bfd/
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
0b302171 5# Copyright (C) 1998-2012 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
50 while read line
51 do
52 if test "${line}" = ""
53 then
54 continue
55 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 56 then
34620563
AC
57 continue
58 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 59 then
34620563
AC
60 comment="${comment}
61${line}"
f0d4cc9e 62 else
3d9a5942
AC
63
64 # The semantics of IFS varies between different SH's. Some
65 # treat ``::' as three fields while some treat it as just too.
66 # Work around this by eliminating ``::'' ....
67 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
68
69 OFS="${IFS}" ; IFS="[:]"
34620563
AC
70 eval read ${read} <<EOF
71${line}
72EOF
73 IFS="${OFS}"
74
283354d8
AC
75 if test -n "${garbage_at_eol}"
76 then
77 echo "Garbage at end-of-line in ${line}" 1>&2
78 kill $$
79 exit 1
80 fi
81
3d9a5942
AC
82 # .... and then going back through each field and strip out those
83 # that ended up with just that space character.
84 for r in ${read}
85 do
86 if eval test \"\${${r}}\" = \"\ \"
87 then
88 eval ${r}=""
89 fi
90 done
91
a72293e2
AC
92 case "${class}" in
93 m ) staticdefault="${predefault}" ;;
94 M ) staticdefault="0" ;;
95 * ) test "${staticdefault}" || staticdefault=0 ;;
96 esac
06b25f14 97
ae45cd16
AC
98 case "${class}" in
99 F | V | M )
100 case "${invalid_p}" in
34620563 101 "" )
f7968451 102 if test -n "${predefault}"
34620563
AC
103 then
104 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 105 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
106 elif class_is_variable_p
107 then
108 predicate="gdbarch->${function} != 0"
109 elif class_is_function_p
110 then
111 predicate="gdbarch->${function} != NULL"
34620563
AC
112 fi
113 ;;
ae45cd16 114 * )
1e9f55d0 115 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
116 kill $$
117 exit 1
118 ;;
119 esac
34620563
AC
120 esac
121
122 # PREDEFAULT is a valid fallback definition of MEMBER when
123 # multi-arch is not enabled. This ensures that the
124 # default value, when multi-arch is the same as the
125 # default value when not multi-arch. POSTDEFAULT is
126 # always a valid definition of MEMBER as this again
127 # ensures consistency.
128
72e74a21 129 if [ -n "${postdefault}" ]
34620563
AC
130 then
131 fallbackdefault="${postdefault}"
72e74a21 132 elif [ -n "${predefault}" ]
34620563
AC
133 then
134 fallbackdefault="${predefault}"
135 else
73d3c16e 136 fallbackdefault="0"
34620563
AC
137 fi
138
139 #NOT YET: See gdbarch.log for basic verification of
140 # database
141
142 break
f0d4cc9e 143 fi
34620563 144 done
72e74a21 145 if [ -n "${class}" ]
34620563
AC
146 then
147 true
c0e8c252
AC
148 else
149 false
150 fi
151}
152
104c1213 153
f0d4cc9e
AC
154fallback_default_p ()
155{
72e74a21
JB
156 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
157 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
158}
159
160class_is_variable_p ()
161{
4a5c6a1d
AC
162 case "${class}" in
163 *v* | *V* ) true ;;
164 * ) false ;;
165 esac
f0d4cc9e
AC
166}
167
168class_is_function_p ()
169{
4a5c6a1d
AC
170 case "${class}" in
171 *f* | *F* | *m* | *M* ) true ;;
172 * ) false ;;
173 esac
174}
175
176class_is_multiarch_p ()
177{
178 case "${class}" in
179 *m* | *M* ) true ;;
180 * ) false ;;
181 esac
f0d4cc9e
AC
182}
183
184class_is_predicate_p ()
185{
4a5c6a1d
AC
186 case "${class}" in
187 *F* | *V* | *M* ) true ;;
188 * ) false ;;
189 esac
f0d4cc9e
AC
190}
191
192class_is_info_p ()
193{
4a5c6a1d
AC
194 case "${class}" in
195 *i* ) true ;;
196 * ) false ;;
197 esac
f0d4cc9e
AC
198}
199
200
cff3e48b
JM
201# dump out/verify the doco
202for field in ${read}
203do
204 case ${field} in
205
206 class ) : ;;
c4093a6a 207
c0e8c252
AC
208 # # -> line disable
209 # f -> function
210 # hiding a function
2ada493a
AC
211 # F -> function + predicate
212 # hiding a function + predicate to test function validity
c0e8c252
AC
213 # v -> variable
214 # hiding a variable
2ada493a
AC
215 # V -> variable + predicate
216 # hiding a variable + predicate to test variables validity
c0e8c252
AC
217 # i -> set from info
218 # hiding something from the ``struct info'' object
4a5c6a1d
AC
219 # m -> multi-arch function
220 # hiding a multi-arch function (parameterised with the architecture)
221 # M -> multi-arch function + predicate
222 # hiding a multi-arch function + predicate to test function validity
cff3e48b 223
cff3e48b
JM
224 returntype ) : ;;
225
c0e8c252 226 # For functions, the return type; for variables, the data type
cff3e48b
JM
227
228 function ) : ;;
229
c0e8c252
AC
230 # For functions, the member function name; for variables, the
231 # variable name. Member function names are always prefixed with
232 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
233
234 formal ) : ;;
235
c0e8c252
AC
236 # The formal argument list. It is assumed that the formal
237 # argument list includes the actual name of each list element.
238 # A function with no arguments shall have ``void'' as the
239 # formal argument list.
cff3e48b
JM
240
241 actual ) : ;;
242
c0e8c252
AC
243 # The list of actual arguments. The arguments specified shall
244 # match the FORMAL list given above. Functions with out
245 # arguments leave this blank.
cff3e48b 246
0b8f9e4d 247 staticdefault ) : ;;
c0e8c252
AC
248
249 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
250 # created. STATICDEFAULT is the value to insert into that
251 # static gdbarch object. Since this a static object only
252 # simple expressions can be used.
cff3e48b 253
0b8f9e4d 254 # If STATICDEFAULT is empty, zero is used.
c0e8c252 255
0b8f9e4d 256 predefault ) : ;;
cff3e48b 257
10312cc4
AC
258 # An initial value to assign to MEMBER of the freshly
259 # malloc()ed gdbarch object. After initialization, the
260 # freshly malloc()ed object is passed to the target
261 # architecture code for further updates.
cff3e48b 262
0b8f9e4d
AC
263 # If PREDEFAULT is empty, zero is used.
264
10312cc4
AC
265 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
266 # INVALID_P are specified, PREDEFAULT will be used as the
267 # default for the non- multi-arch target.
268
269 # A zero PREDEFAULT function will force the fallback to call
270 # internal_error().
f0d4cc9e
AC
271
272 # Variable declarations can refer to ``gdbarch'' which will
273 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
274
275 postdefault ) : ;;
276
277 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
278 # the target architecture code fail to change the PREDEFAULT
279 # value.
0b8f9e4d
AC
280
281 # If POSTDEFAULT is empty, no post update is performed.
282
283 # If both INVALID_P and POSTDEFAULT are non-empty then
284 # INVALID_P will be used to determine if MEMBER should be
285 # changed to POSTDEFAULT.
286
10312cc4
AC
287 # If a non-empty POSTDEFAULT and a zero INVALID_P are
288 # specified, POSTDEFAULT will be used as the default for the
289 # non- multi-arch target (regardless of the value of
290 # PREDEFAULT).
291
f0d4cc9e
AC
292 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
293
be7811ad 294 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
295 # will contain the current architecture. Care should be
296 # taken.
cff3e48b 297
c4093a6a 298 invalid_p ) : ;;
cff3e48b 299
0b8f9e4d 300 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 301 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
302 # initialize MEMBER or the initialized the member is invalid.
303 # If POSTDEFAULT is non-empty then MEMBER will be updated to
304 # that value. If POSTDEFAULT is empty then internal_error()
305 # is called.
306
307 # If INVALID_P is empty, a check that MEMBER is no longer
308 # equal to PREDEFAULT is used.
309
f0d4cc9e
AC
310 # The expression ``0'' disables the INVALID_P check making
311 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
312
313 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 314
cff3e48b
JM
315 print ) : ;;
316
2f9b146e
AC
317 # An optional expression that convers MEMBER to a value
318 # suitable for formatting using %s.
c0e8c252 319
0b1553bc
UW
320 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
321 # or plongest (anything else) is used.
cff3e48b 322
283354d8 323 garbage_at_eol ) : ;;
0b8f9e4d 324
283354d8 325 # Catches stray fields.
cff3e48b 326
50248794
AC
327 *)
328 echo "Bad field ${field}"
329 exit 1;;
cff3e48b
JM
330 esac
331done
332
cff3e48b 333
104c1213
JM
334function_list ()
335{
cff3e48b 336 # See below (DOCO) for description of each field
34620563 337 cat <<EOF
be7811ad 338i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 339#
97030eea 340i:int:byte_order:::BFD_ENDIAN_BIG
9d4fde75 341i:int:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 342#
97030eea 343i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 344#
30737ed9 345i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
346
347# The bit byte-order has to do just with numbering of bits in debugging symbols
348# and such. Conceptually, it's quite separate from byte/word byte order.
