C++ keyword cleanliness, mostly auto-generated
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
CommitLineData
66b43ecb 1#!/bin/sh -u
104c1213
JM
2
3# Architecture commands for GDB, the GNU debugger.
79d45cd4 4#
32d0add0 5# Copyright (C) 1998-2015 Free Software Foundation, Inc.
104c1213
JM
6#
7# This file is part of GDB.
8#
9# This program is free software; you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
50efebf8 11# the Free Software Foundation; either version 3 of the License, or
104c1213
JM
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
50efebf8 20# along with this program. If not, see <http://www.gnu.org/licenses/>.
104c1213 21
6e2c7fa1 22# Make certain that the script is not running in an internationalized
d8864532 23# environment.
0e05dfcb
DJ
24LANG=C ; export LANG
25LC_ALL=C ; export LC_ALL
d8864532
AC
26
27
59233f88
AC
28compare_new ()
29{
30 file=$1
66b43ecb 31 if test ! -r ${file}
59233f88
AC
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
50248794 34 elif diff -u ${file} new-${file}
59233f88
AC
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40}
41
42
43# Format of the input table
97030eea 44read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
c0e8c252
AC
45
46do_read ()
47{
34620563
AC
48 comment=""
49 class=""
c9023fb3
PA
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
34620563
AC
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
f0d4cc9e 59 then
34620563
AC
60 continue
61 elif expr "${line}" : "#" > /dev/null
f0d4cc9e 62 then
34620563
AC
63 comment="${comment}
64${line}"
f0d4cc9e 65 else
3d9a5942
AC
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
34620563
AC
73 eval read ${read} <<EOF
74${line}
75EOF
76 IFS="${OFS}"
77
283354d8
AC
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
3d9a5942
AC
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
a72293e2
AC
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
06b25f14 100
ae45cd16
AC
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
34620563 104 "" )
f7968451 105 if test -n "${predefault}"
34620563
AC
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
ae45cd16 108 predicate="gdbarch->${function} != ${predefault}"
f7968451
AC
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
34620563
AC
115 fi
116 ;;
ae45cd16 117 * )
1e9f55d0 118 echo "Predicate function ${function} with invalid_p." 1>&2
ae45cd16
AC
119 kill $$
120 exit 1
121 ;;
122 esac
34620563
AC
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
72e74a21 132 if [ -n "${postdefault}" ]
34620563
AC
133 then
134 fallbackdefault="${postdefault}"
72e74a21 135 elif [ -n "${predefault}" ]
34620563
AC
136 then
137 fallbackdefault="${predefault}"
138 else
73d3c16e 139 fallbackdefault="0"
34620563
AC
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
f0d4cc9e 146 fi
34620563 147 done
72e74a21 148 if [ -n "${class}" ]
34620563
AC
149 then
150 true
c0e8c252
AC
151 else
152 false
153 fi
154}
155
104c1213 156
f0d4cc9e
AC
157fallback_default_p ()
158{
72e74a21
JB
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
f0d4cc9e
AC
161}
162
163class_is_variable_p ()
164{
4a5c6a1d
AC
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
f0d4cc9e
AC
169}
170
171class_is_function_p ()
172{
4a5c6a1d
AC
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177}
178
179class_is_multiarch_p ()
180{
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
f0d4cc9e
AC
185}
186
187class_is_predicate_p ()
188{
4a5c6a1d
AC
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
f0d4cc9e
AC
193}
194
195class_is_info_p ()
196{
4a5c6a1d
AC
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
f0d4cc9e
AC
201}
202
203
cff3e48b
JM
204# dump out/verify the doco
205for field in ${read}
206do
207 case ${field} in
208
209 class ) : ;;
c4093a6a 210
c0e8c252
AC
211 # # -> line disable
212 # f -> function
213 # hiding a function
2ada493a
AC
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
c0e8c252
AC
216 # v -> variable
217 # hiding a variable
2ada493a
AC
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
c0e8c252
AC
220 # i -> set from info
221 # hiding something from the ``struct info'' object
4a5c6a1d
AC
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
cff3e48b 226
cff3e48b
JM
227 returntype ) : ;;
228
c0e8c252 229 # For functions, the return type; for variables, the data type
cff3e48b
JM
230
231 function ) : ;;
232
c0e8c252
AC
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
cff3e48b
JM
236
237 formal ) : ;;
238
c0e8c252
AC
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
cff3e48b
JM
243
244 actual ) : ;;
245
c0e8c252
AC
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
cff3e48b 249
0b8f9e4d 250 staticdefault ) : ;;
c0e8c252
AC
251
252 # To help with the GDB startup a static gdbarch object is
0b8f9e4d
AC
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
cff3e48b 256
0b8f9e4d 257 # If STATICDEFAULT is empty, zero is used.
c0e8c252 258
0b8f9e4d 259 predefault ) : ;;
cff3e48b 260
10312cc4
AC
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
cff3e48b 265
0b8f9e4d
AC
266 # If PREDEFAULT is empty, zero is used.
267
10312cc4
AC
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
f0d4cc9e
AC
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
0b8f9e4d
AC
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
10312cc4
AC
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
0b8f9e4d
AC
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
10312cc4
AC
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
f0d4cc9e
AC
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
be7811ad 297 # Variable declarations can refer to ``gdbarch'' which
db446970
AC
298 # will contain the current architecture. Care should be
299 # taken.
cff3e48b 300
c4093a6a 301 invalid_p ) : ;;
cff3e48b 302
0b8f9e4d 303 # A predicate equation that validates MEMBER. Non-zero is
c0e8c252 304 # returned if the code creating the new architecture failed to
0b8f9e4d
AC
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
f0d4cc9e
AC
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
0b8f9e4d
AC
315
316 # See also PREDEFAULT and POSTDEFAULT.
cff3e48b 317
cff3e48b
JM
318 print ) : ;;
319
2f9b146e
AC
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
c0e8c252 322
0b1553bc
UW
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
cff3e48b 325
283354d8 326 garbage_at_eol ) : ;;
0b8f9e4d 327
283354d8 328 # Catches stray fields.
cff3e48b 329
50248794
AC
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
cff3e48b
JM
333 esac
334done
335
cff3e48b 336
104c1213
JM
337function_list ()
338{
cff3e48b 339 # See below (DOCO) for description of each field
34620563 340 cat <<EOF
be7811ad 341i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
104c1213 342#
94123b4f
YQ
343i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
4be87837 345#
97030eea 346i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
424163ea 347#
30737ed9 348i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
32c9a795
MD
349
350# The bit byte-order has to do just with numbering of bits in debugging symbols
351# and such. Conceptually, it's quite separate from byte/word byte order.
352v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
66b43ecb
AC
354# Number of bits in a char or unsigned char for the target machine.
355# Just like CHAR_BIT in <limits.h> but describes the target machine.
57010b1c 356# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
66b43ecb
AC
357#
358# Number of bits in a short or unsigned short for the target machine.
97030eea 359v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
66b43ecb 360# Number of bits in an int or unsigned int for the target machine.
97030eea 361v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
66b43ecb 362# Number of bits in a long or unsigned long for the target machine.
97030eea 363v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
66b43ecb
AC
364# Number of bits in a long long or unsigned long long for the target
365# machine.
be7811ad 366v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
205c306f
DM
367# Alignment of a long long or unsigned long long for the target
368# machine.
369v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
456fcf94 370
f9e9243a
UW
371# The ABI default bit-size and format for "half", "float", "double", and
372# "long double". These bit/format pairs should eventually be combined
373# into a single object. For the moment, just initialize them as a pair.
8da61cc4
DJ
374# Each format describes both the big and little endian layouts (if
375# useful).
456fcf94 376
f9e9243a
UW
377v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
97030eea 379v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
be7811ad 380v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
97030eea 381v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
be7811ad 382v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
97030eea 383v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
be7811ad 384v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
456fcf94 385
52204a0b
DT
386# For most targets, a pointer on the target and its representation as an
387# address in GDB have the same size and "look the same". For such a
17a912b6 388# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
52204a0b
DT
389# / addr_bit will be set from it.
390#
17a912b6 391# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
8da614df
CV
392# also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393# gdbarch_address_to_pointer as well.
52204a0b
DT
394#
395# ptr_bit is the size of a pointer on the target
be7811ad 396v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
52204a0b 397# addr_bit is the size of a target address as represented in gdb
be7811ad 398v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
104c1213 399#
8da614df
CV
400# dwarf2_addr_size is the target address size as used in the Dwarf debug
401# info. For .debug_frame FDEs, this is supposed to be the target address
402# size from the associated CU header, and which is equivalent to the
403# DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404# Unfortunately there is no good way to determine this value. Therefore
405# dwarf2_addr_size simply defaults to the target pointer size.
406#
407# dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408# defined using the target's pointer size so far.
409#
410# Note that dwarf2_addr_size only needs to be redefined by a target if the
411# GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412# and if Dwarf versions < 4 need to be supported.
413v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414#
4e409299 415# One if \`char' acts like \`signed char', zero if \`unsigned char'.
97030eea 416v:int:char_signed:::1:-1:1
4e409299 417#
97030eea
UW
418F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
39d4ef09
AC
420# Function for getting target's idea of a frame pointer. FIXME: GDB's
421# whole scheme for dealing with "frames" and "frame pointers" needs a
422# serious shakedown.
a54fba4c 423m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
66b43ecb 424#
05d1431c 425M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
3543a589
TT
426# Read a register into a new struct value. If the register is wholly
427# or partly unavailable, this should call mark_value_bytes_unavailable
428# as appropriate. If this is defined, then pseudo_register_read will
429# never be called.
430M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
97030eea 431M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
61a0eb5b 432#
97030eea 433v:int:num_regs:::0:-1
0aba1244
EZ
434# This macro gives the number of pseudo-registers that live in the
435# register namespace but do not get fetched or stored on the target.
3d9a5942
AC
436# These pseudo-registers may be aliases for other registers,
437# combinations of other registers, or they may be computed by GDB.
97030eea 438v:int:num_pseudo_regs:::0:0::0
c2169756 439
175ff332
HZ
440# Assemble agent expression bytecode to collect pseudo-register REG.
441# Return -1 if something goes wrong, 0 otherwise.
442M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444# Assemble agent expression bytecode to push the value of pseudo-register
445# REG on the interpreter stack.
446# Return -1 if something goes wrong, 0 otherwise.
447M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
c2169756
AC
449# GDB's standard (or well known) register numbers. These can map onto
450# a real register or a pseudo (computed) register or not be defined at
1200cd6e 451# all (-1).
3e8c568d 452# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
97030eea
UW
453v:int:sp_regnum:::-1:-1::0
454v:int:pc_regnum:::-1:-1::0
455v:int:ps_regnum:::-1:-1::0
456v:int:fp0_regnum:::0:-1::0
88c72b7d 457# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
d3f73121 458m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
88c72b7d 459# Provide a default mapping from a ecoff register number to a gdb REGNUM.
d3f73121 460m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
88c72b7d 461# Convert from an sdb register number to an internal gdb register number.
d3f73121 462m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
ba2b1c56 463# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
d3f73121 464m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
d93859e2 465m:const char *:register_name:int regnr:regnr::0
9c04cab7 466
7b9ee6a8
DJ
467# Return the type of a register specified by the architecture. Only
468# the register cache should call this function directly; others should
469# use "register_type".
