New python events: inferior call, register/memory changed.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 183 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 185
c16abbde 186 return type;
c906108c
SS
187}
188
e9bb382b
UW
189/* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193struct type *
194alloc_type_arch (struct gdbarch *gdbarch)
195{
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
41bf6aca
TT
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240}
241
99ad9427
YQ
242/* See gdbtypes.h. */
243
244struct type *
245get_target_type (struct type *type)
246{
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255}
256
2fdde8f8
DJ
257/* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261static struct type *
262alloc_type_instance (struct type *oldtype)
263{
264 struct type *type;
265
266 /* Allocate the structure. */
267
e9bb382b 268 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 269 type = XCNEW (struct type);
2fdde8f8 270 else
1deafd4e
PA
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
2fdde8f8
DJ
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
c16abbde 278 return type;
2fdde8f8
DJ
279}
280
281/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 282 replacing it with something else. Preserve owner information. */
5212577a 283
2fdde8f8
DJ
284static void
285smash_type (struct type *type)
286{
e9bb382b
UW
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
2fdde8f8
DJ
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
e9bb382b
UW
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
2fdde8f8
DJ
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300}
301
c906108c
SS
302/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307struct type *
fba45db2 308make_pointer_type (struct type *type, struct type **typeptr)
c906108c 309{
52f0bd74 310 struct type *ntype; /* New type */
053cb41b 311 struct type *chain;
c906108c
SS
312
313 ntype = TYPE_POINTER_TYPE (type);
314
c5aa993b 315 if (ntype)
c906108c 316 {
c5aa993b 317 if (typeptr == 0)
7ba81444
MS
318 return ntype; /* Don't care about alloc,
319 and have new type. */
c906108c 320 else if (*typeptr == 0)
c5aa993b 321 {
7ba81444 322 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 323 return ntype;
c5aa993b 324 }
c906108c
SS
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
e9bb382b 329 ntype = alloc_type_copy (type);
c906108c
SS
330 if (typeptr)
331 *typeptr = ntype;
332 }
7ba81444 333 else /* We have storage, but need to reset it. */
c906108c
SS
334 {
335 ntype = *typeptr;
053cb41b 336 chain = TYPE_CHAIN (ntype);
2fdde8f8 337 smash_type (ntype);
053cb41b 338 TYPE_CHAIN (ntype) = chain;
c906108c
SS
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
5212577a 344 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 345
50810684
UW
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
67b2adb2 350 /* Mark pointers as unsigned. The target converts between pointers
76e71323 351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 352 gdbarch_address_to_pointer. */
876cecd0 353 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 354
053cb41b
JB
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
c906108c
SS
363 return ntype;
364}
365
366/* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369struct type *
fba45db2 370lookup_pointer_type (struct type *type)
c906108c 371{
c5aa993b 372 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
373}
374
7ba81444
MS
375/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
c906108c
SS
379
380struct type *
fba45db2 381make_reference_type (struct type *type, struct type **typeptr)
c906108c 382{
52f0bd74 383 struct type *ntype; /* New type */
1e98b326 384 struct type *chain;
c906108c
SS
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
c5aa993b 388 if (ntype)
c906108c 389 {
c5aa993b 390 if (typeptr == 0)
7ba81444
MS
391 return ntype; /* Don't care about alloc,
392 and have new type. */
c906108c 393 else if (*typeptr == 0)
c5aa993b 394 {
7ba81444 395 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 396 return ntype;
c5aa993b 397 }
c906108c
SS
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
e9bb382b 402 ntype = alloc_type_copy (type);
c906108c
SS
403 if (typeptr)
404 *typeptr = ntype;
405 }
7ba81444 406 else /* We have storage, but need to reset it. */
c906108c
SS
407 {
408 ntype = *typeptr;
1e98b326 409 chain = TYPE_CHAIN (ntype);
2fdde8f8 410 smash_type (ntype);
1e98b326 411 TYPE_CHAIN (ntype) = chain;
c906108c
SS
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
7ba81444
MS
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
c906108c 420
50810684
UW
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 423 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 424
c906108c
SS
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
1e98b326
JB
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
c906108c
SS
436 return ntype;
437}
438
7ba81444
MS
439/* Same as above, but caller doesn't care about memory allocation
440 details. */
c906108c
SS
441
442struct type *
fba45db2 443lookup_reference_type (struct type *type)
c906108c 444{
c5aa993b 445 return make_reference_type (type, (struct type **) 0);
c906108c
SS
446}
447
7ba81444
MS
448/* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 451 function type we return. We allocate new memory if needed. */
c906108c
SS
452
453struct type *
0c8b41f1 454make_function_type (struct type *type, struct type **typeptr)
c906108c 455{
52f0bd74 456 struct type *ntype; /* New type */
c906108c
SS
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
e9bb382b 460 ntype = alloc_type_copy (type);
c906108c
SS
461 if (typeptr)
462 *typeptr = ntype;
463 }
7ba81444 464 else /* We have storage, but need to reset it. */
c906108c
SS
465 {
466 ntype = *typeptr;
2fdde8f8 467 smash_type (ntype);
c906108c
SS
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 474
b6cdc2c1
JK
475 INIT_FUNC_SPECIFIC (ntype);
476
c906108c
SS
477 return ntype;
478}
479
c906108c
SS
480/* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483struct type *
fba45db2 484lookup_function_type (struct type *type)
c906108c 485{
0c8b41f1 486 return make_function_type (type, (struct type **) 0);
c906108c
SS
487}
488
71918a86 489/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
71918a86
TT
492
493struct type *
494lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497{
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
e314d629 501 if (nparams > 0)
a6fb9c08 502 {
e314d629
TT
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
a6fb9c08
TT
516 }
517
71918a86
TT
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524}
525
47663de5
MS
526/* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
5212577a
DE
528
529int
50810684 530address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 531{
8b2dbe47 532 int type_flags;
d8734c88 533
7ba81444 534 /* Check for known address space delimiters. */
47663de5 535 if (!strcmp (space_identifier, "code"))
876cecd0 536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 537 else if (!strcmp (space_identifier, "data"))
876cecd0 538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
8b2dbe47 543 return type_flags;
47663de5 544 else
8a3fe4f8 545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
546}
547
548/* Identify address space identifier by integer flag as defined in
7ba81444 549 gdbtypes.h -- return the string version of the adress space name. */
47663de5 550
321432c0 551const char *
50810684 552address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 553{
876cecd0 554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 555 return "code";
876cecd0 556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 557 return "data";
876cecd0 558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
561 else
562 return NULL;
563}
564
2fdde8f8 565/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
47663de5 569
b9362cc7 570static struct type *
2fdde8f8
DJ
571make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
47663de5
MS
573{
574 struct type *ntype;
575
576 ntype = type;
5f61c20e
JK
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
47663de5 584
2fdde8f8
DJ
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
7ba81444
MS
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
ad766c0a
JB
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
2fdde8f8
DJ
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
47663de5
MS
600
601 /* Pointers or references to the original type are not relevant to
2fdde8f8 602 the new type. */
47663de5
MS
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 605
2fdde8f8
DJ
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 612
ab5d3da6
KB
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
47663de5
MS
616 return ntype;
617}
618
2fdde8f8
DJ
619/* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
7ba81444
MS
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
2fdde8f8
DJ
627
628struct type *
629make_type_with_address_space (struct type *type, int space_flag)
630{
2fdde8f8 631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638}
c906108c
SS
639
640/* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
c906108c 645
ad766c0a
JB
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
5212577a 651
c906108c 652struct type *
7ba81444
MS
653make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
c906108c 656{
52f0bd74 657 struct type *ntype; /* New type */
c906108c 658
2fdde8f8 659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 662
c906108c 663 if (cnst)
876cecd0 664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
665
666 if (voltl)
876cecd0 667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 668
2fdde8f8 669 if (typeptr && *typeptr != NULL)
a02fd225 670 {
ad766c0a
JB
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
684 }
685
7ba81444
MS
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
c906108c 688
2fdde8f8
DJ
689 if (typeptr != NULL)
690 *typeptr = ntype;
a02fd225 691
2fdde8f8 692 return ntype;
a02fd225 693}
c906108c 694
06d66ee9
TT
695/* Make a 'restrict'-qualified version of TYPE. */
696
697struct type *
698make_restrict_type (struct type *type)
699{
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704}
705
2fdde8f8
DJ
706/* Replace the contents of ntype with the type *type. This changes the
707 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
708 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 709
cda6c68a
JB
710 In order to build recursive types, it's inevitable that we'll need
711 to update types in place --- but this sort of indiscriminate
712 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
713 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
714 clear if more steps are needed. */
5212577a 715
dd6bda65
DJ
716void
717replace_type (struct type *ntype, struct type *type)
718{
ab5d3da6 719 struct type *chain;
dd6bda65 720
ad766c0a
JB
721 /* These two types had better be in the same objfile. Otherwise,
722 the assignment of one type's main type structure to the other
723 will produce a type with references to objects (names; field
724 lists; etc.) allocated on an objfile other than its own. */
725 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
726
2fdde8f8 727 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 728
7ba81444
MS
729 /* The type length is not a part of the main type. Update it for
730 each type on the variant chain. */
ab5d3da6 731 chain = ntype;
5f61c20e
JK
732 do
733 {
734 /* Assert that this element of the chain has no address-class bits
735 set in its flags. Such type variants might have type lengths
736 which are supposed to be different from the non-address-class
737 variants. This assertion shouldn't ever be triggered because
738 symbol readers which do construct address-class variants don't
739 call replace_type(). */
740 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
741
742 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
743 chain = TYPE_CHAIN (chain);
744 }
745 while (ntype != chain);
ab5d3da6 746
2fdde8f8
DJ
747 /* Assert that the two types have equivalent instance qualifiers.
748 This should be true for at least all of our debug readers. */
749 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
750}
751
c906108c
SS
752/* Implement direct support for MEMBER_TYPE in GNU C++.
753 May need to construct such a type if this is the first use.
754 The TYPE is the type of the member. The DOMAIN is the type
755 of the aggregate that the member belongs to. */
756
757struct type *
0d5de010 758lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 759{
52f0bd74 760 struct type *mtype;
c906108c 761
e9bb382b 762 mtype = alloc_type_copy (type);
0d5de010 763 smash_to_memberptr_type (mtype, domain, type);
c16abbde 764 return mtype;
c906108c
SS
765}
766
0d5de010
DJ
767/* Return a pointer-to-method type, for a method of type TO_TYPE. */
768
769struct type *
770lookup_methodptr_type (struct type *to_type)
771{
772 struct type *mtype;
773
e9bb382b 774 mtype = alloc_type_copy (to_type);
0b92b5bb 775 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
776 return mtype;
777}
778
7ba81444
MS
779/* Allocate a stub method whose return type is TYPE. This apparently
780 happens for speed of symbol reading, since parsing out the
781 arguments to the method is cpu-intensive, the way we are doing it.
