* arm-tdep.c (arm_find_mapping_symbol): New function, from
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
9b254dd1 5# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4c38e0a4 6# 2008, 2009, 2010 Free Software Foundation, Inc.
104c1213
JM
7#
8# This file is part of GDB.
9#
10# This program is free software; you can redistribute it and/or modify
11# it under the terms of the GNU General Public License as published by
50efebf8 12# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
13# (at your option) any later version.
14#
15# This program is distributed in the hope that it will be useful,
16# but WITHOUT ANY WARRANTY; without even the implied warranty of
17# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18# GNU General Public License for more details.
19#
20# You should have received a copy of the GNU General Public License
50efebf8 21# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 22
6e2c7fa1 23# Make certain that the script is not running in an internationalized
d8864532
AC
24# environment.
25LANG=c ; export LANG
1bd316f0 26LC_ALL=c ; export LC_ALL
d8864532
AC
27
28
59233f88
AC
29compare_new ()
30{
31 file=$1
66b43ecb 32 if test ! -r ${file}
59233f88
AC
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 35 elif diff -u ${file} new-${file}
59233f88
AC
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41}
42
43
44# Format of the input table
97030eea 45read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
46
47do_read ()
48{
34620563
AC
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 57 then
34620563
AC
58 continue
59 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 60 then
34620563
AC
61 comment="${comment}
62${line}"
f0d4cc9e 63 else
3d9a5942
AC
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
34620563
AC
71 eval read ${read} <<EOF
72${line}
73EOF
74 IFS="${OFS}"
75
283354d8
AC
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
3d9a5942
AC
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
a72293e2
AC
93 case "${class}" in
94 m ) staticdefault="${predefault}" ;;
95 M ) staticdefault="0" ;;
96 * ) test "${staticdefault}" || staticdefault=0 ;;
97 esac
06b25f14 98
ae45cd16
AC
99 case "${class}" in
100 F | V | M )
101 case "${invalid_p}" in
34620563 102 "" )
f7968451 103 if test -n "${predefault}"
34620563
AC
104 then
105 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 106 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
107 elif class_is_variable_p
108 then
109 predicate="gdbarch->${function} != 0"
110 elif class_is_function_p
111 then
112 predicate="gdbarch->${function} != NULL"
34620563
AC
113 fi
114 ;;
ae45cd16 115 * )
1e9f55d0 116 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
117 kill $$
118 exit 1
119 ;;
120 esac
34620563
AC
121 esac
122
123 # PREDEFAULT is a valid fallback definition of MEMBER when
124 # multi-arch is not enabled. This ensures that the
125 # default value, when multi-arch is the same as the
126 # default value when not multi-arch. POSTDEFAULT is
127 # always a valid definition of MEMBER as this again
128 # ensures consistency.
129
72e74a21 130 if [ -n "${postdefault}" ]
34620563
AC
131 then
132 fallbackdefault="${postdefault}"
72e74a21 133 elif [ -n "${predefault}" ]
34620563
AC
134 then
135 fallbackdefault="${predefault}"
136 else
73d3c16e 137 fallbackdefault="0"
34620563
AC
138 fi
139
140 #NOT YET: See gdbarch.log for basic verification of
141 # database
142
143 break
f0d4cc9e 144 fi
34620563 145 done
72e74a21 146 if [ -n "${class}" ]
34620563
AC
147 then
148 true
c0e8c252
AC
149 else
150 false
151 fi
152}
153
104c1213 154
f0d4cc9e
AC
155fallback_default_p ()
156{
72e74a21
JB
157 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
158 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
159}
160
161class_is_variable_p ()
162{
4a5c6a1d
AC
163 case "${class}" in
164 *v* | *V* ) true ;;
165 * ) false ;;
166 esac
f0d4cc9e
AC
167}
168
169class_is_function_p ()
170{
4a5c6a1d
AC
171 case "${class}" in
172 *f* | *F* | *m* | *M* ) true ;;
173 * ) false ;;
174 esac
175}
176
177class_is_multiarch_p ()
178{
179 case "${class}" in
180 *m* | *M* ) true ;;
181 * ) false ;;
182 esac
f0d4cc9e
AC
183}
184
185class_is_predicate_p ()
186{
4a5c6a1d
AC
187 case "${class}" in
188 *F* | *V* | *M* ) true ;;
189 * ) false ;;
190 esac
f0d4cc9e
AC
191}
192
193class_is_info_p ()
194{
4a5c6a1d
AC
195 case "${class}" in
196 *i* ) true ;;
197 * ) false ;;
198 esac
f0d4cc9e
AC
199}
200
201
cff3e48b
JM
202# dump out/verify the doco
203for field in ${read}
204do
205 case ${field} in
206
207 class ) : ;;
c4093a6a 208
c0e8c252
AC
209 # # -> line disable
210 # f -> function
211 # hiding a function
2ada493a
AC
212 # F -> function + predicate
213 # hiding a function + predicate to test function validity
c0e8c252
AC
214 # v -> variable
215 # hiding a variable
2ada493a
AC
216 # V -> variable + predicate
217 # hiding a variable + predicate to test variables validity
c0e8c252
AC
218 # i -> set from info
219 # hiding something from the ``struct info'' object
4a5c6a1d
AC
220 # m -> multi-arch function
221 # hiding a multi-arch function (parameterised with the architecture)
222 # M -> multi-arch function + predicate
223 # hiding a multi-arch function + predicate to test function validity
cff3e48b 224
cff3e48b
JM
225 returntype ) : ;;
226
c0e8c252 227 # For functions, the return type; for variables, the data type
cff3e48b
JM
228
229 function ) : ;;
230
c0e8c252
AC
231 # For functions, the member function name; for variables, the
232 # variable name. Member function names are always prefixed with
233 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
234
235 formal ) : ;;
236
c0e8c252
AC
237 # The formal argument list. It is assumed that the formal
238 # argument list includes the actual name of each list element.
239 # A function with no arguments shall have ``void'' as the
240 # formal argument list.
cff3e48b
JM
241
242 actual ) : ;;
243
c0e8c252
AC
244 # The list of actual arguments. The arguments specified shall
245 # match the FORMAL list given above. Functions with out
246 # arguments leave this blank.
cff3e48b 247
0b8f9e4d 248 staticdefault ) : ;;
c0e8c252
AC
249
250 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
251 # created. STATICDEFAULT is the value to insert into that
252 # static gdbarch object. Since this a static object only
253 # simple expressions can be used.
cff3e48b 254
0b8f9e4d 255 # If STATICDEFAULT is empty, zero is used.
c0e8c252 256
0b8f9e4d 257 predefault ) : ;;
cff3e48b 258
10312cc4
AC
259 # An initial value to assign to MEMBER of the freshly
260 # malloc()ed gdbarch object. After initialization, the
261 # freshly malloc()ed object is passed to the target
262 # architecture code for further updates.
cff3e48b 263
0b8f9e4d
AC
264 # If PREDEFAULT is empty, zero is used.
265
10312cc4
AC
266 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
267 # INVALID_P are specified, PREDEFAULT will be used as the
268 # default for the non- multi-arch target.
269
270 # A zero PREDEFAULT function will force the fallback to call
271 # internal_error().
f0d4cc9e
AC
272
273 # Variable declarations can refer to ``gdbarch'' which will
274 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
275
276 postdefault ) : ;;
277
278 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
279 # the target architecture code fail to change the PREDEFAULT
280 # value.
0b8f9e4d
AC
281
282 # If POSTDEFAULT is empty, no post update is performed.
283
284 # If both INVALID_P and POSTDEFAULT are non-empty then
285 # INVALID_P will be used to determine if MEMBER should be
286 # changed to POSTDEFAULT.
287
10312cc4
AC
288 # If a non-empty POSTDEFAULT and a zero INVALID_P are
289 # specified, POSTDEFAULT will be used as the default for the
290 # non- multi-arch target (regardless of the value of
291 # PREDEFAULT).
292
f0d4cc9e
AC
293 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
294
be7811ad 295 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
296 # will contain the current architecture. Care should be
297 # taken.
cff3e48b 298
c4093a6a 299 invalid_p ) : ;;
cff3e48b 300
0b8f9e4d 301 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 302 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
303 # initialize MEMBER or the initialized the member is invalid.
304 # If POSTDEFAULT is non-empty then MEMBER will be updated to
305 # that value. If POSTDEFAULT is empty then internal_error()
306 # is called.
