[ld] [arm] Add support for noinit section
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
42a4f53d 5# Copyright (C) 1998-2019 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
ea480a30
SM
68 # treat ``;;' as three fields while some treat it as just two.
69 # Work around this by eliminating ``;;'' ....
70 line="`echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g'`"
3d9a5942 71
ea480a30 72 OFS="${IFS}" ; IFS="[;]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
ea480a30 341i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
ea480a30
SM
343i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
344i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
4be87837 345#
ea480a30 346i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
424163ea 347#
ea480a30 348i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
ea480a30 352v;int;bits_big_endian;;;1;(gdbarch->byte_order == BFD_ENDIAN_BIG);;0
32c9a795 353
66b43ecb 354# Number of bits in a short or unsigned short for the target machine.
ea480a30 355v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
66b43ecb 356# Number of bits in an int or unsigned int for the target machine.
ea480a30 357v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
66b43ecb 358# Number of bits in a long or unsigned long for the target machine.
ea480a30 359v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
66b43ecb
AC
360# Number of bits in a long long or unsigned long long for the target
361# machine.
ea480a30 362v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
456fcf94 363
f9e9243a
UW
364# The ABI default bit-size and format for "half", "float", "double", and
365# "long double". These bit/format pairs should eventually be combined
366# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
367# Each format describes both the big and little endian layouts (if
368# useful).
456fcf94 369
ea480a30
SM
370v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
371v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
372v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
373v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
374v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
375v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
376v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
377v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
456fcf94 378
53375380
PA
379# The ABI default bit-size for "wchar_t". wchar_t is a built-in type
380# starting with C++11.
ea480a30 381v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
53375380 382# One if \`wchar_t' is signed, zero if unsigned.
ea480a30 383v;int;wchar_signed;;;1;-1;1
53375380 384
9b790ce7
UW
385# Returns the floating-point format to be used for values of length LENGTH.
386# NAME, if non-NULL, is the type name, which may be used to distinguish
387# different target formats of the same length.
ea480a30 388m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
9b790ce7 389
52204a0b
DT
390# For most targets, a pointer on the target and its representation as an
391# address in GDB have the same size and "look the same". For such a
17a912b6 392# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
393# / addr_bit will be set from it.
394#
17a912b6 395# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
396# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
397# gdbarch_address_to_pointer as well.
52204a0b
DT
398#
399# ptr_bit is the size of a pointer on the target
ea480a30 400v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
52204a0b 401# addr_bit is the size of a target address as represented in gdb
ea480a30 402v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
104c1213 403#
8da614df
CV
404# dwarf2_addr_size is the target address size as used in the Dwarf debug
405# info. For .debug_frame FDEs, this is supposed to be the target address
406# size from the associated CU header, and which is equivalent to the
407# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
408# Unfortunately there is no good way to determine this value. Therefore
409# dwarf2_addr_size simply defaults to the target pointer size.
410#
411# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
412# defined using the target's pointer size so far.
413#
414# Note that dwarf2_addr_size only needs to be redefined by a target if the
415# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
416# and if Dwarf versions < 4 need to be supported.
ea480a30 417v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
8da614df 418#
4e409299 419# One if \`char' acts like \`signed char', zero if \`unsigned char'.
ea480a30 420v;int;char_signed;;;1;-1;1
4e409299 421#
c113ed0c 422F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
ea480a30 423F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
39d4ef09
AC
424# Function for getting target's idea of a frame pointer. FIXME: GDB's
425# whole scheme for dealing with "frames" and "frame pointers" needs a
426# serious shakedown.
ea480a30 427m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
66b43ecb 428#
849d0ba8 429M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
3543a589
TT
430# Read a register into a new struct value. If the register is wholly
431# or partly unavailable, this should call mark_value_bytes_unavailable
432# as appropriate. If this is defined, then pseudo_register_read will
433# never be called.
849d0ba8 434M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
ea480a30 435M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
61a0eb5b 436#
ea480a30 437v;int;num_regs;;;0;-1
0aba1244
EZ
438# This macro gives the number of pseudo-registers that live in the
439# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
440# These pseudo-registers may be aliases for other registers,
441# combinations of other registers, or they may be computed by GDB.
ea480a30 442v;int;num_pseudo_regs;;;0;0;;0
c2169756 443
175ff332
HZ
444# Assemble agent expression bytecode to collect pseudo-register REG.
445# Return -1 if something goes wrong, 0 otherwise.
ea480a30 446M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
175ff332
HZ
447
448# Assemble agent expression bytecode to push the value of pseudo-register
449# REG on the interpreter stack.
450# Return -1 if something goes wrong, 0 otherwise.
ea480a30 451M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
175ff332 452
012b3a21
WT
453# Some targets/architectures can do extra processing/display of
454# segmentation faults. E.g., Intel MPX boundary faults.
455# Call the architecture dependent function to handle the fault.
456# UIOUT is the output stream where the handler will place information.
ea480a30 457M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
012b3a21 458
c2169756
AC
459# GDB's standard (or well known) register numbers. These can map onto
460# a real register or a pseudo (computed) register or not be defined at
1200cd6e 461# all (-1).
3e8c568d 462# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
ea480a30
SM
463v;int;sp_regnum;;;-1;-1;;0
464v;int;pc_regnum;;;-1;-1;;0
465v;int;ps_regnum;;;-1;-1;;0
466v;int;fp0_regnum;;;0;-1;;0
88c72b7d 467# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
ea480a30 468m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
88c72b7d 469# Provide a default mapping from a ecoff register number to a gdb REGNUM.
ea480a30 470m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
88c72b7d 471# Convert from an sdb register number to an internal gdb register number.
ea480a30 472m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
ba2b1c56 473# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
0fde2c53 474# Return -1 for bad REGNUM. Note: Several targets get this wrong.
ea480a30
SM
475m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
476m;const char *;register_name;int regnr;regnr;;0
9c04cab7 477
7b9ee6a8
DJ
478# Return the type of a register specified by the architecture. Only
479# the register cache should call this function directly; others should
480# use "register_type".
ea480a30 481M;struct type *;register_type;int reg_nr;reg_nr
9c04cab7 482
8bcb5208
AB
483# Generate a dummy frame_id for THIS_FRAME assuming that the frame is
484# a dummy frame. A dummy frame is created before an inferior call,
485# the frame_id returned here must match the frame_id that was built
486# for the inferior call. Usually this means the returned frame_id's
487# stack address should match the address returned by
488# gdbarch_push_dummy_call, and the returned frame_id's code address
489# should match the address at which the breakpoint was set in the dummy
490# frame.
491m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
669fac23 492# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 493# deprecated_fp_regnum.
ea480a30 494v;int;deprecated_fp_regnum;;;-1;-1;;0
f3be58bc 495
cf84fa6b 496M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
ea480a30
SM
497v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
498M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 499
7eb89530 500# Return true if the code of FRAME is writable.
ea480a30 501m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
7eb89530 502
ea480a30
SM
503m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
504m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
505M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
7c7651b2
AC
506# MAP a GDB RAW register number onto a simulator register number. See
507# also include/...-sim.h.
ea480a30
SM
508m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
509m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
510m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
eade6471
JB
511
512# Determine the address where a longjmp will land and save this address
513# in PC. Return nonzero on success.
514#
515# FRAME corresponds to the longjmp frame.
ea480a30 516F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
eade6471 517
104c1213 518#
ea480a30 519v;int;believe_pcc_promotion;;;;;;;
104c1213 520#
ea480a30
SM
521m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
522f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
523f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
9acbedc0 524# Construct a value representing the contents of register REGNUM in
2ed3c037 525# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
526# allocate and return a struct value with all value attributes
527# (but not the value contents) filled in.
ea480a30 528m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
104c1213 529#
ea480a30
SM
530m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
531m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
532M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
92ad9cd9 533
6a3a010b
MR
534# Return the return-value convention that will be used by FUNCTION
535# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
536# case the return convention is computed based only on VALTYPE.
537#
538# If READBUF is not NULL, extract the return value and save it in this buffer.
539#
540# If WRITEBUF is not NULL, it contains a return value which will be
541# stored into the appropriate register. This can be used when we want
542# to force the value returned by a function (see the "return" command
543# for instance).
ea480a30 544M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
92ad9cd9 545
18648a37
YQ
546# Return true if the return value of function is stored in the first hidden
547# parameter. In theory, this feature should be language-dependent, specified
548# by language and its ABI, such as C++. Unfortunately, compiler may
549# implement it to a target-dependent feature. So that we need such hook here
550# to be aware of this in GDB.
ea480a30 551m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
18648a37 552
ea480a30
SM
553m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
554M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
591a12a1
UW
555# On some platforms, a single function may provide multiple entry points,
556# e.g. one that is used for function-pointer calls and a different one
557# that is used for direct function calls.
558# In order to ensure that breakpoints set on the function will trigger
559# no matter via which entry point the function is entered, a platform
560# may provide the skip_entrypoint callback. It is called with IP set
561# to the main entry point of a function (as determined by the symbol table),
562# and should return the address of the innermost entry point, where the
563# actual breakpoint needs to be set. Note that skip_entrypoint is used
564# by GDB common code even when debugging optimized code, where skip_prologue
565# is not used.
ea480a30 566M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
591a12a1 567
ea480a30
SM
568f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
569m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
cd6c3b4f
YQ
570
571# Return the breakpoint kind for this target based on *PCPTR.
ea480a30 572m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
cd6c3b4f
YQ
573
574# Return the software breakpoint from KIND. KIND can have target
575# specific meaning like the Z0 kind parameter.
576# SIZE is set to the software breakpoint's length in memory.
ea480a30 577m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
cd6c3b4f 578
833b7ab5
YQ
579# Return the breakpoint kind for this target based on the current
580# processor state (e.g. the current instruction mode on ARM) and the
581# *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
ea480a30 582m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
833b7ab5 583
ea480a30
SM
584M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
585m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
586m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
587v;CORE_ADDR;decr_pc_after_break;;;0;;;0
782263ab
AC
588
589# A function can be addressed by either it's "pointer" (possibly a
590# descriptor address) or "entry point" (first executable instruction).
591# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 592# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
593# a simplified subset of that functionality - the function's address
594# corresponds to the "function pointer" and the function's start
595# corresponds to the "function entry point" - and hence is redundant.