782 So, we will fill in arguments later. This always returns a fresh
783 type. */
c906108c
SS
784
785struct type *
fba45db2 786allocate_stub_method (struct type *type)
c906108c
SS
787{
788 struct type *mtype;
789
e9bb382b
UW
790 mtype = alloc_type_copy (type);
791 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
792 TYPE_LENGTH (mtype) = 1;
793 TYPE_STUB (mtype) = 1;
c906108c
SS
794 TYPE_TARGET_TYPE (mtype) = type;
795 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 796 return mtype;
c906108c
SS
797}
798
729efb13
SA
799/* Create a range type with a dynamic range from LOW_BOUND to
800 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
801
802struct type *
729efb13
SA
803create_range_type (struct type *result_type, struct type *index_type,
804 const struct dynamic_prop *low_bound,
805 const struct dynamic_prop *high_bound)
c906108c
SS
806{
807 if (result_type == NULL)
e9bb382b 808 result_type = alloc_type_copy (index_type);
c906108c
SS
809 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
810 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 811 if (TYPE_STUB (index_type))
876cecd0 812 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
813 else
814 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 815
43bbcdc2
PH
816 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
817 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
818 TYPE_RANGE_DATA (result_type)->low = *low_bound;
819 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 820
729efb13 821 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 822 TYPE_UNSIGNED (result_type) = 1;
c906108c 823
45e44d27
JB
824 /* Ada allows the declaration of range types whose upper bound is
825 less than the lower bound, so checking the lower bound is not
826 enough. Make sure we do not mark a range type whose upper bound
827 is negative as unsigned. */
828 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
829 TYPE_UNSIGNED (result_type) = 0;
830
262452ec 831 return result_type;
c906108c
SS
832}
833
729efb13
SA
834/* Create a range type using either a blank type supplied in
835 RESULT_TYPE, or creating a new type, inheriting the objfile from
836 INDEX_TYPE.
837
838 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
839 to HIGH_BOUND, inclusive.
840
841 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
842 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
843
844struct type *
845create_static_range_type (struct type *result_type, struct type *index_type,
846 LONGEST low_bound, LONGEST high_bound)
847{
848 struct dynamic_prop low, high;
849
850 low.kind = PROP_CONST;
851 low.data.const_val = low_bound;
852
853 high.kind = PROP_CONST;
854 high.data.const_val = high_bound;
855
856 result_type = create_range_type (result_type, index_type, &low, &high);
857
858 return result_type;
859}
860
80180f79
SA
861/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
862 are static, otherwise returns 0. */
863
864static int
865has_static_range (const struct range_bounds *bounds)
866{
867 return (bounds->low.kind == PROP_CONST
868 && bounds->high.kind == PROP_CONST);
869}
870
871
7ba81444
MS
872/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
873 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
874 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
875
876int
fba45db2 877get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
878{
879 CHECK_TYPEDEF (type);
880 switch (TYPE_CODE (type))
881 {
882 case TYPE_CODE_RANGE:
883 *lowp = TYPE_LOW_BOUND (type);
884 *highp = TYPE_HIGH_BOUND (type);
885 return 1;
886 case TYPE_CODE_ENUM:
887 if (TYPE_NFIELDS (type) > 0)
888 {
889 /* The enums may not be sorted by value, so search all
0963b4bd 890 entries. */
c906108c
SS
891 int i;
892
14e75d8e 893 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
894 for (i = 0; i < TYPE_NFIELDS (type); i++)
895 {
14e75d8e
JK
896 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
897 *lowp = TYPE_FIELD_ENUMVAL (type, i);
898 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
899 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
900 }
901
7ba81444 902 /* Set unsigned indicator if warranted. */
c5aa993b 903 if (*lowp >= 0)
c906108c 904 {
876cecd0 905 TYPE_UNSIGNED (type) = 1;
c906108c
SS
906 }
907 }
908 else
909 {
910 *lowp = 0;
911 *highp = -1;
912 }
913 return 0;
914 case TYPE_CODE_BOOL:
915 *lowp = 0;
916 *highp = 1;
917 return 0;
918 case TYPE_CODE_INT:
c5aa993b 919 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
920 return -1;
921 if (!TYPE_UNSIGNED (type))
922 {
c5aa993b 923 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
924 *highp = -*lowp - 1;
925 return 0;
926 }
7ba81444 927 /* ... fall through for unsigned ints ... */
c906108c
SS
928 case TYPE_CODE_CHAR:
929 *lowp = 0;
930 /* This round-about calculation is to avoid shifting by
7b83ea04 931 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 932 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
933 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
934 *highp = (*highp - 1) | *highp;
935 return 0;
936 default:
937 return -1;
938 }
939}
940
dbc98a8b
KW
941/* Assuming TYPE is a simple, non-empty array type, compute its upper
942 and lower bound. Save the low bound into LOW_BOUND if not NULL.
943 Save the high bound into HIGH_BOUND if not NULL.
944
0963b4bd 945 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
946 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
947
948 We now simply use get_discrete_bounds call to get the values
949 of the low and high bounds.
950 get_discrete_bounds can return three values:
951 1, meaning that index is a range,
952 0, meaning that index is a discrete type,
953 or -1 for failure. */
954
955int
956get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
957{
958 struct type *index = TYPE_INDEX_TYPE (type);
959 LONGEST low = 0;
960 LONGEST high = 0;
961 int res;
962
963 if (index == NULL)
964 return 0;
965
966 res = get_discrete_bounds (index, &low, &high);
967 if (res == -1)
968 return 0;
969
970 /* Check if the array bounds are undefined. */
971 if (res == 1
972 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
973 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
974 return 0;
975
976 if (low_bound)
977 *low_bound = low;
978
979 if (high_bound)
980 *high_bound = high;
981
982 return 1;
983}
984
7ba81444
MS
985/* Create an array type using either a blank type supplied in
986 RESULT_TYPE, or creating a new type, inheriting the objfile from
987 RANGE_TYPE.
c906108c
SS
988
989 Elements will be of type ELEMENT_TYPE, the indices will be of type
990 RANGE_TYPE.
991
dc53a7ad
JB
992 If BIT_STRIDE is not zero, build a packed array type whose element
993 size is BIT_STRIDE. Otherwise, ignore this parameter.
994
7ba81444
MS
995 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
996 sure it is TYPE_CODE_UNDEF before we bash it into an array
997 type? */
c906108c
SS
998
999struct type *
dc53a7ad
JB
1000create_array_type_with_stride (struct type *result_type,
1001 struct type *element_type,
1002 struct type *range_type,
1003 unsigned int bit_stride)
c906108c 1004{
c906108c 1005 if (result_type == NULL)
e9bb382b
UW
1006 result_type = alloc_type_copy (range_type);
1007
c906108c
SS
1008 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1009 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1010 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1011 {
1012 LONGEST low_bound, high_bound;
1013
1014 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1015 low_bound = high_bound = 0;
1016 CHECK_TYPEDEF (element_type);
1017 /* Be careful when setting the array length. Ada arrays can be
1018 empty arrays with the high_bound being smaller than the low_bound.
1019 In such cases, the array length should be zero. */
1020 if (high_bound < low_bound)
1021 TYPE_LENGTH (result_type) = 0;
1022 else if (bit_stride > 0)
1023 TYPE_LENGTH (result_type) =
1024 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1025 else
1026 TYPE_LENGTH (result_type) =
1027 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1028 }
ab0d6e0d 1029 else
80180f79
SA
1030 {
1031 /* This type is dynamic and its length needs to be computed
1032 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1033 undefined by setting it to zero. Although we are not expected
1034 to trust TYPE_LENGTH in this case, setting the size to zero
1035 allows us to avoid allocating objects of random sizes in case
1036 we accidently do. */
1037 TYPE_LENGTH (result_type) = 0;
1038 }
1039
c906108c
SS
1040 TYPE_NFIELDS (result_type) = 1;
1041 TYPE_FIELDS (result_type) =
1deafd4e 1042 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1043 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c 1044 TYPE_VPTR_FIELDNO (result_type) = -1;
dc53a7ad
JB
1045 if (bit_stride > 0)
1046 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1047
0963b4bd 1048 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1049 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1050 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1051
c16abbde 1052 return result_type;
c906108c
SS
1053}
1054
dc53a7ad
JB
1055/* Same as create_array_type_with_stride but with no bit_stride
1056 (BIT_STRIDE = 0), thus building an unpacked array. */
1057
1058struct type *
1059create_array_type (struct type *result_type,
1060 struct type *element_type,
1061 struct type *range_type)
1062{
1063 return create_array_type_with_stride (result_type, element_type,
1064 range_type, 0);
1065}
1066
e3506a9f
UW
1067struct type *
1068lookup_array_range_type (struct type *element_type,
63375b74 1069 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1070{
50810684 1071 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1072 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1073 struct type *range_type
0c9c3474 1074 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1075
e3506a9f
UW
1076 return create_array_type (NULL, element_type, range_type);
1077}
1078
7ba81444
MS
1079/* Create a string type using either a blank type supplied in
1080 RESULT_TYPE, or creating a new type. String types are similar
1081 enough to array of char types that we can use create_array_type to
1082 build the basic type and then bash it into a string type.
c906108c
SS
1083
1084 For fixed length strings, the range type contains 0 as the lower
1085 bound and the length of the string minus one as the upper bound.
1086
7ba81444
MS
1087 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1088 sure it is TYPE_CODE_UNDEF before we bash it into a string
1089 type? */
c906108c
SS
1090
1091struct type *
3b7538c0
UW
1092create_string_type (struct type *result_type,
1093 struct type *string_char_type,
7ba81444 1094 struct type *range_type)
c906108c
SS
1095{
1096 result_type = create_array_type (result_type,
f290d38e 1097 string_char_type,
c906108c
SS
1098 range_type);
1099 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1100 return result_type;
c906108c
SS
1101}
1102
e3506a9f
UW
1103struct type *
1104lookup_string_range_type (struct type *string_char_type,
63375b74 1105 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1106{
1107 struct type *result_type;
d8734c88 1108
e3506a9f
UW
1109 result_type = lookup_array_range_type (string_char_type,
1110 low_bound, high_bound);
1111 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1112 return result_type;
1113}
1114
c906108c 1115struct type *
fba45db2 1116create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1117{
c906108c 1118 if (result_type == NULL)
e9bb382b
UW
1119 result_type = alloc_type_copy (domain_type);
1120
c906108c
SS
1121 TYPE_CODE (result_type) = TYPE_CODE_SET;
1122 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1123 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1124
74a9bb82 1125 if (!TYPE_STUB (domain_type))
c906108c 1126 {
f9780d5b 1127 LONGEST low_bound, high_bound, bit_length;
d8734c88 1128
c906108c
SS
1129 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1130 low_bound = high_bound = 0;
1131 bit_length = high_bound - low_bound + 1;
1132 TYPE_LENGTH (result_type)
1133 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1134 if (low_bound >= 0)
876cecd0 1135 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1136 }
1137 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1138
c16abbde 1139 return result_type;
c906108c
SS
1140}
1141
ea37ba09
DJ
1142/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1143 and any array types nested inside it. */
1144
1145void
1146make_vector_type (struct type *array_type)
1147{
1148 struct type *inner_array, *elt_type;
1149 int flags;
1150
1151 /* Find the innermost array type, in case the array is
1152 multi-dimensional. */
1153 inner_array = array_type;
1154 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1155 inner_array = TYPE_TARGET_TYPE (inner_array);
1156
1157 elt_type = TYPE_TARGET_TYPE (inner_array);
1158 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1159 {
2844d6b5 1160 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1161 elt_type = make_qualified_type (elt_type, flags, NULL);
1162 TYPE_TARGET_TYPE (inner_array) = elt_type;
1163 }
1164
876cecd0 1165 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1166}
1167
794ac428 1168struct type *
ac3aafc7
EZ
1169init_vector_type (struct type *elt_type, int n)
1170{
1171 struct type *array_type;
d8734c88 1172
e3506a9f 1173 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1174 make_vector_type (array_type);
ac3aafc7
EZ
1175 return array_type;
1176}
1177
0d5de010
DJ
1178/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1179 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1180 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1181 TYPE doesn't include the offset (that's the value of the MEMBER
1182 itself), but does include the structure type into which it points
1183 (for some reason).