97030eea 470M:struct type *:register_type:int reg_nr:reg_nr
9c04cab7 471
669fac23
DJ
472M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
473# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
064f5156 474# deprecated_fp_regnum.
97030eea 475v:int:deprecated_fp_regnum:::-1:-1::0
f3be58bc 476
97030eea
UW
477M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
478v:int:call_dummy_location::::AT_ENTRY_POINT::0
479M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
57010b1c 480
97030eea 481m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
cc86d1cb 482m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
97030eea 483M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
7c7651b2
AC
484# MAP a GDB RAW register number onto a simulator register number. See
485# also include/...-sim.h.
e7faf938 486m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
64a3914f
MD
487m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
488m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
eade6471
JB
489
490# Determine the address where a longjmp will land and save this address
491# in PC. Return nonzero on success.
492#
493# FRAME corresponds to the longjmp frame.
97030eea 494F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
eade6471 495
104c1213 496#
97030eea 497v:int:believe_pcc_promotion:::::::
104c1213 498#
0abe36f5 499m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
8dccd430 500f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
97030eea 501f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
9acbedc0 502# Construct a value representing the contents of register REGNUM in
2ed3c037 503# frame FRAME_ID, interpreted as type TYPE. The routine needs to
9acbedc0
UW
504# allocate and return a struct value with all value attributes
505# (but not the value contents) filled in.
2ed3c037 506m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
104c1213 507#
9898f801
UW
508m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
509m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
97030eea 510M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
92ad9cd9 511
6a3a010b
MR
512# Return the return-value convention that will be used by FUNCTION
513# to return a value of type VALTYPE. FUNCTION may be NULL in which
ea42b34a
JB
514# case the return convention is computed based only on VALTYPE.
515#
516# If READBUF is not NULL, extract the return value and save it in this buffer.
517#
518# If WRITEBUF is not NULL, it contains a return value which will be
519# stored into the appropriate register. This can be used when we want
520# to force the value returned by a function (see the "return" command
521# for instance).
6a3a010b 522M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
92ad9cd9 523
18648a37
YQ
524# Return true if the return value of function is stored in the first hidden
525# parameter. In theory, this feature should be language-dependent, specified
526# by language and its ABI, such as C++. Unfortunately, compiler may
527# implement it to a target-dependent feature. So that we need such hook here
528# to be aware of this in GDB.
529m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
530
6093d2eb 531m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
4309257c 532M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
591a12a1
UW
533# On some platforms, a single function may provide multiple entry points,
534# e.g. one that is used for function-pointer calls and a different one
535# that is used for direct function calls.
536# In order to ensure that breakpoints set on the function will trigger
537# no matter via which entry point the function is entered, a platform
538# may provide the skip_entrypoint callback. It is called with IP set
539# to the main entry point of a function (as determined by the symbol table),
540# and should return the address of the innermost entry point, where the
541# actual breakpoint needs to be set. Note that skip_entrypoint is used
542# by GDB common code even when debugging optimized code, where skip_prologue
543# is not used.
544M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
545
97030eea 546f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
67d57894 547m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
a1dcb23a
DJ
548# Return the adjusted address and kind to use for Z0/Z1 packets.
549# KIND is usually the memory length of the breakpoint, but may have a
550# different target-specific meaning.
0e05dfcb 551m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
97030eea 552M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
ae4b2284
MD
553m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
554m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
97030eea 555v:CORE_ADDR:decr_pc_after_break:::0:::0
782263ab
AC
556
557# A function can be addressed by either it's "pointer" (possibly a
558# descriptor address) or "entry point" (first executable instruction).
559# The method "convert_from_func_ptr_addr" converting the former to the
cbf3b44a 560# latter. gdbarch_deprecated_function_start_offset is being used to implement
782263ab
AC
561# a simplified subset of that functionality - the function's address
562# corresponds to the "function pointer" and the function's start
563# corresponds to the "function entry point" - and hence is redundant.
564
97030eea 565v:CORE_ADDR:deprecated_function_start_offset:::0:::0
782263ab 566
123dc839
DJ
567# Return the remote protocol register number associated with this
568# register. Normally the identity mapping.
97030eea 569m:int:remote_register_number:int regno:regno::default_remote_register_number::0
123dc839 570
b2756930 571# Fetch the target specific address used to represent a load module.
97030eea 572F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
104c1213 573#
97030eea
UW
574v:CORE_ADDR:frame_args_skip:::0:::0
575M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
576M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
42efa47a
AC
577# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
578# frame-base. Enable frame-base before frame-unwind.
97030eea 579F:int:frame_num_args:struct frame_info *frame:frame
104c1213 580#
97030eea
UW
581M:CORE_ADDR:frame_align:CORE_ADDR address:address
582m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
583v:int:frame_red_zone_size
f0d4cc9e 584#
97030eea 585m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
875e1767
AC
586# On some machines there are bits in addresses which are not really
587# part of the address, but are used by the kernel, the hardware, etc.
bf6ae464 588# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
875e1767
AC
589# we get a "real" address such as one would find in a symbol table.
590# This is used only for addresses of instructions, and even then I'm
591# not sure it's used in all contexts. It exists to deal with there
592# being a few stray bits in the PC which would mislead us, not as some
593# sort of generic thing to handle alignment or segmentation (it's
594# possible it should be in TARGET_READ_PC instead).
24568a2c 595m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
e6590a1b
UW
596
597# FIXME/cagney/2001-01-18: This should be split in two. A target method that
598# indicates if the target needs software single step. An ISA method to
599# implement it.
600#
601# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
602# breakpoints using the breakpoint system instead of blatting memory directly
603# (as with rs6000).
64c4637f 604#
e6590a1b
UW
605# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
606# target can single step. If not, then implement single step using breakpoints.
64c4637f 607#
6f112b18 608# A return value of 1 means that the software_single_step breakpoints
e6590a1b 609# were inserted; 0 means they were not.
97030eea 610F:int:software_single_step:struct frame_info *frame:frame
e6590a1b 611
3352ef37
AC
612# Return non-zero if the processor is executing a delay slot and a
613# further single-step is needed before the instruction finishes.
97030eea 614M:int:single_step_through_delay:struct frame_info *frame:frame
f6c40618 615# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
b2fa5097 616# disassembler. Perhaps objdump can handle it?
97030eea
UW
617f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
618f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
d50355b6
MS
619
620
cfd8ab24 621# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
dea0c52f
MK
622# evaluates non-zero, this is the address where the debugger will place
623# a step-resume breakpoint to get us past the dynamic linker.
97030eea 624m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
d50355b6 625# Some systems also have trampoline code for returning from shared libs.
2c02bd72 626m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
d50355b6 627
c12260ac
CV
628# A target might have problems with watchpoints as soon as the stack
629# frame of the current function has been destroyed. This mostly happens
630# as the first action in a funtion's epilogue. in_function_epilogue_p()
631# is defined to return a non-zero value if either the given addr is one
632# instruction after the stack destroying instruction up to the trailing
633# return instruction or if we can figure out that the stack frame has
634# already been invalidated regardless of the value of addr. Targets
635# which don't suffer from that problem could just let this functionality
636# untouched.
97030eea 637m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
3e29f34a
MR
638# Process an ELF symbol in the minimal symbol table in a backend-specific
639# way. Normally this hook is supposed to do nothing, however if required,
640# then this hook can be used to apply tranformations to symbols that are
641# considered special in some way. For example the MIPS backend uses it
642# to interpret \`st_other' information to mark compressed code symbols so
643# that they can be treated in the appropriate manner in the processing of
644# the main symbol table and DWARF-2 records.
645F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
97030eea 646f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
3e29f34a
MR
647# Process a symbol in the main symbol table in a backend-specific way.
648# Normally this hook is supposed to do nothing, however if required,
649# then this hook can be used to apply tranformations to symbols that
650# are considered special in some way. This is currently used by the
651# MIPS backend to make sure compressed code symbols have the ISA bit
652# set. This in turn is needed for symbol values seen in GDB to match
653# the values used at the runtime by the program itself, for function
654# and label references.
655f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
656# Adjust the address retrieved from a DWARF-2 record other than a line
657# entry in a backend-specific way. Normally this hook is supposed to
658# return the address passed unchanged, however if that is incorrect for
659# any reason, then this hook can be used to fix the address up in the
660# required manner. This is currently used by the MIPS backend to make
661# sure addresses in FDE, range records, etc. referring to compressed
662# code have the ISA bit set, matching line information and the symbol
663# table.
664f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
665# Adjust the address updated by a line entry in a backend-specific way.
666# Normally this hook is supposed to return the address passed unchanged,
667# however in the case of inconsistencies in these records, this hook can
668# be used to fix them up in the required manner. This is currently used
669# by the MIPS backend to make sure all line addresses in compressed code
670# are presented with the ISA bit set, which is not always the case. This
671# in turn ensures breakpoint addresses are correctly matched against the
672# stop PC.
673f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
97030eea
UW
674v:int:cannot_step_breakpoint:::0:0::0
675v:int:have_nonsteppable_watchpoint:::0:0::0
676F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
677M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
69f97648
SM
678
679# Return the appropriate type_flags for the supplied address class.
680# This function should return 1 if the address class was recognized and
681# type_flags was set, zero otherwise.
97030eea 682M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
b59ff9d5 683# Is a register in a group
97030eea 684m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
f6214256 685# Fetch the pointer to the ith function argument.
97030eea 686F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
6ce6d90f 687
5aa82d05
AA
688# Iterate over all supported register notes in a core file. For each
689# supported register note section, the iterator must call CB and pass
690# CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
691# the supported register note sections based on the current register
692# values. Otherwise it should enumerate all supported register note
693# sections.
694M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
17ea7499 695
6432734d
UW
696# Create core file notes
697M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
698
b3ac9c77
SDJ
699# The elfcore writer hook to use to write Linux prpsinfo notes to core
700# files. Most Linux architectures use the same prpsinfo32 or
701# prpsinfo64 layouts, and so won't need to provide this hook, as we
702# call the Linux generic routines in bfd to write prpsinfo notes by
703# default.
704F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
705
35c2fab7
UW
706# Find core file memory regions
707M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
708
de584861 709# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
c09f20e4
YQ
710# core file into buffer READBUF with length LEN. Return the number of bytes read
711# (zero indicates failure).
712# failed, otherwise, return the red length of READBUF.
713M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
de584861 714
356a5233
JB
715# Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
716# libraries list from core file into buffer READBUF with length LEN.
c09f20e4
YQ
717# Return the number of bytes read (zero indicates failure).
718M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
356a5233 719
c0edd9ed 720# How the core target converts a PTID from a core file to a string.
28439f5e
PA
721M:char *:core_pid_to_str:ptid_t ptid:ptid
722
a78c2d62 723# BFD target to use when generating a core file.
86ba1042 724V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
a78c2d62 725
0d5de010
DJ
726# If the elements of C++ vtables are in-place function descriptors rather
727# than normal function pointers (which may point to code or a descriptor),
728# set this to one.