307
308 # If INVALID_P is empty, a check that MEMBER is no longer
309 # equal to PREDEFAULT is used.
310
f0d4cc9e
AC
311 # The expression ``0'' disables the INVALID_P check making
312 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
313
314 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 315
cff3e48b
JM
316 print ) : ;;
317
2f9b146e
AC
318 # An optional expression that convers MEMBER to a value
319 # suitable for formatting using %s.
c0e8c252 320
0b1553bc
UW
321 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
322 # or plongest (anything else) is used.
cff3e48b 323
283354d8 324 garbage_at_eol ) : ;;
0b8f9e4d 325
283354d8 326 # Catches stray fields.
cff3e48b 327
50248794
AC
328 *)
329 echo "Bad field ${field}"
330 exit 1;;
cff3e48b
JM
331 esac
332done
333
cff3e48b 334
104c1213
JM
335function_list ()
336{
cff3e48b 337 # See below (DOCO) for description of each field
34620563 338 cat <<EOF
be7811ad 339i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 340#
97030eea 341i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 342i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 343#
97030eea 344i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 345#
30737ed9 346i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
347
348# The bit byte-order has to do just with numbering of bits in debugging symbols
349# and such. Conceptually, it's quite separate from byte/word byte order.
350v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
351
66b43ecb
AC
352# Number of bits in a char or unsigned char for the target machine.
353# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 354# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
355#
356# Number of bits in a short or unsigned short for the target machine.
97030eea 357v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 358# Number of bits in an int or unsigned int for the target machine.
97030eea 359v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in a long or unsigned long for the target machine.
97030eea 361v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
362# Number of bits in a long long or unsigned long long for the target
363# machine.
be7811ad 364v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94
AC
365
366# The ABI default bit-size and format for "float", "double", and "long
367# double". These bit/format pairs should eventually be combined into
368# a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
369# Each format describes both the big and little endian layouts (if
370# useful).
456fcf94 371
97030eea 372v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 373v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 374v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 375v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 376v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 378
52204a0b
DT
379# For most targets, a pointer on the target and its representation as an
380# address in GDB have the same size and "look the same". For such a
17a912b6 381# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
382# / addr_bit will be set from it.
383#
17a912b6 384# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
76e71323
UW
385# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
386# as well.
52204a0b
DT
387#
388# ptr_bit is the size of a pointer on the target
be7811ad 389v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 390# addr_bit is the size of a target address as represented in gdb
be7811ad 391v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 392#
4e409299 393# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 394v:int:char_signed:::1:-1:1
4e409299 395#
97030eea
UW
396F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
397F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
398# Function for getting target's idea of a frame pointer. FIXME: GDB's
399# whole scheme for dealing with "frames" and "frame pointers" needs a
400# serious shakedown.
a54fba4c 401m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 402#
97030eea
UW
403M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
404M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 405#
97030eea 406v:int:num_regs:::0:-1
0aba1244
EZ
407# This macro gives the number of pseudo-registers that live in the
408# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
409# These pseudo-registers may be aliases for other registers,
410# combinations of other registers, or they may be computed by GDB.
97030eea 411v:int:num_pseudo_regs:::0:0::0
c2169756
AC
412
413# GDB's standard (or well known) register numbers. These can map onto
414# a real register or a pseudo (computed) register or not be defined at
1200cd6e 415# all (-1).
3e8c568d 416# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
417v:int:sp_regnum:::-1:-1::0
418v:int:pc_regnum:::-1:-1::0
419v:int:ps_regnum:::-1:-1::0
420v:int:fp0_regnum:::0:-1::0
88c72b7d 421# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 422m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 423# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 424m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 425# Convert from an sdb register number to an internal gdb register number.
d3f73121 426m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 427# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 428m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 429m:const char *:register_name:int regnr:regnr::0
9c04cab7 430
7b9ee6a8
DJ
431# Return the type of a register specified by the architecture. Only
432# the register cache should call this function directly; others should
433# use "register_type".
97030eea 434M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 435
f3be58bc 436# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
437M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
438# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 439# deprecated_fp_regnum.
97030eea 440v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 441
a86c5fc9 442# See gdbint.texinfo. See infcall.c.
97030eea
UW
443M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
444v:int:call_dummy_location::::AT_ENTRY_POINT::0
445M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 446
97030eea
UW
447m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
448M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
449M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
450# MAP a GDB RAW register number onto a simulator register number. See
451# also include/...-sim.h.
e7faf938 452m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
453m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
454m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 455# setjmp/longjmp support.
97030eea 456F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 457#
97030eea 458v:int:believe_pcc_promotion:::::::
104c1213 459#
0abe36f5 460m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
97030eea
UW
461f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
462f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
463# Construct a value representing the contents of register REGNUM in
464# frame FRAME, interpreted as type TYPE. The routine needs to
465# allocate and return a struct value with all value attributes
466# (but not the value contents) filled in.
97030eea 467f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 468#
9898f801
UW
469m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
470m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 471M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 472
ea42b34a
JB
473# Return the return-value convention that will be used by FUNCTYPE
474# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
475# case the return convention is computed based only on VALTYPE.
476#
477# If READBUF is not NULL, extract the return value and save it in this buffer.
478#
479# If WRITEBUF is not NULL, it contains a return value which will be
480# stored into the appropriate register. This can be used when we want
481# to force the value returned by a function (see the "return" command
482# for instance).
c055b101 483M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
92ad9cd9 484
6093d2eb 485m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 486M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 487f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 488m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
489# Return the adjusted address and kind to use for Z0/Z1 packets.
490# KIND is usually the memory length of the breakpoint, but may have a
491# different target-specific meaning.
492m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr::default_remote_breakpoint_from_pc:
97030eea 493M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
494m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
495m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 496v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
497
498# A function can be addressed by either it's "pointer" (possibly a
499# descriptor address) or "entry point" (first executable instruction).
500# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 501# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
502# a simplified subset of that functionality - the function's address
503# corresponds to the "function pointer" and the function's start
504# corresponds to the "function entry point" - and hence is redundant.
505
97030eea 506v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 507
123dc839
DJ
508# Return the remote protocol register number associated with this
509# register. Normally the identity mapping.
97030eea 510m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 511
b2756930 512# Fetch the target specific address used to represent a load module.
97030eea 513F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 514#
97030eea
UW
515v:CORE_ADDR:frame_args_skip:::0:::0
516M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
517M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
518# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
519# frame-base. Enable frame-base before frame-unwind.
97030eea 520F:int:frame_num_args:struct frame_info *frame:frame
104c1213 521#
97030eea
UW
522M:CORE_ADDR:frame_align:CORE_ADDR address:address
523m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
524v:int:frame_red_zone_size
f0d4cc9e 525#
97030eea 526m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
527# On some machines there are bits in addresses which are not really
528# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 529# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
530# we get a "real" address such as one would find in a symbol table.
531# This is used only for addresses of instructions, and even then I'm
532# not sure it's used in all contexts. It exists to deal with there
533# being a few stray bits in the PC which would mislead us, not as some
534# sort of generic thing to handle alignment or segmentation (it's
535# possible it should be in TARGET_READ_PC instead).
24568a2c 536m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 537# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 538# gdbarch_addr_bits_remove.
24568a2c 539m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
540
541# FIXME/cagney/2001-01-18: This should be split in two. A target method that
542# indicates if the target needs software single step. An ISA method to
543# implement it.
544#
545# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
546# breakpoints using the breakpoint system instead of blatting memory directly
547# (as with rs6000).
64c4637f 548#
e6590a1b
UW
549# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
550# target can single step. If not, then implement single step using breakpoints.
64c4637f 551#
e6590a1b
UW
552# A return value of 1 means that the software_single_step breakpoints
553# were inserted; 0 means they were not.
97030eea 554F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 555
3352ef37
AC
556# Return non-zero if the processor is executing a delay slot and a
557# further single-step is needed before the instruction finishes.
97030eea 558M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 559# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 560# disassembler. Perhaps objdump can handle it?
97030eea
UW
561f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
562f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
563
564
cfd8ab24 565# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
566# evaluates non-zero, this is the address where the debugger will place
567# a step-resume breakpoint to get us past the dynamic linker.