c906108c 1184
7ba81444
MS
1185 When "smashing" the type, we preserve the objfile that the old type
1186 pointed to, since we aren't changing where the type is actually
c906108c
SS
1187 allocated. */
1188
1189void
0d5de010
DJ
1190smash_to_memberptr_type (struct type *type, struct type *domain,
1191 struct type *to_type)
c906108c 1192{
2fdde8f8 1193 smash_type (type);
c906108c
SS
1194 TYPE_TARGET_TYPE (type) = to_type;
1195 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1196 /* Assume that a data member pointer is the same size as a normal
1197 pointer. */
50810684
UW
1198 TYPE_LENGTH (type)
1199 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1200 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1201}
1202
0b92b5bb
TT
1203/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1204
1205 When "smashing" the type, we preserve the objfile that the old type
1206 pointed to, since we aren't changing where the type is actually
1207 allocated. */
1208
1209void
1210smash_to_methodptr_type (struct type *type, struct type *to_type)
1211{
1212 smash_type (type);
1213 TYPE_TARGET_TYPE (type) = to_type;
1214 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1215 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1216 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1217}
1218
c906108c
SS
1219/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1220 METHOD just means `function that gets an extra "this" argument'.
1221
7ba81444
MS
1222 When "smashing" the type, we preserve the objfile that the old type
1223 pointed to, since we aren't changing where the type is actually
c906108c
SS
1224 allocated. */
1225
1226void
fba45db2 1227smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1228 struct type *to_type, struct field *args,
1229 int nargs, int varargs)
c906108c 1230{
2fdde8f8 1231 smash_type (type);
c906108c
SS
1232 TYPE_TARGET_TYPE (type) = to_type;
1233 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1234 TYPE_FIELDS (type) = args;
1235 TYPE_NFIELDS (type) = nargs;
1236 if (varargs)
876cecd0 1237 TYPE_VARARGS (type) = 1;
c906108c
SS
1238 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1239 TYPE_CODE (type) = TYPE_CODE_METHOD;
1240}
1241
1242/* Return a typename for a struct/union/enum type without "struct ",
1243 "union ", or "enum ". If the type has a NULL name, return NULL. */
1244
0d5cff50 1245const char *
aa1ee363 1246type_name_no_tag (const struct type *type)
c906108c
SS
1247{
1248 if (TYPE_TAG_NAME (type) != NULL)
1249 return TYPE_TAG_NAME (type);
1250
7ba81444
MS
1251 /* Is there code which expects this to return the name if there is
1252 no tag name? My guess is that this is mainly used for C++ in
1253 cases where the two will always be the same. */
c906108c
SS
1254 return TYPE_NAME (type);
1255}
1256
d8228535
JK
1257/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1258 Since GCC PR debug/47510 DWARF provides associated information to detect the
1259 anonymous class linkage name from its typedef.
1260
1261 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1262 apply it itself. */
1263
1264const char *
1265type_name_no_tag_or_error (struct type *type)
1266{
1267 struct type *saved_type = type;
1268 const char *name;
1269 struct objfile *objfile;
1270
1271 CHECK_TYPEDEF (type);
1272
1273 name = type_name_no_tag (type);
1274 if (name != NULL)
1275 return name;
1276
1277 name = type_name_no_tag (saved_type);
1278 objfile = TYPE_OBJFILE (saved_type);
1279 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1280 name ? name : "<anonymous>",
1281 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1282}
1283
7ba81444
MS
1284/* Lookup a typedef or primitive type named NAME, visible in lexical
1285 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1286 suitably defined. */
c906108c
SS
1287
1288struct type *
e6c014f2 1289lookup_typename (const struct language_defn *language,
ddd49eee 1290 struct gdbarch *gdbarch, const char *name,
34eaf542 1291 const struct block *block, int noerr)
c906108c 1292{
52f0bd74 1293 struct symbol *sym;
659c9f3a 1294 struct type *type;
c906108c 1295
774b6a14 1296 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1297 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1298 return SYMBOL_TYPE (sym);
1299
659c9f3a
DE
1300 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1301 if (type)
1302 return type;
c51fe631
DE
1303
1304 if (noerr)
1305 return NULL;
1306 error (_("No type named %s."), name);
c906108c
SS
1307}
1308
1309struct type *
e6c014f2 1310lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1311 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1312{
1313 char *uns = alloca (strlen (name) + 10);
1314
1315 strcpy (uns, "unsigned ");
1316 strcpy (uns + 9, name);
e6c014f2 1317 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1318}
1319
1320struct type *
e6c014f2 1321lookup_signed_typename (const struct language_defn *language,
0d5cff50 1322 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1323{
1324 struct type *t;
1325 char *uns = alloca (strlen (name) + 8);
1326
1327 strcpy (uns, "signed ");
1328 strcpy (uns + 7, name);
e6c014f2 1329 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1330 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1331 if (t != NULL)
1332 return t;
e6c014f2 1333 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1334}
1335
1336/* Lookup a structure type named "struct NAME",
1337 visible in lexical block BLOCK. */
1338
1339struct type *
270140bd 1340lookup_struct (const char *name, const struct block *block)
c906108c 1341{
52f0bd74 1342 struct symbol *sym;
c906108c 1343
2570f2b7 1344 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1345
1346 if (sym == NULL)
1347 {
8a3fe4f8 1348 error (_("No struct type named %s."), name);
c906108c
SS
1349 }
1350 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1351 {
7ba81444
MS
1352 error (_("This context has class, union or enum %s, not a struct."),
1353 name);
c906108c
SS
1354 }
1355 return (SYMBOL_TYPE (sym));
1356}
1357
1358/* Lookup a union type named "union NAME",
1359 visible in lexical block BLOCK. */
1360
1361struct type *
270140bd 1362lookup_union (const char *name, const struct block *block)
c906108c 1363{
52f0bd74 1364 struct symbol *sym;
c5aa993b 1365 struct type *t;
c906108c 1366
2570f2b7 1367 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1368
1369 if (sym == NULL)
8a3fe4f8 1370 error (_("No union type named %s."), name);
c906108c 1371
c5aa993b 1372 t = SYMBOL_TYPE (sym);
c906108c
SS
1373
1374 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1375 return t;
c906108c 1376
7ba81444
MS
1377 /* If we get here, it's not a union. */
1378 error (_("This context has class, struct or enum %s, not a union."),
1379 name);
c906108c
SS
1380}
1381
c906108c
SS
1382/* Lookup an enum type named "enum NAME",
1383 visible in lexical block BLOCK. */
1384
1385struct type *
270140bd 1386lookup_enum (const char *name, const struct block *block)
c906108c 1387{
52f0bd74 1388 struct symbol *sym;
c906108c 1389
2570f2b7 1390 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1391 if (sym == NULL)
1392 {
8a3fe4f8 1393 error (_("No enum type named %s."), name);
c906108c
SS
1394 }
1395 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1396 {
7ba81444
MS
1397 error (_("This context has class, struct or union %s, not an enum."),
1398 name);
c906108c
SS
1399 }
1400 return (SYMBOL_TYPE (sym));
1401}
1402
1403/* Lookup a template type named "template NAME<TYPE>",
1404 visible in lexical block BLOCK. */
1405
1406struct type *
7ba81444 1407lookup_template_type (char *name, struct type *type,
270140bd 1408 const struct block *block)
c906108c
SS
1409{
1410 struct symbol *sym;
7ba81444
MS
1411 char *nam = (char *)
1412 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1413
c906108c
SS
1414 strcpy (nam, name);
1415 strcat (nam, "<");
0004e5a2 1416 strcat (nam, TYPE_NAME (type));
0963b4bd 1417 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1418
2570f2b7 1419 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1420
1421 if (sym == NULL)
1422 {
8a3fe4f8 1423 error (_("No template type named %s."), name);
c906108c
SS
1424 }
1425 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1426 {
7ba81444
MS
1427 error (_("This context has class, union or enum %s, not a struct."),
1428 name);
c906108c
SS
1429 }
1430 return (SYMBOL_TYPE (sym));
1431}
1432
7ba81444
MS
1433/* Given a type TYPE, lookup the type of the component of type named
1434 NAME.
c906108c 1435
7ba81444
MS
1436 TYPE can be either a struct or union, or a pointer or reference to
1437 a struct or union. If it is a pointer or reference, its target
1438 type is automatically used. Thus '.' and '->' are interchangable,
1439 as specified for the definitions of the expression element types
1440 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1441
1442 If NOERR is nonzero, return zero if NAME is not suitably defined.
1443 If NAME is the name of a baseclass type, return that type. */
1444
1445struct type *
d7561cbb 1446lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1447{
1448 int i;
c92817ce 1449 char *typename;
c906108c
SS
1450
1451 for (;;)
1452 {
1453 CHECK_TYPEDEF (type);
1454 if (TYPE_CODE (type) != TYPE_CODE_PTR
1455 && TYPE_CODE (type) != TYPE_CODE_REF)
1456 break;
1457 type = TYPE_TARGET_TYPE (type);
1458 }
1459
687d6395
MS
1460 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1461 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1462 {
c92817ce
TT
1463 typename = type_to_string (type);
1464 make_cleanup (xfree, typename);
1465 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1466 }
1467
1468#if 0
7ba81444
MS
1469 /* FIXME: This change put in by Michael seems incorrect for the case
1470 where the structure tag name is the same as the member name.