97030eea 729v:int:vtable_function_descriptors:::0:0::0
0d5de010
DJ
730
731# Set if the least significant bit of the delta is used instead of the least
732# significant bit of the pfn for pointers to virtual member functions.
97030eea 733v:int:vbit_in_delta:::0:0::0
6d350bb5
UW
734
735# Advance PC to next instruction in order to skip a permanent breakpoint.
ae9bb220 736f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
1c772458 737
1668ae25 738# The maximum length of an instruction on this architecture in bytes.
237fc4c9
PA
739V:ULONGEST:max_insn_length:::0:0
740
741# Copy the instruction at FROM to TO, and make any adjustments
742# necessary to single-step it at that address.
743#
744# REGS holds the state the thread's registers will have before
745# executing the copied instruction; the PC in REGS will refer to FROM,
746# not the copy at TO. The caller should update it to point at TO later.
747#
748# Return a pointer to data of the architecture's choice to be passed
749# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
750# the instruction's effects have been completely simulated, with the
751# resulting state written back to REGS.
752#
753# For a general explanation of displaced stepping and how GDB uses it,
754# see the comments in infrun.c.
755#
756# The TO area is only guaranteed to have space for
757# gdbarch_max_insn_length (arch) bytes, so this function must not
758# write more bytes than that to that area.
759#
760# If you do not provide this function, GDB assumes that the
761# architecture does not support displaced stepping.
762#
763# If your architecture doesn't need to adjust instructions before
764# single-stepping them, consider using simple_displaced_step_copy_insn
765# here.
766M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
767
99e40580
UW
768# Return true if GDB should use hardware single-stepping to execute
769# the displaced instruction identified by CLOSURE. If false,
770# GDB will simply restart execution at the displaced instruction
771# location, and it is up to the target to ensure GDB will receive
772# control again (e.g. by placing a software breakpoint instruction
773# into the displaced instruction buffer).
774#
775# The default implementation returns false on all targets that
776# provide a gdbarch_software_single_step routine, and true otherwise.
777m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
778
237fc4c9
PA
779# Fix up the state resulting from successfully single-stepping a
780# displaced instruction, to give the result we would have gotten from
781# stepping the instruction in its original location.
782#
783# REGS is the register state resulting from single-stepping the
784# displaced instruction.
785#
786# CLOSURE is the result from the matching call to
787# gdbarch_displaced_step_copy_insn.
788#
789# If you provide gdbarch_displaced_step_copy_insn.but not this
790# function, then GDB assumes that no fixup is needed after
791# single-stepping the instruction.
792#
793# For a general explanation of displaced stepping and how GDB uses it,
794# see the comments in infrun.c.
795M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
796
797# Free a closure returned by gdbarch_displaced_step_copy_insn.
798#
799# If you provide gdbarch_displaced_step_copy_insn, you must provide
800# this function as well.
801#
802# If your architecture uses closures that don't need to be freed, then
803# you can use simple_displaced_step_free_closure here.
804#
805# For a general explanation of displaced stepping and how GDB uses it,
806# see the comments in infrun.c.
807m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
808
809# Return the address of an appropriate place to put displaced
810# instructions while we step over them. There need only be one such
811# place, since we're only stepping one thread over a breakpoint at a
812# time.
813#
814# For a general explanation of displaced stepping and how GDB uses it,
815# see the comments in infrun.c.
816m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
817
dde08ee1
PA
818# Relocate an instruction to execute at a different address. OLDLOC
819# is the address in the inferior memory where the instruction to
820# relocate is currently at. On input, TO points to the destination
821# where we want the instruction to be copied (and possibly adjusted)
822# to. On output, it points to one past the end of the resulting
823# instruction(s). The effect of executing the instruction at TO shall
824# be the same as if executing it at FROM. For example, call
825# instructions that implicitly push the return address on the stack
826# should be adjusted to return to the instruction after OLDLOC;
827# relative branches, and other PC-relative instructions need the
828# offset adjusted; etc.
829M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
830
1c772458 831# Refresh overlay mapped state for section OSECT.
97030eea 832F:void:overlay_update:struct obj_section *osect:osect
4eb0ad19 833
97030eea 834M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
149ad273
UW
835
836# Handle special encoding of static variables in stabs debug info.
0d5cff50 837F:const char *:static_transform_name:const char *name:name
203c3895 838# Set if the address in N_SO or N_FUN stabs may be zero.
97030eea 839v:int:sofun_address_maybe_missing:::0:0::0
1cded358 840
0508c3ec
HZ
841# Parse the instruction at ADDR storing in the record execution log
842# the registers REGCACHE and memory ranges that will be affected when
843# the instruction executes, along with their current values.
844# Return -1 if something goes wrong, 0 otherwise.
845M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
846
3846b520
HZ
847# Save process state after a signal.
848# Return -1 if something goes wrong, 0 otherwise.
2ea28649 849M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
3846b520 850
22203bbf 851# Signal translation: translate inferior's signal (target's) number
86b49880
PA
852# into GDB's representation. The implementation of this method must
853# be host independent. IOW, don't rely on symbols of the NAT_FILE
854# header (the nm-*.h files), the host <signal.h> header, or similar
855# headers. This is mainly used when cross-debugging core files ---
856# "Live" targets hide the translation behind the target interface
1f8cf220
PA
857# (target_wait, target_resume, etc.).
858M:enum gdb_signal:gdb_signal_from_target:int signo:signo
60c5725c 859
eb14d406
SDJ
860# Signal translation: translate the GDB's internal signal number into
861# the inferior's signal (target's) representation. The implementation
862# of this method must be host independent. IOW, don't rely on symbols
863# of the NAT_FILE header (the nm-*.h files), the host <signal.h>
864# header, or similar headers.
865# Return the target signal number if found, or -1 if the GDB internal
866# signal number is invalid.
867M:int:gdb_signal_to_target:enum gdb_signal signal:signal
868
4aa995e1
PA
869# Extra signal info inspection.
870#
871# Return a type suitable to inspect extra signal information.
872M:struct type *:get_siginfo_type:void:
873
60c5725c
DJ
874# Record architecture-specific information from the symbol table.
875M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
50c71eaf 876
a96d9b2e
SDJ
877# Function for the 'catch syscall' feature.
878
879# Get architecture-specific system calls information from registers.
880M:LONGEST:get_syscall_number:ptid_t ptid:ptid
881
458c8db8
SDJ
882# The filename of the XML syscall for this architecture.
883v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
884
885# Information about system calls from this architecture
886v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
887
55aa24fb
SDJ
888# SystemTap related fields and functions.
889
05c0465e
SDJ
890# A NULL-terminated array of prefixes used to mark an integer constant
891# on the architecture's assembly.
55aa24fb
SDJ
892# For example, on x86 integer constants are written as:
893#
894# \$10 ;; integer constant 10
895#
896# in this case, this prefix would be the character \`\$\'.
05c0465e 897v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
55aa24fb 898
05c0465e
SDJ
899# A NULL-terminated array of suffixes used to mark an integer constant
900# on the architecture's assembly.
901v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
55aa24fb 902
05c0465e
SDJ
903# A NULL-terminated array of prefixes used to mark a register name on
904# the architecture's assembly.
55aa24fb
SDJ
905# For example, on x86 the register name is written as:
906#
907# \%eax ;; register eax
908#
909# in this case, this prefix would be the character \`\%\'.
05c0465e 910v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
55aa24fb 911
05c0465e
SDJ
912# A NULL-terminated array of suffixes used to mark a register name on
913# the architecture's assembly.
914v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
55aa24fb 915
05c0465e
SDJ
916# A NULL-terminated array of prefixes used to mark a register
917# indirection on the architecture's assembly.
55aa24fb
SDJ
918# For example, on x86 the register indirection is written as:
919#
920# \(\%eax\) ;; indirecting eax
921#
922# in this case, this prefix would be the charater \`\(\'.
923#
924# Please note that we use the indirection prefix also for register
925# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 926v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
55aa24fb 927
05c0465e
SDJ
928# A NULL-terminated array of suffixes used to mark a register
929# indirection on the architecture's assembly.
55aa24fb
SDJ
930# For example, on x86 the register indirection is written as:
931#
932# \(\%eax\) ;; indirecting eax
933#
934# in this case, this prefix would be the charater \`\)\'.
935#
936# Please note that we use the indirection suffix also for register
937# displacement, e.g., \`4\(\%eax\)\' on x86.
05c0465e 938v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
55aa24fb 939
05c0465e 940# Prefix(es) used to name a register using GDB's nomenclature.
55aa24fb
SDJ
941#
942# For example, on PPC a register is represented by a number in the assembly
943# language (e.g., \`10\' is the 10th general-purpose register). However,
944# inside GDB this same register has an \`r\' appended to its name, so the 10th
945# register would be represented as \`r10\' internally.
08af7a40 946v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
55aa24fb
SDJ
947
948# Suffix used to name a register using GDB's nomenclature.
08af7a40 949v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
55aa24fb
SDJ
950
951# Check if S is a single operand.
952#
953# Single operands can be:
954# \- Literal integers, e.g. \`\$10\' on x86
955# \- Register access, e.g. \`\%eax\' on x86
956# \- Register indirection, e.g. \`\(\%eax\)\' on x86
957# \- Register displacement, e.g. \`4\(\%eax\)\' on x86
958#
959# This function should check for these patterns on the string
960# and return 1 if some were found, or zero otherwise. Please try to match
961# as much info as you can from the string, i.e., if you have to match
962# something like \`\(\%\', do not match just the \`\(\'.
963M:int:stap_is_single_operand:const char *s:s
964
965# Function used to handle a "special case" in the parser.
966#
967# A "special case" is considered to be an unknown token, i.e., a token
968# that the parser does not know how to parse. A good example of special
969# case would be ARM's register displacement syntax:
970#
971# [R0, #4] ;; displacing R0 by 4
972#
973# Since the parser assumes that a register displacement is of the form:
974#
975# <number> <indirection_prefix> <register_name> <indirection_suffix>
976#
977# it means that it will not be able to recognize and parse this odd syntax.
978# Therefore, we should add a special case function that will handle this token.
979#
980# This function should generate the proper expression form of the expression
981# using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
982# and so on). It should also return 1 if the parsing was successful, or zero
983# if the token was not recognized as a special token (in this case, returning
984# zero means that the special parser is deferring the parsing to the generic
985# parser), and should advance the buffer pointer (p->arg).
986M:int:stap_parse_special_token:struct stap_parse_info *p:p
987
8b367e17
JM
988# DTrace related functions.
989
990# The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
991# NARG must be >= 0.
992M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
993
994# True if the given ADDR does not contain the instruction sequence
995# corresponding to a disabled DTrace is-enabled probe.
996M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
997
998# Enable a DTrace is-enabled probe at ADDR.
999M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1000
1001# Disable a DTrace is-enabled probe at ADDR.
1002M:void:dtrace_disable_probe:CORE_ADDR addr:addr
55aa24fb 1003
50c71eaf
PA
1004# True if the list of shared libraries is one and only for all
1005# processes, as opposed to a list of shared libraries per inferior.