97030eea 568m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 569# Some systems also have trampoline code for returning from shared libs.
e17a4113 570m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 571
c12260ac
CV
572# A target might have problems with watchpoints as soon as the stack
573# frame of the current function has been destroyed. This mostly happens
574# as the first action in a funtion's epilogue. in_function_epilogue_p()
575# is defined to return a non-zero value if either the given addr is one
576# instruction after the stack destroying instruction up to the trailing
577# return instruction or if we can figure out that the stack frame has
578# already been invalidated regardless of the value of addr. Targets
579# which don't suffer from that problem could just let this functionality
580# untouched.
97030eea 581m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
582f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
583f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
584v:int:cannot_step_breakpoint:::0:0::0
585v:int:have_nonsteppable_watchpoint:::0:0::0
586F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
587M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
588M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 589# Is a register in a group
97030eea 590m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 591# Fetch the pointer to the ith function argument.
97030eea 592F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
593
594# Return the appropriate register set for a core file section with
595# name SECT_NAME and size SECT_SIZE.
97030eea 596M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 597
959b8724
PA
598# When creating core dumps, some systems encode the PID in addition
599# to the LWP id in core file register section names. In those cases, the
600# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
601# is set to true for such architectures; false if "XXX" represents an LWP
602# or thread id with no special encoding.
603v:int:core_reg_section_encodes_pid:::0:0::0
604
17ea7499
CES
605# Supported register notes in a core file.
606v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
607
de584861
PA
608# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
609# core file into buffer READBUF with length LEN.
97030eea 610M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 611
28439f5e
PA
612# How the core_stratum layer converts a PTID from a core file to a
613# string.
614M:char *:core_pid_to_str:ptid_t ptid:ptid
615
a78c2d62
UW
616# BFD target to use when generating a core file.
617V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
618
0d5de010
DJ
619# If the elements of C++ vtables are in-place function descriptors rather
620# than normal function pointers (which may point to code or a descriptor),
621# set this to one.
97030eea 622v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
623
624# Set if the least significant bit of the delta is used instead of the least
625# significant bit of the pfn for pointers to virtual member functions.
97030eea 626v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
627
628# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 629F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 630
237fc4c9
PA
631# The maximum length of an instruction on this architecture.
632V:ULONGEST:max_insn_length:::0:0
633
634# Copy the instruction at FROM to TO, and make any adjustments
635# necessary to single-step it at that address.
636#
637# REGS holds the state the thread's registers will have before
638# executing the copied instruction; the PC in REGS will refer to FROM,
639# not the copy at TO. The caller should update it to point at TO later.
640#
641# Return a pointer to data of the architecture's choice to be passed
642# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
643# the instruction's effects have been completely simulated, with the
644# resulting state written back to REGS.
645#
646# For a general explanation of displaced stepping and how GDB uses it,
647# see the comments in infrun.c.
648#
649# The TO area is only guaranteed to have space for
650# gdbarch_max_insn_length (arch) bytes, so this function must not
651# write more bytes than that to that area.
652#
653# If you do not provide this function, GDB assumes that the
654# architecture does not support displaced stepping.
655#
656# If your architecture doesn't need to adjust instructions before
657# single-stepping them, consider using simple_displaced_step_copy_insn
658# here.
659M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
660
99e40580
UW
661# Return true if GDB should use hardware single-stepping to execute
662# the displaced instruction identified by CLOSURE. If false,
663# GDB will simply restart execution at the displaced instruction
664# location, and it is up to the target to ensure GDB will receive
665# control again (e.g. by placing a software breakpoint instruction
666# into the displaced instruction buffer).
667#
668# The default implementation returns false on all targets that
669# provide a gdbarch_software_single_step routine, and true otherwise.
670m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
671
237fc4c9
PA
672# Fix up the state resulting from successfully single-stepping a
673# displaced instruction, to give the result we would have gotten from
674# stepping the instruction in its original location.
675#
676# REGS is the register state resulting from single-stepping the
677# displaced instruction.
678#
679# CLOSURE is the result from the matching call to
680# gdbarch_displaced_step_copy_insn.
681#
682# If you provide gdbarch_displaced_step_copy_insn.but not this
683# function, then GDB assumes that no fixup is needed after
684# single-stepping the instruction.
685#
686# For a general explanation of displaced stepping and how GDB uses it,
687# see the comments in infrun.c.
688M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
689
690# Free a closure returned by gdbarch_displaced_step_copy_insn.
691#
692# If you provide gdbarch_displaced_step_copy_insn, you must provide
693# this function as well.
694#
695# If your architecture uses closures that don't need to be freed, then
696# you can use simple_displaced_step_free_closure here.
697#
698# For a general explanation of displaced stepping and how GDB uses it,
699# see the comments in infrun.c.
700m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
701
702# Return the address of an appropriate place to put displaced
703# instructions while we step over them. There need only be one such
704# place, since we're only stepping one thread over a breakpoint at a
705# time.
706#
707# For a general explanation of displaced stepping and how GDB uses it,
708# see the comments in infrun.c.
709m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
710
1c772458 711# Refresh overlay mapped state for section OSECT.
97030eea 712F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 713
97030eea 714M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
715
716# Handle special encoding of static variables in stabs debug info.
97030eea 717F:char *:static_transform_name:char *name:name
203c3895 718# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 719v:int:sofun_address_maybe_missing:::0:0::0
1cded358 720
0508c3ec
HZ
721# Parse the instruction at ADDR storing in the record execution log
722# the registers REGCACHE and memory ranges that will be affected when
723# the instruction executes, along with their current values.
724# Return -1 if something goes wrong, 0 otherwise.
725M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
726
3846b520
HZ
727# Save process state after a signal.
728# Return -1 if something goes wrong, 0 otherwise.
729M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
730
1cded358
AR
731# Signal translation: translate inferior's signal (host's) number into
732# GDB's representation.
733m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
734# Signal translation: translate GDB's signal number into inferior's host
735# signal number.
736m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
60c5725c 737
4aa995e1
PA
738# Extra signal info inspection.
739#
740# Return a type suitable to inspect extra signal information.
741M:struct type *:get_siginfo_type:void:
742
60c5725c
DJ
743# Record architecture-specific information from the symbol table.
744M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 745
a96d9b2e
SDJ
746# Function for the 'catch syscall' feature.
747
748# Get architecture-specific system calls information from registers.
749M:LONGEST:get_syscall_number:ptid_t ptid:ptid
750
50c71eaf
PA
751# True if the list of shared libraries is one and only for all
752# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
753# This usually means that all processes, although may or may not share
754# an address space, will see the same set of symbols at the same
755# addresses.
50c71eaf 756v:int:has_global_solist:::0:0::0
2567c7d9
PA
757
758# On some targets, even though each inferior has its own private
759# address space, the debug interface takes care of making breakpoints
760# visible to all address spaces automatically. For such cases,
761# this property should be set to true.
762v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
763
764# True if inferiors share an address space (e.g., uClinux).
765m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
766
767# True if a fast tracepoint can be set at an address.
768m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
104c1213 769EOF
104c1213
JM
770}
771
0b8f9e4d
AC
772#
773# The .log file
774#
775exec > new-gdbarch.log
34620563 776function_list | while do_read
0b8f9e4d
AC
777do
778 cat <<EOF
2f9b146e 779${class} ${returntype} ${function} ($formal)
104c1213 780EOF
3d9a5942
AC
781 for r in ${read}
782 do
783 eval echo \"\ \ \ \ ${r}=\${${r}}\"
784 done
f0d4cc9e 785 if class_is_predicate_p && fallback_default_p
0b8f9e4d 786 then
66d659b1 787 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
788 kill $$
789 exit 1
790 fi
72e74a21 791 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
792 then
793 echo "Error: postdefault is useless when invalid_p=0" 1>&2
794 kill $$
795 exit 1
796 fi
a72293e2
AC
797 if class_is_multiarch_p
798 then
799 if class_is_predicate_p ; then :
800 elif test "x${predefault}" = "x"
801 then
2f9b146e 802 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
803 kill $$
804 exit 1
805 fi
806 fi
3d9a5942 807 echo ""
0b8f9e4d
AC
808done
809
810exec 1>&2
811compare_new gdbarch.log
812
104c1213
JM
813
814copyright ()
815{
816cat <<EOF
59233f88
AC
817/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
818
104c1213 819/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 820
f801e1e0
MS
821 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
822 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
823
824 This file is part of GDB.
825
826 This program is free software; you can redistribute it and/or modify
827 it under the terms of the GNU General Public License as published by
50efebf8 828 the Free Software Foundation; either version 3 of the License, or
104c1213 829 (at your option) any later version.