596
ea480a30 597v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
782263ab 598
123dc839
DJ
599# Return the remote protocol register number associated with this
600# register. Normally the identity mapping.
ea480a30 601m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
123dc839 602
b2756930 603# Fetch the target specific address used to represent a load module.
ea480a30 604F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
6e056c81
JB
605
606# Return the thread-local address at OFFSET in the thread-local
607# storage for the thread PTID and the shared library or executable
608# file given by LM_ADDR. If that block of thread-local storage hasn't
609# been allocated yet, this function may throw an error. LM_ADDR may
610# be zero for statically linked multithreaded inferiors.
611
612M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
104c1213 613#
ea480a30 614v;CORE_ADDR;frame_args_skip;;;0;;;0
8bcb5208
AB
615m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
616m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
42efa47a
AC
617# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
618# frame-base. Enable frame-base before frame-unwind.
ea480a30 619F;int;frame_num_args;struct frame_info *frame;frame
104c1213 620#
ea480a30
SM
621M;CORE_ADDR;frame_align;CORE_ADDR address;address
622m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
623v;int;frame_red_zone_size
f0d4cc9e 624#
ea480a30 625m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
875e1767
AC
626# On some machines there are bits in addresses which are not really
627# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 628# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
629# we get a "real" address such as one would find in a symbol table.
630# This is used only for addresses of instructions, and even then I'm
631# not sure it's used in all contexts. It exists to deal with there
632# being a few stray bits in the PC which would mislead us, not as some
633# sort of generic thing to handle alignment or segmentation (it's
634# possible it should be in TARGET_READ_PC instead).
ea480a30 635m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
e6590a1b 636
a738ea1d
YQ
637# On some machines, not all bits of an address word are significant.
638# For example, on AArch64, the top bits of an address known as the "tag"
639# are ignored by the kernel, the hardware, etc. and can be regarded as
640# additional data associated with the address.
5969f0db 641v;int;significant_addr_bit;;;;;;0
a738ea1d 642
e6590a1b
UW
643# FIXME/cagney/2001-01-18: This should be split in two. A target method that
644# indicates if the target needs software single step. An ISA method to
645# implement it.
646#
e6590a1b
UW
647# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
648# target can single step. If not, then implement single step using breakpoints.
64c4637f 649#
93f9a11f
YQ
650# Return a vector of addresses on which the software single step
651# breakpoints should be inserted. NULL means software single step is
652# not used.
653# Multiple breakpoints may be inserted for some instructions such as
654# conditional branch. However, each implementation must always evaluate
655# the condition and only put the breakpoint at the branch destination if
656# the condition is true, so that we ensure forward progress when stepping
657# past a conditional branch to self.
a0ff9e1a 658F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
e6590a1b 659
3352ef37
AC
660# Return non-zero if the processor is executing a delay slot and a
661# further single-step is needed before the instruction finishes.
ea480a30 662M;int;single_step_through_delay;struct frame_info *frame;frame
f6c40618 663# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 664# disassembler. Perhaps objdump can handle it?
39503f82 665f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
ea480a30 666f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
d50355b6
MS
667
668
cfd8ab24 669# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
670# evaluates non-zero, this is the address where the debugger will place
671# a step-resume breakpoint to get us past the dynamic linker.
ea480a30 672m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
d50355b6 673# Some systems also have trampoline code for returning from shared libs.
ea480a30 674m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
d50355b6 675
1d509aa6
MM
676# Return true if PC lies inside an indirect branch thunk.
677m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
678
c12260ac
CV
679# A target might have problems with watchpoints as soon as the stack
680# frame of the current function has been destroyed. This mostly happens
c9cf6e20 681# as the first action in a function's epilogue. stack_frame_destroyed_p()
c12260ac
CV
682# is defined to return a non-zero value if either the given addr is one
683# instruction after the stack destroying instruction up to the trailing
684# return instruction or if we can figure out that the stack frame has
685# already been invalidated regardless of the value of addr. Targets
686# which don't suffer from that problem could just let this functionality
687# untouched.
ea480a30 688m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
3e29f34a
MR
689# Process an ELF symbol in the minimal symbol table in a backend-specific
690# way. Normally this hook is supposed to do nothing, however if required,
691# then this hook can be used to apply tranformations to symbols that are
692# considered special in some way. For example the MIPS backend uses it
693# to interpret \`st_other' information to mark compressed code symbols so
694# that they can be treated in the appropriate manner in the processing of
695# the main symbol table and DWARF-2 records.
ea480a30
SM
696F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
697f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
3e29f34a
MR
698# Process a symbol in the main symbol table in a backend-specific way.
699# Normally this hook is supposed to do nothing, however if required,
700# then this hook can be used to apply tranformations to symbols that
701# are considered special in some way. This is currently used by the
702# MIPS backend to make sure compressed code symbols have the ISA bit
703# set. This in turn is needed for symbol values seen in GDB to match
704# the values used at the runtime by the program itself, for function
705# and label references.
ea480a30 706f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
3e29f34a
MR
707# Adjust the address retrieved from a DWARF-2 record other than a line
708# entry in a backend-specific way. Normally this hook is supposed to
709# return the address passed unchanged, however if that is incorrect for
710# any reason, then this hook can be used to fix the address up in the
711# required manner. This is currently used by the MIPS backend to make
712# sure addresses in FDE, range records, etc. referring to compressed
713# code have the ISA bit set, matching line information and the symbol
714# table.
ea480a30 715f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
3e29f34a
MR
716# Adjust the address updated by a line entry in a backend-specific way.
717# Normally this hook is supposed to return the address passed unchanged,
718# however in the case of inconsistencies in these records, this hook can
719# be used to fix them up in the required manner. This is currently used
720# by the MIPS backend to make sure all line addresses in compressed code
721# are presented with the ISA bit set, which is not always the case. This
722# in turn ensures breakpoint addresses are correctly matched against the
723# stop PC.
ea480a30
SM
724f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
725v;int;cannot_step_breakpoint;;;0;0;;0
7ea65f08
PA
726# See comment in target.h about continuable, steppable and
727# non-steppable watchpoints.
ea480a30
SM
728v;int;have_nonsteppable_watchpoint;;;0;0;;0
729F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
730M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
b41c5a85
JW
731# Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
732# FS are passed from the generic execute_cfa_program function.
ea480a30 733m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
69f97648
SM
734
735# Return the appropriate type_flags for the supplied address class.
736# This function should return 1 if the address class was recognized and
737# type_flags was set, zero otherwise.
ea480a30 738M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
b59ff9d5 739# Is a register in a group
ea480a30 740m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
f6214256 741# Fetch the pointer to the ith function argument.
ea480a30 742F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
6ce6d90f 743
5aa82d05
AA
744# Iterate over all supported register notes in a core file. For each
745# supported register note section, the iterator must call CB and pass
746# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
747# the supported register note sections based on the current register
748# values. Otherwise it should enumerate all supported register note
749# sections.
ea480a30 750M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
17ea7499 751
6432734d 752# Create core file notes
ea480a30 753M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
6432734d 754
35c2fab7 755# Find core file memory regions
ea480a30 756M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
35c2fab7 757
de584861 758# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
759# core file into buffer READBUF with length LEN. Return the number of bytes read
760# (zero indicates failure).
761# failed, otherwise, return the red length of READBUF.
ea480a30 762M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
de584861 763
356a5233
JB
764# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
765# libraries list from core file into buffer READBUF with length LEN.
c09f20e4 766# Return the number of bytes read (zero indicates failure).
ea480a30 767M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
356a5233 768
c0edd9ed 769# How the core target converts a PTID from a core file to a string.
a068643d 770M;std::string;core_pid_to_str;ptid_t ptid;ptid
28439f5e 771
4dfc5dbc 772# How the core target extracts the name of a thread from a core file.
ea480a30 773M;const char *;core_thread_name;struct thread_info *thr;thr
4dfc5dbc 774
382b69bb
JB
775# Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
776# from core file into buffer READBUF with length LEN. Return the number
777# of bytes read (zero indicates EOF, a negative value indicates failure).
778M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
779
a78c2d62 780# BFD target to use when generating a core file.
ea480a30 781V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
a78c2d62 782
0d5de010
DJ
783# If the elements of C++ vtables are in-place function descriptors rather
784# than normal function pointers (which may point to code or a descriptor),
785# set this to one.
ea480a30 786v;int;vtable_function_descriptors;;;0;0;;0
0d5de010
DJ
787
788# Set if the least significant bit of the delta is used instead of the least
789# significant bit of the pfn for pointers to virtual member functions.
ea480a30 790v;int;vbit_in_delta;;;0;0;;0
6d350bb5
UW
791
792# Advance PC to next instruction in order to skip a permanent breakpoint.
ea480a30 793f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
1c772458 794
1668ae25 795# The maximum length of an instruction on this architecture in bytes.
ea480a30 796V;ULONGEST;max_insn_length;;;0;0
237fc4c9
PA
797
798# Copy the instruction at FROM to TO, and make any adjustments
799# necessary to single-step it at that address.
800#
801# REGS holds the state the thread's registers will have before
802# executing the copied instruction; the PC in REGS will refer to FROM,
803# not the copy at TO. The caller should update it to point at TO later.
804#
805# Return a pointer to data of the architecture's choice to be passed
806# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
807# the instruction's effects have been completely simulated, with the
808# resulting state written back to REGS.
809#
810# For a general explanation of displaced stepping and how GDB uses it,
811# see the comments in infrun.c.
812#
813# The TO area is only guaranteed to have space for
814# gdbarch_max_insn_length (arch) bytes, so this function must not
815# write more bytes than that to that area.
816#
817# If you do not provide this function, GDB assumes that the
818# architecture does not support displaced stepping.
819#
7f03bd92
PA
820# If the instruction cannot execute out of line, return NULL. The
821# core falls back to stepping past the instruction in-line instead in
822# that case.
ea480a30 823M;struct displaced_step_closure *;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
237fc4c9 824
99e40580
UW
825# Return true if GDB should use hardware single-stepping to execute
826# the displaced instruction identified by CLOSURE. If false,
827# GDB will simply restart execution at the displaced instruction
828# location, and it is up to the target to ensure GDB will receive
829# control again (e.g. by placing a software breakpoint instruction
830# into the displaced instruction buffer).
831#
832# The default implementation returns false on all targets that
833# provide a gdbarch_software_single_step routine, and true otherwise.
ea480a30 834m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
99e40580 835
237fc4c9
PA
836# Fix up the state resulting from successfully single-stepping a
837# displaced instruction, to give the result we would have gotten from
838# stepping the instruction in its original location.
