init,
2116 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2117{
4b9b3959 2118 struct gdbarch_registration **curr;
104c1213 2119 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 2120 /* Check that BFD recognizes this architecture */
104c1213
JM
2121 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2122 if (bfd_arch_info == NULL)
2123 {
8e65ff28
AC
2124 internal_error (__FILE__, __LINE__,
2125 "gdbarch: Attempt to register unknown architecture (%d)",
2126 bfd_architecture);
104c1213
JM
2127 }
2128 /* Check that we haven't seen this architecture before */
f44c642f 2129 for (curr = &gdbarch_registry;
104c1213
JM
2130 (*curr) != NULL;
2131 curr = &(*curr)->next)
2132 {
2133 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28
AC
2134 internal_error (__FILE__, __LINE__,
2135 "gdbarch: Duplicate registraration of architecture (%s)",
2136 bfd_arch_info->printable_name);
104c1213
JM
2137 }
2138 /* log it */
2139 if (gdbarch_debug)
2140 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2141 bfd_arch_info->printable_name,
2142 (long) init);
2143 /* Append it */
4b9b3959 2144 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2145 (*curr)->bfd_architecture = bfd_architecture;
2146 (*curr)->init = init;
4b9b3959 2147 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2148 (*curr)->arches = NULL;
2149 (*curr)->next = NULL;
8e1a459b
C
2150 /* When non- multi-arch, install whatever target dump routine we've
2151 been provided - hopefully that routine has been written correctly
4b9b3959
AC
2152 and works regardless of multi-arch. */
2153 if (!GDB_MULTI_ARCH && dump_tdep != NULL
2154 && startup_gdbarch.dump_tdep == NULL)
2155 startup_gdbarch.dump_tdep = dump_tdep;
2156}
2157
2158void
2159register_gdbarch_init (enum bfd_architecture bfd_architecture,
2160 gdbarch_init_ftype *init)
2161{
2162 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2163}
104c1213
JM
2164
2165
2166/* Look for an architecture using gdbarch_info. Base search on only
2167 BFD_ARCH_INFO and BYTE_ORDER. */
2168
2169struct gdbarch_list *
2170gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2171 const struct gdbarch_info *info)
2172{
2173 for (; arches != NULL; arches = arches->next)
2174 {
2175 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2176 continue;
2177 if (info->byte_order != arches->gdbarch->byte_order)
2178 continue;
4be87837
DJ
2179 if (info->osabi != arches->gdbarch->osabi)
2180 continue;
104c1213
JM
2181 return arches;
2182 }
2183 return NULL;
2184}
2185
2186
2187/* Update the current architecture. Return ZERO if the update request
2188 failed. */
2189
2190int
16f33e29 2191gdbarch_update_p (struct gdbarch_info info)
104c1213
JM
2192{
2193 struct gdbarch *new_gdbarch;
40af4b0c 2194 struct gdbarch *old_gdbarch;
4b9b3959 2195 struct gdbarch_registration *rego;
104c1213 2196
b732d07d
AC
2197 /* Fill in missing parts of the INFO struct using a number of
2198 sources: \`\`set ...''; INFOabfd supplied; existing target. */
2199
2200 /* \`\`(gdb) set architecture ...'' */
2201 if (info.bfd_arch_info == NULL
2202 && !TARGET_ARCHITECTURE_AUTO)
2203 info.bfd_arch_info = TARGET_ARCHITECTURE;
2204 if (info.bfd_arch_info == NULL
2205 && info.abfd != NULL
2206 && bfd_get_arch (info.abfd) != bfd_arch_unknown
2207 && bfd_get_arch (info.abfd) != bfd_arch_obscure)
2208 info.bfd_arch_info = bfd_get_arch_info (info.abfd);
104c1213 2209 if (info.bfd_arch_info == NULL)
b732d07d
AC
2210 info.bfd_arch_info = TARGET_ARCHITECTURE;
2211
2212 /* \`\`(gdb) set byte-order ...'' */
428721aa 2213 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d
AC
2214 && !TARGET_BYTE_ORDER_AUTO)
2215 info.byte_order = TARGET_BYTE_ORDER;
2216 /* From the INFO struct. */
428721aa 2217 if (info.byte_order == BFD_ENDIAN_UNKNOWN
b732d07d 2218 && info.abfd != NULL)