349v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
350
66b43ecb
AC
351# Number of bits in a char or unsigned char for the target machine.
352# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 353# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
354#
355# Number of bits in a short or unsigned short for the target machine.
97030eea 356v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 357# Number of bits in an int or unsigned int for the target machine.
97030eea 358v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 359# Number of bits in a long or unsigned long for the target machine.
97030eea 360v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
361# Number of bits in a long long or unsigned long long for the target
362# machine.
be7811ad 363v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
364# Alignment of a long long or unsigned long long for the target
365# machine.
366v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 367
f9e9243a
UW
368# The ABI default bit-size and format for "half", "float", "double", and
369# "long double". These bit/format pairs should eventually be combined
370# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
371# Each format describes both the big and little endian layouts (if
372# useful).
456fcf94 373
f9e9243a
UW
374v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
375v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 376v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 377v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 378v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 379v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 380v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 381v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 382
52204a0b
DT
383# For most targets, a pointer on the target and its representation as an
384# address in GDB have the same size and "look the same". For such a
17a912b6 385# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
386# / addr_bit will be set from it.
387#
17a912b6 388# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
389# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
390# gdbarch_address_to_pointer as well.
52204a0b
DT
391#
392# ptr_bit is the size of a pointer on the target
be7811ad 393v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 394# addr_bit is the size of a target address as represented in gdb
be7811ad 395v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 396#
8da614df
CV
397# dwarf2_addr_size is the target address size as used in the Dwarf debug
398# info. For .debug_frame FDEs, this is supposed to be the target address
399# size from the associated CU header, and which is equivalent to the
400# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
401# Unfortunately there is no good way to determine this value. Therefore
402# dwarf2_addr_size simply defaults to the target pointer size.
403#
404# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
405# defined using the target's pointer size so far.
406#
407# Note that dwarf2_addr_size only needs to be redefined by a target if the
408# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
409# and if Dwarf versions < 4 need to be supported.
410v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
411#
4e409299 412# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 413v:int:char_signed:::1:-1:1
4e409299 414#
97030eea
UW
415F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
416F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
417# Function for getting target's idea of a frame pointer. FIXME: GDB's
418# whole scheme for dealing with "frames" and "frame pointers" needs a
419# serious shakedown.
a54fba4c 420m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 421#
05d1431c 422M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
423# Read a register into a new struct value. If the register is wholly
424# or partly unavailable, this should call mark_value_bytes_unavailable
425# as appropriate. If this is defined, then pseudo_register_read will
426# never be called.
427M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 428M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 429#
97030eea 430v:int:num_regs:::0:-1
0aba1244
EZ
431# This macro gives the number of pseudo-registers that live in the
432# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
433# These pseudo-registers may be aliases for other registers,
434# combinations of other registers, or they may be computed by GDB.
97030eea 435v:int:num_pseudo_regs:::0:0::0
c2169756 436
175ff332
HZ
437# Assemble agent expression bytecode to collect pseudo-register REG.
438# Return -1 if something goes wrong, 0 otherwise.
439M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
440
441# Assemble agent expression bytecode to push the value of pseudo-register
442# REG on the interpreter stack.
443# Return -1 if something goes wrong, 0 otherwise.
444M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
445
c2169756
AC
446# GDB's standard (or well known) register numbers. These can map onto
447# a real register or a pseudo (computed) register or not be defined at
1200cd6e 448# all (-1).
3e8c568d 449# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
450v:int:sp_regnum:::-1:-1::0
451v:int:pc_regnum:::-1:-1::0
452v:int:ps_regnum:::-1:-1::0
453v:int:fp0_regnum:::0:-1::0
88c72b7d 454# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 455m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 456# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 457m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 458# Convert from an sdb register number to an internal gdb register number.
d3f73121 459m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 460# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 461m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 462m:const char *:register_name:int regnr:regnr::0
9c04cab7 463
7b9ee6a8
DJ
464# Return the type of a register specified by the architecture. Only
465# the register cache should call this function directly; others should
466# use "register_type".
97030eea 467M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 468
f3be58bc 469# See gdbint.texinfo, and PUSH_DUMMY_CALL.
669fac23
DJ
470M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
471# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 472# deprecated_fp_regnum.
97030eea 473v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 474
a86c5fc9 475# See gdbint.texinfo. See infcall.c.
97030eea
UW
476M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477v:int:call_dummy_location::::AT_ENTRY_POINT::0
478M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 479
97030eea
UW
480m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
481M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
482M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
483# MAP a GDB RAW register number onto a simulator register number. See
484# also include/...-sim.h.
e7faf938 485m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
486m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
487m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
9df628e0 488# setjmp/longjmp support.
97030eea 489F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
104c1213 490#
97030eea 491v:int:believe_pcc_promotion:::::::
104c1213 492#
0abe36f5 493m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 494f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 495f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0
UW
496# Construct a value representing the contents of register REGNUM in
497# frame FRAME, interpreted as type TYPE. The routine needs to
498# allocate and return a struct value with all value attributes
499# (but not the value contents) filled in.
97030eea 500f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
104c1213 501#
9898f801
UW
502m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
503m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 504M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 505
6a3a010b
MR
506# Return the return-value convention that will be used by FUNCTION
507# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
508# case the return convention is computed based only on VALTYPE.
509#
510# If READBUF is not NULL, extract the return value and save it in this buffer.
511#
512# If WRITEBUF is not NULL, it contains a return value which will be
513# stored into the appropriate register. This can be used when we want
514# to force the value returned by a function (see the "return" command
515# for instance).
6a3a010b 516M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 517
6093d2eb 518m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 519M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
97030eea 520f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 521m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
522# Return the adjusted address and kind to use for Z0/Z1 packets.
523# KIND is usually the memory length of the breakpoint, but may have a
524# different target-specific meaning.
0e05dfcb 525m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 526M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
527m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
528m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 529v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
530
531# A function can be addressed by either it's "pointer" (possibly a
532# descriptor address) or "entry point" (first executable instruction).
533# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 534# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
535# a simplified subset of that functionality - the function's address
536# corresponds to the "function pointer" and the function's start
537# corresponds to the "function entry point" - and hence is redundant.
538
97030eea 539v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 540
123dc839
DJ
541# Return the remote protocol register number associated with this
542# register. Normally the identity mapping.
97030eea 543m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 544
b2756930 545# Fetch the target specific address used to represent a load module.
97030eea 546F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 547#
97030eea
UW
548v:CORE_ADDR:frame_args_skip:::0:::0
549M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
550M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
551# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
552# frame-base. Enable frame-base before frame-unwind.
97030eea 553F:int:frame_num_args:struct frame_info *frame:frame
104c1213 554#
97030eea
UW
555M:CORE_ADDR:frame_align:CORE_ADDR address:address
556m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
557v:int:frame_red_zone_size
f0d4cc9e 558#
97030eea 559m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
560# On some machines there are bits in addresses which are not really
561# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 562# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
563# we get a "real" address such as one would find in a symbol table.
564# This is used only for addresses of instructions, and even then I'm
565# not sure it's used in all contexts. It exists to deal with there
566# being a few stray bits in the PC which would mislead us, not as some
567# sort of generic thing to handle alignment or segmentation (it's
568# possible it should be in TARGET_READ_PC instead).
24568a2c 569m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
260edbc2 570# It is not at all clear why gdbarch_smash_text_address is not folded into
bf6ae464 571# gdbarch_addr_bits_remove.
24568a2c 572m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
573
574# FIXME/cagney/2001-01-18: This should be split in two. A target method that
575# indicates if the target needs software single step. An ISA method to
576# implement it.
577#
578# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
579# breakpoints using the breakpoint system instead of blatting memory directly
580# (as with rs6000).
64c4637f 581#
e6590a1b
UW
582# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
583# target can single step. If not, then implement single step using breakpoints.
64c4637f 584#
e6590a1b
UW
585# A return value of 1 means that the software_single_step breakpoints
586# were inserted; 0 means they were not.
97030eea 587F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 588
3352ef37
AC
589# Return non-zero if the processor is executing a delay slot and a
590# further single-step is needed before the instruction finishes.
97030eea 591M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 592# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 593# disassembler. Perhaps objdump can handle it?
97030eea
UW
594f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
595f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
596
597
cfd8ab24 598# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
599# evaluates non-zero, this is the address where the debugger will place
600# a step-resume breakpoint to get us past the dynamic linker.
97030eea 601m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 602# Some systems also have trampoline code for returning from shared libs.
2c02bd72 603m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 604
c12260ac
CV
605# A target might have problems with watchpoints as soon as the stack
606# frame of the current function has been destroyed. This mostly happens
607# as the first action in a funtion's epilogue. in_function_epilogue_p()
608# is defined to return a non-zero value if either the given addr is one
609# instruction after the stack destroying instruction up to the trailing
610# return instruction or if we can figure out that the stack frame has
611# already been invalidated regardless of the value of addr. Targets
612# which don't suffer from that problem could just let this functionality
613# untouched.
97030eea 614m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
97030eea
UW
615f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
616f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
97030eea
UW
617v:int:cannot_step_breakpoint:::0:0::0
618v:int:have_nonsteppable_watchpoint:::0:0::0
619F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
620M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
621M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 622# Is a register in a group
97030eea 623m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 624# Fetch the pointer to the ith function argument.
97030eea 625F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f
MK
626
627# Return the appropriate register set for a core file section with
628# name SECT_NAME and size SECT_SIZE.