839#
840# REGS is the register state resulting from single-stepping the
841# displaced instruction.
842#
843# CLOSURE is the result from the matching call to
844# gdbarch_displaced_step_copy_insn.
845#
846# If you provide gdbarch_displaced_step_copy_insn.but not this
847# function, then GDB assumes that no fixup is needed after
848# single-stepping the instruction.
849#
850# For a general explanation of displaced stepping and how GDB uses it,
851# see the comments in infrun.c.
ea480a30 852M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
237fc4c9 853
237fc4c9
PA
854# Return the address of an appropriate place to put displaced
855# instructions while we step over them. There need only be one such
856# place, since we're only stepping one thread over a breakpoint at a
857# time.
858#
859# For a general explanation of displaced stepping and how GDB uses it,
860# see the comments in infrun.c.
ea480a30 861m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
237fc4c9 862
dde08ee1
PA
863# Relocate an instruction to execute at a different address. OLDLOC
864# is the address in the inferior memory where the instruction to
865# relocate is currently at. On input, TO points to the destination
866# where we want the instruction to be copied (and possibly adjusted)
867# to. On output, it points to one past the end of the resulting
868# instruction(s). The effect of executing the instruction at TO shall
869# be the same as if executing it at FROM. For example, call
870# instructions that implicitly push the return address on the stack
871# should be adjusted to return to the instruction after OLDLOC;
872# relative branches, and other PC-relative instructions need the
873# offset adjusted; etc.
ea480a30 874M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
dde08ee1 875
1c772458 876# Refresh overlay mapped state for section OSECT.
ea480a30 877F;void;overlay_update;struct obj_section *osect;osect
4eb0ad19 878
ea480a30 879M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
149ad273
UW
880
881# Handle special encoding of static variables in stabs debug info.
ea480a30 882F;const char *;static_transform_name;const char *name;name
203c3895 883# Set if the address in N_SO or N_FUN stabs may be zero.
ea480a30 884v;int;sofun_address_maybe_missing;;;0;0;;0
1cded358 885
0508c3ec
HZ
886# Parse the instruction at ADDR storing in the record execution log
887# the registers REGCACHE and memory ranges that will be affected when
888# the instruction executes, along with their current values.
889# Return -1 if something goes wrong, 0 otherwise.
ea480a30 890M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
0508c3ec 891
3846b520
HZ
892# Save process state after a signal.
893# Return -1 if something goes wrong, 0 otherwise.
ea480a30 894M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
3846b520 895
22203bbf 896# Signal translation: translate inferior's signal (target's) number
86b49880
PA
897# into GDB's representation. The implementation of this method must
898# be host independent. IOW, don't rely on symbols of the NAT_FILE
899# header (the nm-*.h files), the host <signal.h> header, or similar
900# headers. This is mainly used when cross-debugging core files ---
901# "Live" targets hide the translation behind the target interface
1f8cf220 902# (target_wait, target_resume, etc.).
ea480a30 903M;enum gdb_signal;gdb_signal_from_target;int signo;signo
60c5725c 904
eb14d406
SDJ
905# Signal translation: translate the GDB's internal signal number into
906# the inferior's signal (target's) representation. The implementation
907# of this method must be host independent. IOW, don't rely on symbols
908# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
909# header, or similar headers.
910# Return the target signal number if found, or -1 if the GDB internal
911# signal number is invalid.
ea480a30 912M;int;gdb_signal_to_target;enum gdb_signal signal;signal
eb14d406 913
4aa995e1
PA
914# Extra signal info inspection.
915#
916# Return a type suitable to inspect extra signal information.
ea480a30 917M;struct type *;get_siginfo_type;void;
4aa995e1 918
60c5725c 919# Record architecture-specific information from the symbol table.
ea480a30 920M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
50c71eaf 921
a96d9b2e
SDJ
922# Function for the 'catch syscall' feature.
923
924# Get architecture-specific system calls information from registers.
00431a78 925M;LONGEST;get_syscall_number;thread_info *thread;thread
a96d9b2e 926
458c8db8 927# The filename of the XML syscall for this architecture.
ea480a30 928v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
458c8db8
SDJ
929
930# Information about system calls from this architecture
ea480a30 931v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
458c8db8 932
55aa24fb
SDJ
933# SystemTap related fields and functions.
934
05c0465e
SDJ
935# A NULL-terminated array of prefixes used to mark an integer constant
936# on the architecture's assembly.
55aa24fb
SDJ
937# For example, on x86 integer constants are written as:
938#
939# \$10 ;; integer constant 10
940#
941# in this case, this prefix would be the character \`\$\'.
ea480a30 942v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 943
05c0465e
SDJ
944# A NULL-terminated array of suffixes used to mark an integer constant
945# on the architecture's assembly.
ea480a30 946v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 947
05c0465e
SDJ
948# A NULL-terminated array of prefixes used to mark a register name on
949# the architecture's assembly.
55aa24fb
SDJ
950# For example, on x86 the register name is written as:
951#
952# \%eax ;; register eax
953#
954# in this case, this prefix would be the character \`\%\'.
ea480a30 955v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 956
05c0465e
SDJ
957# A NULL-terminated array of suffixes used to mark a register name on
958# the architecture's assembly.
ea480a30 959v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 960
05c0465e
SDJ
961# A NULL-terminated array of prefixes used to mark a register
962# indirection on the architecture's assembly.
55aa24fb
SDJ
963# For example, on x86 the register indirection is written as:
964#
965# \(\%eax\) ;; indirecting eax
966#
967# in this case, this prefix would be the charater \`\(\'.
968#
969# Please note that we use the indirection prefix also for register
970# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 971v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 972
05c0465e
SDJ
973# A NULL-terminated array of suffixes used to mark a register
974# indirection on the architecture's assembly.
55aa24fb
SDJ
975# For example, on x86 the register indirection is written as:
976#
977# \(\%eax\) ;; indirecting eax
978#
979# in this case, this prefix would be the charater \`\)\'.
980#
981# Please note that we use the indirection suffix also for register
982# displacement, e.g., \`4\(\%eax\)\' on x86.
ea480a30 983v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 984
05c0465e 985# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
986#
987# For example, on PPC a register is represented by a number in the assembly
988# language (e.g., \`10\' is the 10th general-purpose register). However,
989# inside GDB this same register has an \`r\' appended to its name, so the 10th
990# register would be represented as \`r10\' internally.
ea480a30 991v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
992
993# Suffix used to name a register using GDB's nomenclature.
ea480a30 994v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
995
996# Check if S is a single operand.
997#
998# Single operands can be:
999# \- Literal integers, e.g. \`\$10\' on x86
1000# \- Register access, e.g. \`\%eax\' on x86
1001# \- Register indirection, e.g. \`\(\%eax\)\' on x86
1002# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
1003#
1004# This function should check for these patterns on the string
1005# and return 1 if some were found, or zero otherwise. Please try to match
1006# as much info as you can from the string, i.e., if you have to match
1007# something like \`\(\%\', do not match just the \`\(\'.
ea480a30 1008M;int;stap_is_single_operand;const char *s;s
55aa24fb
SDJ
1009
1010# Function used to handle a "special case" in the parser.
1011#
1012# A "special case" is considered to be an unknown token, i.e., a token
1013# that the parser does not know how to parse. A good example of special
1014# case would be ARM's register displacement syntax:
1015#
1016# [R0, #4] ;; displacing R0 by 4
1017#
1018# Since the parser assumes that a register displacement is of the form:
1019#
1020# <number> <indirection_prefix> <register_name> <indirection_suffix>
1021#
1022# it means that it will not be able to recognize and parse this odd syntax.
1023# Therefore, we should add a special case function that will handle this token.
1024#
1025# This function should generate the proper expression form of the expression
1026# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1027# and so on). It should also return 1 if the parsing was successful, or zero
1028# if the token was not recognized as a special token (in this case, returning
1029# zero means that the special parser is deferring the parsing to the generic
1030# parser), and should advance the buffer pointer (p->arg).
ea480a30 1031M;int;stap_parse_special_token;struct stap_parse_info *p;p
55aa24fb 1032
7d7571f0
SDJ
1033# Perform arch-dependent adjustments to a register name.
1034#
1035# In very specific situations, it may be necessary for the register
1036# name present in a SystemTap probe's argument to be handled in a
1037# special way. For example, on i386, GCC may over-optimize the
1038# register allocation and use smaller registers than necessary. In
1039# such cases, the client that is reading and evaluating the SystemTap
1040# probe (ourselves) will need to actually fetch values from the wider
1041# version of the register in question.
1042#
1043# To illustrate the example, consider the following probe argument
1044# (i386):
1045#
1046# 4@%ax
1047#
1048# This argument says that its value can be found at the %ax register,
1049# which is a 16-bit register. However, the argument's prefix says
1050# that its type is "uint32_t", which is 32-bit in size. Therefore, in
1051# this case, GDB should actually fetch the probe's value from register
1052# %eax, not %ax. In this scenario, this function would actually
1053# replace the register name from %ax to %eax.
1054#
1055# The rationale for this can be found at PR breakpoints/24541.
6b78c3f8 1056M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
7d7571f0 1057
8b367e17
JM
1058# DTrace related functions.
1059
1060# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1061# NARG must be >= 0.
37eedb39 1062M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
8b367e17
JM
1063
1064# True if the given ADDR does not contain the instruction sequence
1065# corresponding to a disabled DTrace is-enabled probe.
ea480a30 1066M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
8b367e17
JM
1067
1068# Enable a DTrace is-enabled probe at ADDR.
ea480a30 1069M;void;dtrace_enable_probe;CORE_ADDR addr;addr
8b367e17
JM
1070
1071# Disable a DTrace is-enabled probe at ADDR.
ea480a30 1072M;void;dtrace_disable_probe;CORE_ADDR addr;addr
55aa24fb 1073
50c71eaf
PA
1074# True if the list of shared libraries is one and only for all
1075# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1076# This usually means that all processes, although may or may not share
1077# an address space, will see the same set of symbols at the same
1078# addresses.
ea480a30 1079v;int;has_global_solist;;;0;0;;0
2567c7d9
PA
1080
1081# On some targets, even though each inferior has its own private
1082# address space, the debug interface takes care of making breakpoints
1083# visible to all address spaces automatically. For such cases,
1084# this property should be set to true.
ea480a30 1085v;int;has_global_breakpoints;;;0;0;;0
6c95b8df
PA
1086
1087# True if inferiors share an address space (e.g., uClinux).
ea480a30 1088m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
7a697b8d
SS
1089
1090# True if a fast tracepoint can be set at an address.