2567c7d9
PA
1006# This usually means that all processes, although may or may not share
1007# an address space, will see the same set of symbols at the same
1008# addresses.
50c71eaf 1009v:int:has_global_solist:::0:0::0
2567c7d9
PA
1010
1011# On some targets, even though each inferior has its own private
1012# address space, the debug interface takes care of making breakpoints
1013# visible to all address spaces automatically. For such cases,
1014# this property should be set to true.
1015v:int:has_global_breakpoints:::0:0::0
6c95b8df
PA
1016
1017# True if inferiors share an address space (e.g., uClinux).
1018m:int:has_shared_address_space:void:::default_has_shared_address_space::0
7a697b8d
SS
1019
1020# True if a fast tracepoint can be set at an address.
1021m:int:fast_tracepoint_valid_at:CORE_ADDR addr, int *isize, char **msg:addr, isize, msg::default_fast_tracepoint_valid_at::0
75cebea9 1022
f870a310
TT
1023# Return the "auto" target charset.
1024f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1025# Return the "auto" target wide charset.
1026f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
08105857
PA
1027
1028# If non-empty, this is a file extension that will be opened in place
1029# of the file extension reported by the shared library list.
1030#
1031# This is most useful for toolchains that use a post-linker tool,
1032# where the names of the files run on the target differ in extension
1033# compared to the names of the files GDB should load for debug info.
1034v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
ab38a727
PA
1035
1036# If true, the target OS has DOS-based file system semantics. That
1037# is, absolute paths include a drive name, and the backslash is
1038# considered a directory separator.
1039v:int:has_dos_based_file_system:::0:0::0
6710bf39
SS
1040
1041# Generate bytecodes to collect the return address in a frame.
1042# Since the bytecodes run on the target, possibly with GDB not even
1043# connected, the full unwinding machinery is not available, and
1044# typically this function will issue bytecodes for one or more likely
1045# places that the return address may be found.
1046m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1047
3030c96e 1048# Implement the "info proc" command.
7bc112c1 1049M:void:info_proc:const char *args, enum info_proc_what what:args, what
3030c96e 1050
451b7c33
TT
1051# Implement the "info proc" command for core files. Noe that there
1052# are two "info_proc"-like methods on gdbarch -- one for core files,
1053# one for live targets.
7bc112c1 1054M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
451b7c33 1055
19630284
JB
1056# Iterate over all objfiles in the order that makes the most sense
1057# for the architecture to make global symbol searches.
1058#
1059# CB is a callback function where OBJFILE is the objfile to be searched,
1060# and CB_DATA a pointer to user-defined data (the same data that is passed
1061# when calling this gdbarch method). The iteration stops if this function
1062# returns nonzero.
1063#
1064# CB_DATA is a pointer to some user-defined data to be passed to
1065# the callback.
1066#
1067# If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1068# inspected when the symbol search was requested.
1069m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1070
7e35103a
JB
1071# Ravenscar arch-dependent ops.
1072v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
c2170eef
MM
1073
1074# Return non-zero if the instruction at ADDR is a call; zero otherwise.
1075m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1076
1077# Return non-zero if the instruction at ADDR is a return; zero otherwise.
1078m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1079
1080# Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1081m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
27a48a92
MK
1082
1083# Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1084# Return 0 if *READPTR is already at the end of the buffer.
1085# Return -1 if there is insufficient buffer for a whole entry.
1086# Return 1 if an entry was read into *TYPEP and *VALP.
1087M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
3437254d
PA
1088
1089# Find the address range of the current inferior's vsyscall/vDSO, and
1090# write it to *RANGE. If the vsyscall's length can't be determined, a
1091# range with zero length is returned. Returns true if the vsyscall is
1092# found, false otherwise.
1093m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
f208eee0
JK
1094
1095# Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1096# PROT has GDB_MMAP_PROT_* bitmask format.
1097# Throw an error if it is not possible. Returned address is always valid.
1098f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1099
1100# Return string (caller has to use xfree for it) with options for GCC
1101# to produce code for this target, typically "-m64", "-m32" or "-m31".
1102# These options are put before CU's DW_AT_producer compilation options so that
1103# they can override it. Method may also return NULL.
1104m:char *:gcc_target_options:void:::default_gcc_target_options::0
ac04f72b
TT
1105
1106# Return a regular expression that matches names used by this
1107# architecture in GNU configury triplets. The result is statically
1108# allocated and must not be freed. The default implementation simply
1109# returns the BFD architecture name, which is correct in nearly every
1110# case.
1111m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
104c1213 1112EOF
104c1213
JM
1113}
1114
0b8f9e4d
AC
1115#
1116# The .log file
1117#
1118exec > new-gdbarch.log
34620563 1119function_list | while do_read
0b8f9e4d
AC
1120do
1121 cat <<EOF
2f9b146e 1122${class} ${returntype} ${function} ($formal)
104c1213 1123EOF
3d9a5942
AC
1124 for r in ${read}
1125 do
1126 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1127 done
f0d4cc9e 1128 if class_is_predicate_p && fallback_default_p
0b8f9e4d 1129 then
66d659b1 1130 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
0b8f9e4d
AC
1131 kill $$
1132 exit 1
1133 fi
72e74a21 1134 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
f0d4cc9e
AC
1135 then
1136 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1137 kill $$
1138 exit 1
1139 fi
a72293e2
AC
1140 if class_is_multiarch_p
1141 then
1142 if class_is_predicate_p ; then :
1143 elif test "x${predefault}" = "x"
1144 then
2f9b146e 1145 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
a72293e2
AC
1146 kill $$
1147 exit 1
1148 fi
1149 fi
3d9a5942 1150 echo ""
0b8f9e4d
AC
1151done
1152
1153exec 1>&2
1154compare_new gdbarch.log
1155
104c1213
JM
1156
1157copyright ()
1158{
1159cat <<EOF
c4bfde41
JK
1160/* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1161/* vi:set ro: */
59233f88 1162
104c1213 1163/* Dynamic architecture support for GDB, the GNU debugger.
79d45cd4 1164
32d0add0 1165 Copyright (C) 1998-2015 Free Software Foundation, Inc.
104c1213
JM
1166
1167 This file is part of GDB.
1168
1169 This program is free software; you can redistribute it and/or modify
1170 it under the terms of the GNU General Public License as published by
50efebf8 1171 the Free Software Foundation; either version 3 of the License, or
104c1213 1172 (at your option) any later version.
50efebf8 1173
104c1213
JM
1174 This program is distributed in the hope that it will be useful,
1175 but WITHOUT ANY WARRANTY; without even the implied warranty of
1176 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1177 GNU General Public License for more details.
50efebf8 1178
104c1213 1179 You should have received a copy of the GNU General Public License
50efebf8 1180 along with this program. If not, see <http://www.gnu.org/licenses/>. */
104c1213 1181
104c1213
JM
1182/* This file was created with the aid of \`\`gdbarch.sh''.
1183
52204a0b 1184 The Bourne shell script \`\`gdbarch.sh'' creates the files
104c1213
JM
1185 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1186 against the existing \`\`gdbarch.[hc]''. Any differences found
1187 being reported.
1188
1189 If editing this file, please also run gdbarch.sh and merge any
52204a0b 1190 changes into that script. Conversely, when making sweeping changes
104c1213 1191 to this file, modifying gdbarch.sh and using its output may prove
0963b4bd 1192 easier. */
104c1213
JM
1193
1194EOF
1195}
1196
1197#
1198# The .h file
1199#
1200
1201exec > new-gdbarch.h
1202copyright
1203cat <<EOF
1204#ifndef GDBARCH_H
1205#define GDBARCH_H
1206
eb7a547a
JB
1207#include "frame.h"
1208
da3331ec
AC
1209struct floatformat;
1210struct ui_file;
104c1213 1211struct value;
b6af0555 1212struct objfile;
1c772458 1213struct obj_section;
a2cf933a 1214struct minimal_symbol;
049ee0e4 1215struct regcache;
b59ff9d5 1216struct reggroup;
6ce6d90f 1217struct regset;
a89aa300 1218struct disassemble_info;
e2d0e7eb 1219struct target_ops;
030f20e1 1220struct obstack;
8181d85f 1221struct bp_target_info;
424163ea 1222struct target_desc;
3e29f34a
MR
1223struct objfile;
1224struct symbol;
237fc4c9 1225struct displaced_step_closure;
17ea7499 1226struct core_regset_section;
a96d9b2e 1227struct syscall;
175ff332 1228struct agent_expr;
6710bf39 1229struct axs_value;
55aa24fb 1230struct stap_parse_info;
8b367e17 1231struct parser_state;
7e35103a 1232struct ravenscar_arch_ops;
b3ac9c77 1233struct elf_internal_linux_prpsinfo;
3437254d 1234struct mem_range;
458c8db8 1235struct syscalls_info;
104c1213 1236
6ecd4729
PA
1237/* The architecture associated with the inferior through the
1238 connection to the target.
1239
1240 The architecture vector provides some information that is really a
1241 property of the inferior, accessed through a particular target:
1242 ptrace operations; the layout of certain RSP packets; the solib_ops
1243 vector; etc. To differentiate architecture accesses to
1244 per-inferior/target properties from
1245 per-thread/per-frame/per-objfile properties, accesses to
1246 per-inferior/target properties should be made through this
1247 gdbarch. */
1248
1249/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
f5656ead 1250extern struct gdbarch *target_gdbarch (void);
6ecd4729 1251
19630284
JB
1252/* Callback type for the 'iterate_over_objfiles_in_search_order'
1253 gdbarch method. */
1254
1255typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1256 (struct objfile *objfile, void *cb_data);
5aa82d05 1257
1528345d
AA
1258/* Callback type for regset section iterators. The callback usually
1259 invokes the REGSET's supply or collect method, to which it must
1260 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1261 section name, and HUMAN_NAME is used for diagnostic messages.
1262 CB_DATA should have been passed unchanged through the iterator. */
1263
5aa82d05 1264typedef void (iterate_over_regset_sections_cb)
8f0435f7
AA
1265 (const char *sect_name, int size, const struct regset *regset,
1266 const char *human_name, void *cb_data);
104c1213
JM
1267EOF
1268
1269# function typedef's
3d9a5942
AC
1270printf "\n"
1271printf "\n"
0963b4bd 1272printf "/* The following are pre-initialized by GDBARCH. */\n"
34620563 1273function_list | while do_read
104c1213 1274do
2ada493a
AC
1275 if class_is_info_p
1276 then
3d9a5942
AC
1277 printf "\n"
1278 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
0963b4bd 1279 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
2ada493a 1280 fi
104c1213
JM
1281done
1282
1283# function typedef's
3d9a5942
AC
1284printf "\n"
1285printf "\n"
0963b4bd 1286printf "/* The following are initialized by the target dependent code. */\n"
34620563 1287function_list | while do_read
104c1213 1288do
72e74a21 1289 if [ -n "${comment}" ]
34620563
AC
1290 then
1291 echo "${comment}" | sed \
1292 -e '2 s,#,/*,' \
1293 -e '3,$ s,#, ,' \
1294 -e '$ s,$, */,'
1295 fi
412d5987
AC
1296
1297 if class_is_predicate_p
2ada493a 1298 then
412d5987
AC
1299 printf "\n"
1300 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
4a5c6a1d 1301 fi
2ada493a
AC
1302 if class_is_variable_p
1303 then
3d9a5942
AC
1304 printf "\n"
1305 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1306 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
2ada493a
AC
1307 fi
1308 if class_is_function_p
1309 then
3d9a5942 1310 printf "\n"
72e74a21 1311 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
4a5c6a1d
AC
1312 then
1313 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1314 elif class_is_multiarch_p
1315 then
1316 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1317 else
1318 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1319 fi
72e74a21 1320 if [ "x${formal}" = "xvoid" ]
104c1213 1321 then
3d9a5942 1322 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
104c1213 1323 else
3d9a5942 1324 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
104c1213 1325 fi
3d9a5942 1326 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
2ada493a 1327 fi
104c1213
JM
1328done
1329
1330# close it off
1331cat <<EOF
1332
a96d9b2e
SDJ
1333/* Definition for an unknown syscall, used basically in error-cases. */
1334#define UNKNOWN_SYSCALL (-1)
1335
104c1213
JM
1336extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1337
1338
1339/* Mechanism for co-ordinating the selection of a specific
1340 architecture.