50efebf8 830
104c1213
JM
831 This program is distributed in the hope that it will be useful,
832 but WITHOUT ANY WARRANTY; without even the implied warranty of
833 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
834 GNU General Public License for more details.
50efebf8 835
104c1213 836 You should have received a copy of the GNU General Public License
50efebf8 837 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 838
104c1213
JM
839/* This file was created with the aid of \`\`gdbarch.sh''.
840
52204a0b 841 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
842 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
843 against the existing \`\`gdbarch.[hc]''. Any differences found
844 being reported.
845
846 If editing this file, please also run gdbarch.sh and merge any
52204a0b 847 changes into that script. Conversely, when making sweeping changes
104c1213
JM
848 to this file, modifying gdbarch.sh and using its output may prove
849 easier. */
850
851EOF
852}
853
854#
855# The .h file
856#
857
858exec > new-gdbarch.h
859copyright
860cat <<EOF
861#ifndef GDBARCH_H
862#define GDBARCH_H
863
da3331ec
AC
864struct floatformat;
865struct ui_file;
104c1213
JM
866struct frame_info;
867struct value;
b6af0555 868struct objfile;
1c772458 869struct obj_section;
a2cf933a 870struct minimal_symbol;
049ee0e4 871struct regcache;
b59ff9d5 872struct reggroup;
6ce6d90f 873struct regset;
a89aa300 874struct disassemble_info;
e2d0e7eb 875struct target_ops;
030f20e1 876struct obstack;
8181d85f 877struct bp_target_info;
424163ea 878struct target_desc;
237fc4c9 879struct displaced_step_closure;
17ea7499 880struct core_regset_section;
a96d9b2e 881struct syscall;
104c1213 882
9e2ace22
JB
883/* The architecture associated with the connection to the target.
884
885 The architecture vector provides some information that is really
886 a property of the target: The layout of certain packets, for instance;
887 or the solib_ops vector. Etc. To differentiate architecture accesses
888 to per-target properties from per-thread/per-frame/per-objfile properties,
889 accesses to per-target properties should be made through target_gdbarch.
890
891 Eventually, when support for multiple targets is implemented in
892 GDB, this global should be made target-specific. */
1cf3db46 893extern struct gdbarch *target_gdbarch;
104c1213
JM
894EOF
895
896# function typedef's
3d9a5942
AC
897printf "\n"
898printf "\n"
899printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 900function_list | while do_read
104c1213 901do
2ada493a
AC
902 if class_is_info_p
903 then
3d9a5942
AC
904 printf "\n"
905 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
906 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 907 fi
104c1213
JM
908done
909
910# function typedef's
3d9a5942
AC
911printf "\n"
912printf "\n"
913printf "/* The following are initialized by the target dependent code. */\n"
34620563 914function_list | while do_read
104c1213 915do
72e74a21 916 if [ -n "${comment}" ]
34620563
AC
917 then
918 echo "${comment}" | sed \
919 -e '2 s,#,/*,' \
920 -e '3,$ s,#, ,' \
921 -e '$ s,$, */,'
922 fi
412d5987
AC
923
924 if class_is_predicate_p
2ada493a 925 then
412d5987
AC
926 printf "\n"
927 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 928 fi
2ada493a
AC
929 if class_is_variable_p
930 then
3d9a5942
AC
931 printf "\n"
932 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
933 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
934 fi
935 if class_is_function_p
936 then
3d9a5942 937 printf "\n"
72e74a21 938 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
939 then
940 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
941 elif class_is_multiarch_p
942 then
943 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
944 else
945 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
946 fi
72e74a21 947 if [ "x${formal}" = "xvoid" ]
104c1213 948 then
3d9a5942 949 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 950 else
3d9a5942 951 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 952 fi
3d9a5942 953 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 954 fi
104c1213
JM
955done
956
957# close it off
958cat <<EOF
959
a96d9b2e
SDJ
960/* Definition for an unknown syscall, used basically in error-cases. */
961#define UNKNOWN_SYSCALL (-1)
962
104c1213
JM
963extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
964
965
966/* Mechanism for co-ordinating the selection of a specific
967 architecture.
968
969 GDB targets (*-tdep.c) can register an interest in a specific
970 architecture. Other GDB components can register a need to maintain
971 per-architecture data.
972
973 The mechanisms below ensures that there is only a loose connection
974 between the set-architecture command and the various GDB
0fa6923a 975 components. Each component can independently register their need
104c1213
JM
976 to maintain architecture specific data with gdbarch.
977
978 Pragmatics:
979
980 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
981 didn't scale.
982
983 The more traditional mega-struct containing architecture specific
984 data for all the various GDB components was also considered. Since
0fa6923a 985 GDB is built from a variable number of (fairly independent)
104c1213
JM
986 components it was determined that the global aproach was not
987 applicable. */
988
989
990/* Register a new architectural family with GDB.
991
992 Register support for the specified ARCHITECTURE with GDB. When
993 gdbarch determines that the specified architecture has been
994 selected, the corresponding INIT function is called.
995
996 --
997
998 The INIT function takes two parameters: INFO which contains the
999 information available to gdbarch about the (possibly new)
1000 architecture; ARCHES which is a list of the previously created
1001 \`\`struct gdbarch'' for this architecture.
1002
0f79675b 1003 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1004 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1005
1006 The ARCHES parameter is a linked list (sorted most recently used)
1007 of all the previously created architures for this architecture
1008 family. The (possibly NULL) ARCHES->gdbarch can used to access
1009 values from the previously selected architecture for this
59837fe0 1010 architecture family.
104c1213
JM
1011
1012 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1013 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1014 gdbarch'' from the ARCHES list - indicating that the new
1015 architecture is just a synonym for an earlier architecture (see
1016 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1017 - that describes the selected architecture (see gdbarch_alloc()).
1018
1019 The DUMP_TDEP function shall print out all target specific values.
1020 Care should be taken to ensure that the function works in both the
1021 multi-arch and non- multi-arch cases. */
104c1213
JM
1022
1023struct gdbarch_list
1024{
1025 struct gdbarch *gdbarch;
1026 struct gdbarch_list *next;
1027};
1028
1029struct gdbarch_info
1030{
104c1213
JM
1031 /* Use default: NULL (ZERO). */
1032 const struct bfd_arch_info *bfd_arch_info;
1033
428721aa 1034 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1035 int byte_order;
1036
9d4fde75
SS
1037 int byte_order_for_code;
1038
104c1213
JM
1039 /* Use default: NULL (ZERO). */
1040 bfd *abfd;
1041
1042 /* Use default: NULL (ZERO). */
1043 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1044
1045 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1046 enum gdb_osabi osabi;
424163ea
DJ
1047
1048 /* Use default: NULL (ZERO). */
1049 const struct target_desc *target_desc;
104c1213
JM
1050};
1051
1052typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1053typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1054
4b9b3959 1055/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1056extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1057
4b9b3959
AC
1058extern void gdbarch_register (enum bfd_architecture architecture,
1059 gdbarch_init_ftype *,
1060 gdbarch_dump_tdep_ftype *);
1061
104c1213 1062
b4a20239
AC
1063/* Return a freshly allocated, NULL terminated, array of the valid
1064 architecture names. Since architectures are registered during the
1065 _initialize phase this function only returns useful information
1066 once initialization has been completed. */
1067
1068extern const char **gdbarch_printable_names (void);
1069
1070
104c1213
JM
1071/* Helper function. Search the list of ARCHES for a GDBARCH that
1072 matches the information provided by INFO. */
1073
424163ea 1074extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1075
1076
1077/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1078 basic initialization using values obtained from the INFO and TDEP
104c1213
JM
1079 parameters. set_gdbarch_*() functions are called to complete the
1080 initialization of the object. */
1081
1082extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1083
1084
4b9b3959
AC
1085/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1086 It is assumed that the caller freeds the \`\`struct
1087 gdbarch_tdep''. */
1088
058f20d5
JB
1089extern void gdbarch_free (struct gdbarch *);
1090
1091
aebd7893
AC
1092/* Helper function. Allocate memory from the \`\`struct gdbarch''
1093 obstack. The memory is freed when the corresponding architecture
1094 is also freed. */
1095
1096extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1097#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1098#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1099
1100
b732d07d 1101/* Helper function. Force an update of the current architecture.