281d762b 1091m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
75cebea9 1092
5f034a78
MK
1093# Guess register state based on tracepoint location. Used for tracepoints
1094# where no registers have been collected, but there's only one location,
1095# allowing us to guess the PC value, and perhaps some other registers.
1096# On entry, regcache has all registers marked as unavailable.
ea480a30 1097m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
5f034a78 1098
f870a310 1099# Return the "auto" target charset.
ea480a30 1100f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
f870a310 1101# Return the "auto" target wide charset.
ea480a30 1102f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
08105857
PA
1103
1104# If non-empty, this is a file extension that will be opened in place
1105# of the file extension reported by the shared library list.
1106#
1107# This is most useful for toolchains that use a post-linker tool,
1108# where the names of the files run on the target differ in extension
1109# compared to the names of the files GDB should load for debug info.
ea480a30 1110v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1111
1112# If true, the target OS has DOS-based file system semantics. That
1113# is, absolute paths include a drive name, and the backslash is
1114# considered a directory separator.
ea480a30 1115v;int;has_dos_based_file_system;;;0;0;;0
6710bf39
SS
1116
1117# Generate bytecodes to collect the return address in a frame.
1118# Since the bytecodes run on the target, possibly with GDB not even
1119# connected, the full unwinding machinery is not available, and
1120# typically this function will issue bytecodes for one or more likely
1121# places that the return address may be found.
ea480a30 1122m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
6710bf39 1123
3030c96e 1124# Implement the "info proc" command.
ea480a30 1125M;void;info_proc;const char *args, enum info_proc_what what;args, what
3030c96e 1126
451b7c33
TT
1127# Implement the "info proc" command for core files. Noe that there
1128# are two "info_proc"-like methods on gdbarch -- one for core files,
1129# one for live targets.
ea480a30 1130M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
451b7c33 1131
19630284
JB
1132# Iterate over all objfiles in the order that makes the most sense
1133# for the architecture to make global symbol searches.
1134#
1135# CB is a callback function where OBJFILE is the objfile to be searched,
1136# and CB_DATA a pointer to user-defined data (the same data that is passed
1137# when calling this gdbarch method). The iteration stops if this function
1138# returns nonzero.
1139#
1140# CB_DATA is a pointer to some user-defined data to be passed to
1141# the callback.
1142#
1143# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1144# inspected when the symbol search was requested.
ea480a30 1145m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
19630284 1146
7e35103a 1147# Ravenscar arch-dependent ops.
ea480a30 1148v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1149
1150# Return non-zero if the instruction at ADDR is a call; zero otherwise.
ea480a30 1151m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
c2170eef
MM
1152
1153# Return non-zero if the instruction at ADDR is a return; zero otherwise.
ea480a30 1154m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
c2170eef
MM
1155
1156# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
ea480a30 1157m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
27a48a92
MK
1158
1159# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1160# Return 0 if *READPTR is already at the end of the buffer.
1161# Return -1 if there is insufficient buffer for a whole entry.
1162# Return 1 if an entry was read into *TYPEP and *VALP.
ea480a30 1163M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
3437254d 1164
2faa3447
JB
1165# Print the description of a single auxv entry described by TYPE and VAL
1166# to FILE.
ea480a30 1167m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
2faa3447 1168
3437254d
PA
1169# Find the address range of the current inferior's vsyscall/vDSO, and
1170# write it to *RANGE. If the vsyscall's length can't be determined, a
1171# range with zero length is returned. Returns true if the vsyscall is
1172# found, false otherwise.
ea480a30 1173m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
f208eee0
JK
1174
1175# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1176# PROT has GDB_MMAP_PROT_* bitmask format.
1177# Throw an error if it is not possible. Returned address is always valid.
ea480a30 1178f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
f208eee0 1179
7f361056
JK
1180# Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1181# Print a warning if it is not possible.
ea480a30 1182f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
7f361056 1183
f208eee0
JK
1184# Return string (caller has to use xfree for it) with options for GCC
1185# to produce code for this target, typically "-m64", "-m32" or "-m31".
1186# These options are put before CU's DW_AT_producer compilation options so that
1187# they can override it. Method may also return NULL.
ea480a30 1188m;char *;gcc_target_options;void;;;default_gcc_target_options;;0
ac04f72b
TT
1189
1190# Return a regular expression that matches names used by this
1191# architecture in GNU configury triplets. The result is statically
1192# allocated and must not be freed. The default implementation simply
1193# returns the BFD architecture name, which is correct in nearly every
1194# case.
ea480a30 1195m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
3374165f
SM
1196
1197# Return the size in 8-bit bytes of an addressable memory unit on this
1198# architecture. This corresponds to the number of 8-bit bytes associated to
1199# each address in memory.
ea480a30 1200m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
3374165f 1201
65b48a81 1202# Functions for allowing a target to modify its disassembler options.
471b9d15 1203v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
ea480a30 1204v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
471b9d15 1205v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
65b48a81 1206
5561fc30
AB
1207# Type alignment override method. Return the architecture specific
1208# alignment required for TYPE. If there is no special handling
1209# required for TYPE then return the value 0, GDB will then apply the
1210# default rules as laid out in gdbtypes.c:type_align.
2b4424c3
TT
1211m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1212
104c1213 1213EOF
104c1213
JM
1214}
1215
0b8f9e4d
AC
1216#
1217# The .log file
1218#
1219exec > new-gdbarch.log
34620563 1220function_list | while do_read
0b8f9e4d
AC
1221do
1222 cat <<EOF
2f9b146e 1223${class} ${returntype} ${function} ($formal)
104c1213 1224EOF
3d9a5942
AC
1225 for r in ${read}
1226 do
1227 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1228 done
f0d4cc9e 1229 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1230 then
66d659b1 1231 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1232 kill $$
1233 exit 1
1234 fi
72e74a21 1235 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1236 then
1237 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1238 kill $$
1239 exit 1
1240 fi
a72293e2
AC
1241 if class_is_multiarch_p
1242 then
1243 if class_is_predicate_p ; then :
1244 elif test "x${predefault}" = "x"
1245 then
2f9b146e 1246 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1247 kill $$
1248 exit 1
1249 fi
1250 fi
3d9a5942 1251 echo ""
0b8f9e4d
AC
1252done
1253
1254exec 1>&2
1255compare_new gdbarch.log
1256
104c1213
JM
1257
1258copyright ()
1259{
1260cat <<EOF
c4bfde41
JK
1261/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1262/* vi:set ro: */
59233f88 1263
104c1213 1264/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1265
c6f4a5d0 1266 Copyright (C) 1998-2019 Free Software Foundation, Inc.
104c1213
JM
1267
1268 This file is part of GDB.
1269
1270 This program is free software; you can redistribute it and/or modify
1271 it under the terms of the GNU General Public License as published by
50efebf8 1272 the Free Software Foundation; either version 3 of the License, or
104c1213 1273 (at your option) any later version.
618f726f 1274
104c1213
JM
1275 This program is distributed in the hope that it will be useful,
1276 but WITHOUT ANY WARRANTY; without even the implied warranty of
1277 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1278 GNU General Public License for more details.
618f726f 1279
104c1213 1280 You should have received a copy of the GNU General Public License
50efebf8 1281 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1282
104c1213
JM
1283/* This file was created with the aid of \`\`gdbarch.sh''.
1284
52204a0b 1285 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1286 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1287 against the existing \`\`gdbarch.[hc]''. Any differences found
1288 being reported.
1289
1290 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1291 changes into that script. Conversely, when making sweeping changes
104c1213 1292 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1293 easier. */
104c1213
JM
1294
1295EOF
1296}
1297
1298#
1299# The .h file
1300#
1301
1302exec > new-gdbarch.h
1303copyright
1304cat <<EOF
1305#ifndef GDBARCH_H
1306#define GDBARCH_H
1307
a0ff9e1a 1308#include <vector>
eb7a547a 1309#include "frame.h"
65b48a81 1310#include "dis-asm.h"
284a0e3c 1311#include "gdb_obstack.h"
eb7a547a 1312
da3331ec
AC
1313struct floatformat;
1314struct ui_file;
104c1213 1315struct value;
b6af0555 1316struct objfile;
1c772458 1317struct obj_section;
a2cf933a 1318struct minimal_symbol;
049ee0e4 1319struct regcache;
b59ff9d5 1320struct reggroup;
6ce6d90f 1321struct regset;
a89aa300 1322struct disassemble_info;
e2d0e7eb 1323struct target_ops;
030f20e1 1324struct obstack;
8181d85f 1325struct bp_target_info;
424163ea 1326struct target_desc;
3e29f34a 1327struct symbol;
237fc4c9 1328struct displaced_step_closure;
a96d9b2e 1329struct syscall;
175ff332 1330struct agent_expr;
6710bf39 1331struct axs_value;
55aa24fb 1332struct stap_parse_info;
37eedb39 1333struct expr_builder;
7e35103a 1334struct ravenscar_arch_ops;
3437254d 1335struct mem_range;
458c8db8 1336struct syscalls_info;
4dfc5dbc 1337struct thread_info;
012b3a21 1338struct ui_out;
104c1213 1339
8a526fa6
PA
1340#include "regcache.h"
1341
6ecd4729
PA
1342/* The architecture associated with the inferior through the
1343 connection to the target.