1341
1342 GDB targets (*-tdep.c) can register an interest in a specific
1343 architecture. Other GDB components can register a need to maintain
1344 per-architecture data.
1345
1346 The mechanisms below ensures that there is only a loose connection
1347 between the set-architecture command and the various GDB
0fa6923a 1348 components. Each component can independently register their need
104c1213
JM
1349 to maintain architecture specific data with gdbarch.
1350
1351 Pragmatics:
1352
1353 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1354 didn't scale.
1355
1356 The more traditional mega-struct containing architecture specific
1357 data for all the various GDB components was also considered. Since
0fa6923a 1358 GDB is built from a variable number of (fairly independent)
104c1213 1359 components it was determined that the global aproach was not
0963b4bd 1360 applicable. */
104c1213
JM
1361
1362
1363/* Register a new architectural family with GDB.
1364
1365 Register support for the specified ARCHITECTURE with GDB. When
1366 gdbarch determines that the specified architecture has been
1367 selected, the corresponding INIT function is called.
1368
1369 --
1370
1371 The INIT function takes two parameters: INFO which contains the
1372 information available to gdbarch about the (possibly new)
1373 architecture; ARCHES which is a list of the previously created
1374 \`\`struct gdbarch'' for this architecture.
1375
0f79675b 1376 The INFO parameter is, as far as possible, be pre-initialized with
7a107747 1377 information obtained from INFO.ABFD or the global defaults.
0f79675b
AC
1378
1379 The ARCHES parameter is a linked list (sorted most recently used)
1380 of all the previously created architures for this architecture
1381 family. The (possibly NULL) ARCHES->gdbarch can used to access
1382 values from the previously selected architecture for this
59837fe0 1383 architecture family.
104c1213
JM
1384
1385 The INIT function shall return any of: NULL - indicating that it
ec3d358c 1386 doesn't recognize the selected architecture; an existing \`\`struct
104c1213
JM
1387 gdbarch'' from the ARCHES list - indicating that the new
1388 architecture is just a synonym for an earlier architecture (see
1389 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
4b9b3959
AC
1390 - that describes the selected architecture (see gdbarch_alloc()).
1391
1392 The DUMP_TDEP function shall print out all target specific values.
1393 Care should be taken to ensure that the function works in both the
0963b4bd 1394 multi-arch and non- multi-arch cases. */
104c1213
JM
1395
1396struct gdbarch_list
1397{
1398 struct gdbarch *gdbarch;
1399 struct gdbarch_list *next;
1400};
1401
1402struct gdbarch_info
1403{
0963b4bd 1404 /* Use default: NULL (ZERO). */
104c1213
JM
1405 const struct bfd_arch_info *bfd_arch_info;
1406
428721aa 1407 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
94123b4f 1408 enum bfd_endian byte_order;
104c1213 1409
94123b4f 1410 enum bfd_endian byte_order_for_code;
9d4fde75 1411
0963b4bd 1412 /* Use default: NULL (ZERO). */
104c1213
JM
1413 bfd *abfd;
1414
0963b4bd 1415 /* Use default: NULL (ZERO). */
104c1213 1416 struct gdbarch_tdep_info *tdep_info;
4be87837
DJ
1417
1418 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1419 enum gdb_osabi osabi;
424163ea
DJ
1420
1421 /* Use default: NULL (ZERO). */
1422 const struct target_desc *target_desc;
104c1213
JM
1423};
1424
1425typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
4b9b3959 1426typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
104c1213 1427
4b9b3959 1428/* DEPRECATED - use gdbarch_register() */
104c1213
JM
1429extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1430
4b9b3959
AC
1431extern void gdbarch_register (enum bfd_architecture architecture,
1432 gdbarch_init_ftype *,
1433 gdbarch_dump_tdep_ftype *);
1434
104c1213 1435
b4a20239
AC
1436/* Return a freshly allocated, NULL terminated, array of the valid
1437 architecture names. Since architectures are registered during the
1438 _initialize phase this function only returns useful information
0963b4bd 1439 once initialization has been completed. */
b4a20239
AC
1440
1441extern const char **gdbarch_printable_names (void);
1442
1443
104c1213 1444/* Helper function. Search the list of ARCHES for a GDBARCH that
0963b4bd 1445 matches the information provided by INFO. */
104c1213 1446
424163ea 1447extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
104c1213
JM
1448
1449
1450/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
424163ea 1451 basic initialization using values obtained from the INFO and TDEP
104c1213 1452 parameters. set_gdbarch_*() functions are called to complete the
0963b4bd 1453 initialization of the object. */
104c1213
JM
1454
1455extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1456
1457
4b9b3959
AC
1458/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1459 It is assumed that the caller freeds the \`\`struct
0963b4bd 1460 gdbarch_tdep''. */
4b9b3959 1461
058f20d5
JB
1462extern void gdbarch_free (struct gdbarch *);
1463
1464
aebd7893
AC
1465/* Helper function. Allocate memory from the \`\`struct gdbarch''
1466 obstack. The memory is freed when the corresponding architecture
1467 is also freed. */
1468
1469extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1470#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1471#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1472
1473
0963b4bd 1474/* Helper function. Force an update of the current architecture.
104c1213 1475
b732d07d
AC
1476 The actual architecture selected is determined by INFO, \`\`(gdb) set
1477 architecture'' et.al., the existing architecture and BFD's default
1478 architecture. INFO should be initialized to zero and then selected
1479 fields should be updated.
104c1213 1480
0963b4bd 1481 Returns non-zero if the update succeeds. */
16f33e29
AC
1482
1483extern int gdbarch_update_p (struct gdbarch_info info);
104c1213
JM
1484
1485
ebdba546
AC
1486/* Helper function. Find an architecture matching info.
1487
1488 INFO should be initialized using gdbarch_info_init, relevant fields
1489 set, and then finished using gdbarch_info_fill.
1490
1491 Returns the corresponding architecture, or NULL if no matching
59837fe0 1492 architecture was found. */
ebdba546
AC
1493
1494extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1495
1496
aff68abb 1497/* Helper function. Set the target gdbarch to "gdbarch". */
ebdba546 1498
aff68abb 1499extern void set_target_gdbarch (struct gdbarch *gdbarch);
ebdba546 1500
104c1213
JM
1501
1502/* Register per-architecture data-pointer.
1503
1504 Reserve space for a per-architecture data-pointer. An identifier
1505 for the reserved data-pointer is returned. That identifer should
95160752 1506 be saved in a local static variable.
104c1213 1507
fcc1c85c
AC
1508 Memory for the per-architecture data shall be allocated using
1509 gdbarch_obstack_zalloc. That memory will be deleted when the
1510 corresponding architecture object is deleted.
104c1213 1511
95160752
AC
1512 When a previously created architecture is re-selected, the
1513 per-architecture data-pointer for that previous architecture is
76860b5f 1514 restored. INIT() is not re-called.
104c1213
JM
1515
1516 Multiple registrarants for any architecture are allowed (and
1517 strongly encouraged). */
1518
95160752 1519struct gdbarch_data;
104c1213 1520
030f20e1
AC
1521typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1522extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1523typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1524extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1525extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1526 struct gdbarch_data *data,
1527 void *pointer);
104c1213 1528
451fbdda 1529extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
104c1213
JM
1530
1531
0fa6923a 1532/* Set the dynamic target-system-dependent parameters (architecture,
0963b4bd 1533 byte-order, ...) using information found in the BFD. */
104c1213
JM
1534
1535extern void set_gdbarch_from_file (bfd *);
1536
1537
e514a9d6
JM
1538/* Initialize the current architecture to the "first" one we find on
1539 our list. */
1540
1541extern void initialize_current_architecture (void);
1542
104c1213 1543/* gdbarch trace variable */
ccce17b0 1544extern unsigned int gdbarch_debug;
104c1213 1545
4b9b3959 1546extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
104c1213
JM
1547
1548#endif
1549EOF
1550exec 1>&2
1551#../move-if-change new-gdbarch.h gdbarch.h
59233f88 1552compare_new gdbarch.h
104c1213
JM
1553
1554
1555#
1556# C file
1557#
1558
1559exec > new-gdbarch.c
1560copyright
1561cat <<EOF
1562
1563#include "defs.h"
7355ddba 1564#include "arch-utils.h"
104c1213 1565
104c1213 1566#include "gdbcmd.h"
faaf634c 1567#include "inferior.h"
104c1213
JM
1568#include "symcat.h"
1569
f0d4cc9e 1570#include "floatformat.h"
b59ff9d5 1571#include "reggroups.h"
4be87837 1572#include "osabi.h"
aebd7893 1573#include "gdb_obstack.h"
383f836e 1574#include "observer.h"
a3ecef73 1575#include "regcache.h"
19630284 1576#include "objfiles.h"
95160752 1577
104c1213
JM
1578/* Static function declarations */
1579
b3cc3077 1580static void alloc_gdbarch_data (struct gdbarch *);
104c1213 1581
104c1213
JM
1582/* Non-zero if we want to trace architecture code. */
1583
1584#ifndef GDBARCH_DEBUG
1585#define GDBARCH_DEBUG 0
1586#endif
ccce17b0 1587unsigned int gdbarch_debug = GDBARCH_DEBUG;
920d2a44
AC
1588static void
1589show_gdbarch_debug (struct ui_file *file, int from_tty,
1590 struct cmd_list_element *c, const char *value)
1591{
1592 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1593}
104c1213 1594
456fcf94 1595static const char *
8da61cc4 1596pformat (const struct floatformat **format)
456fcf94
AC
1597{
1598 if (format == NULL)
1599 return "(null)";
1600 else
8da61cc4
DJ
1601 /* Just print out one of them - this is only for diagnostics. */
1602 return format[0]->name;
456fcf94
AC
1603}
1604
08105857
PA
1605static const char *
1606pstring (const char *string)
1607{
1608 if (string == NULL)
1609 return "(null)";
1610 return string;
05c0465e
SDJ
1611}
1612
1613/* Helper function to print a list of strings, represented as "const
1614 char *const *". The list is printed comma-separated. */
1615
1616static char *
1617pstring_list (const char *const *list)
1618{
1619 static char ret[100];
1620 const char *const *p;
1621 size_t offset = 0;
1622
1623 if (list == NULL)
1624 return "(null)";
1625
1626 ret[0] = '\0';
1627 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1628 {
1629 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1630 offset += 2 + s;
1631 }
1632
1633 if (offset > 0)
1634 {
1635 gdb_assert (offset - 2 < sizeof (ret));
1636 ret[offset - 2] = '\0';
1637 }
1638
1639 return ret;
08105857
PA
1640}
1641
104c1213
JM
1642EOF
1643
1644# gdbarch open the gdbarch object
3d9a5942 1645printf "\n"
0963b4bd 1646printf "/* Maintain the struct gdbarch object. */\n"
3d9a5942
AC
1647printf "\n"
1648printf "struct gdbarch\n"
1649printf "{\n"
76860b5f
AC
1650printf " /* Has this architecture been fully initialized? */\n"
1651printf " int initialized_p;\n"
aebd7893
AC
1652printf "\n"
1653printf " /* An obstack bound to the lifetime of the architecture. */\n"
1654printf " struct obstack *obstack;\n"
1655printf "\n"
0963b4bd 1656printf " /* basic architectural information. */\n"
34620563 1657function_list | while do_read
104c1213 1658do
2ada493a
AC
1659 if class_is_info_p
1660 then
3d9a5942 1661 printf " ${returntype} ${function};\n"
2ada493a 1662 fi
104c1213 1663done
3d9a5942 1664printf "\n"
0963b4bd 1665printf " /* target specific vector. */\n"
3d9a5942
AC
1666printf " struct gdbarch_tdep *tdep;\n"
1667printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1668printf "\n"
0963b4bd 1669printf " /* per-architecture data-pointers. */\n"
95160752 1670printf " unsigned nr_data;\n"
3d9a5942
AC
1671printf " void **data;\n"
1672printf "\n"
104c1213
JM
1673cat <<EOF
1674 /* Multi-arch values.