d7449b42 2219 info.byte_order = (bfd_big_endian (info.abfd) ? BFD_ENDIAN_BIG
778eb05e 2220 : bfd_little_endian (info.abfd) ? BFD_ENDIAN_LITTLE
428721aa 2221 : BFD_ENDIAN_UNKNOWN);
b732d07d 2222 /* From the current target. */
428721aa 2223 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
b732d07d 2224 info.byte_order = TARGET_BYTE_ORDER;
104c1213 2225
4be87837
DJ
2226 /* \`\`(gdb) set osabi ...'' is handled by gdbarch_lookup_osabi. */
2227 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2228 info.osabi = gdbarch_lookup_osabi (info.abfd);
2229 if (info.osabi == GDB_OSABI_UNINITIALIZED)
2230 info.osabi = current_gdbarch->osabi;
2231
b732d07d
AC
2232 /* Must have found some sort of architecture. */
2233 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2234
2235 if (gdbarch_debug)
2236 {
2237 fprintf_unfiltered (gdb_stdlog,
b732d07d 2238 "gdbarch_update: info.bfd_arch_info %s\n",
104c1213
JM
2239 (info.bfd_arch_info != NULL
2240 ? info.bfd_arch_info->printable_name
2241 : "(null)"));
2242 fprintf_unfiltered (gdb_stdlog,
b732d07d 2243 "gdbarch_update: info.byte_order %d (%s)\n",
104c1213 2244 info.byte_order,
d7449b42 2245 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2246 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2247 : "default"));
4be87837
DJ
2248 fprintf_unfiltered (gdb_stdlog,
2249 "gdbarch_update: info.osabi %d (%s)\n",
2250 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2251 fprintf_unfiltered (gdb_stdlog,
b732d07d 2252 "gdbarch_update: info.abfd 0x%lx\n",
104c1213
JM
2253 (long) info.abfd);
2254 fprintf_unfiltered (gdb_stdlog,
b732d07d 2255 "gdbarch_update: info.tdep_info 0x%lx\n",
104c1213
JM
2256 (long) info.tdep_info);
2257 }
2258
b732d07d
AC
2259 /* Find the target that knows about this architecture. */
2260 for (rego = gdbarch_registry;
2261 rego != NULL;
2262 rego = rego->next)
2263 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2264 break;
2265 if (rego == NULL)
2266 {
2267 if (gdbarch_debug)
2268 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: No matching architecture\\n");
2269 return 0;
2270 }
2271
40af4b0c
AC
2272 /* Swap the data belonging to the old target out setting the
2273 installed data to zero. This stops the ->init() function trying
2274 to refer to the previous architecture's global data structures. */
2275 swapout_gdbarch_swap (current_gdbarch);
2276 clear_gdbarch_swap (current_gdbarch);
2277
2278 /* Save the previously selected architecture, setting the global to
2279 NULL. This stops ->init() trying to use the previous
2280 architecture's configuration. The previous architecture may not
2281 even be of the same architecture family. The most recent
2282 architecture of the same family is found at the head of the
2283 rego->arches list. */
2284 old_gdbarch = current_gdbarch;
2285 current_gdbarch = NULL;
2286
104c1213
JM
2287 /* Ask the target for a replacement architecture. */
2288 new_gdbarch = rego->init (info, rego->arches);
2289
40af4b0c
AC
2290 /* Did the target like it? No. Reject the change and revert to the
2291 old architecture. */
104c1213
JM
2292 if (new_gdbarch == NULL)
2293 {
2294 if (gdbarch_debug)
3d9a5942 2295 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Target rejected architecture\\n");
40af4b0c
AC
2296 swapin_gdbarch_swap (old_gdbarch);
2297 current_gdbarch = old_gdbarch;
104c1213
JM
2298 return 0;
2299 }
2300
40af4b0c
AC
2301 /* Did the architecture change? No. Oops, put the old architecture
2302 back. */
2303 if (old_gdbarch == new_gdbarch)
104c1213
JM
2304 {
2305 if (gdbarch_debug)
3d9a5942 2306 fprintf_unfiltered (gdb_stdlog, "gdbarch_update: Architecture 0x%08lx (%s) unchanged\\n",
104c1213
JM
2307 (long) new_gdbarch,
2308 new_gdbarch->bfd_arch_info->printable_name);
40af4b0c
AC