1344
1345 The architecture vector provides some information that is really a
1346 property of the inferior, accessed through a particular target:
1347 ptrace operations; the layout of certain RSP packets; the solib_ops
1348 vector; etc. To differentiate architecture accesses to
1349 per-inferior/target properties from
1350 per-thread/per-frame/per-objfile properties, accesses to
1351 per-inferior/target properties should be made through this
1352 gdbarch. */
1353
1354/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1355extern struct gdbarch *target_gdbarch (void);
6ecd4729 1356
19630284
JB
1357/* Callback type for the 'iterate_over_objfiles_in_search_order'
1358 gdbarch method. */
1359
1360typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1361 (struct objfile *objfile, void *cb_data);
5aa82d05 1362
1528345d
AA
1363/* Callback type for regset section iterators. The callback usually
1364 invokes the REGSET's supply or collect method, to which it must
a616bb94
AH
1365 pass a buffer - for collects this buffer will need to be created using
1366 COLLECT_SIZE, for supply the existing buffer being read from should
1367 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1368 is used for diagnostic messages. CB_DATA should have been passed
1369 unchanged through the iterator. */
1528345d 1370
5aa82d05 1371typedef void (iterate_over_regset_sections_cb)
a616bb94
AH
1372 (const char *sect_name, int supply_size, int collect_size,
1373 const struct regset *regset, const char *human_name, void *cb_data);
c5ac5cbb
AH
1374
1375/* For a function call, does the function return a value using a
1376 normal value return or a structure return - passing a hidden
1377 argument pointing to storage. For the latter, there are two
1378 cases: language-mandated structure return and target ABI
1379 structure return. */
1380
1381enum function_call_return_method
1382{
1383 /* Standard value return. */
1384 return_method_normal = 0,
1385
1386 /* Language ABI structure return. This is handled
1387 by passing the return location as the first parameter to
1388 the function, even preceding "this". */
1389 return_method_hidden_param,
1390
1391 /* Target ABI struct return. This is target-specific; for instance,
1392 on ia64 the first argument is passed in out0 but the hidden
1393 structure return pointer would normally be passed in r8. */
1394 return_method_struct,
1395};
1396
104c1213
JM
1397EOF
1398
1399# function typedef's
3d9a5942
AC
1400printf "\n"
1401printf "\n"
0963b4bd 1402printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1403function_list | while do_read
104c1213 1404do
2ada493a
AC
1405 if class_is_info_p
1406 then
3d9a5942
AC
1407 printf "\n"
1408 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1409 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1410 fi
104c1213
JM
1411done
1412
1413# function typedef's
3d9a5942
AC
1414printf "\n"
1415printf "\n"
0963b4bd 1416printf "/* The following are initialized by the target dependent code. */\n"
34620563 1417function_list | while do_read
104c1213 1418do
72e74a21 1419 if [ -n "${comment}" ]
34620563
AC
1420 then
1421 echo "${comment}" | sed \
1422 -e '2 s,#,/*,' \
1423 -e '3,$ s,#, ,' \
1424 -e '$ s,$, */,'
1425 fi
412d5987
AC
1426
1427 if class_is_predicate_p
2ada493a 1428 then
412d5987
AC
1429 printf "\n"
1430 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1431 fi
2ada493a
AC
1432 if class_is_variable_p
1433 then
3d9a5942
AC
1434 printf "\n"
1435 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1436 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1437 fi
1438 if class_is_function_p
1439 then
3d9a5942 1440 printf "\n"
72e74a21 1441 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1442 then
1443 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1444 elif class_is_multiarch_p
1445 then
1446 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1447 else
1448 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1449 fi
72e74a21 1450 if [ "x${formal}" = "xvoid" ]
104c1213 1451 then
3d9a5942 1452 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1453 else
3d9a5942 1454 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1455 fi
3d9a5942 1456 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1457 fi
104c1213
JM
1458done
1459
1460# close it off
1461cat <<EOF
1462
1463extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1464
1465
1466/* Mechanism for co-ordinating the selection of a specific
1467 architecture.
1468
1469 GDB targets (*-tdep.c) can register an interest in a specific
1470 architecture. Other GDB components can register a need to maintain
1471 per-architecture data.
1472
1473 The mechanisms below ensures that there is only a loose connection
1474 between the set-architecture command and the various GDB
0fa6923a 1475 components. Each component can independently register their need
104c1213
JM
1476 to maintain architecture specific data with gdbarch.
1477
1478 Pragmatics:
1479
1480 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1481 didn't scale.
1482
1483 The more traditional mega-struct containing architecture specific
1484 data for all the various GDB components was also considered. Since
0fa6923a 1485 GDB is built from a variable number of (fairly independent)
104c1213 1486 components it was determined that the global aproach was not
0963b4bd 1487 applicable. */
104c1213
JM
1488
1489
1490/* Register a new architectural family with GDB.
1491
1492 Register support for the specified ARCHITECTURE with GDB. When
1493 gdbarch determines that the specified architecture has been
1494 selected, the corresponding INIT function is called.
1495
1496 --
1497
1498 The INIT function takes two parameters: INFO which contains the
1499 information available to gdbarch about the (possibly new)
1500 architecture; ARCHES which is a list of the previously created
1501 \`\`struct gdbarch'' for this architecture.
1502
0f79675b 1503 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1504 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1505
1506 The ARCHES parameter is a linked list (sorted most recently used)
1507 of all the previously created architures for this architecture
1508 family. The (possibly NULL) ARCHES->gdbarch can used to access
1509 values from the previously selected architecture for this
59837fe0 1510 architecture family.
104c1213
JM
1511
1512 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1513 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1514 gdbarch'' from the ARCHES list - indicating that the new
1515 architecture is just a synonym for an earlier architecture (see
1516 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1517 - that describes the selected architecture (see gdbarch_alloc()).
1518
1519 The DUMP_TDEP function shall print out all target specific values.
1520 Care should be taken to ensure that the function works in both the
0963b4bd 1521 multi-arch and non- multi-arch cases. */
104c1213
JM
1522
1523struct gdbarch_list
1524{
1525 struct gdbarch *gdbarch;
1526 struct gdbarch_list *next;
1527};
1528
1529struct gdbarch_info
1530{
0963b4bd 1531 /* Use default: NULL (ZERO). */
104c1213
JM
1532 const struct bfd_arch_info *bfd_arch_info;
1533
428721aa 1534 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1535 enum bfd_endian byte_order;
104c1213 1536
94123b4f 1537 enum bfd_endian byte_order_for_code;
9d4fde75 1538
0963b4bd 1539 /* Use default: NULL (ZERO). */
104c1213
JM
1540 bfd *abfd;
1541
0963b4bd 1542 /* Use default: NULL (ZERO). */
0dba2a6c
MR
1543 union
1544 {
1545 /* Architecture-specific information. The generic form for targets
1546 that have extra requirements. */
1547 struct gdbarch_tdep_info *tdep_info;
1548
1549 /* Architecture-specific target description data. Numerous targets
1550 need only this, so give them an easy way to hold it. */
1551 struct tdesc_arch_data *tdesc_data;
1552
1553 /* SPU file system ID. This is a single integer, so using the
1554 generic form would only complicate code. Other targets may
1555 reuse this member if suitable. */
1556 int *id;
1557 };
4be87837
DJ
1558
1559 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1560 enum gdb_osabi osabi;
424163ea
DJ
1561
1562 /* Use default: NULL (ZERO). */
1563 const struct target_desc *target_desc;
104c1213
JM
1564};
1565
1566typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1567typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1568
4b9b3959 1569/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1570extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1571
4b9b3959
AC
1572extern void gdbarch_register (enum bfd_architecture architecture,
1573 gdbarch_init_ftype *,
1574 gdbarch_dump_tdep_ftype *);
1575
104c1213 1576
b4a20239
AC
1577/* Return a freshly allocated, NULL terminated, array of the valid
1578 architecture names. Since architectures are registered during the
1579 _initialize phase this function only returns useful information
0963b4bd 1580 once initialization has been completed. */
b4a20239
AC
1581
1582extern const char **gdbarch_printable_names (void);
1583
1584
104c1213 1585/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1586 matches the information provided by INFO. */
104c1213 1587
424163ea 1588extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1589
1590
1591/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1592 basic initialization using values obtained from the INFO and TDEP
104c1213 1593 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1594 initialization of the object. */
104c1213
JM
1595
1596extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1597
1598
4b9b3959
AC
1599/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1600 It is assumed that the caller freeds the \`\`struct
0963b4bd 1601 gdbarch_tdep''. */
4b9b3959 1602
058f20d5
JB
1603extern void gdbarch_free (struct gdbarch *);
1604
284a0e3c
SM
1605/* Get the obstack owned by ARCH. */
1606
1607extern obstack *gdbarch_obstack (gdbarch *arch);
058f20d5 1608
aebd7893
AC
1609/* Helper function. Allocate memory from the \`\`struct gdbarch''
1610 obstack. The memory is freed when the corresponding architecture
1611 is also freed. */
1612
284a0e3c
SM
1613#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1614 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1615
1616#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1617 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
aebd7893 1618
6c214e7c
PP
1619/* Duplicate STRING, returning an equivalent string that's allocated on the
1620 obstack associated with GDBARCH. The string is freed when the corresponding
1621 architecture is also freed. */
1622
1623extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
aebd7893 1624
0963b4bd 1625/* Helper function. Force an update of the current architecture.
104c1213 1626
b732d07d
AC
1627 The actual architecture selected is determined by INFO, \`\`(gdb) set
1628 architecture'' et.al., the existing architecture and BFD's default
1629 architecture. INFO should be initialized to zero and then selected
1630 fields should be updated.
104c1213 1631
0963b4bd 1632 Returns non-zero if the update succeeds. */
16f33e29
AC
1633
1634extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1635
1636
ebdba546
AC
1637/* Helper function. Find an architecture matching info.
1638
1639 INFO should be initialized using gdbarch_info_init, relevant fields
1640 set, and then finished using gdbarch_info_fill.
1641
1642 Returns the corresponding architecture, or NULL if no matching
59837fe0 1643 architecture was found. */
ebdba546
AC
1644
1645extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1646
1647
aff68abb 1648/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1649
aff68abb 1650extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1651
104c1213
JM
1652
1653/* Register per-architecture data-pointer.
1654
1655 Reserve space for a per-architecture data-pointer. An identifier
1656 for the reserved data-pointer is returned. That identifer should
95160752 1657 be saved in a local static variable.
104c1213 1658
fcc1c85c
AC
1659 Memory for the per-architecture data shall be allocated using
1660 gdbarch_obstack_zalloc. That memory will be deleted when the
1661 corresponding architecture object is deleted.
104c1213 1662
95160752
AC
1663 When a previously created architecture is re-selected, the
1664 per-architecture data-pointer for that previous architecture is
76860b5f 1665 restored. INIT() is not re-called.