1675
1676 When extending this structure you must:
1677
1678 Add the field below.
1679
1680 Declare set/get functions and define the corresponding
1681 macro in gdbarch.h.
1682
1683 gdbarch_alloc(): If zero/NULL is not a suitable default,
1684 initialize the new field.
1685
1686 verify_gdbarch(): Confirm that the target updated the field
1687 correctly.
1688
7e73cedf 1689 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
104c1213
JM
1690 field is dumped out
1691
104c1213
JM
1692 get_gdbarch(): Implement the set/get functions (probably using
1693 the macro's as shortcuts).
1694
1695 */
1696
1697EOF
34620563 1698function_list | while do_read
104c1213 1699do
2ada493a
AC
1700 if class_is_variable_p
1701 then
3d9a5942 1702 printf " ${returntype} ${function};\n"
2ada493a
AC
1703 elif class_is_function_p
1704 then
2f9b146e 1705 printf " gdbarch_${function}_ftype *${function};\n"
2ada493a 1706 fi
104c1213 1707done
3d9a5942 1708printf "};\n"
104c1213 1709
104c1213 1710# Create a new gdbarch struct
104c1213 1711cat <<EOF
7de2341d 1712
66b43ecb 1713/* Create a new \`\`struct gdbarch'' based on information provided by
0963b4bd 1714 \`\`struct gdbarch_info''. */
104c1213 1715EOF
3d9a5942 1716printf "\n"
104c1213
JM
1717cat <<EOF
1718struct gdbarch *
1719gdbarch_alloc (const struct gdbarch_info *info,
1720 struct gdbarch_tdep *tdep)
1721{
be7811ad 1722 struct gdbarch *gdbarch;
aebd7893
AC
1723
1724 /* Create an obstack for allocating all the per-architecture memory,
1725 then use that to allocate the architecture vector. */
70ba0933 1726 struct obstack *obstack = XNEW (struct obstack);
aebd7893 1727 obstack_init (obstack);
be7811ad
MD
1728 gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
1729 memset (gdbarch, 0, sizeof (*gdbarch));
1730 gdbarch->obstack = obstack;
85de9627 1731
be7811ad 1732 alloc_gdbarch_data (gdbarch);
85de9627 1733
be7811ad 1734 gdbarch->tdep = tdep;
104c1213 1735EOF
3d9a5942 1736printf "\n"
34620563 1737function_list | while do_read
104c1213 1738do
2ada493a
AC
1739 if class_is_info_p
1740 then
be7811ad 1741 printf " gdbarch->${function} = info->${function};\n"
2ada493a 1742 fi
104c1213 1743done
3d9a5942 1744printf "\n"
0963b4bd 1745printf " /* Force the explicit initialization of these. */\n"
34620563 1746function_list | while do_read
104c1213 1747do
2ada493a
AC
1748 if class_is_function_p || class_is_variable_p
1749 then
72e74a21 1750 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
104c1213 1751 then
be7811ad 1752 printf " gdbarch->${function} = ${predefault};\n"
104c1213 1753 fi
2ada493a 1754 fi
104c1213
JM
1755done
1756cat <<EOF
1757 /* gdbarch_alloc() */
1758
be7811ad 1759 return gdbarch;
104c1213
JM
1760}
1761EOF
1762
058f20d5 1763# Free a gdbarch struct.
3d9a5942
AC
1764printf "\n"
1765printf "\n"
058f20d5 1766cat <<EOF
aebd7893
AC
1767/* Allocate extra space using the per-architecture obstack. */
1768
1769void *
1770gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1771{
1772 void *data = obstack_alloc (arch->obstack, size);
05c547f6 1773
aebd7893
AC
1774 memset (data, 0, size);
1775 return data;
1776}
1777
1778
058f20d5
JB
1779/* Free a gdbarch struct. This should never happen in normal
1780 operation --- once you've created a gdbarch, you keep it around.
1781 However, if an architecture's init function encounters an error
1782 building the structure, it may need to clean up a partially
1783 constructed gdbarch. */
4b9b3959 1784
058f20d5
JB
1785void
1786gdbarch_free (struct gdbarch *arch)
1787{
aebd7893 1788 struct obstack *obstack;
05c547f6 1789
95160752 1790 gdb_assert (arch != NULL);
aebd7893
AC
1791 gdb_assert (!arch->initialized_p);
1792 obstack = arch->obstack;
1793 obstack_free (obstack, 0); /* Includes the ARCH. */
1794 xfree (obstack);
058f20d5
JB
1795}
1796EOF
1797
104c1213 1798# verify a new architecture
104c1213 1799cat <<EOF
db446970
AC
1800
1801
1802/* Ensure that all values in a GDBARCH are reasonable. */
1803
104c1213 1804static void
be7811ad 1805verify_gdbarch (struct gdbarch *gdbarch)
104c1213 1806{
f16a1923
AC
1807 struct ui_file *log;
1808 struct cleanup *cleanups;
759ef836 1809 long length;
f16a1923 1810 char *buf;
05c547f6 1811
f16a1923
AC
1812 log = mem_fileopen ();
1813 cleanups = make_cleanup_ui_file_delete (log);
104c1213 1814 /* fundamental */
be7811ad 1815 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
f16a1923 1816 fprintf_unfiltered (log, "\n\tbyte-order");
be7811ad 1817 if (gdbarch->bfd_arch_info == NULL)
f16a1923 1818 fprintf_unfiltered (log, "\n\tbfd_arch_info");
0963b4bd 1819 /* Check those that need to be defined for the given multi-arch level. */
104c1213 1820EOF
34620563 1821function_list | while do_read
104c1213 1822do
2ada493a
AC
1823 if class_is_function_p || class_is_variable_p
1824 then
72e74a21 1825 if [ "x${invalid_p}" = "x0" ]
c0e8c252 1826 then
3d9a5942 1827 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2ada493a
AC
1828 elif class_is_predicate_p
1829 then
0963b4bd 1830 printf " /* Skip verify of ${function}, has predicate. */\n"
f0d4cc9e 1831 # FIXME: See do_read for potential simplification
72e74a21 1832 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
f0d4cc9e 1833 then
3d9a5942 1834 printf " if (${invalid_p})\n"
be7811ad 1835 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1836 elif [ -n "${predefault}" -a -n "${postdefault}" ]
f0d4cc9e 1837 then
be7811ad
MD
1838 printf " if (gdbarch->${function} == ${predefault})\n"
1839 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1840 elif [ -n "${postdefault}" ]
f0d4cc9e 1841 then
be7811ad
MD
1842 printf " if (gdbarch->${function} == 0)\n"
1843 printf " gdbarch->${function} = ${postdefault};\n"
72e74a21 1844 elif [ -n "${invalid_p}" ]
104c1213 1845 then
4d60522e 1846 printf " if (${invalid_p})\n"
f16a1923 1847 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
72e74a21 1848 elif [ -n "${predefault}" ]
104c1213 1849 then
be7811ad 1850 printf " if (gdbarch->${function} == ${predefault})\n"
f16a1923 1851 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
104c1213 1852 fi
2ada493a 1853 fi
104c1213
JM
1854done
1855cat <<EOF
759ef836 1856 buf = ui_file_xstrdup (log, &length);
f16a1923 1857 make_cleanup (xfree, buf);
759ef836 1858 if (length > 0)
f16a1923 1859 internal_error (__FILE__, __LINE__,
85c07804 1860 _("verify_gdbarch: the following are invalid ...%s"),
f16a1923
AC
1861 buf);
1862 do_cleanups (cleanups);
104c1213
JM
1863}
1864EOF
1865
1866# dump the structure
3d9a5942
AC
1867printf "\n"
1868printf "\n"
104c1213 1869cat <<EOF
0963b4bd 1870/* Print out the details of the current architecture. */
4b9b3959 1871
104c1213 1872void
be7811ad 1873gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
104c1213 1874{
b78960be 1875 const char *gdb_nm_file = "<not-defined>";
05c547f6 1876
b78960be
AC
1877#if defined (GDB_NM_FILE)
1878 gdb_nm_file = GDB_NM_FILE;
1879#endif
1880 fprintf_unfiltered (file,
1881 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1882 gdb_nm_file);
104c1213 1883EOF
97030eea 1884function_list | sort -t: -k 3 | while do_read
104c1213 1885do
1e9f55d0
AC
1886 # First the predicate
1887 if class_is_predicate_p
1888 then
7996bcec 1889 printf " fprintf_unfiltered (file,\n"
48f7351b 1890 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
be7811ad 1891 printf " gdbarch_${function}_p (gdbarch));\n"
08e45a40 1892 fi
48f7351b 1893 # Print the corresponding value.