0963b4bd 1471 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1472 foo; } bell;" Disabled by fnf. */
c906108c
SS
1473 {
1474 char *typename;
1475
1476 typename = type_name_no_tag (type);
762f08a3 1477 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1478 return type;
1479 }
1480#endif
1481
1482 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1483 {
0d5cff50 1484 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1485
db577aea 1486 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1487 {
1488 return TYPE_FIELD_TYPE (type, i);
1489 }
f5a010c0
PM
1490 else if (!t_field_name || *t_field_name == '\0')
1491 {
d8734c88
MS
1492 struct type *subtype
1493 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1494
f5a010c0
PM
1495 if (subtype != NULL)
1496 return subtype;
1497 }
c906108c
SS
1498 }
1499
1500 /* OK, it's not in this class. Recursively check the baseclasses. */
1501 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1502 {
1503 struct type *t;
1504
9733fc94 1505 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1506 if (t != NULL)
1507 {
1508 return t;
1509 }
1510 }
1511
1512 if (noerr)
1513 {
1514 return NULL;
1515 }
c5aa993b 1516
c92817ce
TT
1517 typename = type_to_string (type);
1518 make_cleanup (xfree, typename);
1519 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1520}
1521
ed3ef339
DE
1522/* Store in *MAX the largest number representable by unsigned integer type
1523 TYPE. */
1524
1525void
1526get_unsigned_type_max (struct type *type, ULONGEST *max)
1527{
1528 unsigned int n;
1529
1530 CHECK_TYPEDEF (type);
1531 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1532 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1533
1534 /* Written this way to avoid overflow. */
1535 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1536 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1537}
1538
1539/* Store in *MIN, *MAX the smallest and largest numbers representable by
1540 signed integer type TYPE. */
1541
1542void
1543get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1544{
1545 unsigned int n;
1546
1547 CHECK_TYPEDEF (type);
1548 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1549 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1550
1551 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1552 *min = -((ULONGEST) 1 << (n - 1));
1553 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1554}
1555
81fe8080
DE
1556/* Lookup the vptr basetype/fieldno values for TYPE.
1557 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1558 vptr_fieldno. Also, if found and basetype is from the same objfile,
1559 cache the results.
1560 If not found, return -1 and ignore BASETYPEP.
1561 Callers should be aware that in some cases (for example,
c906108c 1562 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1563 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1564 this function will not be able to find the
7ba81444 1565 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1566 vptr_basetype will remain NULL or incomplete. */
c906108c 1567
81fe8080
DE
1568int
1569get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1570{
1571 CHECK_TYPEDEF (type);
1572
1573 if (TYPE_VPTR_FIELDNO (type) < 0)
1574 {
1575 int i;
1576
7ba81444
MS
1577 /* We must start at zero in case the first (and only) baseclass
1578 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1579 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1580 {
81fe8080
DE
1581 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1582 int fieldno;
1583 struct type *basetype;
1584
1585 fieldno = get_vptr_fieldno (baseclass, &basetype);
1586 if (fieldno >= 0)
c906108c 1587 {
81fe8080 1588 /* If the type comes from a different objfile we can't cache
0963b4bd 1589 it, it may have a different lifetime. PR 2384 */
5ef73790 1590 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1591 {
1592 TYPE_VPTR_FIELDNO (type) = fieldno;
1593 TYPE_VPTR_BASETYPE (type) = basetype;
1594 }
1595 if (basetypep)
1596 *basetypep = basetype;
1597 return fieldno;
c906108c
SS
1598 }
1599 }
81fe8080
DE
1600
1601 /* Not found. */
1602 return -1;
1603 }
1604 else
1605 {
1606 if (basetypep)
1607 *basetypep = TYPE_VPTR_BASETYPE (type);
1608 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1609 }
1610}
1611
44e1a9eb
DJ
1612static void
1613stub_noname_complaint (void)
1614{
e2e0b3e5 1615 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1616}
1617
d98b7a16 1618/* Worker for is_dynamic_type. */
80180f79 1619
d98b7a16
TT
1620static int
1621is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1622{
1623 type = check_typedef (type);
1624
d98b7a16
TT
1625 /* We only want to recognize references at the outermost level. */
1626 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
80180f79
SA
1627 type = check_typedef (TYPE_TARGET_TYPE (type));
1628
3cdcd0ce
JB
1629 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1630 dynamic, even if the type itself is statically defined.
1631 From a user's point of view, this may appear counter-intuitive;
1632 but it makes sense in this context, because the point is to determine
1633 whether any part of the type needs to be resolved before it can
1634 be exploited. */
1635 if (TYPE_DATA_LOCATION (type) != NULL
1636 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1637 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1638 return 1;
1639
80180f79
SA
1640 switch (TYPE_CODE (type))
1641 {
6f8a3220
JB
1642 case TYPE_CODE_RANGE:
1643 return !has_static_range (TYPE_RANGE_DATA (type));
6f8a3220 1644
80180f79
SA
1645 case TYPE_CODE_ARRAY:
1646 {
80180f79 1647 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1648
1649 /* The array is dynamic if either the bounds are dynamic,
1650 or the elements it contains have a dynamic contents. */
d98b7a16 1651 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1652 return 1;
d98b7a16 1653 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1654 }
012370f6
TT
1655
1656 case TYPE_CODE_STRUCT:
1657 case TYPE_CODE_UNION:
1658 {
1659 int i;
1660
1661 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1662 if (!field_is_static (&TYPE_FIELD (type, i))
d98b7a16 1663 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1664 return 1;
1665 }
1666 break;
80180f79 1667 }
92e2a17f
TT
1668
1669 return 0;
80180f79
SA
1670}
1671
d98b7a16
TT
1672/* See gdbtypes.h. */
1673
1674int
1675is_dynamic_type (struct type *type)
1676{
1677 return is_dynamic_type_internal (type, 1);
1678}
1679
1680static struct type *resolve_dynamic_type_internal (struct type *type,
1681 CORE_ADDR addr,
1682 int top_level);
1683
08412b07
JB
1684/* Given a dynamic range type (dyn_range_type) and address,
1685 return a static version of that type. */
d190df30 1686
80180f79 1687static struct type *
08412b07 1688resolve_dynamic_range (struct type *dyn_range_type, CORE_ADDR addr)
80180f79
SA
1689{
1690 CORE_ADDR value;
6f8a3220 1691 struct type *static_range_type;
80180f79
SA
1692 const struct dynamic_prop *prop;
1693 const struct dwarf2_locexpr_baton *baton;
1694 struct dynamic_prop low_bound, high_bound;
1695
6f8a3220 1696 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1697
6f8a3220 1698 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
08412b07 1699 if (dwarf2_evaluate_property (prop, addr, &value))
80180f79
SA
1700 {
1701 low_bound.kind = PROP_CONST;
1702 low_bound.data.const_val = value;
1703 }
1704 else
1705 {
1706 low_bound.kind = PROP_UNDEFINED;
1707 low_bound.data.const_val = 0;
1708 }
1709
6f8a3220 1710 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
08412b07 1711 if (dwarf2_evaluate_property (prop, addr, &value))
80180f79
SA
1712 {
1713 high_bound.kind = PROP_CONST;
1714 high_bound.data.const_val = value;
c451ebe5 1715
6f8a3220 1716 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1717 high_bound.data.const_val
1718 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1719 }
1720 else
1721 {
1722 high_bound.kind = PROP_UNDEFINED;
1723 high_bound.data.const_val = 0;
1724 }
1725
6f8a3220
JB
1726 static_range_type = create_range_type (copy_type (dyn_range_type),
1727 TYPE_TARGET_TYPE (dyn_range_type),
1728 &low_bound, &high_bound);
1729 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1730 return static_range_type;
1731}
1732
1733/* Resolves dynamic bound values of an array type TYPE to static ones.
1734 ADDRESS might be needed to resolve the subrange bounds, it is the location
1735 of the associated array. */
1736
1737static struct type *
08412b07 1738resolve_dynamic_array (struct type *type, CORE_ADDR addr)
6f8a3220
JB
1739{
1740 CORE_ADDR value;
1741 struct type *elt_type;
1742 struct type *range_type;
1743 struct type *ary_dim;
1744
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1746
1747 elt_type = type;
1748 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
08412b07 1749 range_type = resolve_dynamic_range (range_type, addr);
6f8a3220 1750
80180f79
SA
1751 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1752
1753 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
08412b07 1754 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr);
80180f79
SA
1755 else
1756 elt_type = TYPE_TARGET_TYPE (type);
1757
80180f79
SA
1758 return create_array_type (copy_type (type),
1759 elt_type,
1760 range_type);
1761}
1762
012370f6
TT
1763/* Resolve dynamic bounds of members of the union TYPE to static
1764 bounds. */
1765
1766static struct type *
1767resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1768{
1769 struct type *resolved_type;
1770 int i;
1771 unsigned int max_len = 0;
1772
1773 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1774
1775 resolved_type = copy_type (type);
1776 TYPE_FIELDS (resolved_type)
1777 = TYPE_ALLOC (resolved_type,
1778 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1779 memcpy (TYPE_FIELDS (resolved_type),
1780 TYPE_FIELDS (type),
1781 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1782 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1783 {
1784 struct type *t;
1785
1786 if (field_is_static (&TYPE_FIELD (type, i)))
1787 continue;
1788
d98b7a16
TT
1789 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1790 addr, 0);
012370f6
TT
1791 TYPE_FIELD_TYPE (resolved_type, i) = t;
1792 if (TYPE_LENGTH (t) > max_len)
1793 max_len = TYPE_LENGTH (t);
1794 }
1795
1796 TYPE_LENGTH (resolved_type) = max_len;
1797 return resolved_type;
1798}
1799
1800/* Resolve dynamic bounds of members of the struct TYPE to static
1801 bounds. */
1802
1803static struct type *
1804resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1805{
1806 struct type *resolved_type;
1807 int i;
6908c509 1808 unsigned resolved_type_bit_length = 0;
012370f6
TT
1809
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1811 gdb_assert (TYPE_NFIELDS (type) > 0);
1812
1813 resolved_type = copy_type (type);
1814 TYPE_FIELDS (resolved_type)
1815 = TYPE_ALLOC (resolved_type,
1816 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1817 memcpy (TYPE_FIELDS (resolved_type),
1818 TYPE_FIELDS (type),
1819 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1820 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1821 {
6908c509 1822 unsigned new_bit_length;
012370f6
TT
1823
1824 if (field_is_static (&TYPE_FIELD (type, i)))
1825 continue;
1826
6908c509
JB
1827 TYPE_FIELD_TYPE (resolved_type, i)
1828 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
d98b7a16 1829 addr, 0);
012370f6 1830
6908c509
JB
1831 /* As we know this field is not a static field, the field's
1832 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1833 this is the case, but only trigger a simple error rather
1834 than an internal error if that fails. While failing
1835 that verification indicates a bug in our code, the error
1836 is not severe enough to suggest to the user he stops
1837 his debugging session because of it. */
1838 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1839 error (_("Cannot determine struct field location"
1840 " (invalid location kind)"));
1841 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1842 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1843 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1844 else
1845 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1846 * TARGET_CHAR_BIT);
1847
1848 /* Normally, we would use the position and size of the last field
1849 to determine the size of the enclosing structure. But GCC seems
1850 to be encoding the position of some fields incorrectly when
1851 the struct contains a dynamic field that is not placed last.