104c1213
JM
1666
1667 Multiple registrarants for any architecture are allowed (and
1668 strongly encouraged). */
1669
95160752 1670struct gdbarch_data;
104c1213 1671
030f20e1
AC
1672typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1673extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1674typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1675extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1676extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1677 struct gdbarch_data *data,
1678 void *pointer);
104c1213 1679
451fbdda 1680extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1681
1682
0fa6923a 1683/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1684 byte-order, ...) using information found in the BFD. */
104c1213
JM
1685
1686extern void set_gdbarch_from_file (bfd *);
1687
1688
e514a9d6
JM
1689/* Initialize the current architecture to the "first" one we find on
1690 our list. */
1691
1692extern void initialize_current_architecture (void);
1693
104c1213 1694/* gdbarch trace variable */
ccce17b0 1695extern unsigned int gdbarch_debug;
104c1213 1696
4b9b3959 1697extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1698
f6efe3f8
SM
1699/* Return the number of cooked registers (raw + pseudo) for ARCH. */
1700
1701static inline int
1702gdbarch_num_cooked_regs (gdbarch *arch)
1703{
1704 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1705}
1706
104c1213
JM
1707#endif
1708EOF
1709exec 1>&2
1710#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1711compare_new gdbarch.h
104c1213
JM
1712
1713
1714#
1715# C file
1716#
1717
1718exec > new-gdbarch.c
1719copyright
1720cat <<EOF
1721
1722#include "defs.h"
7355ddba 1723#include "arch-utils.h"
104c1213 1724
104c1213 1725#include "gdbcmd.h"
faaf634c 1726#include "inferior.h"
104c1213
JM
1727#include "symcat.h"
1728
f0d4cc9e 1729#include "floatformat.h"
b59ff9d5 1730#include "reggroups.h"
4be87837 1731#include "osabi.h"
aebd7893 1732#include "gdb_obstack.h"
0bee6dd4 1733#include "observable.h"
a3ecef73 1734#include "regcache.h"
19630284 1735#include "objfiles.h"
2faa3447 1736#include "auxv.h"
8bcb5208
AB
1737#include "frame-unwind.h"
1738#include "dummy-frame.h"
95160752 1739
104c1213
JM
1740/* Static function declarations */
1741
b3cc3077 1742static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1743
104c1213
JM
1744/* Non-zero if we want to trace architecture code. */
1745
1746#ifndef GDBARCH_DEBUG
1747#define GDBARCH_DEBUG 0
1748#endif
ccce17b0 1749unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1750static void
1751show_gdbarch_debug (struct ui_file *file, int from_tty,
1752 struct cmd_list_element *c, const char *value)
1753{
1754 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1755}
104c1213 1756
456fcf94 1757static const char *
8da61cc4 1758pformat (const struct floatformat **format)
456fcf94
AC
1759{
1760 if (format == NULL)
1761 return "(null)";
1762 else
8da61cc4
DJ
1763 /* Just print out one of them - this is only for diagnostics. */
1764 return format[0]->name;
456fcf94
AC
1765}
1766
08105857
PA
1767static const char *
1768pstring (const char *string)
1769{
1770 if (string == NULL)
1771 return "(null)";
1772 return string;
05c0465e
SDJ
1773}
1774
a121b7c1 1775static const char *
f7bb4e3a
PB
1776pstring_ptr (char **string)
1777{
1778 if (string == NULL || *string == NULL)
1779 return "(null)";
1780 return *string;
1781}
1782
05c0465e
SDJ
1783/* Helper function to print a list of strings, represented as "const
1784 char *const *". The list is printed comma-separated. */
1785
a121b7c1 1786static const char *
05c0465e
SDJ
1787pstring_list (const char *const *list)
1788{
1789 static char ret[100];
1790 const char *const *p;
1791 size_t offset = 0;
1792
1793 if (list == NULL)
1794 return "(null)";
1795
1796 ret[0] = '\0';
1797 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1798 {
1799 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1800 offset += 2 + s;
1801 }
1802
1803 if (offset > 0)
1804 {
1805 gdb_assert (offset - 2 < sizeof (ret));
1806 ret[offset - 2] = '\0';
1807 }
1808
1809 return ret;
08105857
PA
1810}
1811
104c1213
JM
1812EOF
1813
1814# gdbarch open the gdbarch object
3d9a5942 1815printf "\n"
0963b4bd 1816printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1817printf "\n"
1818printf "struct gdbarch\n"
1819printf "{\n"
76860b5f
AC
1820printf " /* Has this architecture been fully initialized? */\n"
1821printf " int initialized_p;\n"
aebd7893
AC
1822printf "\n"
1823printf " /* An obstack bound to the lifetime of the architecture. */\n"
1824printf " struct obstack *obstack;\n"
1825printf "\n"
0963b4bd 1826printf " /* basic architectural information. */\n"
34620563 1827function_list | while do_read
104c1213 1828do
2ada493a
AC
1829 if class_is_info_p
1830 then
3d9a5942 1831 printf " ${returntype} ${function};\n"
2ada493a 1832 fi
104c1213 1833done
3d9a5942 1834printf "\n"
0963b4bd 1835printf " /* target specific vector. */\n"
3d9a5942
AC
1836printf " struct gdbarch_tdep *tdep;\n"
1837printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1838printf "\n"
0963b4bd 1839printf " /* per-architecture data-pointers. */\n"
95160752 1840printf " unsigned nr_data;\n"
3d9a5942
AC
1841printf " void **data;\n"
1842printf "\n"
104c1213
JM
1843cat <<EOF
1844 /* Multi-arch values.
1845
1846 When extending this structure you must:
1847
1848 Add the field below.
1849
1850 Declare set/get functions and define the corresponding
1851 macro in gdbarch.h.
1852
1853 gdbarch_alloc(): If zero/NULL is not a suitable default,
1854 initialize the new field.
1855
1856 verify_gdbarch(): Confirm that the target updated the field
1857 correctly.
1858
7e73cedf 1859 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1860 field is dumped out
1861
104c1213
JM
1862 get_gdbarch(): Implement the set/get functions (probably using
1863 the macro's as shortcuts).
1864
1865 */
1866
1867EOF
34620563 1868function_list | while do_read
104c1213 1869do
2ada493a
AC
1870 if class_is_variable_p
1871 then
3d9a5942 1872 printf " ${returntype} ${function};\n"
2ada493a
AC
1873 elif class_is_function_p
1874 then
2f9b146e 1875 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1876 fi
104c1213 1877done
3d9a5942 1878printf "};\n"
104c1213 1879
104c1213 1880# Create a new gdbarch struct
104c1213 1881cat <<EOF
7de2341d 1882
66b43ecb 1883/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1884 \`\`struct gdbarch_info''. */
104c1213 1885EOF
3d9a5942 1886printf "\n"
104c1213
JM
1887cat <<EOF
1888struct gdbarch *
1889gdbarch_alloc (const struct gdbarch_info *info,
1890 struct gdbarch_tdep *tdep)
1891{
be7811ad 1892 struct gdbarch *gdbarch;
aebd7893
AC
1893
1894 /* Create an obstack for allocating all the per-architecture memory,
1895 then use that to allocate the architecture vector. */
70ba0933 1896 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1897 obstack_init (obstack);
8d749320 1898 gdbarch = XOBNEW (obstack, struct gdbarch);
be7811ad
MD
1899 memset (gdbarch, 0, sizeof (*gdbarch));
1900 gdbarch->obstack = obstack;
85de9627 1901
be7811ad 1902 alloc_gdbarch_data (gdbarch);
85de9627 1903
be7811ad 1904 gdbarch->tdep = tdep;
104c1213 1905EOF
3d9a5942 1906printf "\n"
34620563 1907function_list | while do_read
104c1213 1908do
2ada493a
AC
1909 if class_is_info_p
1910 then
be7811ad 1911 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1912 fi
104c1213 1913done
3d9a5942 1914printf "\n"
0963b4bd 1915printf " /* Force the explicit initialization of these. */\n"
34620563 1916function_list | while do_read
104c1213 1917do
2ada493a
AC
1918 if class_is_function_p || class_is_variable_p
1919 then
72e74a21 1920 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1921 then
be7811ad 1922 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1923 fi
2ada493a 1924 fi
104c1213
JM
1925done
1926cat <<EOF
1927 /* gdbarch_alloc() */
1928
be7811ad 1929 return gdbarch;
104c1213
JM
1930}
1931EOF
1932
058f20d5 1933# Free a gdbarch struct.
3d9a5942
AC
1934printf "\n"
1935printf "\n"
058f20d5 1936cat <<EOF
aebd7893 1937
284a0e3c 1938obstack *gdbarch_obstack (gdbarch *arch)
aebd7893 1939{
284a0e3c 1940 return arch->obstack;
aebd7893
AC
1941}
1942
6c214e7c
PP
1943/* See gdbarch.h. */
1944
1945char *
1946gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1947{
1948 return obstack_strdup (arch->obstack, string);
1949}
1950
aebd7893 1951
058f20d5
JB
1952/* Free a gdbarch struct. This should never happen in normal
1953 operation --- once you've created a gdbarch, you keep it around.