283354d8 1894 if class_is_function_p
4b9b3959 1895 then
7996bcec 1896 printf " fprintf_unfiltered (file,\n"
30737ed9
JB
1897 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1898 printf " host_address_to_string (gdbarch->${function}));\n"
4b9b3959 1899 else
48f7351b 1900 # It is a variable
2f9b146e
AC
1901 case "${print}:${returntype}" in
1902 :CORE_ADDR )
0b1553bc
UW
1903 fmt="%s"
1904 print="core_addr_to_string_nz (gdbarch->${function})"
48f7351b 1905 ;;
2f9b146e 1906 :* )
48f7351b 1907 fmt="%s"
623d3eb1 1908 print="plongest (gdbarch->${function})"
48f7351b
AC
1909 ;;
1910 * )
2f9b146e 1911 fmt="%s"
48f7351b
AC
1912 ;;
1913 esac
3d9a5942 1914 printf " fprintf_unfiltered (file,\n"
48f7351b 1915 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
3d9a5942 1916 printf " ${print});\n"
2ada493a 1917 fi
104c1213 1918done
381323f4 1919cat <<EOF
be7811ad
MD
1920 if (gdbarch->dump_tdep != NULL)
1921 gdbarch->dump_tdep (gdbarch, file);
381323f4
AC
1922}
1923EOF
104c1213
JM
1924
1925
1926# GET/SET
3d9a5942 1927printf "\n"
104c1213
JM
1928cat <<EOF
1929struct gdbarch_tdep *
1930gdbarch_tdep (struct gdbarch *gdbarch)
1931{
1932 if (gdbarch_debug >= 2)
3d9a5942 1933 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
104c1213
JM
1934 return gdbarch->tdep;
1935}
1936EOF
3d9a5942 1937printf "\n"
34620563 1938function_list | while do_read
104c1213 1939do
2ada493a
AC
1940 if class_is_predicate_p
1941 then
3d9a5942
AC
1942 printf "\n"
1943 printf "int\n"
1944 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1945 printf "{\n"
8de9bdc4 1946 printf " gdb_assert (gdbarch != NULL);\n"
f7968451 1947 printf " return ${predicate};\n"
3d9a5942 1948 printf "}\n"
2ada493a
AC
1949 fi
1950 if class_is_function_p
1951 then
3d9a5942
AC
1952 printf "\n"
1953 printf "${returntype}\n"
72e74a21 1954 if [ "x${formal}" = "xvoid" ]
104c1213 1955 then
3d9a5942 1956 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
104c1213 1957 else
3d9a5942 1958 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
104c1213 1959 fi
3d9a5942 1960 printf "{\n"
8de9bdc4 1961 printf " gdb_assert (gdbarch != NULL);\n"
956ac328 1962 printf " gdb_assert (gdbarch->${function} != NULL);\n"
f7968451 1963 if class_is_predicate_p && test -n "${predefault}"
ae45cd16
AC
1964 then
1965 # Allow a call to a function with a predicate.
956ac328 1966 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
ae45cd16 1967 fi
3d9a5942
AC
1968 printf " if (gdbarch_debug >= 2)\n"
1969 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
72e74a21 1970 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
4a5c6a1d
AC
1971 then
1972 if class_is_multiarch_p
1973 then
1974 params="gdbarch"
1975 else
1976 params=""
1977 fi
1978 else
1979 if class_is_multiarch_p
1980 then
1981 params="gdbarch, ${actual}"
1982 else
1983 params="${actual}"
1984 fi
1985 fi
72e74a21 1986 if [ "x${returntype}" = "xvoid" ]
104c1213 1987 then
4a5c6a1d 1988 printf " gdbarch->${function} (${params});\n"
104c1213 1989 else
4a5c6a1d 1990 printf " return gdbarch->${function} (${params});\n"
104c1213 1991 fi
3d9a5942
AC
1992 printf "}\n"
1993 printf "\n"
1994 printf "void\n"
1995 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1996 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1997 printf "{\n"
1998 printf " gdbarch->${function} = ${function};\n"
1999 printf "}\n"
2ada493a
AC
2000 elif class_is_variable_p
2001 then
3d9a5942
AC
2002 printf "\n"
2003 printf "${returntype}\n"
2004 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2005 printf "{\n"
8de9bdc4 2006 printf " gdb_assert (gdbarch != NULL);\n"
72e74a21 2007 if [ "x${invalid_p}" = "x0" ]
c0e8c252 2008 then
3d9a5942 2009 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
72e74a21 2010 elif [ -n "${invalid_p}" ]
104c1213 2011 then
956ac328
AC
2012 printf " /* Check variable is valid. */\n"
2013 printf " gdb_assert (!(${invalid_p}));\n"
72e74a21 2014 elif [ -n "${predefault}" ]
104c1213 2015 then
956ac328
AC
2016 printf " /* Check variable changed from pre-default. */\n"
2017 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
104c1213 2018 fi
3d9a5942
AC
2019 printf " if (gdbarch_debug >= 2)\n"
2020 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2021 printf " return gdbarch->${function};\n"
2022 printf "}\n"
2023 printf "\n"
2024 printf "void\n"
2025 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2026 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2027 printf "{\n"
2028 printf " gdbarch->${function} = ${function};\n"
2029 printf "}\n"
2ada493a
AC
2030 elif class_is_info_p
2031 then
3d9a5942
AC
2032 printf "\n"
2033 printf "${returntype}\n"
2034 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2035 printf "{\n"
8de9bdc4 2036 printf " gdb_assert (gdbarch != NULL);\n"
3d9a5942
AC
2037 printf " if (gdbarch_debug >= 2)\n"
2038 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2039 printf " return gdbarch->${function};\n"
2040 printf "}\n"
2ada493a 2041 fi
104c1213
JM
2042done
2043
2044# All the trailing guff
2045cat <<EOF
2046
2047
f44c642f 2048/* Keep a registry of per-architecture data-pointers required by GDB
0963b4bd 2049 modules. */
104c1213
JM
2050
2051struct gdbarch_data
2052{
95160752 2053 unsigned index;
76860b5f 2054 int init_p;
030f20e1
AC
2055 gdbarch_data_pre_init_ftype *pre_init;
2056 gdbarch_data_post_init_ftype *post_init;
104c1213
JM
2057};
2058
2059struct gdbarch_data_registration
2060{
104c1213
JM
2061 struct gdbarch_data *data;
2062 struct gdbarch_data_registration *next;
2063};
2064
f44c642f 2065struct gdbarch_data_registry
104c1213 2066{
95160752 2067 unsigned nr;
104c1213
JM
2068 struct gdbarch_data_registration *registrations;
2069};
2070
f44c642f 2071struct gdbarch_data_registry gdbarch_data_registry =
104c1213
JM
2072{
2073 0, NULL,
2074};
2075
030f20e1
AC
2076static struct gdbarch_data *
2077gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2078 gdbarch_data_post_init_ftype *post_init)
104c1213
JM
2079{
2080 struct gdbarch_data_registration **curr;
05c547f6
MS
2081
2082 /* Append the new registration. */
f44c642f 2083 for (curr = &gdbarch_data_registry.registrations;
104c1213
JM
2084 (*curr) != NULL;
2085 curr = &(*curr)->next);
70ba0933 2086 (*curr) = XNEW (struct gdbarch_data_registration);
104c1213 2087 (*curr)->next = NULL;
70ba0933 2088 (*curr)->data = XNEW (struct gdbarch_data);
f44c642f 2089 (*curr)->data->index = gdbarch_data_registry.nr++;
030f20e1
AC
2090 (*curr)->data->pre_init = pre_init;
2091 (*curr)->data->post_init = post_init;
76860b5f 2092 (*curr)->data->init_p = 1;
104c1213
JM
2093 return (*curr)->data;
2094}
2095
030f20e1
AC
2096struct gdbarch_data *
2097gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2098{
2099 return gdbarch_data_register (pre_init, NULL);
2100}
2101
2102struct gdbarch_data *
2103gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2104{
2105 return gdbarch_data_register (NULL, post_init);
2106}
104c1213 2107
0963b4bd 2108/* Create/delete the gdbarch data vector. */
95160752
AC
2109
2110static void
b3cc3077 2111alloc_gdbarch_data (struct gdbarch *gdbarch)
95160752 2112{
b3cc3077
JB
2113 gdb_assert (gdbarch->data == NULL);
2114 gdbarch->nr_data = gdbarch_data_registry.nr;
aebd7893 2115 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
b3cc3077 2116}
3c875b6f 2117
76860b5f 2118/* Initialize the current value of the specified per-architecture
0963b4bd 2119 data-pointer. */
b3cc3077 2120
95160752 2121void
030f20e1
AC
2122deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2123 struct gdbarch_data *data,
2124 void *pointer)
95160752
AC
2125{
2126 gdb_assert (data->index < gdbarch->nr_data);
aebd7893 2127 gdb_assert (gdbarch->data[data->index] == NULL);
030f20e1 2128 gdb_assert (data->pre_init == NULL);
95160752
AC
2129 gdbarch->data[data->index] = pointer;
2130}
2131
104c1213 2132/* Return the current value of the specified per-architecture
0963b4bd 2133 data-pointer. */
104c1213
JM
2134
2135void *
451fbdda 2136gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
104c1213 2137{
451fbdda 2138 gdb_assert (data->index < gdbarch->nr_data);
030f20e1 2139 if (gdbarch->data[data->index] == NULL)
76860b5f 2140 {
030f20e1
AC
2141 /* The data-pointer isn't initialized, call init() to get a
2142 value. */
2143 if (data->pre_init != NULL)
2144 /* Mid architecture creation: pass just the obstack, and not
2145 the entire architecture, as that way it isn't possible for
2146 pre-init code to refer to undefined architecture
2147 fields. */
2148 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2149 else if (gdbarch->initialized_p
2150 && data->post_init != NULL)
2151 /* Post architecture creation: pass the entire architecture
2152 (as all fields are valid), but be careful to also detect
2153 recursive references. */
2154 {
2155 gdb_assert (data->init_p);
2156 data->init_p = 0;
2157 gdbarch->data[data->index] = data->post_init (gdbarch);
2158 data->init_p = 1;
2159 }
2160 else
2161 /* The architecture initialization hasn't completed - punt -
2162 hope that the caller knows what they are doing. Once
2163 deprecated_set_gdbarch_data has been initialized, this can be
2164 changed to an internal error. */
2165 return NULL;
76860b5f
AC
2166 gdb_assert (gdbarch->data[data->index] != NULL);
2167 }
451fbdda 2168 return gdbarch->data[data->index];
104c1213
JM
2169}
2170
2171
0963b4bd 2172/* Keep a registry of the architectures known by GDB. */
104c1213 2173
4b9b3959 2174struct gdbarch_registration
104c1213
JM
2175{
2176 enum bfd_architecture bfd_architecture;
2177 gdbarch_init_ftype *init;
4b9b3959 2178 gdbarch_dump_tdep_ftype *dump_tdep;
104c1213 2179 struct gdbarch_list *arches;
4b9b3959 2180 struct gdbarch_registration *next;
104c1213
JM
2181};
2182
f44c642f 2183static struct gdbarch_registration *gdbarch_registry = NULL;