104c1213 1102
b732d07d
AC
1103 The actual architecture selected is determined by INFO, \`\`(gdb) set
1104 architecture'' et.al., the existing architecture and BFD's default
1105 architecture. INFO should be initialized to zero and then selected
1106 fields should be updated.
104c1213 1107
16f33e29
AC
1108 Returns non-zero if the update succeeds */
1109
1110extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1111
1112
ebdba546
AC
1113/* Helper function. Find an architecture matching info.
1114
1115 INFO should be initialized using gdbarch_info_init, relevant fields
1116 set, and then finished using gdbarch_info_fill.
1117
1118 Returns the corresponding architecture, or NULL if no matching
59837fe0 1119 architecture was found. */
ebdba546
AC
1120
1121extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1122
1123
59837fe0 1124/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1125
1126 FIXME: kettenis/20031124: Of the functions that follow, only
1127 gdbarch_from_bfd is supposed to survive. The others will
1128 dissappear since in the future GDB will (hopefully) be truly
1129 multi-arch. However, for now we're still stuck with the concept of
1130 a single active architecture. */
1131
59837fe0 1132extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1133
104c1213
JM
1134
1135/* Register per-architecture data-pointer.
1136
1137 Reserve space for a per-architecture data-pointer. An identifier
1138 for the reserved data-pointer is returned. That identifer should
95160752 1139 be saved in a local static variable.
104c1213 1140
fcc1c85c
AC
1141 Memory for the per-architecture data shall be allocated using
1142 gdbarch_obstack_zalloc. That memory will be deleted when the
1143 corresponding architecture object is deleted.
104c1213 1144
95160752
AC
1145 When a previously created architecture is re-selected, the
1146 per-architecture data-pointer for that previous architecture is
76860b5f 1147 restored. INIT() is not re-called.
104c1213
JM
1148
1149 Multiple registrarants for any architecture are allowed (and
1150 strongly encouraged). */
1151
95160752 1152struct gdbarch_data;
104c1213 1153
030f20e1
AC
1154typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1155extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1156typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1157extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1158extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1159 struct gdbarch_data *data,
1160 void *pointer);
104c1213 1161
451fbdda 1162extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1163
1164
0fa6923a 1165/* Set the dynamic target-system-dependent parameters (architecture,
104c1213
JM
1166 byte-order, ...) using information found in the BFD */
1167
1168extern void set_gdbarch_from_file (bfd *);
1169
1170
e514a9d6
JM
1171/* Initialize the current architecture to the "first" one we find on
1172 our list. */
1173
1174extern void initialize_current_architecture (void);
1175
104c1213
JM
1176/* gdbarch trace variable */
1177extern int gdbarch_debug;
1178
4b9b3959 1179extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1180
1181#endif
1182EOF
1183exec 1>&2
1184#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1185compare_new gdbarch.h
104c1213
JM
1186
1187
1188#
1189# C file
1190#
1191
1192exec > new-gdbarch.c
1193copyright
1194cat <<EOF
1195
1196#include "defs.h"
7355ddba 1197#include "arch-utils.h"
104c1213 1198
104c1213 1199#include "gdbcmd.h"
faaf634c 1200#include "inferior.h"
104c1213
JM
1201#include "symcat.h"
1202
f0d4cc9e 1203#include "floatformat.h"
104c1213 1204
95160752 1205#include "gdb_assert.h"
b66d6d2e 1206#include "gdb_string.h"
b59ff9d5 1207#include "reggroups.h"
4be87837 1208#include "osabi.h"
aebd7893 1209#include "gdb_obstack.h"
383f836e 1210#include "observer.h"
a3ecef73 1211#include "regcache.h"
95160752 1212
104c1213
JM
1213/* Static function declarations */
1214
b3cc3077 1215static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1216
104c1213
JM
1217/* Non-zero if we want to trace architecture code. */
1218
1219#ifndef GDBARCH_DEBUG
1220#define GDBARCH_DEBUG 0
1221#endif
1222int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1223static void
1224show_gdbarch_debug (struct ui_file *file, int from_tty,
1225 struct cmd_list_element *c, const char *value)
1226{
1227 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1228}
104c1213 1229
456fcf94 1230static const char *
8da61cc4 1231pformat (const struct floatformat **format)
456fcf94
AC
1232{
1233 if (format == NULL)
1234 return "(null)";
1235 else
8da61cc4
DJ
1236 /* Just print out one of them - this is only for diagnostics. */
1237 return format[0]->name;
456fcf94
AC
1238}
1239
104c1213
JM
1240EOF
1241
1242# gdbarch open the gdbarch object
3d9a5942
AC
1243printf "\n"
1244printf "/* Maintain the struct gdbarch object */\n"
1245printf "\n"
1246printf "struct gdbarch\n"
1247printf "{\n"
76860b5f
AC
1248printf " /* Has this architecture been fully initialized? */\n"
1249printf " int initialized_p;\n"
aebd7893
AC
1250printf "\n"
1251printf " /* An obstack bound to the lifetime of the architecture. */\n"
1252printf " struct obstack *obstack;\n"
1253printf "\n"
3d9a5942 1254printf " /* basic architectural information */\n"
34620563 1255function_list | while do_read
104c1213 1256do
2ada493a
AC
1257 if class_is_info_p
1258 then
3d9a5942 1259 printf " ${returntype} ${function};\n"
2ada493a 1260 fi
104c1213 1261done
3d9a5942
AC
1262printf "\n"
1263printf " /* target specific vector. */\n"
1264printf " struct gdbarch_tdep *tdep;\n"
1265printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1266printf "\n"
1267printf " /* per-architecture data-pointers */\n"
95160752 1268printf " unsigned nr_data;\n"
3d9a5942
AC
1269printf " void **data;\n"
1270printf "\n"
1271printf " /* per-architecture swap-regions */\n"
1272printf " struct gdbarch_swap *swap;\n"
1273printf "\n"
104c1213
JM
1274cat <<EOF
1275 /* Multi-arch values.
1276
1277 When extending this structure you must:
1278
1279 Add the field below.
1280
1281 Declare set/get functions and define the corresponding
1282 macro in gdbarch.h.
1283
1284 gdbarch_alloc(): If zero/NULL is not a suitable default,
1285 initialize the new field.
1286
1287 verify_gdbarch(): Confirm that the target updated the field
1288 correctly.
1289
7e73cedf 1290 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1291 field is dumped out
1292
c0e8c252 1293 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1294 variable (base values on the host's c-type system).
1295
1296 get_gdbarch(): Implement the set/get functions (probably using
1297 the macro's as shortcuts).