1852 So we compute the struct size based on the field that has
1853 the highest position + size - probably the best we can do. */
1854 if (new_bit_length > resolved_type_bit_length)
1855 resolved_type_bit_length = new_bit_length;
012370f6
TT
1856 }
1857
012370f6 1858 TYPE_LENGTH (resolved_type)
6908c509
JB
1859 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1860
012370f6
TT
1861 return resolved_type;
1862}
1863
d98b7a16 1864/* Worker for resolved_dynamic_type. */
80180f79 1865
d98b7a16
TT
1866static struct type *
1867resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1868 int top_level)
80180f79
SA
1869{
1870 struct type *real_type = check_typedef (type);
6f8a3220 1871 struct type *resolved_type = type;
3cdcd0ce
JB
1872 const struct dynamic_prop *prop;
1873 CORE_ADDR value;
80180f79 1874
d98b7a16 1875 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
1876 return type;
1877
6f8a3220
JB
1878 switch (TYPE_CODE (type))
1879 {
cac9b138
JK
1880 case TYPE_CODE_TYPEDEF:
1881 resolved_type = copy_type (type);
1882 TYPE_TARGET_TYPE (resolved_type)
1883 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1884 top_level);
1885 break;
1886
1887 case TYPE_CODE_REF:
1888 {
1889 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1890
6f8a3220
JB
1891 resolved_type = copy_type (type);
1892 TYPE_TARGET_TYPE (resolved_type)
cac9b138
JK
1893 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1894 target_addr, top_level);
6f8a3220 1895 break;
cac9b138 1896 }
6f8a3220 1897
cac9b138
JK
1898 case TYPE_CODE_ARRAY:
1899 resolved_type = resolve_dynamic_array (type, addr);
1900 break;
6f8a3220 1901
cac9b138
JK
1902 case TYPE_CODE_RANGE:
1903 resolved_type = resolve_dynamic_range (type, addr);
1904 break;
012370f6
TT
1905
1906 case TYPE_CODE_UNION:
1907 resolved_type = resolve_dynamic_union (type, addr);
1908 break;
1909
1910 case TYPE_CODE_STRUCT:
1911 resolved_type = resolve_dynamic_struct (type, addr);
1912 break;
6f8a3220 1913 }
80180f79 1914
3cdcd0ce
JB
1915 /* Resolve data_location attribute. */
1916 prop = TYPE_DATA_LOCATION (resolved_type);
1917 if (dwarf2_evaluate_property (prop, addr, &value))
1918 {
1919 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
1920 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
1921 }
1922 else
1923 TYPE_DATA_LOCATION (resolved_type) = NULL;
1924
80180f79
SA
1925 return resolved_type;
1926}
1927
d98b7a16
TT
1928/* See gdbtypes.h */
1929
1930struct type *
1931resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1932{
1933 return resolve_dynamic_type_internal (type, addr, 1);
1934}
1935
92163a10
JK
1936/* Find the real type of TYPE. This function returns the real type,
1937 after removing all layers of typedefs, and completing opaque or stub
1938 types. Completion changes the TYPE argument, but stripping of
1939 typedefs does not.
1940
1941 Instance flags (e.g. const/volatile) are preserved as typedefs are
1942 stripped. If necessary a new qualified form of the underlying type
1943 is created.
1944
1945 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1946 not been computed and we're either in the middle of reading symbols, or
1947 there was no name for the typedef in the debug info.
1948
9bc118a5
DE
1949 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1950 QUITs in the symbol reading code can also throw.
1951 Thus this function can throw an exception.
1952
92163a10
JK
1953 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1954 the target type.
c906108c
SS
1955
1956 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1957 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1958 definition, so we can use it in future. There used to be a comment
1959 (but not any code) that if we don't find a full definition, we'd
1960 set a flag so we don't spend time in the future checking the same
1961 type. That would be a mistake, though--we might load in more
92163a10 1962 symbols which contain a full definition for the type. */
c906108c
SS
1963
1964struct type *
a02fd225 1965check_typedef (struct type *type)
c906108c
SS
1966{
1967 struct type *orig_type = type;
92163a10
JK
1968 /* While we're removing typedefs, we don't want to lose qualifiers.
1969 E.g., const/volatile. */
1970 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1971
423c0af8
MS
1972 gdb_assert (type);
1973
c906108c
SS
1974 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1975 {
1976 if (!TYPE_TARGET_TYPE (type))
1977 {
0d5cff50 1978 const char *name;
c906108c
SS
1979 struct symbol *sym;
1980
1981 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1982 reading a symtab. Infinite recursion is one danger. */
c906108c 1983 if (currently_reading_symtab)
92163a10 1984 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1985
1986 name = type_name_no_tag (type);
7ba81444
MS
1987 /* FIXME: shouldn't we separately check the TYPE_NAME and
1988 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1989 VAR_DOMAIN as appropriate? (this code was written before
1990 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1991 if (name == NULL)
1992 {
23136709 1993 stub_noname_complaint ();
92163a10 1994 return make_qualified_type (type, instance_flags, NULL);
c906108c 1995 }
2570f2b7 1996 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1997 if (sym)
1998 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1999 else /* TYPE_CODE_UNDEF */
e9bb382b 2000 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2001 }
2002 type = TYPE_TARGET_TYPE (type);
c906108c 2003
92163a10
JK
2004 /* Preserve the instance flags as we traverse down the typedef chain.
2005
2006 Handling address spaces/classes is nasty, what do we do if there's a
2007 conflict?
2008 E.g., what if an outer typedef marks the type as class_1 and an inner
2009 typedef marks the type as class_2?
2010 This is the wrong place to do such error checking. We leave it to
2011 the code that created the typedef in the first place to flag the
2012 error. We just pick the outer address space (akin to letting the
2013 outer cast in a chain of casting win), instead of assuming
2014 "it can't happen". */
2015 {
2016 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2017 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2018 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2019 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2020
2021 /* Treat code vs data spaces and address classes separately. */
2022 if ((instance_flags & ALL_SPACES) != 0)
2023 new_instance_flags &= ~ALL_SPACES;
2024 if ((instance_flags & ALL_CLASSES) != 0)
2025 new_instance_flags &= ~ALL_CLASSES;
2026
2027 instance_flags |= new_instance_flags;
2028 }
2029 }
a02fd225 2030
7ba81444
MS
2031 /* If this is a struct/class/union with no fields, then check
2032 whether a full definition exists somewhere else. This is for
2033 systems where a type definition with no fields is issued for such
2034 types, instead of identifying them as stub types in the first
2035 place. */
c5aa993b 2036
7ba81444
MS
2037 if (TYPE_IS_OPAQUE (type)
2038 && opaque_type_resolution
2039 && !currently_reading_symtab)
c906108c 2040 {
0d5cff50 2041 const char *name = type_name_no_tag (type);
c5aa993b 2042 struct type *newtype;
d8734c88 2043
c906108c
SS
2044 if (name == NULL)
2045 {
23136709 2046 stub_noname_complaint ();
92163a10 2047 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2048 }
2049 newtype = lookup_transparent_type (name);
ad766c0a 2050
c906108c 2051 if (newtype)
ad766c0a 2052 {
7ba81444
MS
2053 /* If the resolved type and the stub are in the same
2054 objfile, then replace the stub type with the real deal.
2055 But if they're in separate objfiles, leave the stub
2056 alone; we'll just look up the transparent type every time
2057 we call check_typedef. We can't create pointers between
2058 types allocated to different objfiles, since they may
2059 have different lifetimes. Trying to copy NEWTYPE over to
2060 TYPE's objfile is pointless, too, since you'll have to
2061 move over any other types NEWTYPE refers to, which could
2062 be an unbounded amount of stuff. */
ad766c0a 2063 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2064 type = make_qualified_type (newtype,
2065 TYPE_INSTANCE_FLAGS (type),
2066 type);
ad766c0a
JB
2067 else
2068 type = newtype;
2069 }
c906108c 2070 }
7ba81444
MS
2071 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2072 types. */
74a9bb82 2073 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2074 {
0d5cff50 2075 const char *name = type_name_no_tag (type);
c906108c 2076 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2077 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2078 as appropriate? (this code was written before TYPE_NAME and
2079 TYPE_TAG_NAME were separate). */
c906108c 2080 struct symbol *sym;
d8734c88 2081
c906108c
SS
2082 if (name == NULL)
2083 {
23136709 2084 stub_noname_complaint ();
92163a10 2085 return make_qualified_type (type, instance_flags, NULL);
c906108c 2086 }
2570f2b7 2087 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 2088 if (sym)
c26f2453
JB
2089 {
2090 /* Same as above for opaque types, we can replace the stub
92163a10 2091 with the complete type only if they are in the same
c26f2453
JB
2092 objfile. */
2093 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2094 type = make_qualified_type (SYMBOL_TYPE (sym),
2095 TYPE_INSTANCE_FLAGS (type),
2096 type);
c26f2453
JB
2097 else
2098 type = SYMBOL_TYPE (sym);
2099 }
c906108c
SS
2100 }
2101
74a9bb82 2102 if (TYPE_TARGET_STUB (type))
c906108c
SS
2103 {
2104 struct type *range_type;
2105 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2106
74a9bb82 2107 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2108 {
73e2eb35 2109 /* Nothing we can do. */
c5aa993b 2110 }
c906108c
SS
2111 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2112 {
2113 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2114 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2115 }
2116 }
92163a10
JK
2117
2118 type = make_qualified_type (type, instance_flags, NULL);
2119
7ba81444 2120 /* Cache TYPE_LENGTH for future use. */
c906108c 2121 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2122
c906108c
SS
2123 return type;
2124}
2125
7ba81444 2126/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2127 occurs, silently return a void type. */
c91ecb25 2128
b9362cc7 2129static struct type *
48319d1f 2130safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2131{
2132 struct ui_file *saved_gdb_stderr;
34365054 2133 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 2134 volatile struct gdb_exception except;
c91ecb25 2135
7ba81444 2136 /* Suppress error messages. */
c91ecb25
ND
2137 saved_gdb_stderr = gdb_stderr;
2138 gdb_stderr = ui_file_new ();
2139
7ba81444 2140 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
2141 TRY_CATCH (except, RETURN_MASK_ERROR)
2142 {
2143 type = parse_and_eval_type (p, length);
2144 }
2145
2146 if (except.reason < 0)
48319d1f 2147 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 2148
7ba81444 2149 /* Stop suppressing error messages. */
c91ecb25
ND
2150 ui_file_delete (gdb_stderr);
2151 gdb_stderr = saved_gdb_stderr;
2152
2153 return type;
2154}
2155
c906108c
SS
2156/* Ugly hack to convert method stubs into method types.
2157
7ba81444
MS
2158 He ain't kiddin'. This demangles the name of the method into a
2159 string including argument types, parses out each argument type,
2160 generates a string casting a zero to that type, evaluates the
2161 string, and stuffs the resulting type into an argtype vector!!!