97030eea 629M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
0d5de010 630
17ea7499
CES
631# Supported register notes in a core file.
632v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
633
6432734d
UW
634# Create core file notes
635M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
636
35c2fab7
UW
637# Find core file memory regions
638M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
639
de584861
PA
640# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
641# core file into buffer READBUF with length LEN.
97030eea 642M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
de584861 643
c0edd9ed 644# How the core target converts a PTID from a core file to a string.
28439f5e
PA
645M:char *:core_pid_to_str:ptid_t ptid:ptid
646
a78c2d62 647# BFD target to use when generating a core file.
86ba1042 648V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 649
0d5de010
DJ
650# If the elements of C++ vtables are in-place function descriptors rather
651# than normal function pointers (which may point to code or a descriptor),
652# set this to one.
97030eea 653v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
654
655# Set if the least significant bit of the delta is used instead of the least
656# significant bit of the pfn for pointers to virtual member functions.
97030eea 657v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
658
659# Advance PC to next instruction in order to skip a permanent breakpoint.
97030eea 660F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
1c772458 661
1668ae25 662# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
663V:ULONGEST:max_insn_length:::0:0
664
665# Copy the instruction at FROM to TO, and make any adjustments
666# necessary to single-step it at that address.
667#
668# REGS holds the state the thread's registers will have before
669# executing the copied instruction; the PC in REGS will refer to FROM,
670# not the copy at TO. The caller should update it to point at TO later.
671#
672# Return a pointer to data of the architecture's choice to be passed
673# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
674# the instruction's effects have been completely simulated, with the
675# resulting state written back to REGS.
676#
677# For a general explanation of displaced stepping and how GDB uses it,
678# see the comments in infrun.c.
679#
680# The TO area is only guaranteed to have space for
681# gdbarch_max_insn_length (arch) bytes, so this function must not
682# write more bytes than that to that area.
683#
684# If you do not provide this function, GDB assumes that the
685# architecture does not support displaced stepping.
686#
687# If your architecture doesn't need to adjust instructions before
688# single-stepping them, consider using simple_displaced_step_copy_insn
689# here.
690M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
691
99e40580
UW
692# Return true if GDB should use hardware single-stepping to execute
693# the displaced instruction identified by CLOSURE. If false,
694# GDB will simply restart execution at the displaced instruction
695# location, and it is up to the target to ensure GDB will receive
696# control again (e.g. by placing a software breakpoint instruction
697# into the displaced instruction buffer).
698#
699# The default implementation returns false on all targets that
700# provide a gdbarch_software_single_step routine, and true otherwise.
701m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
702
237fc4c9
PA
703# Fix up the state resulting from successfully single-stepping a
704# displaced instruction, to give the result we would have gotten from
705# stepping the instruction in its original location.
706#
707# REGS is the register state resulting from single-stepping the
708# displaced instruction.
709#
710# CLOSURE is the result from the matching call to
711# gdbarch_displaced_step_copy_insn.
712#
713# If you provide gdbarch_displaced_step_copy_insn.but not this
714# function, then GDB assumes that no fixup is needed after
715# single-stepping the instruction.
716#
717# For a general explanation of displaced stepping and how GDB uses it,
718# see the comments in infrun.c.
719M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
720
721# Free a closure returned by gdbarch_displaced_step_copy_insn.
722#
723# If you provide gdbarch_displaced_step_copy_insn, you must provide
724# this function as well.
725#
726# If your architecture uses closures that don't need to be freed, then
727# you can use simple_displaced_step_free_closure here.
728#
729# For a general explanation of displaced stepping and how GDB uses it,
730# see the comments in infrun.c.
731m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
732
733# Return the address of an appropriate place to put displaced
734# instructions while we step over them. There need only be one such
735# place, since we're only stepping one thread over a breakpoint at a
736# time.
737#
738# For a general explanation of displaced stepping and how GDB uses it,
739# see the comments in infrun.c.
740m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
741
dde08ee1
PA
742# Relocate an instruction to execute at a different address. OLDLOC
743# is the address in the inferior memory where the instruction to
744# relocate is currently at. On input, TO points to the destination
745# where we want the instruction to be copied (and possibly adjusted)
746# to. On output, it points to one past the end of the resulting
747# instruction(s). The effect of executing the instruction at TO shall
748# be the same as if executing it at FROM. For example, call
749# instructions that implicitly push the return address on the stack
750# should be adjusted to return to the instruction after OLDLOC;
751# relative branches, and other PC-relative instructions need the
752# offset adjusted; etc.
753M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
754
1c772458 755# Refresh overlay mapped state for section OSECT.
97030eea 756F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 757
97030eea 758M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
759
760# Handle special encoding of static variables in stabs debug info.
0d5cff50 761F:const char *:static_transform_name:const char *name:name
203c3895 762# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 763v:int:sofun_address_maybe_missing:::0:0::0
1cded358 764
0508c3ec
HZ
765# Parse the instruction at ADDR storing in the record execution log
766# the registers REGCACHE and memory ranges that will be affected when
767# the instruction executes, along with their current values.
768# Return -1 if something goes wrong, 0 otherwise.
769M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
770
3846b520
HZ
771# Save process state after a signal.
772# Return -1 if something goes wrong, 0 otherwise.
2ea28649 773M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 774
22203bbf
PA
775# Signal translation: translate inferior's signal (target's) number
776# into GDB's representation. This is mainly used when cross-debugging
777# core files --- "Live" targets hide the translation behind the target
778# interface (target_wait, target_resume, etc.). The default is to do
779# the translation using host signal numbers.
780m:enum gdb_signal:gdb_signal_from_target:int signo:signo::default_gdb_signal_from_target::0
60c5725c 781
4aa995e1
PA
782# Extra signal info inspection.
783#
784# Return a type suitable to inspect extra signal information.
785M:struct type *:get_siginfo_type:void:
786
60c5725c
DJ
787# Record architecture-specific information from the symbol table.
788M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 789
a96d9b2e
SDJ
790# Function for the 'catch syscall' feature.
791
792# Get architecture-specific system calls information from registers.
793M:LONGEST:get_syscall_number:ptid_t ptid:ptid
794
55aa24fb
SDJ
795# SystemTap related fields and functions.
796
797# Prefix used to mark an integer constant on the architecture's assembly
798# For example, on x86 integer constants are written as:
799#
800# \$10 ;; integer constant 10
801#
802# in this case, this prefix would be the character \`\$\'.
803v:const char *:stap_integer_prefix:::0:0::0:gdbarch->stap_integer_prefix
804
805# Suffix used to mark an integer constant on the architecture's assembly.
806v:const char *:stap_integer_suffix:::0:0::0:gdbarch->stap_integer_suffix
807
808# Prefix used to mark a register name on the architecture's assembly.
809# For example, on x86 the register name is written as:
810#
811# \%eax ;; register eax
812#
813# in this case, this prefix would be the character \`\%\'.
814v:const char *:stap_register_prefix:::0:0::0:gdbarch->stap_register_prefix
815
816# Suffix used to mark a register name on the architecture's assembly
817v:const char *:stap_register_suffix:::0:0::0:gdbarch->stap_register_suffix
818
819# Prefix used to mark a register indirection on the architecture's assembly.
820# For example, on x86 the register indirection is written as:
821#
822# \(\%eax\) ;; indirecting eax
823#
824# in this case, this prefix would be the charater \`\(\'.
825#
826# Please note that we use the indirection prefix also for register
827# displacement, e.g., \`4\(\%eax\)\' on x86.
828v:const char *:stap_register_indirection_prefix:::0:0::0:gdbarch->stap_register_indirection_prefix
829
830# Suffix used to mark a register indirection on the architecture's assembly.
831# For example, on x86 the register indirection is written as:
832#
833# \(\%eax\) ;; indirecting eax
834#
835# in this case, this prefix would be the charater \`\)\'.
836#
837# Please note that we use the indirection suffix also for register
838# displacement, e.g., \`4\(\%eax\)\' on x86.
839v:const char *:stap_register_indirection_suffix:::0:0::0:gdbarch->stap_register_indirection_suffix
840
841# Prefix used to name a register using GDB's nomenclature.
842#
843# For example, on PPC a register is represented by a number in the assembly
844# language (e.g., \`10\' is the 10th general-purpose register). However,
845# inside GDB this same register has an \`r\' appended to its name, so the 10th
846# register would be represented as \`r10\' internally.
847v:const char *:stap_gdb_register_prefix:::0:0::0:gdbarch->stap_gdb_register_prefix
848
849# Suffix used to name a register using GDB's nomenclature.
850v:const char *:stap_gdb_register_suffix:::0:0::0:gdbarch->stap_gdb_register_suffix
851
852# Check if S is a single operand.
853#
854# Single operands can be:
855# \- Literal integers, e.g. \`\$10\' on x86
856# \- Register access, e.g. \`\%eax\' on x86
857# \- Register indirection, e.g. \`\(\%eax\)\' on x86
858# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
859#
860# This function should check for these patterns on the string
861# and return 1 if some were found, or zero otherwise. Please try to match
862# as much info as you can from the string, i.e., if you have to match
863# something like \`\(\%\', do not match just the \`\(\'.
864M:int:stap_is_single_operand:const char *s:s
865
866# Function used to handle a "special case" in the parser.