1298
1299 */
1300
1301EOF
34620563 1302function_list | while do_read
104c1213 1303do
2ada493a
AC
1304 if class_is_variable_p
1305 then
3d9a5942 1306 printf " ${returntype} ${function};\n"
2ada493a
AC
1307 elif class_is_function_p
1308 then
2f9b146e 1309 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1310 fi
104c1213 1311done
3d9a5942 1312printf "};\n"
104c1213
JM
1313
1314# A pre-initialized vector
3d9a5942
AC
1315printf "\n"
1316printf "\n"
104c1213
JM
1317cat <<EOF
1318/* The default architecture uses host values (for want of a better
1319 choice). */
1320EOF
3d9a5942
AC
1321printf "\n"
1322printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1323printf "\n"
1324printf "struct gdbarch startup_gdbarch =\n"
1325printf "{\n"
76860b5f 1326printf " 1, /* Always initialized. */\n"
aebd7893 1327printf " NULL, /* The obstack. */\n"
3d9a5942 1328printf " /* basic architecture information */\n"
4b9b3959 1329function_list | while do_read
104c1213 1330do
2ada493a
AC
1331 if class_is_info_p
1332 then
ec5cbaec 1333 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1334 fi
104c1213
JM
1335done
1336cat <<EOF
4b9b3959
AC
1337 /* target specific vector and its dump routine */
1338 NULL, NULL,
104c1213
JM
1339 /*per-architecture data-pointers and swap regions */
1340 0, NULL, NULL,
1341 /* Multi-arch values */
1342EOF
34620563 1343function_list | while do_read
104c1213 1344do
2ada493a
AC
1345 if class_is_function_p || class_is_variable_p
1346 then
ec5cbaec 1347 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1348 fi
104c1213
JM
1349done
1350cat <<EOF
c0e8c252 1351 /* startup_gdbarch() */
104c1213 1352};
4b9b3959 1353
1cf3db46 1354struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1355EOF
1356
1357# Create a new gdbarch struct
104c1213 1358cat <<EOF
7de2341d 1359
66b43ecb 1360/* Create a new \`\`struct gdbarch'' based on information provided by
104c1213
JM
1361 \`\`struct gdbarch_info''. */
1362EOF
3d9a5942 1363printf "\n"
104c1213
JM
1364cat <<EOF
1365struct gdbarch *
1366gdbarch_alloc (const struct gdbarch_info *info,
1367 struct gdbarch_tdep *tdep)
1368{
be7811ad 1369 struct gdbarch *gdbarch;
aebd7893
AC
1370
1371 /* Create an obstack for allocating all the per-architecture memory,
1372 then use that to allocate the architecture vector. */
1373 struct obstack *obstack = XMALLOC (struct obstack);
1374 obstack_init (obstack);
be7811ad
MD
1375 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1376 memset (gdbarch, 0, sizeof (*gdbarch));
1377 gdbarch->obstack = obstack;
85de9627 1378
be7811ad 1379 alloc_gdbarch_data (gdbarch);
85de9627 1380
be7811ad 1381 gdbarch->tdep = tdep;
104c1213 1382EOF
3d9a5942 1383printf "\n"
34620563 1384function_list | while do_read
104c1213 1385do
2ada493a
AC
1386 if class_is_info_p
1387 then
be7811ad 1388 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1389 fi
104c1213 1390done
3d9a5942
AC
1391printf "\n"
1392printf " /* Force the explicit initialization of these. */\n"
34620563 1393function_list | while do_read
104c1213 1394do
2ada493a
AC
1395 if class_is_function_p || class_is_variable_p
1396 then
72e74a21 1397 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1398 then
be7811ad 1399 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1400 fi
2ada493a 1401 fi
104c1213
JM
1402done
1403cat <<EOF
1404 /* gdbarch_alloc() */
1405
be7811ad 1406 return gdbarch;
104c1213
JM
1407}
1408EOF
1409
058f20d5 1410# Free a gdbarch struct.
3d9a5942
AC
1411printf "\n"
1412printf "\n"
058f20d5 1413cat <<EOF
aebd7893
AC
1414/* Allocate extra space using the per-architecture obstack. */
1415
1416void *
1417gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1418{
1419 void *data = obstack_alloc (arch->obstack, size);
1420 memset (data, 0, size);
1421 return data;
1422}
1423
1424
058f20d5
JB
1425/* Free a gdbarch struct. This should never happen in normal
1426 operation --- once you've created a gdbarch, you keep it around.
1427 However, if an architecture's init function encounters an error
1428 building the structure, it may need to clean up a partially
1429 constructed gdbarch. */
4b9b3959 1430
058f20d5
JB
1431void
1432gdbarch_free (struct gdbarch *arch)
1433{
aebd7893 1434 struct obstack *obstack;
95160752 1435 gdb_assert (arch != NULL);
aebd7893
AC
1436 gdb_assert (!arch->initialized_p);
1437 obstack = arch->obstack;
1438 obstack_free (obstack, 0); /* Includes the ARCH. */
1439 xfree (obstack);
058f20d5
JB
1440}
1441EOF
1442
104c1213 1443# verify a new architecture
104c1213 1444cat <<EOF
db446970
AC
1445
1446
1447/* Ensure that all values in a GDBARCH are reasonable. */
1448
104c1213 1449static void
be7811ad 1450verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1451{
f16a1923
AC
1452 struct ui_file *log;
1453 struct cleanup *cleanups;
759ef836 1454 long length;
f16a1923 1455 char *buf;
f16a1923
AC
1456 log = mem_fileopen ();
1457 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1458 /* fundamental */
be7811ad 1459 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1460 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1461 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1462 fprintf_unfiltered (log, "\n\tbfd_arch_info");
104c1213
JM
1463 /* Check those that need to be defined for the given multi-arch level. */
1464EOF
34620563 1465function_list | while do_read
104c1213 1466do
2ada493a
AC
1467 if class_is_function_p || class_is_variable_p
1468 then
72e74a21 1469 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1470 then
3d9a5942 1471 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1472 elif class_is_predicate_p
1473 then
3d9a5942 1474 printf " /* Skip verify of ${function}, has predicate */\n"
f0d4cc9e 1475 # FIXME: See do_read for potential simplification
72e74a21 1476 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1477 then
3d9a5942 1478 printf " if (${invalid_p})\n"
be7811ad 1479 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1480 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1481 then
be7811ad
MD
1482 printf " if (gdbarch->${function} == ${predefault})\n"
1483 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1484 elif [ -n "${postdefault}" ]
f0d4cc9e 1485 then
be7811ad
MD
1486 printf " if (gdbarch->${function} == 0)\n"
1487 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1488 elif [ -n "${invalid_p}" ]
104c1213 1489 then
4d60522e 1490 printf " if (${invalid_p})\n"
f16a1923 1491 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1492 elif [ -n "${predefault}" ]
104c1213 1493 then
be7811ad 1494 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1495 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1496 fi
2ada493a 1497 fi
104c1213
JM
1498done
1499cat <<EOF
759ef836 1500 buf = ui_file_xstrdup (log, &length);
f16a1923 1501 make_cleanup (xfree, buf);
759ef836 1502 if (length > 0)
f16a1923 1503 internal_error (__FILE__, __LINE__,
85c07804 1504 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1505 buf);
1506 do_cleanups (cleanups);
104c1213
JM
1507}
1508EOF
1509
1510# dump the structure
3d9a5942
AC
1511printf "\n"
1512printf "\n"
104c1213 1513cat <<EOF
4b9b3959
AC
1514/* Print out the details of the current architecture. */
1515
104c1213 1516void
be7811ad 1517gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1518{
b78960be 1519 const char *gdb_nm_file = "<not-defined>";
b78960be
AC
1520#if defined (GDB_NM_FILE)
1521 gdb_nm_file = GDB_NM_FILE;
1522#endif
1523 fprintf_unfiltered (file,
1524 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1525 gdb_nm_file);
104c1213 1526EOF
97030eea 1527function_list | sort -t: -k 3 | while do_read
104c1213 1528do
1e9f55d0
AC
1529 # First the predicate
1530 if class_is_predicate_p
1531 then
7996bcec 1532 printf " fprintf_unfiltered (file,\n"
48f7351b 1533 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1534 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1535 fi
48f7351b 1536 # Print the corresponding value.
283354d8 1537 if class_is_function_p
4b9b3959 1538 then
7996bcec 1539 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1540 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1541 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1542 else
48f7351b 1543 # It is a variable
2f9b146e
AC
1544 case "${print}:${returntype}" in
1545 :CORE_ADDR )
0b1553bc
UW
1546 fmt="%s"
1547 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1548 ;;
2f9b146e 1549 :* )
48f7351b 1550 fmt="%s"
623d3eb1 1551 print="plongest (gdbarch->${function})"
48f7351b
AC
1552 ;;
1553 * )
2f9b146e 1554 fmt="%s"
48f7351b
AC
1555 ;;
1556 esac
3d9a5942 1557 printf " fprintf_unfiltered (file,\n"
48f7351b 1558 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1559 printf " ${print});\n"
2ada493a 1560 fi
104c1213 1561done
381323f4 1562cat <<EOF
be7811ad
MD
1563 if (gdbarch->dump_tdep != NULL)
1564 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1565}
1566EOF
104c1213
JM
1567
1568
1569# GET/SET
3d9a5942 1570printf "\n"
104c1213
JM
1571cat <<EOF
1572struct gdbarch_tdep *
1573gdbarch_tdep (struct gdbarch *gdbarch)
1574{
1575 if (gdbarch_debug >= 2)
3d9a5942 1576 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1577 return gdbarch->tdep;
1578}
1579EOF
3d9a5942 1580printf "\n"
34620563 1581function_list | while do_read
104c1213 1582do
2ada493a
AC
1583 if class_is_predicate_p
1584 then
3d9a5942
AC
1585 printf "\n"
1586 printf "int\n"
1587 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1588 printf "{\n"
8de9bdc4 1589 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1590 printf " return ${predicate};\n"
3d9a5942 1591 printf "}\n"
2ada493a
AC
1592 fi
1593 if class_is_function_p
1594 then
3d9a5942
AC
1595 printf "\n"
1596 printf "${returntype}\n"
72e74a21 1597 if [ "x${formal}" = "xvoid" ]
104c1213 1598 then
3d9a5942 1599 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1600 else
3d9a5942 1601 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1602 fi
3d9a5942 1603 printf "{\n"
8de9bdc4 1604 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1605 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1606 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1607 then
1608 # Allow a call to a function with a predicate.