2309 swapin_gdbarch_swap (old_gdbarch);
2310 current_gdbarch = old_gdbarch;
104c1213
JM
2311 return 1;
2312 }
2313
0f79675b
AC
2314 /* Is this a pre-existing architecture? Yes. Move it to the front
2315 of the list of architectures (keeping the list sorted Most
2316 Recently Used) and then copy it in. */
2317 {
2318 struct gdbarch_list **list;
2319 for (list = &rego->arches;
2320 (*list) != NULL;
2321 list = &(*list)->next)
2322 {
2323 if ((*list)->gdbarch == new_gdbarch)
2324 {
2325 struct gdbarch_list *this;
2326 if (gdbarch_debug)
2327 fprintf_unfiltered (gdb_stdlog,
2328 "gdbarch_update: Previous architecture 0x%08lx (%s) selected\n",
2329 (long) new_gdbarch,
2330 new_gdbarch->bfd_arch_info->printable_name);
2331 /* Unlink this. */
2332 this = (*list);
2333 (*list) = this->next;
2334 /* Insert in the front. */
2335 this->next = rego->arches;
2336 rego->arches = this;
2337 /* Copy the new architecture in. */
2338 current_gdbarch = new_gdbarch;
2339 swapin_gdbarch_swap (new_gdbarch);
2340 architecture_changed_event ();
2341 return 1;
2342 }
2343 }
2344 }
2345
2346 /* Prepend this new architecture to the architecture list (keep the
2347 list sorted Most Recently Used). */
2348 {
2349 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2350 this->next = rego->arches;
2351 this->gdbarch = new_gdbarch;
2352 rego->arches = this;
2353 }
104c1213 2354
76860b5f 2355 /* Switch to this new architecture marking it initialized. */
104c1213 2356 current_gdbarch = new_gdbarch;
76860b5f 2357 current_gdbarch->initialized_p = 1;
104c1213
JM
2358 if (gdbarch_debug)
2359 {
2360 fprintf_unfiltered (gdb_stdlog,
3d9a5942 2361 "gdbarch_update: New architecture 0x%08lx (%s) selected\\n",
104c1213
JM
2362 (long) new_gdbarch,
2363 new_gdbarch->bfd_arch_info->printable_name);
104c1213
JM
2364 }
2365
4b9b3959
AC
2366 /* Check that the newly installed architecture is valid. Plug in
2367 any post init values. */
2368 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213
JM
2369 verify_gdbarch (new_gdbarch);
2370
cf17c188
AC
2371 /* Initialize the per-architecture memory (swap) areas.
2372 CURRENT_GDBARCH must be update before these modules are
2373 called. */
2374 init_gdbarch_swap (new_gdbarch);
2375
76860b5f 2376 /* Initialize the per-architecture data. CURRENT_GDBARCH
cf17c188 2377 must be updated before these modules are called. */
67c2c32c
KS
2378 architecture_changed_event ();
2379
4b9b3959
AC
2380 if (gdbarch_debug)
2381 gdbarch_dump (current_gdbarch, gdb_stdlog);
2382
104c1213
JM
2383 return 1;
2384}
2385
2386
104c1213
JM
2387/* Disassembler */
2388
2389/* Pointer to the target-dependent disassembly function. */
d7a27068 2390int (*deprecated_tm_print_insn) (bfd_vma, disassemble_info *);
104c1213 2391
104c1213 2392extern void _initialize_gdbarch (void);
b4a20239 2393
104c1213 2394void
34620563 2395_initialize_gdbarch (void)
104c1213 2396{
59233f88
AC
2397 struct cmd_list_element *c;
2398
59233f88 2399 add_show_from_set (add_set_cmd ("arch",
104c1213
JM
2400 class_maintenance,
2401 var_zinteger,
2402 (char *)&gdbarch_debug,
3d9a5942 2403 "Set architecture debugging.\\n\\
59233f88
AC
2404When non-zero, architecture debugging is enabled.", &setdebuglist),
2405 &showdebuglist);
2406 c = add_set_cmd ("archdebug",
2407 class_maintenance,
2408 var_zinteger,
2409 (char *)&gdbarch_debug,
3d9a5942 2410 "Set architecture debugging.\\n\\
59233f88
AC
2411When non-zero, architecture debugging is enabled.", &setlist);
2412
2413 deprecate_cmd (c, "set debug arch");
2414 deprecate_cmd (add_show_from_set (c, &showlist), "show debug arch");
104c1213
JM
2415}
2416EOF
2417
2418# close things off
2419exec 1>&2
2420#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2421compare_new gdbarch.c
This page took 0.442592 seconds and 4 git commands to generate.