867#
868# A "special case" is considered to be an unknown token, i.e., a token
869# that the parser does not know how to parse. A good example of special
870# case would be ARM's register displacement syntax:
871#
872# [R0, #4] ;; displacing R0 by 4
873#
874# Since the parser assumes that a register displacement is of the form:
875#
876# <number> <indirection_prefix> <register_name> <indirection_suffix>
877#
878# it means that it will not be able to recognize and parse this odd syntax.
879# Therefore, we should add a special case function that will handle this token.
880#
881# This function should generate the proper expression form of the expression
882# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
883# and so on). It should also return 1 if the parsing was successful, or zero
884# if the token was not recognized as a special token (in this case, returning
885# zero means that the special parser is deferring the parsing to the generic
886# parser), and should advance the buffer pointer (p->arg).
887M:int:stap_parse_special_token:struct stap_parse_info *p:p
888
889
50c71eaf
PA
890# True if the list of shared libraries is one and only for all
891# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
892# This usually means that all processes, although may or may not share
893# an address space, will see the same set of symbols at the same
894# addresses.
50c71eaf 895v:int:has_global_solist:::0:0::0
2567c7d9
PA
896
897# On some targets, even though each inferior has its own private
898# address space, the debug interface takes care of making breakpoints
899# visible to all address spaces automatically. For such cases,
900# this property should be set to true.
901v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
902
903# True if inferiors share an address space (e.g., uClinux).
904m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
905
906# True if a fast tracepoint can be set at an address.
907m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 908
f870a310
TT
909# Return the "auto" target charset.
910f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
911# Return the "auto" target wide charset.
912f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
913
914# If non-empty, this is a file extension that will be opened in place
915# of the file extension reported by the shared library list.
916#
917# This is most useful for toolchains that use a post-linker tool,
918# where the names of the files run on the target differ in extension
919# compared to the names of the files GDB should load for debug info.
920v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
921
922# If true, the target OS has DOS-based file system semantics. That
923# is, absolute paths include a drive name, and the backslash is
924# considered a directory separator.
925v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
926
927# Generate bytecodes to collect the return address in a frame.
928# Since the bytecodes run on the target, possibly with GDB not even
929# connected, the full unwinding machinery is not available, and
930# typically this function will issue bytecodes for one or more likely
931# places that the return address may be found.
932m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
933
3030c96e
UW
934# Implement the "info proc" command.
935M:void:info_proc:char *args, enum info_proc_what what:args, what
936
104c1213 937EOF
104c1213
JM
938}
939
0b8f9e4d
AC
940#
941# The .log file
942#
943exec > new-gdbarch.log
34620563 944function_list | while do_read
0b8f9e4d
AC
945do
946 cat <<EOF
2f9b146e 947${class} ${returntype} ${function} ($formal)
104c1213 948EOF
3d9a5942
AC
949 for r in ${read}
950 do
951 eval echo \"\ \ \ \ ${r}=\${${r}}\"
952 done
f0d4cc9e 953 if class_is_predicate_p && fallback_default_p
0b8f9e4d 954 then
66d659b1 955 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
956 kill $$
957 exit 1
958 fi
72e74a21 959 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
960 then
961 echo "Error: postdefault is useless when invalid_p=0" 1>&2
962 kill $$
963 exit 1
964 fi
a72293e2
AC
965 if class_is_multiarch_p
966 then
967 if class_is_predicate_p ; then :
968 elif test "x${predefault}" = "x"
969 then
2f9b146e 970 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
971 kill $$
972 exit 1
973 fi
974 fi
3d9a5942 975 echo ""
0b8f9e4d
AC
976done
977
978exec 1>&2
979compare_new gdbarch.log
980
104c1213
JM
981
982copyright ()
983{
984cat <<EOF
59233f88
AC
985/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
986
104c1213 987/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 988
f801e1e0
MS
989 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
990 2007, 2008, 2009 Free Software Foundation, Inc.
104c1213
JM
991
992 This file is part of GDB.
993
994 This program is free software; you can redistribute it and/or modify
995 it under the terms of the GNU General Public License as published by
50efebf8 996 the Free Software Foundation; either version 3 of the License, or
104c1213 997 (at your option) any later version.
50efebf8 998
104c1213
JM
999 This program is distributed in the hope that it will be useful,
1000 but WITHOUT ANY WARRANTY; without even the implied warranty of
1001 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1002 GNU General Public License for more details.
50efebf8 1003
104c1213 1004 You should have received a copy of the GNU General Public License
50efebf8 1005 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1006
104c1213
JM
1007/* This file was created with the aid of \`\`gdbarch.sh''.
1008
52204a0b 1009 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1010 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1011 against the existing \`\`gdbarch.[hc]''. Any differences found
1012 being reported.
1013
1014 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1015 changes into that script. Conversely, when making sweeping changes
104c1213 1016 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1017 easier. */
104c1213
JM
1018
1019EOF
1020}
1021
1022#
1023# The .h file
1024#
1025
1026exec > new-gdbarch.h
1027copyright
1028cat <<EOF
1029#ifndef GDBARCH_H
1030#define GDBARCH_H
1031
da3331ec
AC
1032struct floatformat;
1033struct ui_file;
104c1213
JM
1034struct frame_info;
1035struct value;
b6af0555 1036struct objfile;
1c772458 1037struct obj_section;
a2cf933a 1038struct minimal_symbol;
049ee0e4 1039struct regcache;
b59ff9d5 1040struct reggroup;
6ce6d90f 1041struct regset;
a89aa300 1042struct disassemble_info;
e2d0e7eb 1043struct target_ops;
030f20e1 1044struct obstack;
8181d85f 1045struct bp_target_info;
424163ea 1046struct target_desc;
237fc4c9 1047struct displaced_step_closure;
17ea7499 1048struct core_regset_section;
a96d9b2e 1049struct syscall;
175ff332 1050struct agent_expr;
6710bf39 1051struct axs_value;
55aa24fb 1052struct stap_parse_info;
104c1213 1053
9e2ace22
JB
1054/* The architecture associated with the connection to the target.
1055
1056 The architecture vector provides some information that is really
1057 a property of the target: The layout of certain packets, for instance;
1058 or the solib_ops vector. Etc. To differentiate architecture accesses
1059 to per-target properties from per-thread/per-frame/per-objfile properties,
1060 accesses to per-target properties should be made through target_gdbarch.
1061
1062 Eventually, when support for multiple targets is implemented in
1063 GDB, this global should be made target-specific. */
1cf3db46 1064extern struct gdbarch *target_gdbarch;
104c1213
JM
1065EOF
1066
1067# function typedef's
3d9a5942
AC
1068printf "\n"
1069printf "\n"
0963b4bd 1070printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1071function_list | while do_read
104c1213 1072do
2ada493a
AC
1073 if class_is_info_p
1074 then
3d9a5942
AC
1075 printf "\n"
1076 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1077 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1078 fi
104c1213
JM
1079done
1080
1081# function typedef's
3d9a5942
AC
1082printf "\n"
1083printf "\n"
0963b4bd 1084printf "/* The following are initialized by the target dependent code. */\n"
34620563 1085function_list | while do_read
104c1213 1086do
72e74a21 1087 if [ -n "${comment}" ]
34620563
AC
1088 then
1089 echo "${comment}" | sed \
1090 -e '2 s,#,/*,' \
1091 -e '3,$ s,#, ,' \
1092 -e '$ s,$, */,'
1093 fi
412d5987
AC
1094
1095 if class_is_predicate_p
2ada493a 1096 then
412d5987
AC
1097 printf "\n"
1098 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1099 fi
2ada493a
AC
1100 if class_is_variable_p
1101 then
3d9a5942
AC
1102 printf "\n"
1103 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1104 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1105 fi
1106 if class_is_function_p
1107 then
3d9a5942 1108 printf "\n"
72e74a21 1109 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1110 then
1111 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1112 elif class_is_multiarch_p
1113 then
1114 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1115 else
1116 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1117 fi
72e74a21 1118 if [ "x${formal}" = "xvoid" ]
104c1213 1119 then
3d9a5942 1120 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1121 else
3d9a5942 1122 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1123 fi
3d9a5942 1124 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1125 fi
104c1213
JM
1126done
1127
1128# close it off
1129cat <<EOF
1130
a96d9b2e
SDJ
1131/* Definition for an unknown syscall, used basically in error-cases. */
1132#define UNKNOWN_SYSCALL (-1)
1133
104c1213
JM
1134extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1135
1136
1137/* Mechanism for co-ordinating the selection of a specific
1138 architecture.
1139
1140 GDB targets (*-tdep.c) can register an interest in a specific
1141 architecture. Other GDB components can register a need to maintain
1142 per-architecture data.
1143
1144 The mechanisms below ensures that there is only a loose connection
1145 between the set-architecture command and the various GDB
0fa6923a 1146 components. Each component can independently register their need
104c1213
JM
1147 to maintain architecture specific data with gdbarch.
1148
1149 Pragmatics:
1150
1151 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1152 didn't scale.
1153
1154 The more traditional mega-struct containing architecture specific
1155 data for all the various GDB components was also considered. Since
0fa6923a 1156 GDB is built from a variable number of (fairly independent)
104c1213 1157 components it was determined that the global aproach was not
0963b4bd 1158 applicable. */
104c1213
JM
1159
1160
1161/* Register a new architectural family with GDB.