956ac328 1609 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1610 fi
3d9a5942
AC
1611 printf " if (gdbarch_debug >= 2)\n"
1612 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1613 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1614 then
1615 if class_is_multiarch_p
1616 then
1617 params="gdbarch"
1618 else
1619 params=""
1620 fi
1621 else
1622 if class_is_multiarch_p
1623 then
1624 params="gdbarch, ${actual}"
1625 else
1626 params="${actual}"
1627 fi
1628 fi
72e74a21 1629 if [ "x${returntype}" = "xvoid" ]
104c1213 1630 then
4a5c6a1d 1631 printf " gdbarch->${function} (${params});\n"
104c1213 1632 else
4a5c6a1d 1633 printf " return gdbarch->${function} (${params});\n"
104c1213 1634 fi
3d9a5942
AC
1635 printf "}\n"
1636 printf "\n"
1637 printf "void\n"
1638 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1639 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1640 printf "{\n"
1641 printf " gdbarch->${function} = ${function};\n"
1642 printf "}\n"
2ada493a
AC
1643 elif class_is_variable_p
1644 then
3d9a5942
AC
1645 printf "\n"
1646 printf "${returntype}\n"
1647 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1648 printf "{\n"
8de9bdc4 1649 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1650 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1651 then
3d9a5942 1652 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1653 elif [ -n "${invalid_p}" ]
104c1213 1654 then
956ac328
AC
1655 printf " /* Check variable is valid. */\n"
1656 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1657 elif [ -n "${predefault}" ]
104c1213 1658 then
956ac328
AC
1659 printf " /* Check variable changed from pre-default. */\n"
1660 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1661 fi
3d9a5942
AC
1662 printf " if (gdbarch_debug >= 2)\n"
1663 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1664 printf " return gdbarch->${function};\n"
1665 printf "}\n"
1666 printf "\n"
1667 printf "void\n"
1668 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1669 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1670 printf "{\n"
1671 printf " gdbarch->${function} = ${function};\n"
1672 printf "}\n"
2ada493a
AC
1673 elif class_is_info_p
1674 then
3d9a5942
AC
1675 printf "\n"
1676 printf "${returntype}\n"
1677 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1678 printf "{\n"
8de9bdc4 1679 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1680 printf " if (gdbarch_debug >= 2)\n"
1681 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1682 printf " return gdbarch->${function};\n"
1683 printf "}\n"
2ada493a 1684 fi
104c1213
JM
1685done
1686
1687# All the trailing guff
1688cat <<EOF
1689
1690
f44c642f 1691/* Keep a registry of per-architecture data-pointers required by GDB
104c1213
JM
1692 modules. */
1693
1694struct gdbarch_data
1695{
95160752 1696 unsigned index;
76860b5f 1697 int init_p;
030f20e1
AC
1698 gdbarch_data_pre_init_ftype *pre_init;
1699 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1700};
1701
1702struct gdbarch_data_registration
1703{
104c1213
JM
1704 struct gdbarch_data *data;
1705 struct gdbarch_data_registration *next;
1706};
1707
f44c642f 1708struct gdbarch_data_registry
104c1213 1709{
95160752 1710 unsigned nr;
104c1213
JM
1711 struct gdbarch_data_registration *registrations;
1712};
1713
f44c642f 1714struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1715{
1716 0, NULL,
1717};
1718
030f20e1
AC
1719static struct gdbarch_data *
1720gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1721 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1722{
1723 struct gdbarch_data_registration **curr;
76860b5f 1724 /* Append the new registraration. */
f44c642f 1725 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1726 (*curr) != NULL;
1727 curr = &(*curr)->next);
1728 (*curr) = XMALLOC (struct gdbarch_data_registration);
1729 (*curr)->next = NULL;
104c1213 1730 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1731 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1732 (*curr)->data->pre_init = pre_init;
1733 (*curr)->data->post_init = post_init;
76860b5f 1734 (*curr)->data->init_p = 1;
104c1213
JM
1735 return (*curr)->data;
1736}
1737
030f20e1
AC
1738struct gdbarch_data *
1739gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1740{
1741 return gdbarch_data_register (pre_init, NULL);
1742}
1743
1744struct gdbarch_data *
1745gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1746{
1747 return gdbarch_data_register (NULL, post_init);
1748}
104c1213 1749
b3cc3077 1750/* Create/delete the gdbarch data vector. */
95160752
AC
1751
1752static void
b3cc3077 1753alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1754{
b3cc3077
JB
1755 gdb_assert (gdbarch->data == NULL);
1756 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1757 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1758}
3c875b6f 1759
76860b5f 1760/* Initialize the current value of the specified per-architecture
b3cc3077
JB
1761 data-pointer. */
1762
95160752 1763void
030f20e1
AC
1764deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1765 struct gdbarch_data *data,
1766 void *pointer)
95160752
AC
1767{
1768 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1769 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1770 gdb_assert (data->pre_init == NULL);
95160752
AC
1771 gdbarch->data[data->index] = pointer;
1772}
1773
104c1213
JM
1774/* Return the current value of the specified per-architecture
1775 data-pointer. */
1776
1777void *
451fbdda 1778gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1779{
451fbdda 1780 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1781 if (gdbarch->data[data->index] == NULL)
76860b5f 1782 {
030f20e1
AC
1783 /* The data-pointer isn't initialized, call init() to get a
1784 value. */
1785 if (data->pre_init != NULL)
1786 /* Mid architecture creation: pass just the obstack, and not
1787 the entire architecture, as that way it isn't possible for
1788 pre-init code to refer to undefined architecture
1789 fields. */
1790 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1791 else if (gdbarch->initialized_p
1792 && data->post_init != NULL)
1793 /* Post architecture creation: pass the entire architecture
1794 (as all fields are valid), but be careful to also detect
1795 recursive references. */
1796 {
1797 gdb_assert (data->init_p);
1798 data->init_p = 0;
1799 gdbarch->data[data->index] = data->post_init (gdbarch);
1800 data->init_p = 1;
1801 }
1802 else
1803 /* The architecture initialization hasn't completed - punt -
1804 hope that the caller knows what they are doing. Once
1805 deprecated_set_gdbarch_data has been initialized, this can be
1806 changed to an internal error. */
1807 return NULL;
76860b5f
AC
1808 gdb_assert (gdbarch->data[data->index] != NULL);
1809 }
451fbdda 1810 return gdbarch->data[data->index];
104c1213
JM
1811}
1812
1813
f44c642f 1814/* Keep a registry of the architectures known by GDB. */
104c1213 1815
4b9b3959 1816struct gdbarch_registration
104c1213
JM
1817{
1818 enum bfd_architecture bfd_architecture;
1819 gdbarch_init_ftype *init;
4b9b3959 1820 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 1821 struct gdbarch_list *arches;
4b9b3959 1822 struct gdbarch_registration *next;
104c1213
JM
1823};
1824
f44c642f 1825static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 1826
b4a20239
AC
1827static void
1828append_name (const char ***buf, int *nr, const char *name)
1829{
1830 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1831 (*buf)[*nr] = name;
1832 *nr += 1;
1833}
1834
1835const char **
1836gdbarch_printable_names (void)
1837{
7996bcec
AC
1838 /* Accumulate a list of names based on the registed list of
1839 architectures. */
1840 enum bfd_architecture a;
1841 int nr_arches = 0;
1842 const char **arches = NULL;
1843 struct gdbarch_registration *rego;
1844 for (rego = gdbarch_registry;
1845 rego != NULL;
1846 rego = rego->next)
b4a20239 1847 {
7996bcec
AC
1848 const struct bfd_arch_info *ap;
1849 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1850 if (ap == NULL)
1851 internal_error (__FILE__, __LINE__,
85c07804 1852 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
1853 do
1854 {
1855 append_name (&arches, &nr_arches, ap->printable_name);
1856 ap = ap->next;
1857 }
1858 while (ap != NULL);
b4a20239 1859 }
7996bcec
AC
1860 append_name (&arches, &nr_arches, NULL);