2162 Then it knows the type of the whole function (including argument
2163 types for overloading), which info used to be in the stab's but was
2164 removed to hack back the space required for them. */
c906108c 2165
de17c821 2166static void
fba45db2 2167check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2168{
50810684 2169 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2170 struct fn_field *f;
2171 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2172 char *demangled_name = gdb_demangle (mangled_name,
2173 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2174 char *argtypetext, *p;
2175 int depth = 0, argcount = 1;
ad2f7632 2176 struct field *argtypes;
c906108c
SS
2177 struct type *mtype;
2178
2179 /* Make sure we got back a function string that we can use. */
2180 if (demangled_name)
2181 p = strchr (demangled_name, '(');
502dcf4e
AC
2182 else
2183 p = NULL;
c906108c
SS
2184
2185 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2186 error (_("Internal: Cannot demangle mangled name `%s'."),
2187 mangled_name);
c906108c
SS
2188
2189 /* Now, read in the parameters that define this type. */
2190 p += 1;
2191 argtypetext = p;
2192 while (*p)
2193 {
070ad9f0 2194 if (*p == '(' || *p == '<')
c906108c
SS
2195 {
2196 depth += 1;
2197 }
070ad9f0 2198 else if (*p == ')' || *p == '>')
c906108c
SS
2199 {
2200 depth -= 1;
2201 }
2202 else if (*p == ',' && depth == 0)
2203 {
2204 argcount += 1;
2205 }
2206
2207 p += 1;
2208 }
2209
ad2f7632
DJ
2210 /* If we read one argument and it was ``void'', don't count it. */
2211 if (strncmp (argtypetext, "(void)", 6) == 0)
2212 argcount -= 1;
c906108c 2213
ad2f7632
DJ
2214 /* We need one extra slot, for the THIS pointer. */
2215
2216 argtypes = (struct field *)
2217 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2218 p = argtypetext;
4a1970e4
DJ
2219
2220 /* Add THIS pointer for non-static methods. */
2221 f = TYPE_FN_FIELDLIST1 (type, method_id);
2222 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2223 argcount = 0;
2224 else
2225 {
ad2f7632 2226 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2227 argcount = 1;
2228 }
c906108c 2229
0963b4bd 2230 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2231 {
2232 depth = 0;
2233 while (*p)
2234 {
2235 if (depth <= 0 && (*p == ',' || *p == ')'))
2236 {
ad2f7632
DJ
2237 /* Avoid parsing of ellipsis, they will be handled below.
2238 Also avoid ``void'' as above. */
2239 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2240 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2241 {
ad2f7632 2242 argtypes[argcount].type =
48319d1f 2243 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2244 argcount += 1;
2245 }
2246 argtypetext = p + 1;
2247 }
2248
070ad9f0 2249 if (*p == '(' || *p == '<')
c906108c
SS
2250 {
2251 depth += 1;
2252 }
070ad9f0 2253 else if (*p == ')' || *p == '>')
c906108c
SS
2254 {
2255 depth -= 1;
2256 }
2257
2258 p += 1;
2259 }
2260 }
2261
c906108c
SS
2262 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2263
2264 /* Now update the old "stub" type into a real type. */
2265 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2266 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
2267 TYPE_FIELDS (mtype) = argtypes;
2268 TYPE_NFIELDS (mtype) = argcount;
876cecd0 2269 TYPE_STUB (mtype) = 0;
c906108c 2270 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 2271 if (p[-2] == '.')
876cecd0 2272 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
2273
2274 xfree (demangled_name);
c906108c
SS
2275}
2276
7ba81444
MS
2277/* This is the external interface to check_stub_method, above. This
2278 function unstubs all of the signatures for TYPE's METHOD_ID method
2279 name. After calling this function TYPE_FN_FIELD_STUB will be
2280 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2281 correct.
de17c821
DJ
2282
2283 This function unfortunately can not die until stabs do. */
2284
2285void
2286check_stub_method_group (struct type *type, int method_id)
2287{
2288 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2289 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2290 int j, found_stub = 0;
de17c821
DJ
2291
2292 for (j = 0; j < len; j++)
2293 if (TYPE_FN_FIELD_STUB (f, j))
2294 {
2295 found_stub = 1;
2296 check_stub_method (type, method_id, j);
2297 }
2298
7ba81444
MS
2299 /* GNU v3 methods with incorrect names were corrected when we read
2300 in type information, because it was cheaper to do it then. The
2301 only GNU v2 methods with incorrect method names are operators and
2302 destructors; destructors were also corrected when we read in type
2303 information.
de17c821
DJ
2304
2305 Therefore the only thing we need to handle here are v2 operator
2306 names. */
2307 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2308 {
2309 int ret;
2310 char dem_opname[256];
2311
7ba81444
MS
2312 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2313 method_id),
de17c821
DJ
2314 dem_opname, DMGL_ANSI);
2315 if (!ret)
7ba81444
MS
2316 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2317 method_id),
de17c821
DJ
2318 dem_opname, 0);
2319 if (ret)
2320 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2321 }
2322}
2323
9655fd1a
JK
2324/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2325const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2326
2327void
fba45db2 2328allocate_cplus_struct_type (struct type *type)
c906108c 2329{
b4ba55a1
JB
2330 if (HAVE_CPLUS_STRUCT (type))
2331 /* Structure was already allocated. Nothing more to do. */
2332 return;
2333
2334 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2335 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2336 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2337 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
2338}
2339
b4ba55a1
JB
2340const struct gnat_aux_type gnat_aux_default =
2341 { NULL };
2342
2343/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2344 and allocate the associated gnat-specific data. The gnat-specific
2345 data is also initialized to gnat_aux_default. */
5212577a 2346
b4ba55a1
JB
2347void
2348allocate_gnat_aux_type (struct type *type)
2349{
2350 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2351 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2352 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2353 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2354}
2355
c906108c
SS
2356/* Helper function to initialize the standard scalar types.
2357
86f62fd7
TT
2358 If NAME is non-NULL, then it is used to initialize the type name.
2359 Note that NAME is not copied; it is required to have a lifetime at
2360 least as long as OBJFILE. */
c906108c
SS
2361
2362struct type *
7ba81444 2363init_type (enum type_code code, int length, int flags,
748e18ae 2364 const char *name, struct objfile *objfile)
c906108c 2365{
52f0bd74 2366 struct type *type;
c906108c
SS
2367
2368 type = alloc_type (objfile);
2369 TYPE_CODE (type) = code;
2370 TYPE_LENGTH (type) = length;
876cecd0
TT
2371
2372 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2373 if (flags & TYPE_FLAG_UNSIGNED)
2374 TYPE_UNSIGNED (type) = 1;
2375 if (flags & TYPE_FLAG_NOSIGN)
2376 TYPE_NOSIGN (type) = 1;
2377 if (flags & TYPE_FLAG_STUB)
2378 TYPE_STUB (type) = 1;
2379 if (flags & TYPE_FLAG_TARGET_STUB)
2380 TYPE_TARGET_STUB (type) = 1;
2381 if (flags & TYPE_FLAG_STATIC)
2382 TYPE_STATIC (type) = 1;
2383 if (flags & TYPE_FLAG_PROTOTYPED)
2384 TYPE_PROTOTYPED (type) = 1;
2385 if (flags & TYPE_FLAG_INCOMPLETE)
2386 TYPE_INCOMPLETE (type) = 1;
2387 if (flags & TYPE_FLAG_VARARGS)
2388 TYPE_VARARGS (type) = 1;
2389 if (flags & TYPE_FLAG_VECTOR)
2390 TYPE_VECTOR (type) = 1;
2391 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2392 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2393 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2394 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2395 if (flags & TYPE_FLAG_GNU_IFUNC)
2396 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2397
86f62fd7 2398 TYPE_NAME (type) = name;
c906108c
SS
2399
2400 /* C++ fancies. */
2401
973ccf8b 2402 if (name && strcmp (name, "char") == 0)
876cecd0 2403 TYPE_NOSIGN (type) = 1;
973ccf8b 2404
b4ba55a1 2405 switch (code)
c906108c 2406 {
b4ba55a1
JB
2407 case TYPE_CODE_STRUCT:
2408 case TYPE_CODE_UNION:
2409 case TYPE_CODE_NAMESPACE:
2410 INIT_CPLUS_SPECIFIC (type);
2411 break;
2412 case TYPE_CODE_FLT:
2413 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2414 break;
2415 case TYPE_CODE_FUNC:
b6cdc2c1 2416 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2417 break;
c906108c 2418 }
c16abbde 2419 return type;
c906108c 2420}
5212577a
DE
2421\f
2422/* Queries on types. */
c906108c 2423
c906108c 2424int
fba45db2 2425can_dereference (struct type *t)
c906108c 2426{
7ba81444
MS
2427 /* FIXME: Should we return true for references as well as
2428 pointers? */
c906108c
SS
2429 CHECK_TYPEDEF (t);
2430 return
2431 (t != NULL
2432 && TYPE_CODE (t) == TYPE_CODE_PTR
2433 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2434}
2435
adf40b2e 2436int
fba45db2 2437is_integral_type (struct type *t)
adf40b2e
JM
2438{
2439 CHECK_TYPEDEF (t);
2440 return
2441 ((t != NULL)
d4f3574e
SS
2442 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2443 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2444 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2445 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2446 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2447 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2448}
2449
e09342b5
TJB
2450/* Return true if TYPE is scalar. */
2451
2452static int
2453is_scalar_type (struct type *type)
2454{
2455 CHECK_TYPEDEF (type);
2456
2457 switch (TYPE_CODE (type))
2458 {
2459 case TYPE_CODE_ARRAY:
2460 case TYPE_CODE_STRUCT:
2461 case TYPE_CODE_UNION:
2462 case TYPE_CODE_SET:
2463 case TYPE_CODE_STRING:
e09342b5
TJB
2464 return 0;
2465 default:
2466 return 1;
2467 }
2468}
2469
2470/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2471 the memory layout of a scalar type. E.g., an array or struct with only
2472 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2473
2474int
2475is_scalar_type_recursive (struct type *t)
2476{
2477 CHECK_TYPEDEF (t);
2478
2479 if (is_scalar_type (t))
2480 return 1;
2481 /* Are we dealing with an array or string of known dimensions? */
2482 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2483 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2484 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2485 {
2486 LONGEST low_bound, high_bound;
2487 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2488
2489 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2490
2491 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2492 }
2493 /* Are we dealing with a struct with one element? */
2494 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2495 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2496 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2497 {
2498 int i, n = TYPE_NFIELDS (t);
2499
2500 /* If all elements of the union are scalar, then the union is scalar. */
2501 for (i = 0; i < n; i++)
2502 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2503 return 0;
2504
2505 return 1;
2506 }
2507
2508 return 0;
2509}
2510
6c659fc2
SC
2511/* Return true is T is a class or a union. False otherwise. */
2512
2513int
2514class_or_union_p (const struct type *t)
2515{
2516 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2517 || TYPE_CODE (t) == TYPE_CODE_UNION);
2518}
2519
4e8f195d
TT
2520/* A helper function which returns true if types A and B represent the
2521 "same" class type. This is true if the types have the same main
2522 type, or the same name. */
2523
2524int
2525class_types_same_p (const struct type *a, const struct type *b)
2526{
2527 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2528 || (TYPE_NAME (a) && TYPE_NAME (b)
2529 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2530}
2531
a9d5ef47
SW
2532/* If BASE is an ancestor of DCLASS return the distance between them.
2533 otherwise return -1;
2534 eg:
2535
2536 class A {};
2537 class B: public A {};
2538 class C: public B {};
2539 class D: C {};
2540
2541 distance_to_ancestor (A, A, 0) = 0
2542 distance_to_ancestor (A, B, 0) = 1
2543 distance_to_ancestor (A, C, 0) = 2
2544 distance_to_ancestor (A, D, 0) = 3
2545
2546 If PUBLIC is 1 then only public ancestors are considered,
2547 and the function returns the distance only if BASE is a public ancestor
2548 of DCLASS.