1162
1163 Register support for the specified ARCHITECTURE with GDB. When
1164 gdbarch determines that the specified architecture has been
1165 selected, the corresponding INIT function is called.
1166
1167 --
1168
1169 The INIT function takes two parameters: INFO which contains the
1170 information available to gdbarch about the (possibly new)
1171 architecture; ARCHES which is a list of the previously created
1172 \`\`struct gdbarch'' for this architecture.
1173
0f79675b 1174 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1175 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1176
1177 The ARCHES parameter is a linked list (sorted most recently used)
1178 of all the previously created architures for this architecture
1179 family. The (possibly NULL) ARCHES->gdbarch can used to access
1180 values from the previously selected architecture for this
59837fe0 1181 architecture family.
104c1213
JM
1182
1183 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1184 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1185 gdbarch'' from the ARCHES list - indicating that the new
1186 architecture is just a synonym for an earlier architecture (see
1187 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1188 - that describes the selected architecture (see gdbarch_alloc()).
1189
1190 The DUMP_TDEP function shall print out all target specific values.
1191 Care should be taken to ensure that the function works in both the
0963b4bd 1192 multi-arch and non- multi-arch cases. */
104c1213
JM
1193
1194struct gdbarch_list
1195{
1196 struct gdbarch *gdbarch;
1197 struct gdbarch_list *next;
1198};
1199
1200struct gdbarch_info
1201{
0963b4bd 1202 /* Use default: NULL (ZERO). */
104c1213
JM
1203 const struct bfd_arch_info *bfd_arch_info;
1204
428721aa 1205 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
104c1213
JM
1206 int byte_order;
1207
9d4fde75
SS
1208 int byte_order_for_code;
1209
0963b4bd 1210 /* Use default: NULL (ZERO). */
104c1213
JM
1211 bfd *abfd;
1212
0963b4bd 1213 /* Use default: NULL (ZERO). */
104c1213 1214 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1215
1216 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1217 enum gdb_osabi osabi;
424163ea
DJ
1218
1219 /* Use default: NULL (ZERO). */
1220 const struct target_desc *target_desc;
104c1213
JM
1221};
1222
1223typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1224typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1225
4b9b3959 1226/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1227extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1228
4b9b3959
AC
1229extern void gdbarch_register (enum bfd_architecture architecture,
1230 gdbarch_init_ftype *,
1231 gdbarch_dump_tdep_ftype *);
1232
104c1213 1233
b4a20239
AC
1234/* Return a freshly allocated, NULL terminated, array of the valid
1235 architecture names. Since architectures are registered during the
1236 _initialize phase this function only returns useful information
0963b4bd 1237 once initialization has been completed. */
b4a20239
AC
1238
1239extern const char **gdbarch_printable_names (void);
1240
1241
104c1213 1242/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1243 matches the information provided by INFO. */
104c1213 1244
424163ea 1245extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1246
1247
1248/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1249 basic initialization using values obtained from the INFO and TDEP
104c1213 1250 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1251 initialization of the object. */
104c1213
JM
1252
1253extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1254
1255
4b9b3959
AC
1256/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1257 It is assumed that the caller freeds the \`\`struct
0963b4bd 1258 gdbarch_tdep''. */
4b9b3959 1259
058f20d5
JB
1260extern void gdbarch_free (struct gdbarch *);
1261
1262
aebd7893
AC
1263/* Helper function. Allocate memory from the \`\`struct gdbarch''
1264 obstack. The memory is freed when the corresponding architecture
1265 is also freed. */
1266
1267extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1268#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1269#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1270
1271
0963b4bd 1272/* Helper function. Force an update of the current architecture.
104c1213 1273
b732d07d
AC
1274 The actual architecture selected is determined by INFO, \`\`(gdb) set
1275 architecture'' et.al., the existing architecture and BFD's default
1276 architecture. INFO should be initialized to zero and then selected
1277 fields should be updated.
104c1213 1278
0963b4bd 1279 Returns non-zero if the update succeeds. */
16f33e29
AC
1280
1281extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1282
1283
ebdba546
AC
1284/* Helper function. Find an architecture matching info.
1285
1286 INFO should be initialized using gdbarch_info_init, relevant fields
1287 set, and then finished using gdbarch_info_fill.
1288
1289 Returns the corresponding architecture, or NULL if no matching
59837fe0 1290 architecture was found. */
ebdba546
AC
1291
1292extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1293
1294
59837fe0 1295/* Helper function. Set the global "target_gdbarch" to "gdbarch".
ebdba546
AC
1296
1297 FIXME: kettenis/20031124: Of the functions that follow, only
1298 gdbarch_from_bfd is supposed to survive. The others will
1299 dissappear since in the future GDB will (hopefully) be truly
1300 multi-arch. However, for now we're still stuck with the concept of
1301 a single active architecture. */
1302
59837fe0 1303extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
ebdba546 1304
104c1213
JM
1305
1306/* Register per-architecture data-pointer.
1307
1308 Reserve space for a per-architecture data-pointer. An identifier
1309 for the reserved data-pointer is returned. That identifer should
95160752 1310 be saved in a local static variable.
104c1213 1311
fcc1c85c
AC
1312 Memory for the per-architecture data shall be allocated using
1313 gdbarch_obstack_zalloc. That memory will be deleted when the
1314 corresponding architecture object is deleted.
104c1213 1315
95160752
AC
1316 When a previously created architecture is re-selected, the
1317 per-architecture data-pointer for that previous architecture is
76860b5f 1318 restored. INIT() is not re-called.
104c1213
JM
1319
1320 Multiple registrarants for any architecture are allowed (and
1321 strongly encouraged). */
1322
95160752 1323struct gdbarch_data;
104c1213 1324
030f20e1
AC
1325typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1326extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1327typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1328extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1329extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1330 struct gdbarch_data *data,
1331 void *pointer);
104c1213 1332
451fbdda 1333extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1334
1335
0fa6923a 1336/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1337 byte-order, ...) using information found in the BFD. */
104c1213
JM
1338
1339extern void set_gdbarch_from_file (bfd *);
1340
1341
e514a9d6
JM
1342/* Initialize the current architecture to the "first" one we find on
1343 our list. */
1344
1345extern void initialize_current_architecture (void);
1346
104c1213
JM
1347/* gdbarch trace variable */
1348extern int gdbarch_debug;
1349
4b9b3959 1350extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1351
1352#endif
1353EOF
1354exec 1>&2
1355#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1356compare_new gdbarch.h
104c1213
JM
1357
1358
1359#
1360# C file
1361#
1362
1363exec > new-gdbarch.c
1364copyright
1365cat <<EOF
1366
1367#include "defs.h"
7355ddba 1368#include "arch-utils.h"
104c1213 1369
104c1213 1370#include "gdbcmd.h"
faaf634c 1371#include "inferior.h"
104c1213
JM
1372#include "symcat.h"
1373
f0d4cc9e 1374#include "floatformat.h"
104c1213 1375
95160752 1376#include "gdb_assert.h"
b66d6d2e 1377#include "gdb_string.h"
b59ff9d5 1378#include "reggroups.h"
4be87837 1379#include "osabi.h"
aebd7893 1380#include "gdb_obstack.h"
383f836e 1381#include "observer.h"
a3ecef73 1382#include "regcache.h"
95160752 1383
104c1213
JM
1384/* Static function declarations */
1385
b3cc3077 1386static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1387
104c1213
JM
1388/* Non-zero if we want to trace architecture code. */
1389
1390#ifndef GDBARCH_DEBUG
1391#define GDBARCH_DEBUG 0
1392#endif
1393int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1394static void
1395show_gdbarch_debug (struct ui_file *file, int from_tty,
1396 struct cmd_list_element *c, const char *value)
1397{
1398 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1399}
104c1213 1400
456fcf94 1401static const char *
8da61cc4 1402pformat (const struct floatformat **format)
456fcf94
AC
1403{
1404 if (format == NULL)
1405 return "(null)";
1406 else
8da61cc4
DJ
1407 /* Just print out one of them - this is only for diagnostics. */
1408 return format[0]->name;
456fcf94
AC
1409}
1410
08105857
PA
1411static const char *
1412pstring (const char *string)
1413{
1414 if (string == NULL)
1415 return "(null)";
1416 return string;
1417}
1418
104c1213
JM
1419EOF
1420
1421# gdbarch open the gdbarch object
3d9a5942 1422printf "\n"
0963b4bd 1423printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1424printf "\n"
1425printf "struct gdbarch\n"
1426printf "{\n"
76860b5f
AC
1427printf " /* Has this architecture been fully initialized? */\n"
1428printf " int initialized_p;\n"
aebd7893
AC
1429printf "\n"
1430printf " /* An obstack bound to the lifetime of the architecture. */\n"
1431printf " struct obstack *obstack;\n"
1432printf "\n"
0963b4bd 1433printf " /* basic architectural information. */\n"
34620563 1434function_list | while do_read
104c1213 1435do
2ada493a
AC
1436 if class_is_info_p
1437 then
3d9a5942 1438 printf " ${returntype} ${function};\n"
2ada493a 1439 fi
104c1213 1440done
3d9a5942 1441printf "\n"
0963b4bd 1442printf " /* target specific vector. */\n"
3d9a5942
AC
1443printf " struct gdbarch_tdep *tdep;\n"
1444printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1445printf "\n"
0963b4bd 1446printf " /* per-architecture data-pointers. */\n"
95160752 1447printf " unsigned nr_data;\n"
3d9a5942
AC
1448printf " void **data;\n"
1449printf "\n"
0963b4bd 1450printf " /* per-architecture swap-regions. */\n"
3d9a5942
AC
1451printf " struct gdbarch_swap *swap;\n"
1452printf "\n"
104c1213
JM
1453cat <<EOF
1454 /* Multi-arch values.