1954 However, if an architecture's init function encounters an error
1955 building the structure, it may need to clean up a partially
1956 constructed gdbarch. */
4b9b3959 1957
058f20d5
JB
1958void
1959gdbarch_free (struct gdbarch *arch)
1960{
aebd7893 1961 struct obstack *obstack;
05c547f6 1962
95160752 1963 gdb_assert (arch != NULL);
aebd7893
AC
1964 gdb_assert (!arch->initialized_p);
1965 obstack = arch->obstack;
1966 obstack_free (obstack, 0); /* Includes the ARCH. */
1967 xfree (obstack);
058f20d5
JB
1968}
1969EOF
1970
104c1213 1971# verify a new architecture
104c1213 1972cat <<EOF
db446970
AC
1973
1974
1975/* Ensure that all values in a GDBARCH are reasonable. */
1976
104c1213 1977static void
be7811ad 1978verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1979{
d7e74731 1980 string_file log;
05c547f6 1981
104c1213 1982 /* fundamental */
be7811ad 1983 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
d7e74731 1984 log.puts ("\n\tbyte-order");
be7811ad 1985 if (gdbarch->bfd_arch_info == NULL)
d7e74731 1986 log.puts ("\n\tbfd_arch_info");
0963b4bd 1987 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1988EOF
34620563 1989function_list | while do_read
104c1213 1990do
2ada493a
AC
1991 if class_is_function_p || class_is_variable_p
1992 then
72e74a21 1993 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1994 then
3d9a5942 1995 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1996 elif class_is_predicate_p
1997 then
0963b4bd 1998 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1999 # FIXME: See do_read for potential simplification
72e74a21 2000 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 2001 then
3d9a5942 2002 printf " if (${invalid_p})\n"
be7811ad 2003 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 2004 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 2005 then
be7811ad
MD
2006 printf " if (gdbarch->${function} == ${predefault})\n"
2007 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 2008 elif [ -n "${postdefault}" ]
f0d4cc9e 2009 then
be7811ad
MD
2010 printf " if (gdbarch->${function} == 0)\n"
2011 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 2012 elif [ -n "${invalid_p}" ]
104c1213 2013 then
4d60522e 2014 printf " if (${invalid_p})\n"
d7e74731 2015 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
72e74a21 2016 elif [ -n "${predefault}" ]
104c1213 2017 then
be7811ad 2018 printf " if (gdbarch->${function} == ${predefault})\n"
d7e74731 2019 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
104c1213 2020 fi
2ada493a 2021 fi
104c1213
JM
2022done
2023cat <<EOF
d7e74731 2024 if (!log.empty ())
f16a1923 2025 internal_error (__FILE__, __LINE__,
85c07804 2026 _("verify_gdbarch: the following are invalid ...%s"),
d7e74731 2027 log.c_str ());
104c1213
JM
2028}
2029EOF
2030
2031# dump the structure
3d9a5942
AC
2032printf "\n"
2033printf "\n"
104c1213 2034cat <<EOF
0963b4bd 2035/* Print out the details of the current architecture. */
4b9b3959 2036
104c1213 2037void
be7811ad 2038gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 2039{
b78960be 2040 const char *gdb_nm_file = "<not-defined>";
05c547f6 2041
b78960be
AC
2042#if defined (GDB_NM_FILE)
2043 gdb_nm_file = GDB_NM_FILE;
2044#endif
2045 fprintf_unfiltered (file,
2046 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2047 gdb_nm_file);
104c1213 2048EOF
ea480a30 2049function_list | sort '-t;' -k 3 | while do_read
104c1213 2050do
1e9f55d0
AC
2051 # First the predicate
2052 if class_is_predicate_p
2053 then
7996bcec 2054 printf " fprintf_unfiltered (file,\n"
48f7351b 2055 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 2056 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 2057 fi
48f7351b 2058 # Print the corresponding value.
283354d8 2059 if class_is_function_p
4b9b3959 2060 then
7996bcec 2061 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
2062 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
2063 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 2064 else
48f7351b 2065 # It is a variable
2f9b146e
AC
2066 case "${print}:${returntype}" in
2067 :CORE_ADDR )
0b1553bc
UW
2068 fmt="%s"
2069 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 2070 ;;
2f9b146e 2071 :* )
48f7351b 2072 fmt="%s"
623d3eb1 2073 print="plongest (gdbarch->${function})"
48f7351b
AC
2074 ;;
2075 * )
2f9b146e 2076 fmt="%s"
48f7351b
AC
2077 ;;
2078 esac
3d9a5942 2079 printf " fprintf_unfiltered (file,\n"
48f7351b 2080 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 2081 printf " ${print});\n"
2ada493a 2082 fi
104c1213 2083done
381323f4 2084cat <<EOF
be7811ad
MD
2085 if (gdbarch->dump_tdep != NULL)
2086 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
2087}
2088EOF
104c1213
JM
2089
2090
2091# GET/SET
3d9a5942 2092printf "\n"
104c1213
JM
2093cat <<EOF
2094struct gdbarch_tdep *
2095gdbarch_tdep (struct gdbarch *gdbarch)
2096{
2097 if (gdbarch_debug >= 2)
3d9a5942 2098 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
2099 return gdbarch->tdep;
2100}
2101EOF
3d9a5942 2102printf "\n"
34620563 2103function_list | while do_read
104c1213 2104do
2ada493a
AC
2105 if class_is_predicate_p
2106 then
3d9a5942
AC
2107 printf "\n"
2108 printf "int\n"
2109 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2110 printf "{\n"
8de9bdc4 2111 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 2112 printf " return ${predicate};\n"
3d9a5942 2113 printf "}\n"
2ada493a
AC
2114 fi
2115 if class_is_function_p
2116 then
3d9a5942
AC
2117 printf "\n"
2118 printf "${returntype}\n"
72e74a21 2119 if [ "x${formal}" = "xvoid" ]
104c1213 2120 then
3d9a5942 2121 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 2122 else
3d9a5942 2123 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 2124 fi
3d9a5942 2125 printf "{\n"
8de9bdc4 2126 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 2127 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 2128 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
2129 then
2130 # Allow a call to a function with a predicate.
956ac328 2131 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 2132 fi
3d9a5942
AC
2133 printf " if (gdbarch_debug >= 2)\n"
2134 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 2135 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
2136 then
2137 if class_is_multiarch_p
2138 then
2139 params="gdbarch"
2140 else
2141 params=""
2142 fi
2143 else
2144 if class_is_multiarch_p
2145 then
2146 params="gdbarch, ${actual}"
2147 else
2148 params="${actual}"
2149 fi
2150 fi
72e74a21 2151 if [ "x${returntype}" = "xvoid" ]
104c1213 2152 then
4a5c6a1d 2153 printf " gdbarch->${function} (${params});\n"
104c1213 2154 else
4a5c6a1d 2155 printf " return gdbarch->${function} (${params});\n"
104c1213 2156 fi
3d9a5942
AC
2157 printf "}\n"
2158 printf "\n"
2159 printf "void\n"
2160 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2161 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2162 printf "{\n"
2163 printf " gdbarch->${function} = ${function};\n"
2164 printf "}\n"
2ada493a
AC
2165 elif class_is_variable_p
2166 then
3d9a5942
AC
2167 printf "\n"
2168 printf "${returntype}\n"
2169 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2170 printf "{\n"
8de9bdc4 2171 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2172 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2173 then
3d9a5942 2174 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2175 elif [ -n "${invalid_p}" ]
104c1213 2176 then
956ac328
AC
2177 printf " /* Check variable is valid. */\n"
2178 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2179 elif [ -n "${predefault}" ]
104c1213 2180 then
956ac328
AC
2181 printf " /* Check variable changed from pre-default. */\n"
2182 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2183 fi
3d9a5942
AC
2184 printf " if (gdbarch_debug >= 2)\n"
2185 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2186 printf " return gdbarch->${function};\n"
2187 printf "}\n"
2188 printf "\n"
2189 printf "void\n"
2190 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2191 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2192 printf "{\n"
2193 printf " gdbarch->${function} = ${function};\n"
2194 printf "}\n"
2ada493a
AC
2195 elif class_is_info_p
2196 then
3d9a5942
AC
2197 printf "\n"
2198 printf "${returntype}\n"
2199 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2200 printf "{\n"
8de9bdc4 2201 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2202 printf " if (gdbarch_debug >= 2)\n"
2203 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2204 printf " return gdbarch->${function};\n"
2205 printf "}\n"
2ada493a 2206 fi
104c1213
JM
2207done
2208
2209# All the trailing guff
2210cat <<EOF
2211
2212
f44c642f 2213/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2214 modules. */
104c1213
JM
2215
2216struct gdbarch_data
2217{
95160752 2218 unsigned index;
76860b5f 2219 int init_p;
030f20e1
AC
2220 gdbarch_data_pre_init_ftype *pre_init;
2221 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2222};
2223
2224struct gdbarch_data_registration
2225{
104c1213
JM
2226 struct gdbarch_data *data;
2227 struct gdbarch_data_registration *next;
2228};
2229
f44c642f 2230struct gdbarch_data_registry
104c1213 2231{
95160752 2232 unsigned nr;
104c1213
JM
2233 struct gdbarch_data_registration *registrations;
2234};
2235
f44c642f 2236struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2237{
2238 0, NULL,
2239};
2240
030f20e1
AC
2241static struct gdbarch_data *
2242gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2243 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2244{
2245 struct gdbarch_data_registration **curr;
05c547f6
MS
2246
2247 /* Append the new registration. */
f44c642f 2248 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2249 (*curr) != NULL;
2250 curr = &(*curr)->next);
70ba0933 2251 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2252 (*curr)->next = NULL;
70ba0933 2253 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2254 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2255 (*curr)->data->pre_init = pre_init;
2256 (*curr)->data->post_init = post_init;
76860b5f 2257 (*curr)->data->init_p = 1;
104c1213
JM
2258 return (*curr)->data;
2259}
2260
030f20e1
AC
2261struct gdbarch_data *
2262gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2263{
2264 return gdbarch_data_register (pre_init, NULL);
2265}
2266
2267struct gdbarch_data *
2268gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2269{
2270 return gdbarch_data_register (NULL, post_init);
2271}
104c1213 2272
0963b4bd 2273/* Create/delete the gdbarch data vector. */
95160752
AC
2274
2275static void
b3cc3077 2276alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2277{
b3cc3077
JB
2278 gdb_assert (gdbarch->data == NULL);
2279 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2280 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2281}
3c875b6f 2282
76860b5f 2283/* Initialize the current value of the specified per-architecture
0963b4bd 2284 data-pointer. */
b3cc3077 2285
95160752 2286void
030f20e1
AC
2287deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2288 struct gdbarch_data *data,
2289 void *pointer)
95160752
AC
2290{
2291 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2292 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2293 gdb_assert (data->pre_init == NULL);
95160752
AC
2294 gdbarch->data[data->index] = pointer;
2295}
2296
104c1213 2297/* Return the current value of the specified per-architecture