1861 return arches;
b4a20239
AC
1862}
1863
1864
104c1213 1865void
4b9b3959
AC
1866gdbarch_register (enum bfd_architecture bfd_architecture,
1867 gdbarch_init_ftype *init,
1868 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 1869{
4b9b3959 1870 struct gdbarch_registration **curr;
104c1213 1871 const struct bfd_arch_info *bfd_arch_info;
ec3d358c 1872 /* Check that BFD recognizes this architecture */
104c1213
JM
1873 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1874 if (bfd_arch_info == NULL)
1875 {
8e65ff28 1876 internal_error (__FILE__, __LINE__,
85c07804 1877 _("gdbarch: Attempt to register unknown architecture (%d)"),
8e65ff28 1878 bfd_architecture);
104c1213
JM
1879 }
1880 /* Check that we haven't seen this architecture before */
f44c642f 1881 for (curr = &gdbarch_registry;
104c1213
JM
1882 (*curr) != NULL;
1883 curr = &(*curr)->next)
1884 {
1885 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 1886 internal_error (__FILE__, __LINE__,
85c07804 1887 _("gdbarch: Duplicate registraration of architecture (%s)"),
8e65ff28 1888 bfd_arch_info->printable_name);
104c1213
JM
1889 }
1890 /* log it */
1891 if (gdbarch_debug)
30737ed9 1892 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 1893 bfd_arch_info->printable_name,
30737ed9 1894 host_address_to_string (init));
104c1213 1895 /* Append it */
4b9b3959 1896 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
1897 (*curr)->bfd_architecture = bfd_architecture;
1898 (*curr)->init = init;
4b9b3959 1899 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
1900 (*curr)->arches = NULL;
1901 (*curr)->next = NULL;
4b9b3959
AC
1902}
1903
1904void
1905register_gdbarch_init (enum bfd_architecture bfd_architecture,
1906 gdbarch_init_ftype *init)
1907{
1908 gdbarch_register (bfd_architecture, init, NULL);
104c1213 1909}
104c1213
JM
1910
1911
424163ea 1912/* Look for an architecture using gdbarch_info. */
104c1213
JM
1913
1914struct gdbarch_list *
1915gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1916 const struct gdbarch_info *info)
1917{
1918 for (; arches != NULL; arches = arches->next)
1919 {
1920 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1921 continue;
1922 if (info->byte_order != arches->gdbarch->byte_order)
1923 continue;
4be87837
DJ
1924 if (info->osabi != arches->gdbarch->osabi)
1925 continue;
424163ea
DJ
1926 if (info->target_desc != arches->gdbarch->target_desc)
1927 continue;
104c1213
JM
1928 return arches;
1929 }
1930 return NULL;
1931}
1932
1933
ebdba546 1934/* Find an architecture that matches the specified INFO. Create a new
59837fe0 1935 architecture if needed. Return that new architecture. */
104c1213 1936
59837fe0
UW
1937struct gdbarch *
1938gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
1939{
1940 struct gdbarch *new_gdbarch;
4b9b3959 1941 struct gdbarch_registration *rego;
104c1213 1942
b732d07d 1943 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
1944 sources: "set ..."; INFOabfd supplied; and the global
1945 defaults. */
1946 gdbarch_info_fill (&info);
4be87837 1947
b732d07d
AC
1948 /* Must have found some sort of architecture. */
1949 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
1950
1951 if (gdbarch_debug)
1952 {
1953 fprintf_unfiltered (gdb_stdlog,
59837fe0 1954 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
1955 (info.bfd_arch_info != NULL
1956 ? info.bfd_arch_info->printable_name
1957 : "(null)"));
1958 fprintf_unfiltered (gdb_stdlog,
59837fe0 1959 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 1960 info.byte_order,
d7449b42 1961 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 1962 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 1963 : "default"));
4be87837 1964 fprintf_unfiltered (gdb_stdlog,
59837fe0 1965 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 1966 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 1967 fprintf_unfiltered (gdb_stdlog,
59837fe0 1968 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 1969 host_address_to_string (info.abfd));
104c1213 1970 fprintf_unfiltered (gdb_stdlog,
59837fe0 1971 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 1972 host_address_to_string (info.tdep_info));
104c1213
JM
1973 }
1974
ebdba546 1975 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
1976 for (rego = gdbarch_registry;
1977 rego != NULL;
1978 rego = rego->next)
1979 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1980 break;
1981 if (rego == NULL)
1982 {
1983 if (gdbarch_debug)
59837fe0 1984 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 1985 "No matching architecture\n");
b732d07d
AC
1986 return 0;
1987 }
1988
ebdba546 1989 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
1990 new_gdbarch = rego->init (info, rego->arches);
1991
ebdba546
AC
1992 /* Did the tdep code like it? No. Reject the change and revert to
1993 the old architecture. */
104c1213
JM
1994 if (new_gdbarch == NULL)
1995 {
1996 if (gdbarch_debug)
59837fe0 1997 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
1998 "Target rejected architecture\n");
1999 return NULL;
104c1213
JM
2000 }
2001
ebdba546
AC
2002 /* Is this a pre-existing architecture (as determined by already
2003 being initialized)? Move it to the front of the architecture
2004 list (keeping the list sorted Most Recently Used). */
2005 if (new_gdbarch->initialized_p)
104c1213 2006 {
ebdba546
AC
2007 struct gdbarch_list **list;
2008 struct gdbarch_list *this;
104c1213 2009 if (gdbarch_debug)
59837fe0 2010 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2011 "Previous architecture %s (%s) selected\n",
2012 host_address_to_string (new_gdbarch),
104c1213 2013 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2014 /* Find the existing arch in the list. */
2015 for (list = &rego->arches;
2016 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2017 list = &(*list)->next);
2018 /* It had better be in the list of architectures. */
2019 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2020 /* Unlink THIS. */
2021 this = (*list);
2022 (*list) = this->next;
2023 /* Insert THIS at the front. */
2024 this->next = rego->arches;
2025 rego->arches = this;
2026 /* Return it. */
2027 return new_gdbarch;
104c1213
JM
2028 }
2029
ebdba546
AC
2030 /* It's a new architecture. */
2031 if (gdbarch_debug)
59837fe0 2032 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2033 "New architecture %s (%s) selected\n",
2034 host_address_to_string (new_gdbarch),
ebdba546
AC
2035 new_gdbarch->bfd_arch_info->printable_name);
2036
2037 /* Insert the new architecture into the front of the architecture
2038 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2039 {
2040 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2041 this->next = rego->arches;
2042 this->gdbarch = new_gdbarch;
2043 rego->arches = this;
2044 }
104c1213 2045
4b9b3959
AC
2046 /* Check that the newly installed architecture is valid. Plug in
2047 any post init values. */
2048 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2049 verify_gdbarch (new_gdbarch);
ebdba546 2050 new_gdbarch->initialized_p = 1;
104c1213 2051
4b9b3959 2052 if (gdbarch_debug)
ebdba546
AC
2053 gdbarch_dump (new_gdbarch, gdb_stdlog);
2054
2055 return new_gdbarch;
2056}
2057
e487cc15 2058/* Make the specified architecture current. */
ebdba546
AC
2059
2060void
59837fe0 2061deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2062{
2063 gdb_assert (new_gdbarch != NULL);
ebdba546 2064 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2065 target_gdbarch = new_gdbarch;
383f836e 2066 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2067 registers_changed ();
ebdba546 2068}
104c1213 2069
104c1213 2070extern void _initialize_gdbarch (void);
b4a20239 2071
104c1213 2072void
34620563 2073_initialize_gdbarch (void)
104c1213 2074{
59233f88
AC
2075 struct cmd_list_element *c;
2076
85c07804
AC
2077 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2078Set architecture debugging."), _("\\
2079Show architecture debugging."), _("\\
2080When non-zero, architecture debugging is enabled."),
2081 NULL,
920d2a44 2082 show_gdbarch_debug,
85c07804 2083 &setdebuglist, &showdebuglist);
104c1213
JM
2084}
2085EOF
2086
2087# close things off
2088exec 1>&2
2089#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2090compare_new gdbarch.c
This page took 1.244747 seconds and 4 git commands to generate.