1455
1456 When extending this structure you must:
1457
1458 Add the field below.
1459
1460 Declare set/get functions and define the corresponding
1461 macro in gdbarch.h.
1462
1463 gdbarch_alloc(): If zero/NULL is not a suitable default,
1464 initialize the new field.
1465
1466 verify_gdbarch(): Confirm that the target updated the field
1467 correctly.
1468
7e73cedf 1469 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1470 field is dumped out
1471
c0e8c252 1472 \`\`startup_gdbarch()'': Append an initial value to the static
104c1213
JM
1473 variable (base values on the host's c-type system).
1474
1475 get_gdbarch(): Implement the set/get functions (probably using
1476 the macro's as shortcuts).
1477
1478 */
1479
1480EOF
34620563 1481function_list | while do_read
104c1213 1482do
2ada493a
AC
1483 if class_is_variable_p
1484 then
3d9a5942 1485 printf " ${returntype} ${function};\n"
2ada493a
AC
1486 elif class_is_function_p
1487 then
2f9b146e 1488 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1489 fi
104c1213 1490done
3d9a5942 1491printf "};\n"
104c1213
JM
1492
1493# A pre-initialized vector
3d9a5942
AC
1494printf "\n"
1495printf "\n"
104c1213
JM
1496cat <<EOF
1497/* The default architecture uses host values (for want of a better
0963b4bd 1498 choice). */
104c1213 1499EOF
3d9a5942
AC
1500printf "\n"
1501printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1502printf "\n"
1503printf "struct gdbarch startup_gdbarch =\n"
1504printf "{\n"
76860b5f 1505printf " 1, /* Always initialized. */\n"
aebd7893 1506printf " NULL, /* The obstack. */\n"
0963b4bd 1507printf " /* basic architecture information. */\n"
4b9b3959 1508function_list | while do_read
104c1213 1509do
2ada493a
AC
1510 if class_is_info_p
1511 then
ec5cbaec 1512 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1513 fi
104c1213
JM
1514done
1515cat <<EOF
0963b4bd 1516 /* target specific vector and its dump routine. */
4b9b3959 1517 NULL, NULL,
0963b4bd 1518 /*per-architecture data-pointers and swap regions. */
104c1213
JM
1519 0, NULL, NULL,
1520 /* Multi-arch values */
1521EOF
34620563 1522function_list | while do_read
104c1213 1523do
2ada493a
AC
1524 if class_is_function_p || class_is_variable_p
1525 then
ec5cbaec 1526 printf " ${staticdefault}, /* ${function} */\n"
2ada493a 1527 fi
104c1213
JM
1528done
1529cat <<EOF
c0e8c252 1530 /* startup_gdbarch() */
104c1213 1531};
4b9b3959 1532
1cf3db46 1533struct gdbarch *target_gdbarch = &startup_gdbarch;
104c1213
JM
1534EOF
1535
1536# Create a new gdbarch struct
104c1213 1537cat <<EOF
7de2341d 1538
66b43ecb 1539/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1540 \`\`struct gdbarch_info''. */
104c1213 1541EOF
3d9a5942 1542printf "\n"
104c1213
JM
1543cat <<EOF
1544struct gdbarch *
1545gdbarch_alloc (const struct gdbarch_info *info,
1546 struct gdbarch_tdep *tdep)
1547{
be7811ad 1548 struct gdbarch *gdbarch;
aebd7893
AC
1549
1550 /* Create an obstack for allocating all the per-architecture memory,
1551 then use that to allocate the architecture vector. */
1552 struct obstack *obstack = XMALLOC (struct obstack);
1553 obstack_init (obstack);
be7811ad
MD
1554 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1555 memset (gdbarch, 0, sizeof (*gdbarch));
1556 gdbarch->obstack = obstack;
85de9627 1557
be7811ad 1558 alloc_gdbarch_data (gdbarch);
85de9627 1559
be7811ad 1560 gdbarch->tdep = tdep;
104c1213 1561EOF
3d9a5942 1562printf "\n"
34620563 1563function_list | while do_read
104c1213 1564do
2ada493a
AC
1565 if class_is_info_p
1566 then
be7811ad 1567 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1568 fi
104c1213 1569done
3d9a5942 1570printf "\n"
0963b4bd 1571printf " /* Force the explicit initialization of these. */\n"
34620563 1572function_list | while do_read
104c1213 1573do
2ada493a
AC
1574 if class_is_function_p || class_is_variable_p
1575 then
72e74a21 1576 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1577 then
be7811ad 1578 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1579 fi
2ada493a 1580 fi
104c1213
JM
1581done
1582cat <<EOF
1583 /* gdbarch_alloc() */
1584
be7811ad 1585 return gdbarch;
104c1213
JM
1586}
1587EOF
1588
058f20d5 1589# Free a gdbarch struct.
3d9a5942
AC
1590printf "\n"
1591printf "\n"
058f20d5 1592cat <<EOF
aebd7893
AC
1593/* Allocate extra space using the per-architecture obstack. */
1594
1595void *
1596gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1597{
1598 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1599
aebd7893
AC
1600 memset (data, 0, size);
1601 return data;
1602}
1603
1604
058f20d5
JB
1605/* Free a gdbarch struct. This should never happen in normal
1606 operation --- once you've created a gdbarch, you keep it around.
1607 However, if an architecture's init function encounters an error
1608 building the structure, it may need to clean up a partially
1609 constructed gdbarch. */
4b9b3959 1610
058f20d5
JB
1611void
1612gdbarch_free (struct gdbarch *arch)
1613{
aebd7893 1614 struct obstack *obstack;
05c547f6 1615
95160752 1616 gdb_assert (arch != NULL);
aebd7893
AC
1617 gdb_assert (!arch->initialized_p);
1618 obstack = arch->obstack;
1619 obstack_free (obstack, 0); /* Includes the ARCH. */
1620 xfree (obstack);
058f20d5
JB
1621}
1622EOF
1623
104c1213 1624# verify a new architecture
104c1213 1625cat <<EOF
db446970
AC
1626
1627
1628/* Ensure that all values in a GDBARCH are reasonable. */
1629
104c1213 1630static void
be7811ad 1631verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1632{
f16a1923
AC
1633 struct ui_file *log;
1634 struct cleanup *cleanups;
759ef836 1635 long length;
f16a1923 1636 char *buf;
05c547f6 1637
f16a1923
AC
1638 log = mem_fileopen ();
1639 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1640 /* fundamental */
be7811ad 1641 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1642 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1643 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1644 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1645 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1646EOF
34620563 1647function_list | while do_read
104c1213 1648do
2ada493a
AC
1649 if class_is_function_p || class_is_variable_p
1650 then
72e74a21 1651 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1652 then
3d9a5942 1653 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1654 elif class_is_predicate_p
1655 then
0963b4bd 1656 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1657 # FIXME: See do_read for potential simplification
72e74a21 1658 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1659 then
3d9a5942 1660 printf " if (${invalid_p})\n"
be7811ad 1661 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1662 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1663 then
be7811ad
MD
1664 printf " if (gdbarch->${function} == ${predefault})\n"
1665 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1666 elif [ -n "${postdefault}" ]
f0d4cc9e 1667 then
be7811ad
MD
1668 printf " if (gdbarch->${function} == 0)\n"
1669 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1670 elif [ -n "${invalid_p}" ]
104c1213 1671 then
4d60522e 1672 printf " if (${invalid_p})\n"
f16a1923 1673 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1674 elif [ -n "${predefault}" ]
104c1213 1675 then
be7811ad 1676 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1677 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1678 fi
2ada493a 1679 fi
104c1213
JM
1680done
1681cat <<EOF
759ef836 1682 buf = ui_file_xstrdup (log, &length);
f16a1923 1683 make_cleanup (xfree, buf);
759ef836 1684 if (length > 0)
f16a1923 1685 internal_error (__FILE__, __LINE__,
85c07804 1686 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1687 buf);
1688 do_cleanups (cleanups);
104c1213
JM
1689}
1690EOF
1691
1692# dump the structure
3d9a5942
AC
1693printf "\n"
1694printf "\n"
104c1213 1695cat <<EOF
0963b4bd 1696/* Print out the details of the current architecture. */
4b9b3959 1697
104c1213 1698void
be7811ad 1699gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1700{
b78960be 1701 const char *gdb_nm_file = "<not-defined>";
05c547f6 1702
b78960be
AC
1703#if defined (GDB_NM_FILE)
1704 gdb_nm_file = GDB_NM_FILE;
1705#endif
1706 fprintf_unfiltered (file,
1707 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1708 gdb_nm_file);
104c1213 1709EOF
97030eea 1710function_list | sort -t: -k 3 | while do_read
104c1213 1711do
1e9f55d0
AC
1712 # First the predicate
1713 if class_is_predicate_p
1714 then
7996bcec 1715 printf " fprintf_unfiltered (file,\n"
48f7351b 1716 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1717 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1718 fi
48f7351b 1719 # Print the corresponding value.