0963b4bd 2298 data-pointer. */
104c1213
JM
2299
2300void *
451fbdda 2301gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2302{
451fbdda 2303 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2304 if (gdbarch->data[data->index] == NULL)
76860b5f 2305 {
030f20e1
AC
2306 /* The data-pointer isn't initialized, call init() to get a
2307 value. */
2308 if (data->pre_init != NULL)
2309 /* Mid architecture creation: pass just the obstack, and not
2310 the entire architecture, as that way it isn't possible for
2311 pre-init code to refer to undefined architecture
2312 fields. */
2313 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2314 else if (gdbarch->initialized_p
2315 && data->post_init != NULL)
2316 /* Post architecture creation: pass the entire architecture
2317 (as all fields are valid), but be careful to also detect
2318 recursive references. */
2319 {
2320 gdb_assert (data->init_p);
2321 data->init_p = 0;
2322 gdbarch->data[data->index] = data->post_init (gdbarch);
2323 data->init_p = 1;
2324 }
2325 else
2326 /* The architecture initialization hasn't completed - punt -
2327 hope that the caller knows what they are doing. Once
2328 deprecated_set_gdbarch_data has been initialized, this can be
2329 changed to an internal error. */
2330 return NULL;
76860b5f
AC
2331 gdb_assert (gdbarch->data[data->index] != NULL);
2332 }
451fbdda 2333 return gdbarch->data[data->index];
104c1213
JM
2334}
2335
2336
0963b4bd 2337/* Keep a registry of the architectures known by GDB. */
104c1213 2338
4b9b3959 2339struct gdbarch_registration
104c1213
JM
2340{
2341 enum bfd_architecture bfd_architecture;
2342 gdbarch_init_ftype *init;
4b9b3959 2343 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2344 struct gdbarch_list *arches;
4b9b3959 2345 struct gdbarch_registration *next;
104c1213
JM
2346};
2347
f44c642f 2348static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2349
b4a20239
AC
2350static void
2351append_name (const char ***buf, int *nr, const char *name)
2352{
1dc7a623 2353 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
b4a20239
AC
2354 (*buf)[*nr] = name;
2355 *nr += 1;
2356}
2357
2358const char **
2359gdbarch_printable_names (void)
2360{
7996bcec 2361 /* Accumulate a list of names based on the registed list of
0963b4bd 2362 architectures. */
7996bcec
AC
2363 int nr_arches = 0;
2364 const char **arches = NULL;
2365 struct gdbarch_registration *rego;
05c547f6 2366
7996bcec
AC
2367 for (rego = gdbarch_registry;
2368 rego != NULL;
2369 rego = rego->next)
b4a20239 2370 {
7996bcec
AC
2371 const struct bfd_arch_info *ap;
2372 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2373 if (ap == NULL)
2374 internal_error (__FILE__, __LINE__,
85c07804 2375 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2376 do
2377 {
2378 append_name (&arches, &nr_arches, ap->printable_name);
2379 ap = ap->next;
2380 }
2381 while (ap != NULL);
b4a20239 2382 }
7996bcec
AC
2383 append_name (&arches, &nr_arches, NULL);
2384 return arches;
b4a20239
AC
2385}
2386
2387
104c1213 2388void
4b9b3959
AC
2389gdbarch_register (enum bfd_architecture bfd_architecture,
2390 gdbarch_init_ftype *init,
2391 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2392{
4b9b3959 2393 struct gdbarch_registration **curr;
104c1213 2394 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2395
ec3d358c 2396 /* Check that BFD recognizes this architecture */
104c1213
JM
2397 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2398 if (bfd_arch_info == NULL)
2399 {
8e65ff28 2400 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2401 _("gdbarch: Attempt to register "
2402 "unknown architecture (%d)"),
8e65ff28 2403 bfd_architecture);
104c1213 2404 }
0963b4bd 2405 /* Check that we haven't seen this architecture before. */
f44c642f 2406 for (curr = &gdbarch_registry;
104c1213
JM
2407 (*curr) != NULL;
2408 curr = &(*curr)->next)
2409 {
2410 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2411 internal_error (__FILE__, __LINE__,
64b9b334 2412 _("gdbarch: Duplicate registration "
0963b4bd 2413 "of architecture (%s)"),
8e65ff28 2414 bfd_arch_info->printable_name);
104c1213
JM
2415 }
2416 /* log it */
2417 if (gdbarch_debug)
30737ed9 2418 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2419 bfd_arch_info->printable_name,
30737ed9 2420 host_address_to_string (init));
104c1213 2421 /* Append it */
70ba0933 2422 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2423 (*curr)->bfd_architecture = bfd_architecture;
2424 (*curr)->init = init;
4b9b3959 2425 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2426 (*curr)->arches = NULL;
2427 (*curr)->next = NULL;
4b9b3959
AC
2428}
2429
2430void
2431register_gdbarch_init (enum bfd_architecture bfd_architecture,
2432 gdbarch_init_ftype *init)
2433{
2434 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2435}
104c1213
JM
2436
2437
424163ea 2438/* Look for an architecture using gdbarch_info. */
104c1213
JM
2439
2440struct gdbarch_list *
2441gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2442 const struct gdbarch_info *info)
2443{
2444 for (; arches != NULL; arches = arches->next)
2445 {
2446 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2447 continue;
2448 if (info->byte_order != arches->gdbarch->byte_order)
2449 continue;
4be87837
DJ
2450 if (info->osabi != arches->gdbarch->osabi)
2451 continue;
424163ea
DJ
2452 if (info->target_desc != arches->gdbarch->target_desc)
2453 continue;
104c1213
JM
2454 return arches;
2455 }
2456 return NULL;
2457}
2458
2459
ebdba546 2460/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2461 architecture if needed. Return that new architecture. */
104c1213 2462
59837fe0
UW
2463struct gdbarch *
2464gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2465{
2466 struct gdbarch *new_gdbarch;
4b9b3959 2467 struct gdbarch_registration *rego;
104c1213 2468
b732d07d 2469 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2470 sources: "set ..."; INFOabfd supplied; and the global
2471 defaults. */
2472 gdbarch_info_fill (&info);
4be87837 2473
0963b4bd 2474 /* Must have found some sort of architecture. */
b732d07d 2475 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2476
2477 if (gdbarch_debug)
2478 {
2479 fprintf_unfiltered (gdb_stdlog,
59837fe0 2480 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2481 (info.bfd_arch_info != NULL
2482 ? info.bfd_arch_info->printable_name
2483 : "(null)"));
2484 fprintf_unfiltered (gdb_stdlog,
59837fe0 2485 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2486 info.byte_order,
d7449b42 2487 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2488 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2489 : "default"));
4be87837 2490 fprintf_unfiltered (gdb_stdlog,
59837fe0 2491 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2492 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2493 fprintf_unfiltered (gdb_stdlog,
59837fe0 2494 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2495 host_address_to_string (info.abfd));
104c1213 2496 fprintf_unfiltered (gdb_stdlog,
59837fe0 2497 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2498 host_address_to_string (info.tdep_info));
104c1213
JM
2499 }
2500
ebdba546 2501 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2502 for (rego = gdbarch_registry;
2503 rego != NULL;
2504 rego = rego->next)
2505 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2506 break;
2507 if (rego == NULL)
2508 {
2509 if (gdbarch_debug)
59837fe0 2510 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2511 "No matching architecture\n");
b732d07d
AC
2512 return 0;
2513 }
2514
ebdba546 2515 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2516 new_gdbarch = rego->init (info, rego->arches);
2517
ebdba546
AC
2518 /* Did the tdep code like it? No. Reject the change and revert to
2519 the old architecture. */
104c1213
JM
2520 if (new_gdbarch == NULL)
2521 {
2522 if (gdbarch_debug)
59837fe0 2523 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2524 "Target rejected architecture\n");
2525 return NULL;
104c1213
JM
2526 }
2527
ebdba546
AC
2528 /* Is this a pre-existing architecture (as determined by already
2529 being initialized)? Move it to the front of the architecture
2530 list (keeping the list sorted Most Recently Used). */
2531 if (new_gdbarch->initialized_p)
104c1213 2532 {
ebdba546 2533 struct gdbarch_list **list;
fe978cb0 2534 struct gdbarch_list *self;
104c1213 2535 if (gdbarch_debug)
59837fe0 2536 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2537 "Previous architecture %s (%s) selected\n",
2538 host_address_to_string (new_gdbarch),
104c1213 2539 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2540 /* Find the existing arch in the list. */
2541 for (list = &rego->arches;
2542 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2543 list = &(*list)->next);
2544 /* It had better be in the list of architectures. */
2545 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2546 /* Unlink SELF. */
2547 self = (*list);
2548 (*list) = self->next;
2549 /* Insert SELF at the front. */
2550 self->next = rego->arches;
2551 rego->arches = self;
ebdba546
AC
2552 /* Return it. */
2553 return new_gdbarch;
104c1213
JM
2554 }
2555
ebdba546
AC
2556 /* It's a new architecture. */
2557 if (gdbarch_debug)
59837fe0 2558 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2559 "New architecture %s (%s) selected\n",
2560 host_address_to_string (new_gdbarch),
ebdba546
AC
2561 new_gdbarch->bfd_arch_info->printable_name);
2562
2563 /* Insert the new architecture into the front of the architecture
2564 list (keep the list sorted Most Recently Used). */
0f79675b 2565 {
fe978cb0
PA
2566 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2567 self->next = rego->arches;
2568 self->gdbarch = new_gdbarch;
2569 rego->arches = self;
0f79675b 2570 }
104c1213 2571
4b9b3959
AC
2572 /* Check that the newly installed architecture is valid. Plug in
2573 any post init values. */
2574 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2575 verify_gdbarch (new_gdbarch);
ebdba546 2576 new_gdbarch->initialized_p = 1;
104c1213 2577
4b9b3959 2578 if (gdbarch_debug)
ebdba546
AC
2579 gdbarch_dump (new_gdbarch, gdb_stdlog);
2580
2581 return new_gdbarch;
2582}
2583
e487cc15 2584/* Make the specified architecture current. */
ebdba546
AC
2585
2586void
aff68abb 2587set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2588{
2589 gdb_assert (new_gdbarch != NULL);
ebdba546 2590 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2591 current_inferior ()->gdbarch = new_gdbarch;
0bee6dd4 2592 gdb::observers::architecture_changed.notify (new_gdbarch);
a3ecef73 2593 registers_changed ();
ebdba546 2594}
104c1213 2595
f5656ead 2596/* Return the current inferior's arch. */
6ecd4729
PA
2597
2598struct gdbarch *
f5656ead 2599target_gdbarch (void)
6ecd4729
PA
2600{
2601 return current_inferior ()->gdbarch;
2602}
2603
104c1213 2604void
34620563 2605_initialize_gdbarch (void)
104c1213 2606{
ccce17b0 2607 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2608Set architecture debugging."), _("\\
2609Show architecture debugging."), _("\\
2610When non-zero, architecture debugging is enabled."),
2611 NULL,
920d2a44 2612 show_gdbarch_debug,
85c07804 2613 &setdebuglist, &showdebuglist);
104c1213
JM
2614}
2615EOF
2616
2617# close things off
2618exec 1>&2
2619#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2620compare_new gdbarch.c
This page took 2.046583 seconds and 4 git commands to generate.