2549 Eg:
2550
0963b4bd 2551 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2552
0526b37a 2553static int
a9d5ef47 2554distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2555{
2556 int i;
a9d5ef47 2557 int d;
c5aa993b 2558
c906108c
SS
2559 CHECK_TYPEDEF (base);
2560 CHECK_TYPEDEF (dclass);
2561
4e8f195d 2562 if (class_types_same_p (base, dclass))
a9d5ef47 2563 return 0;
c906108c
SS
2564
2565 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2566 {
0526b37a
SW
2567 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2568 continue;
2569
a9d5ef47
SW
2570 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2571 if (d >= 0)
2572 return 1 + d;
4e8f195d 2573 }
c906108c 2574
a9d5ef47 2575 return -1;
c906108c 2576}
4e8f195d 2577
0526b37a
SW
2578/* Check whether BASE is an ancestor or base class or DCLASS
2579 Return 1 if so, and 0 if not.
2580 Note: If BASE and DCLASS are of the same type, this function
2581 will return 1. So for some class A, is_ancestor (A, A) will
2582 return 1. */
2583
2584int
2585is_ancestor (struct type *base, struct type *dclass)
2586{
a9d5ef47 2587 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2588}
2589
4e8f195d
TT
2590/* Like is_ancestor, but only returns true when BASE is a public
2591 ancestor of DCLASS. */
2592
2593int
2594is_public_ancestor (struct type *base, struct type *dclass)
2595{
a9d5ef47 2596 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2597}
2598
2599/* A helper function for is_unique_ancestor. */
2600
2601static int
2602is_unique_ancestor_worker (struct type *base, struct type *dclass,
2603 int *offset,
8af8e3bc
PA
2604 const gdb_byte *valaddr, int embedded_offset,
2605 CORE_ADDR address, struct value *val)
4e8f195d
TT
2606{
2607 int i, count = 0;
2608
2609 CHECK_TYPEDEF (base);
2610 CHECK_TYPEDEF (dclass);
2611
2612 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2613 {
8af8e3bc
PA
2614 struct type *iter;
2615 int this_offset;
4e8f195d 2616
8af8e3bc
PA
2617 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2618
2619 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2620 address, val);
4e8f195d
TT
2621
2622 if (class_types_same_p (base, iter))
2623 {
2624 /* If this is the first subclass, set *OFFSET and set count
2625 to 1. Otherwise, if this is at the same offset as
2626 previous instances, do nothing. Otherwise, increment
2627 count. */
2628 if (*offset == -1)
2629 {
2630 *offset = this_offset;
2631 count = 1;
2632 }
2633 else if (this_offset == *offset)
2634 {
2635 /* Nothing. */
2636 }
2637 else
2638 ++count;
2639 }
2640 else
2641 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2642 valaddr,
2643 embedded_offset + this_offset,
2644 address, val);
4e8f195d
TT
2645 }
2646
2647 return count;
2648}
2649
2650/* Like is_ancestor, but only returns true if BASE is a unique base
2651 class of the type of VAL. */
2652
2653int
2654is_unique_ancestor (struct type *base, struct value *val)
2655{
2656 int offset = -1;
2657
2658 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2659 value_contents_for_printing (val),
2660 value_embedded_offset (val),
2661 value_address (val), val) == 1;
4e8f195d
TT
2662}
2663
c906108c 2664\f
5212577a 2665/* Overload resolution. */
c906108c 2666
6403aeea
SW
2667/* Return the sum of the rank of A with the rank of B. */
2668
2669struct rank
2670sum_ranks (struct rank a, struct rank b)
2671{
2672 struct rank c;
2673 c.rank = a.rank + b.rank;
a9d5ef47 2674 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2675 return c;
2676}
2677
2678/* Compare rank A and B and return:
2679 0 if a = b
2680 1 if a is better than b
2681 -1 if b is better than a. */
2682
2683int
2684compare_ranks (struct rank a, struct rank b)
2685{
2686 if (a.rank == b.rank)
a9d5ef47
SW
2687 {
2688 if (a.subrank == b.subrank)
2689 return 0;
2690 if (a.subrank < b.subrank)
2691 return 1;
2692 if (a.subrank > b.subrank)
2693 return -1;
2694 }
6403aeea
SW
2695
2696 if (a.rank < b.rank)
2697 return 1;
2698
0963b4bd 2699 /* a.rank > b.rank */
6403aeea
SW
2700 return -1;
2701}
c5aa993b 2702
0963b4bd 2703/* Functions for overload resolution begin here. */
c906108c
SS
2704
2705/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2706 0 => A and B are identical
2707 1 => A and B are incomparable
2708 2 => A is better than B
2709 3 => A is worse than B */
c906108c
SS
2710
2711int
fba45db2 2712compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2713{
2714 int i;
2715 int tmp;
c5aa993b
JM
2716 short found_pos = 0; /* any positives in c? */
2717 short found_neg = 0; /* any negatives in c? */
2718
2719 /* differing lengths => incomparable */
c906108c
SS
2720 if (a->length != b->length)
2721 return 1;
2722
c5aa993b
JM
2723 /* Subtract b from a */
2724 for (i = 0; i < a->length; i++)
c906108c 2725 {
6403aeea 2726 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2727 if (tmp > 0)
c5aa993b 2728 found_pos = 1;
c906108c 2729 else if (tmp < 0)
c5aa993b 2730 found_neg = 1;
c906108c
SS
2731 }
2732
2733 if (found_pos)
2734 {
2735 if (found_neg)
c5aa993b 2736 return 1; /* incomparable */
c906108c 2737 else
c5aa993b 2738 return 3; /* A > B */
c906108c 2739 }
c5aa993b
JM
2740 else
2741 /* no positives */
c906108c
SS
2742 {
2743 if (found_neg)
c5aa993b 2744 return 2; /* A < B */
c906108c 2745 else
c5aa993b 2746 return 0; /* A == B */
c906108c
SS
2747 }
2748}
2749
7ba81444
MS
2750/* Rank a function by comparing its parameter types (PARMS, length
2751 NPARMS), to the types of an argument list (ARGS, length NARGS).
2752 Return a pointer to a badness vector. This has NARGS + 1
2753 entries. */
c906108c
SS
2754
2755struct badness_vector *
7ba81444 2756rank_function (struct type **parms, int nparms,
da096638 2757 struct value **args, int nargs)
c906108c
SS
2758{
2759 int i;
c5aa993b 2760 struct badness_vector *bv;
c906108c
SS
2761 int min_len = nparms < nargs ? nparms : nargs;
2762
2763 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2764 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 2765 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
2766
2767 /* First compare the lengths of the supplied lists.
7ba81444 2768 If there is a mismatch, set it to a high value. */
c5aa993b 2769
c906108c 2770 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2771 arguments and ellipsis parameter lists, we should consider those
2772 and rank the length-match more finely. */
c906108c 2773
6403aeea
SW
2774 LENGTH_MATCH (bv) = (nargs != nparms)
2775 ? LENGTH_MISMATCH_BADNESS
2776 : EXACT_MATCH_BADNESS;
c906108c 2777
0963b4bd 2778 /* Now rank all the parameters of the candidate function. */
74cc24b0 2779 for (i = 1; i <= min_len; i++)
da096638
KS
2780 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2781 args[i - 1]);
c906108c 2782
0963b4bd 2783 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2784 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2785 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2786
2787 return bv;
2788}
2789
973ccf8b
DJ
2790/* Compare the names of two integer types, assuming that any sign
2791 qualifiers have been checked already. We do it this way because
2792 there may be an "int" in the name of one of the types. */
2793
2794static int
2795integer_types_same_name_p (const char *first, const char *second)
2796{
2797 int first_p, second_p;
2798
7ba81444
MS
2799 /* If both are shorts, return 1; if neither is a short, keep
2800 checking. */
973ccf8b
DJ
2801 first_p = (strstr (first, "short") != NULL);
2802 second_p = (strstr (second, "short") != NULL);
2803 if (first_p && second_p)
2804 return 1;
2805 if (first_p || second_p)
2806 return 0;
2807
2808 /* Likewise for long. */
2809 first_p = (strstr (first, "long") != NULL);
2810 second_p = (strstr (second, "long") != NULL);
2811 if (first_p && second_p)
2812 return 1;
2813 if (first_p || second_p)
2814 return 0;
2815
2816 /* Likewise for char. */
2817 first_p = (strstr (first, "char") != NULL);
2818 second_p = (strstr (second, "char") != NULL);
2819 if (first_p && second_p)
2820 return 1;
2821 if (first_p || second_p)
2822 return 0;
2823
2824 /* They must both be ints. */
2825 return 1;
2826}
2827
7062b0a0
SW
2828/* Compares type A to type B returns 1 if the represent the same type
2829 0 otherwise. */
2830
bd69fc68 2831int
7062b0a0
SW
2832types_equal (struct type *a, struct type *b)
2833{
2834 /* Identical type pointers. */
2835 /* However, this still doesn't catch all cases of same type for b
2836 and a. The reason is that builtin types are different from
2837 the same ones constructed from the object. */
2838 if (a == b)
2839 return 1;
2840
2841 /* Resolve typedefs */
2842 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2843 a = check_typedef (a);
2844 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2845 b = check_typedef (b);
2846
2847 /* If after resolving typedefs a and b are not of the same type
2848 code then they are not equal. */
2849 if (TYPE_CODE (a) != TYPE_CODE (b))
2850 return 0;
2851
2852 /* If a and b are both pointers types or both reference types then
2853 they are equal of the same type iff the objects they refer to are
2854 of the same type. */
2855 if (TYPE_CODE (a) == TYPE_CODE_PTR
2856 || TYPE_CODE (a) == TYPE_CODE_REF)
2857 return types_equal (TYPE_TARGET_TYPE (a),
2858 TYPE_TARGET_TYPE (b));
2859
0963b4bd 2860 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2861 are exactly the same. This happens when we generate method
2862 stubs. The types won't point to the same address, but they
0963b4bd 2863 really are the same. */
7062b0a0
SW
2864
2865 if (TYPE_NAME (a) && TYPE_NAME (b)
2866 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2867 return 1;
2868
2869 /* Check if identical after resolving typedefs. */
2870 if (a == b)
2871 return 1;
2872
9ce98649
TT
2873 /* Two function types are equal if their argument and return types
2874 are equal. */
2875 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2876 {
2877 int i;
2878
2879 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2880 return 0;
2881
2882 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2883 return 0;
2884
2885 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2886 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2887 return 0;
2888
2889 return 1;
2890 }
2891
7062b0a0
SW
2892 return 0;
2893}
ca092b61
DE
2894\f
2895/* Deep comparison of types. */
2896
2897/* An entry in the type-equality bcache. */
2898
2899typedef struct type_equality_entry
2900{
2901 struct type *type1, *type2;
2902} type_equality_entry_d;
2903
2904DEF_VEC_O (type_equality_entry_d);
2905
2906/* A helper function to compare two strings. Returns 1 if they are
2907 the same, 0 otherwise. Handles NULLs properly. */
2908
2909static int
2910compare_maybe_null_strings (const char *s, const char *t)
2911{
2912 if (s == NULL && t != NULL)
2913 return 0;
2914 else if (s != NULL && t == NULL)
2915 return 0;
2916 else if (s == NULL && t== NULL)
2917 return 1;
2918 return strcmp (s, t) == 0;