283354d8 1720 if class_is_function_p
4b9b3959 1721 then
7996bcec 1722 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1723 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1724 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1725 else
48f7351b 1726 # It is a variable
2f9b146e
AC
1727 case "${print}:${returntype}" in
1728 :CORE_ADDR )
0b1553bc
UW
1729 fmt="%s"
1730 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1731 ;;
2f9b146e 1732 :* )
48f7351b 1733 fmt="%s"
623d3eb1 1734 print="plongest (gdbarch->${function})"
48f7351b
AC
1735 ;;
1736 * )
2f9b146e 1737 fmt="%s"
48f7351b
AC
1738 ;;
1739 esac
3d9a5942 1740 printf " fprintf_unfiltered (file,\n"
48f7351b 1741 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1742 printf " ${print});\n"
2ada493a 1743 fi
104c1213 1744done
381323f4 1745cat <<EOF
be7811ad
MD
1746 if (gdbarch->dump_tdep != NULL)
1747 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1748}
1749EOF
104c1213
JM
1750
1751
1752# GET/SET
3d9a5942 1753printf "\n"
104c1213
JM
1754cat <<EOF
1755struct gdbarch_tdep *
1756gdbarch_tdep (struct gdbarch *gdbarch)
1757{
1758 if (gdbarch_debug >= 2)
3d9a5942 1759 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1760 return gdbarch->tdep;
1761}
1762EOF
3d9a5942 1763printf "\n"
34620563 1764function_list | while do_read
104c1213 1765do
2ada493a
AC
1766 if class_is_predicate_p
1767 then
3d9a5942
AC
1768 printf "\n"
1769 printf "int\n"
1770 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1771 printf "{\n"
8de9bdc4 1772 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1773 printf " return ${predicate};\n"
3d9a5942 1774 printf "}\n"
2ada493a
AC
1775 fi
1776 if class_is_function_p
1777 then
3d9a5942
AC
1778 printf "\n"
1779 printf "${returntype}\n"
72e74a21 1780 if [ "x${formal}" = "xvoid" ]
104c1213 1781 then
3d9a5942 1782 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1783 else
3d9a5942 1784 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1785 fi
3d9a5942 1786 printf "{\n"
8de9bdc4 1787 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1788 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1789 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1790 then
1791 # Allow a call to a function with a predicate.
956ac328 1792 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1793 fi
3d9a5942
AC
1794 printf " if (gdbarch_debug >= 2)\n"
1795 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1796 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1797 then
1798 if class_is_multiarch_p
1799 then
1800 params="gdbarch"
1801 else
1802 params=""
1803 fi
1804 else
1805 if class_is_multiarch_p
1806 then
1807 params="gdbarch, ${actual}"
1808 else
1809 params="${actual}"
1810 fi
1811 fi
72e74a21 1812 if [ "x${returntype}" = "xvoid" ]
104c1213 1813 then
4a5c6a1d 1814 printf " gdbarch->${function} (${params});\n"
104c1213 1815 else
4a5c6a1d 1816 printf " return gdbarch->${function} (${params});\n"
104c1213 1817 fi
3d9a5942
AC
1818 printf "}\n"
1819 printf "\n"
1820 printf "void\n"
1821 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1822 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1823 printf "{\n"
1824 printf " gdbarch->${function} = ${function};\n"
1825 printf "}\n"
2ada493a
AC
1826 elif class_is_variable_p
1827 then
3d9a5942
AC
1828 printf "\n"
1829 printf "${returntype}\n"
1830 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1831 printf "{\n"
8de9bdc4 1832 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 1833 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1834 then
3d9a5942 1835 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 1836 elif [ -n "${invalid_p}" ]
104c1213 1837 then
956ac328
AC
1838 printf " /* Check variable is valid. */\n"
1839 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 1840 elif [ -n "${predefault}" ]
104c1213 1841 then
956ac328
AC
1842 printf " /* Check variable changed from pre-default. */\n"
1843 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 1844 fi
3d9a5942
AC
1845 printf " if (gdbarch_debug >= 2)\n"
1846 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1847 printf " return gdbarch->${function};\n"
1848 printf "}\n"
1849 printf "\n"
1850 printf "void\n"
1851 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1852 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1853 printf "{\n"
1854 printf " gdbarch->${function} = ${function};\n"
1855 printf "}\n"
2ada493a
AC
1856 elif class_is_info_p
1857 then
3d9a5942
AC
1858 printf "\n"
1859 printf "${returntype}\n"
1860 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1861 printf "{\n"
8de9bdc4 1862 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
1863 printf " if (gdbarch_debug >= 2)\n"
1864 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1865 printf " return gdbarch->${function};\n"
1866 printf "}\n"
2ada493a 1867 fi
104c1213
JM
1868done
1869
1870# All the trailing guff
1871cat <<EOF
1872
1873
f44c642f 1874/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 1875 modules. */
104c1213
JM
1876
1877struct gdbarch_data
1878{
95160752 1879 unsigned index;
76860b5f 1880 int init_p;
030f20e1
AC
1881 gdbarch_data_pre_init_ftype *pre_init;
1882 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
1883};
1884
1885struct gdbarch_data_registration
1886{
104c1213
JM
1887 struct gdbarch_data *data;
1888 struct gdbarch_data_registration *next;
1889};
1890
f44c642f 1891struct gdbarch_data_registry
104c1213 1892{
95160752 1893 unsigned nr;
104c1213
JM
1894 struct gdbarch_data_registration *registrations;
1895};
1896
f44c642f 1897struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
1898{
1899 0, NULL,
1900};
1901
030f20e1
AC
1902static struct gdbarch_data *
1903gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1904 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
1905{
1906 struct gdbarch_data_registration **curr;
05c547f6
MS
1907
1908 /* Append the new registration. */
f44c642f 1909 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
1910 (*curr) != NULL;
1911 curr = &(*curr)->next);
1912 (*curr) = XMALLOC (struct gdbarch_data_registration);
1913 (*curr)->next = NULL;
104c1213 1914 (*curr)->data = XMALLOC (struct gdbarch_data);
f44c642f 1915 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
1916 (*curr)->data->pre_init = pre_init;
1917 (*curr)->data->post_init = post_init;
76860b5f 1918 (*curr)->data->init_p = 1;
104c1213
JM
1919 return (*curr)->data;
1920}
1921
030f20e1
AC
1922struct gdbarch_data *
1923gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1924{
1925 return gdbarch_data_register (pre_init, NULL);
1926}
1927
1928struct gdbarch_data *
1929gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1930{
1931 return gdbarch_data_register (NULL, post_init);
1932}
104c1213 1933
0963b4bd 1934/* Create/delete the gdbarch data vector. */
95160752
AC
1935
1936static void
b3cc3077 1937alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 1938{
b3cc3077
JB
1939 gdb_assert (gdbarch->data == NULL);
1940 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 1941 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 1942}
3c875b6f 1943
76860b5f 1944/* Initialize the current value of the specified per-architecture
0963b4bd 1945 data-pointer. */
b3cc3077 1946
95160752 1947void
030f20e1
AC
1948deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1949 struct gdbarch_data *data,
1950 void *pointer)
95160752
AC
1951{
1952 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 1953 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 1954 gdb_assert (data->pre_init == NULL);
95160752
AC
1955 gdbarch->data[data->index] = pointer;
1956}
1957
104c1213 1958/* Return the current value of the specified per-architecture
0963b4bd 1959 data-pointer. */
104c1213
JM
1960
1961void *
451fbdda 1962gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 1963{
451fbdda 1964 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 1965 if (gdbarch->data[data->index] == NULL)
76860b5f 1966 {
030f20e1
AC
1967 /* The data-pointer isn't initialized, call init() to get a
1968 value. */
1969 if (data->pre_init != NULL)
1970 /* Mid architecture creation: pass just the obstack, and not
1971 the entire architecture, as that way it isn't possible for
1972 pre-init code to refer to undefined architecture
1973 fields. */
1974 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1975 else if (gdbarch->initialized_p
1976 && data->post_init != NULL)
1977 /* Post architecture creation: pass the entire architecture
1978 (as all fields are valid), but be careful to also detect
1979 recursive references. */
1980 {
1981 gdb_assert (data->init_p);
1982 data->init_p = 0;
1983 gdbarch->data[data->index] = data->post_init (gdbarch);
1984 data->init_p = 1;
1985 }
1986 else
1987 /* The architecture initialization hasn't completed - punt -
1988 hope that the caller knows what they are doing. Once
1989 deprecated_set_gdbarch_data has been initialized, this can be
1990 changed to an internal error. */
1991 return NULL;
76860b5f
AC
1992 gdb_assert (gdbarch->data[data->index] != NULL);
1993 }
451fbdda 1994 return gdbarch->data[data->index];
104c1213
JM
1995}
1996
1997
0963b4bd 1998/* Keep a registry of the architectures known by GDB. */
104c1213 1999
4b9b3959 2000struct gdbarch_registration
104c1213
JM
2001{
2002 enum bfd_architecture bfd_architecture;
2003 gdbarch_init_ftype *init;
4b9b3959 2004 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2005 struct gdbarch_list *arches;