104c1213 2184
b4a20239
AC
2185static void
2186append_name (const char ***buf, int *nr, const char *name)
2187{
2188 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
2189 (*buf)[*nr] = name;
2190 *nr += 1;
2191}
2192
2193const char **
2194gdbarch_printable_names (void)
2195{
7996bcec 2196 /* Accumulate a list of names based on the registed list of
0963b4bd 2197 architectures. */
7996bcec
AC
2198 int nr_arches = 0;
2199 const char **arches = NULL;
2200 struct gdbarch_registration *rego;
05c547f6 2201
7996bcec
AC
2202 for (rego = gdbarch_registry;
2203 rego != NULL;
2204 rego = rego->next)
b4a20239 2205 {
7996bcec
AC
2206 const struct bfd_arch_info *ap;
2207 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2208 if (ap == NULL)
2209 internal_error (__FILE__, __LINE__,
85c07804 2210 _("gdbarch_architecture_names: multi-arch unknown"));
7996bcec
AC
2211 do
2212 {
2213 append_name (&arches, &nr_arches, ap->printable_name);
2214 ap = ap->next;
2215 }
2216 while (ap != NULL);
b4a20239 2217 }
7996bcec
AC
2218 append_name (&arches, &nr_arches, NULL);
2219 return arches;
b4a20239
AC
2220}
2221
2222
104c1213 2223void
4b9b3959
AC
2224gdbarch_register (enum bfd_architecture bfd_architecture,
2225 gdbarch_init_ftype *init,
2226 gdbarch_dump_tdep_ftype *dump_tdep)
104c1213 2227{
4b9b3959 2228 struct gdbarch_registration **curr;
104c1213 2229 const struct bfd_arch_info *bfd_arch_info;
05c547f6 2230
ec3d358c 2231 /* Check that BFD recognizes this architecture */
104c1213
JM
2232 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2233 if (bfd_arch_info == NULL)
2234 {
8e65ff28 2235 internal_error (__FILE__, __LINE__,
0963b4bd
MS
2236 _("gdbarch: Attempt to register "
2237 "unknown architecture (%d)"),
8e65ff28 2238 bfd_architecture);
104c1213 2239 }
0963b4bd 2240 /* Check that we haven't seen this architecture before. */
f44c642f 2241 for (curr = &gdbarch_registry;
104c1213
JM
2242 (*curr) != NULL;
2243 curr = &(*curr)->next)
2244 {
2245 if (bfd_architecture == (*curr)->bfd_architecture)
8e65ff28 2246 internal_error (__FILE__, __LINE__,
64b9b334 2247 _("gdbarch: Duplicate registration "
0963b4bd 2248 "of architecture (%s)"),
8e65ff28 2249 bfd_arch_info->printable_name);
104c1213
JM
2250 }
2251 /* log it */
2252 if (gdbarch_debug)
30737ed9 2253 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
104c1213 2254 bfd_arch_info->printable_name,
30737ed9 2255 host_address_to_string (init));
104c1213 2256 /* Append it */
70ba0933 2257 (*curr) = XNEW (struct gdbarch_registration);
104c1213
JM
2258 (*curr)->bfd_architecture = bfd_architecture;
2259 (*curr)->init = init;
4b9b3959 2260 (*curr)->dump_tdep = dump_tdep;
104c1213
JM
2261 (*curr)->arches = NULL;
2262 (*curr)->next = NULL;
4b9b3959
AC
2263}
2264
2265void
2266register_gdbarch_init (enum bfd_architecture bfd_architecture,
2267 gdbarch_init_ftype *init)
2268{
2269 gdbarch_register (bfd_architecture, init, NULL);
104c1213 2270}
104c1213
JM
2271
2272
424163ea 2273/* Look for an architecture using gdbarch_info. */
104c1213
JM
2274
2275struct gdbarch_list *
2276gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2277 const struct gdbarch_info *info)
2278{
2279 for (; arches != NULL; arches = arches->next)
2280 {
2281 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2282 continue;
2283 if (info->byte_order != arches->gdbarch->byte_order)
2284 continue;
4be87837
DJ
2285 if (info->osabi != arches->gdbarch->osabi)
2286 continue;
424163ea
DJ
2287 if (info->target_desc != arches->gdbarch->target_desc)
2288 continue;
104c1213
JM
2289 return arches;
2290 }
2291 return NULL;
2292}
2293
2294
ebdba546 2295/* Find an architecture that matches the specified INFO. Create a new
59837fe0 2296 architecture if needed. Return that new architecture. */
104c1213 2297
59837fe0
UW
2298struct gdbarch *
2299gdbarch_find_by_info (struct gdbarch_info info)
104c1213
JM
2300{
2301 struct gdbarch *new_gdbarch;
4b9b3959 2302 struct gdbarch_registration *rego;
104c1213 2303
b732d07d 2304 /* Fill in missing parts of the INFO struct using a number of
7a107747
DJ
2305 sources: "set ..."; INFOabfd supplied; and the global
2306 defaults. */
2307 gdbarch_info_fill (&info);
4be87837 2308
0963b4bd 2309 /* Must have found some sort of architecture. */
b732d07d 2310 gdb_assert (info.bfd_arch_info != NULL);
104c1213
JM
2311
2312 if (gdbarch_debug)
2313 {
2314 fprintf_unfiltered (gdb_stdlog,
59837fe0 2315 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
104c1213
JM
2316 (info.bfd_arch_info != NULL
2317 ? info.bfd_arch_info->printable_name
2318 : "(null)"));
2319 fprintf_unfiltered (gdb_stdlog,
59837fe0 2320 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
104c1213 2321 info.byte_order,
d7449b42 2322 (info.byte_order == BFD_ENDIAN_BIG ? "big"
778eb05e 2323 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
104c1213 2324 : "default"));
4be87837 2325 fprintf_unfiltered (gdb_stdlog,
59837fe0 2326 "gdbarch_find_by_info: info.osabi %d (%s)\n",
4be87837 2327 info.osabi, gdbarch_osabi_name (info.osabi));
104c1213 2328 fprintf_unfiltered (gdb_stdlog,
59837fe0 2329 "gdbarch_find_by_info: info.abfd %s\n",
30737ed9 2330 host_address_to_string (info.abfd));
104c1213 2331 fprintf_unfiltered (gdb_stdlog,
59837fe0 2332 "gdbarch_find_by_info: info.tdep_info %s\n",
30737ed9 2333 host_address_to_string (info.tdep_info));
104c1213
JM
2334 }
2335
ebdba546 2336 /* Find the tdep code that knows about this architecture. */
b732d07d
AC
2337 for (rego = gdbarch_registry;
2338 rego != NULL;
2339 rego = rego->next)
2340 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2341 break;
2342 if (rego == NULL)
2343 {
2344 if (gdbarch_debug)
59837fe0 2345 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546 2346 "No matching architecture\n");
b732d07d
AC
2347 return 0;
2348 }
2349
ebdba546 2350 /* Ask the tdep code for an architecture that matches "info". */
104c1213
JM
2351 new_gdbarch = rego->init (info, rego->arches);
2352
ebdba546
AC
2353 /* Did the tdep code like it? No. Reject the change and revert to
2354 the old architecture. */
104c1213
JM
2355 if (new_gdbarch == NULL)
2356 {
2357 if (gdbarch_debug)
59837fe0 2358 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
ebdba546
AC
2359 "Target rejected architecture\n");
2360 return NULL;
104c1213
JM
2361 }
2362
ebdba546
AC
2363 /* Is this a pre-existing architecture (as determined by already
2364 being initialized)? Move it to the front of the architecture
2365 list (keeping the list sorted Most Recently Used). */
2366 if (new_gdbarch->initialized_p)
104c1213 2367 {
ebdba546 2368 struct gdbarch_list **list;
fe978cb0 2369 struct gdbarch_list *self;
104c1213 2370 if (gdbarch_debug)
59837fe0 2371 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2372 "Previous architecture %s (%s) selected\n",
2373 host_address_to_string (new_gdbarch),
104c1213 2374 new_gdbarch->bfd_arch_info->printable_name);
ebdba546
AC
2375 /* Find the existing arch in the list. */
2376 for (list = &rego->arches;
2377 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2378 list = &(*list)->next);
2379 /* It had better be in the list of architectures. */
2380 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
fe978cb0
PA
2381 /* Unlink SELF. */
2382 self = (*list);
2383 (*list) = self->next;
2384 /* Insert SELF at the front. */
2385 self->next = rego->arches;
2386 rego->arches = self;
ebdba546
AC
2387 /* Return it. */
2388 return new_gdbarch;
104c1213
JM
2389 }
2390
ebdba546
AC
2391 /* It's a new architecture. */
2392 if (gdbarch_debug)
59837fe0 2393 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
30737ed9
JB
2394 "New architecture %s (%s) selected\n",
2395 host_address_to_string (new_gdbarch),
ebdba546
AC
2396 new_gdbarch->bfd_arch_info->printable_name);
2397
2398 /* Insert the new architecture into the front of the architecture
2399 list (keep the list sorted Most Recently Used). */
0f79675b 2400 {
fe978cb0
PA
2401 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2402 self->next = rego->arches;
2403 self->gdbarch = new_gdbarch;
2404 rego->arches = self;
0f79675b 2405 }
104c1213 2406
4b9b3959
AC
2407 /* Check that the newly installed architecture is valid. Plug in
2408 any post init values. */
2409 new_gdbarch->dump_tdep = rego->dump_tdep;
104c1213 2410 verify_gdbarch (new_gdbarch);
ebdba546 2411 new_gdbarch->initialized_p = 1;
104c1213 2412
4b9b3959 2413 if (gdbarch_debug)
ebdba546
AC
2414 gdbarch_dump (new_gdbarch, gdb_stdlog);
2415
2416 return new_gdbarch;
2417}
2418
e487cc15 2419/* Make the specified architecture current. */
ebdba546
AC
2420
2421void
aff68abb 2422set_target_gdbarch (struct gdbarch *new_gdbarch)
ebdba546
AC
2423{
2424 gdb_assert (new_gdbarch != NULL);
ebdba546 2425 gdb_assert (new_gdbarch->initialized_p);
6ecd4729 2426 current_inferior ()->gdbarch = new_gdbarch;
383f836e 2427 observer_notify_architecture_changed (new_gdbarch);
a3ecef73 2428 registers_changed ();
ebdba546 2429}
104c1213 2430
f5656ead 2431/* Return the current inferior's arch. */
6ecd4729
PA
2432
2433struct gdbarch *
f5656ead 2434target_gdbarch (void)
6ecd4729
PA
2435{
2436 return current_inferior ()->gdbarch;
2437}
2438
104c1213 2439extern void _initialize_gdbarch (void);
b4a20239 2440
104c1213 2441void
34620563 2442_initialize_gdbarch (void)
104c1213 2443{
ccce17b0 2444 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
85c07804
AC
2445Set architecture debugging."), _("\\
2446Show architecture debugging."), _("\\
2447When non-zero, architecture debugging is enabled."),
2448 NULL,
920d2a44 2449 show_gdbarch_debug,
85c07804 2450 &setdebuglist, &showdebuglist);
104c1213
JM
2451}
2452EOF
2453
2454# close things off
2455exec 1>&2
2456#../move-if-change new-gdbarch.c gdbarch.c
59233f88 2457compare_new gdbarch.c
This page took 1.298486 seconds and 4 git commands to generate.