4b9b3959 2006 struct gdbarch_registration *next;
104c1213
JM
2007};
2008
f44c642f 2009static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2010
b4a20239
AC
2011static void
2012append_name (const char ***buf, int *nr, const char *name)
2013{
2014 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2015 (*buf)[*nr] = name;
2016 *nr += 1;
2017}
2018
2019const char **
2020gdbarch_printable_names (void)
2021{
7996bcec 2022 /* Accumulate a list of names based on the registed list of
0963b4bd 2023 architectures. */
7996bcec
AC
2024 int nr_arches = 0;
2025 const char **arches = NULL;
2026 struct gdbarch_registration *rego;
05c547f6 2027
7996bcec
AC
2028 for (rego = gdbarch_registry;
2029 rego != NULL;
2030 rego = rego->next)
b4a20239 2031 {
7996bcec
AC
2032 const struct bfd_arch_info *ap;
2033 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2034 if (ap == NULL)
2035 internal_error (__FILE__, __LINE__,
85c07804 2036 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2037 do
2038 {
2039 append_name (&arches, &nr_arches, ap->printable_name);
2040 ap = ap->next;
2041 }
2042 while (ap != NULL);
b4a20239 2043 }
7996bcec
AC
2044 append_name (&arches, &nr_arches, NULL);
2045 return arches;
b4a20239
AC
2046}
2047
2048
104c1213 2049void
4b9b3959
AC
2050gdbarch_register (enum bfd_architecture bfd_architecture,
2051 gdbarch_init_ftype *init,
2052 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2053{
4b9b3959 2054 struct gdbarch_registration **curr;
104c1213 2055 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2056
ec3d358c 2057 /* Check that BFD recognizes this architecture */
104c1213
JM
2058 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2059 if (bfd_arch_info == NULL)
2060 {
8e65ff28 2061 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2062 _("gdbarch: Attempt to register "
2063 "unknown architecture (%d)"),
8e65ff28 2064 bfd_architecture);
104c1213 2065 }
0963b4bd 2066 /* Check that we haven't seen this architecture before. */
f44c642f 2067 for (curr = &gdbarch_registry;
104c1213
JM
2068 (*curr) != NULL;
2069 curr = &(*curr)->next)
2070 {
2071 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2072 internal_error (__FILE__, __LINE__,
64b9b334 2073 _("gdbarch: Duplicate registration "
0963b4bd 2074 "of architecture (%s)"),
8e65ff28 2075 bfd_arch_info->printable_name);
104c1213
JM
2076 }
2077 /* log it */
2078 if (gdbarch_debug)
30737ed9 2079 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2080 bfd_arch_info->printable_name,
30737ed9 2081 host_address_to_string (init));
104c1213 2082 /* Append it */
4b9b3959 2083 (*curr) = XMALLOC (struct gdbarch_registration);
104c1213
JM
2084 (*curr)->bfd_architecture = bfd_architecture;
2085 (*curr)->init = init;
4b9b3959 2086 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2087 (*curr)->arches = NULL;
2088 (*curr)->next = NULL;
4b9b3959
AC
2089}
2090
2091void
2092register_gdbarch_init (enum bfd_architecture bfd_architecture,
2093 gdbarch_init_ftype *init)
2094{
2095 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2096}
104c1213
JM
2097
2098
424163ea 2099/* Look for an architecture using gdbarch_info. */
104c1213
JM
2100
2101struct gdbarch_list *
2102gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2103 const struct gdbarch_info *info)
2104{
2105 for (; arches != NULL; arches = arches->next)
2106 {
2107 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2108 continue;
2109 if (info->byte_order != arches->gdbarch->byte_order)
2110 continue;
4be87837
DJ
2111 if (info->osabi != arches->gdbarch->osabi)
2112 continue;
424163ea
DJ
2113 if (info->target_desc != arches->gdbarch->target_desc)
2114 continue;
104c1213
JM
2115 return arches;
2116 }
2117 return NULL;
2118}
2119
2120
ebdba546 2121/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2122 architecture if needed. Return that new architecture. */
104c1213 2123
59837fe0
UW
2124struct gdbarch *
2125gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2126{
2127 struct gdbarch *new_gdbarch;
4b9b3959 2128 struct gdbarch_registration *rego;
104c1213 2129
b732d07d 2130 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2131 sources: "set ..."; INFOabfd supplied; and the global
2132 defaults. */
2133 gdbarch_info_fill (&info);
4be87837 2134
0963b4bd 2135 /* Must have found some sort of architecture. */
b732d07d 2136 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2137
2138 if (gdbarch_debug)
2139 {
2140 fprintf_unfiltered (gdb_stdlog,
59837fe0 2141 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2142 (info.bfd_arch_info != NULL
2143 ? info.bfd_arch_info->printable_name
2144 : "(null)"));
2145 fprintf_unfiltered (gdb_stdlog,
59837fe0 2146 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2147 info.byte_order,
d7449b42 2148 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2149 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2150 : "default"));
4be87837 2151 fprintf_unfiltered (gdb_stdlog,
59837fe0 2152 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2153 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2154 fprintf_unfiltered (gdb_stdlog,
59837fe0 2155 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2156 host_address_to_string (info.abfd));
104c1213 2157 fprintf_unfiltered (gdb_stdlog,
59837fe0 2158 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2159 host_address_to_string (info.tdep_info));
104c1213
JM
2160 }
2161
ebdba546 2162 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2163 for (rego = gdbarch_registry;
2164 rego != NULL;
2165 rego = rego->next)
2166 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2167 break;
2168 if (rego == NULL)
2169 {
2170 if (gdbarch_debug)
59837fe0 2171 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2172 "No matching architecture\n");
b732d07d
AC
2173 return 0;
2174 }
2175
ebdba546 2176 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2177 new_gdbarch = rego->init (info, rego->arches);
2178
ebdba546
AC
2179 /* Did the tdep code like it? No. Reject the change and revert to
2180 the old architecture. */
104c1213
JM
2181 if (new_gdbarch == NULL)
2182 {
2183 if (gdbarch_debug)
59837fe0 2184 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2185 "Target rejected architecture\n");
2186 return NULL;
104c1213
JM
2187 }
2188
ebdba546
AC
2189 /* Is this a pre-existing architecture (as determined by already
2190 being initialized)? Move it to the front of the architecture
2191 list (keeping the list sorted Most Recently Used). */
2192 if (new_gdbarch->initialized_p)
104c1213 2193 {
ebdba546
AC
2194 struct gdbarch_list **list;
2195 struct gdbarch_list *this;
104c1213 2196 if (gdbarch_debug)
59837fe0 2197 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2198 "Previous architecture %s (%s) selected\n",
2199 host_address_to_string (new_gdbarch),
104c1213 2200 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2201 /* Find the existing arch in the list. */
2202 for (list = &rego->arches;
2203 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2204 list = &(*list)->next);
2205 /* It had better be in the list of architectures. */
2206 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2207 /* Unlink THIS. */
2208 this = (*list);
2209 (*list) = this->next;
2210 /* Insert THIS at the front. */
2211 this->next = rego->arches;
2212 rego->arches = this;
2213 /* Return it. */
2214 return new_gdbarch;
104c1213
JM
2215 }
2216
ebdba546
AC
2217 /* It's a new architecture. */
2218 if (gdbarch_debug)
59837fe0 2219 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2220 "New architecture %s (%s) selected\n",
2221 host_address_to_string (new_gdbarch),
ebdba546
AC
2222 new_gdbarch->bfd_arch_info->printable_name);
2223
2224 /* Insert the new architecture into the front of the architecture
2225 list (keep the list sorted Most Recently Used). */
0f79675b
AC
2226 {
2227 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2228 this->next = rego->arches;
2229 this->gdbarch = new_gdbarch;
2230 rego->arches = this;
2231 }
104c1213 2232
4b9b3959
AC
2233 /* Check that the newly installed architecture is valid. Plug in
2234 any post init values. */
2235 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2236 verify_gdbarch (new_gdbarch);
ebdba546 2237 new_gdbarch->initialized_p = 1;
104c1213 2238
4b9b3959 2239 if (gdbarch_debug)
ebdba546
AC
2240 gdbarch_dump (new_gdbarch, gdb_stdlog);
2241
2242 return new_gdbarch;
2243}
2244
e487cc15 2245/* Make the specified architecture current. */
ebdba546
AC
2246
2247void
59837fe0 2248deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
ebdba546
AC
2249{
2250 gdb_assert (new_gdbarch != NULL);
ebdba546 2251 gdb_assert (new_gdbarch->initialized_p);
1cf3db46 2252 target_gdbarch = new_gdbarch;
383f836e 2253 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2254 registers_changed ();
ebdba546 2255}
104c1213 2256
104c1213 2257extern void _initialize_gdbarch (void);
b4a20239 2258
104c1213 2259void
34620563 2260_initialize_gdbarch (void)
104c1213 2261{
85c07804
AC
2262 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2263Set architecture debugging."), _("\\
2264Show architecture debugging."), _("\\
2265When non-zero, architecture debugging is enabled."),
2266 NULL,
920d2a44 2267 show_gdbarch_debug,
85c07804 2268 &setdebuglist, &showdebuglist);
104c1213
JM
2269}
2270EOF
2271
2272# close things off
2273exec 1>&2
2274#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2275compare_new gdbarch.c
This page took 1.179406 seconds and 4 git commands to generate.