2919}
2920
2921/* A helper function for check_types_worklist that checks two types for
2922 "deep" equality. Returns non-zero if the types are considered the
2923 same, zero otherwise. */
2924
2925static int
2926check_types_equal (struct type *type1, struct type *type2,
2927 VEC (type_equality_entry_d) **worklist)
2928{
2929 CHECK_TYPEDEF (type1);
2930 CHECK_TYPEDEF (type2);
2931
2932 if (type1 == type2)
2933 return 1;
2934
2935 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2936 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2937 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2938 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2939 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2940 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2941 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2942 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2943 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2944 return 0;
2945
2946 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2947 TYPE_TAG_NAME (type2)))
2948 return 0;
2949 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2950 return 0;
2951
2952 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2953 {
2954 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2955 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2956 return 0;
2957 }
2958 else
2959 {
2960 int i;
2961
2962 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2963 {
2964 const struct field *field1 = &TYPE_FIELD (type1, i);
2965 const struct field *field2 = &TYPE_FIELD (type2, i);
2966 struct type_equality_entry entry;
2967
2968 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2969 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2970 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2971 return 0;
2972 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2973 FIELD_NAME (*field2)))
2974 return 0;
2975 switch (FIELD_LOC_KIND (*field1))
2976 {
2977 case FIELD_LOC_KIND_BITPOS:
2978 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2979 return 0;
2980 break;
2981 case FIELD_LOC_KIND_ENUMVAL:
2982 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2983 return 0;
2984 break;
2985 case FIELD_LOC_KIND_PHYSADDR:
2986 if (FIELD_STATIC_PHYSADDR (*field1)
2987 != FIELD_STATIC_PHYSADDR (*field2))
2988 return 0;
2989 break;
2990 case FIELD_LOC_KIND_PHYSNAME:
2991 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2992 FIELD_STATIC_PHYSNAME (*field2)))
2993 return 0;
2994 break;
2995 case FIELD_LOC_KIND_DWARF_BLOCK:
2996 {
2997 struct dwarf2_locexpr_baton *block1, *block2;
2998
2999 block1 = FIELD_DWARF_BLOCK (*field1);
3000 block2 = FIELD_DWARF_BLOCK (*field2);
3001 if (block1->per_cu != block2->per_cu
3002 || block1->size != block2->size
3003 || memcmp (block1->data, block2->data, block1->size) != 0)
3004 return 0;
3005 }
3006 break;
3007 default:
3008 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3009 "%d by check_types_equal"),
3010 FIELD_LOC_KIND (*field1));
3011 }
3012
3013 entry.type1 = FIELD_TYPE (*field1);
3014 entry.type2 = FIELD_TYPE (*field2);
3015 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3016 }
3017 }
3018
3019 if (TYPE_TARGET_TYPE (type1) != NULL)
3020 {
3021 struct type_equality_entry entry;
3022
3023 if (TYPE_TARGET_TYPE (type2) == NULL)
3024 return 0;
3025
3026 entry.type1 = TYPE_TARGET_TYPE (type1);
3027 entry.type2 = TYPE_TARGET_TYPE (type2);
3028 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3029 }
3030 else if (TYPE_TARGET_TYPE (type2) != NULL)
3031 return 0;
3032
3033 return 1;
3034}
3035
3036/* Check types on a worklist for equality. Returns zero if any pair
3037 is not equal, non-zero if they are all considered equal. */
3038
3039static int
3040check_types_worklist (VEC (type_equality_entry_d) **worklist,
3041 struct bcache *cache)
3042{
3043 while (!VEC_empty (type_equality_entry_d, *worklist))
3044 {
3045 struct type_equality_entry entry;
3046 int added;
3047
3048 entry = *VEC_last (type_equality_entry_d, *worklist);
3049 VEC_pop (type_equality_entry_d, *worklist);
3050
3051 /* If the type pair has already been visited, we know it is
3052 ok. */
3053 bcache_full (&entry, sizeof (entry), cache, &added);
3054 if (!added)
3055 continue;
3056
3057 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3058 return 0;
3059 }
7062b0a0 3060
ca092b61
DE
3061 return 1;
3062}
3063
3064/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3065 "deep comparison". Otherwise return zero. */
3066
3067int
3068types_deeply_equal (struct type *type1, struct type *type2)
3069{
3070 volatile struct gdb_exception except;
3071 int result = 0;
3072 struct bcache *cache;
3073 VEC (type_equality_entry_d) *worklist = NULL;
3074 struct type_equality_entry entry;
3075
3076 gdb_assert (type1 != NULL && type2 != NULL);
3077
3078 /* Early exit for the simple case. */
3079 if (type1 == type2)
3080 return 1;
3081
3082 cache = bcache_xmalloc (NULL, NULL);
3083
3084 entry.type1 = type1;
3085 entry.type2 = type2;
3086 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3087
3088 TRY_CATCH (except, RETURN_MASK_ALL)
3089 {
3090 result = check_types_worklist (&worklist, cache);
3091 }
3092 /* check_types_worklist calls several nested helper functions,
3093 some of which can raise a GDB Exception, so we just check
3094 and rethrow here. If there is a GDB exception, a comparison
3095 is not capable (or trusted), so exit. */
3096 bcache_xfree (cache);
3097 VEC_free (type_equality_entry_d, worklist);
3098 /* Rethrow if there was a problem. */
3099 if (except.reason < 0)
3100 throw_exception (except);
3101
3102 return result;
3103}
3104\f
c906108c
SS
3105/* Compare one type (PARM) for compatibility with another (ARG).
3106 * PARM is intended to be the parameter type of a function; and
3107 * ARG is the supplied argument's type. This function tests if
3108 * the latter can be converted to the former.
da096638 3109 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3110 *
3111 * Return 0 if they are identical types;
3112 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3113 * PARM is to ARG. The higher the return value, the worse the match.
3114 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3115
6403aeea 3116struct rank
da096638 3117rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3118{
a9d5ef47 3119 struct rank rank = {0,0};
7062b0a0
SW
3120
3121 if (types_equal (parm, arg))
6403aeea 3122 return EXACT_MATCH_BADNESS;
c906108c
SS
3123
3124 /* Resolve typedefs */
3125 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3126 parm = check_typedef (parm);
3127 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3128 arg = check_typedef (arg);
3129
db577aea 3130 /* See through references, since we can almost make non-references
7ba81444 3131 references. */
db577aea 3132 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3133 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3134 REFERENCE_CONVERSION_BADNESS));
db577aea 3135 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3136 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3137 REFERENCE_CONVERSION_BADNESS));
5d161b24 3138 if (overload_debug)
7ba81444
MS
3139 /* Debugging only. */
3140 fprintf_filtered (gdb_stderr,
3141 "------ Arg is %s [%d], parm is %s [%d]\n",
3142 TYPE_NAME (arg), TYPE_CODE (arg),
3143 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3144
0963b4bd 3145 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3146
3147 switch (TYPE_CODE (parm))
3148 {
c5aa993b
JM
3149 case TYPE_CODE_PTR:
3150 switch (TYPE_CODE (arg))
3151 {
3152 case TYPE_CODE_PTR:
7062b0a0
SW
3153
3154 /* Allowed pointer conversions are:
3155 (a) pointer to void-pointer conversion. */
3156 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3157 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3158
3159 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3160 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3161 TYPE_TARGET_TYPE (arg),
3162 0);
3163 if (rank.subrank >= 0)
3164 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3165
3166 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3167 case TYPE_CODE_ARRAY:
7062b0a0
SW
3168 if (types_equal (TYPE_TARGET_TYPE (parm),
3169 TYPE_TARGET_TYPE (arg)))
6403aeea 3170 return EXACT_MATCH_BADNESS;
7062b0a0 3171 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3172 case TYPE_CODE_FUNC:
da096638 3173 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3174 case TYPE_CODE_INT:
a451cb65 3175 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3176 {
a451cb65
KS
3177 if (value_as_long (value) == 0)
3178 {
3179 /* Null pointer conversion: allow it to be cast to a pointer.
3180 [4.10.1 of C++ standard draft n3290] */
3181 return NULL_POINTER_CONVERSION_BADNESS;
3182 }
3183 else
3184 {
3185 /* If type checking is disabled, allow the conversion. */
3186 if (!strict_type_checking)
3187 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3188 }
da096638
KS
3189 }
3190 /* fall through */
c5aa993b 3191 case TYPE_CODE_ENUM:
4f2aea11 3192 case TYPE_CODE_FLAGS:
c5aa993b
JM
3193 case TYPE_CODE_CHAR:
3194 case TYPE_CODE_RANGE:
3195 case TYPE_CODE_BOOL:
c5aa993b
JM
3196 default:
3197 return INCOMPATIBLE_TYPE_BADNESS;
3198 }
3199 case TYPE_CODE_ARRAY:
3200 switch (TYPE_CODE (arg))
3201 {
3202 case TYPE_CODE_PTR:
3203 case TYPE_CODE_ARRAY:
7ba81444 3204 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3205 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3206 default:
3207 return INCOMPATIBLE_TYPE_BADNESS;
3208 }
3209 case TYPE_CODE_FUNC:
3210 switch (TYPE_CODE (arg))
3211 {
3212 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3213 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3214 default:
3215 return INCOMPATIBLE_TYPE_BADNESS;
3216 }
3217 case TYPE_CODE_INT:
3218 switch (TYPE_CODE (arg))
3219 {
3220 case TYPE_CODE_INT:
3221 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3222 {
3223 /* Deal with signed, unsigned, and plain chars and
7ba81444 3224 signed and unsigned ints. */
c5aa993b
JM
3225 if (TYPE_NOSIGN (parm))
3226 {
0963b4bd 3227 /* This case only for character types. */
7ba81444 3228 if (TYPE_NOSIGN (arg))
6403aeea 3229 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3230 else /* signed/unsigned char -> plain char */
3231 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3232 }
3233 else if (TYPE_UNSIGNED (parm))
3234 {
3235 if (TYPE_UNSIGNED (arg))
3236 {
7ba81444
MS
3237 /* unsigned int -> unsigned int, or
3238 unsigned long -> unsigned long */
3239 if (integer_types_same_name_p (TYPE_NAME (parm),
3240 TYPE_NAME (arg)))
6403aeea 3241 return EXACT_MATCH_BADNESS;
7ba81444
MS
3242 else if (integer_types_same_name_p (TYPE_NAME (arg),
3243 "int")
3244 && integer_types_same_name_p (TYPE_NAME (parm),
3245 "long"))
3e43a32a
MS
3246 /* unsigned int -> unsigned long */
3247 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3248 else
3e43a32a
MS
3249 /* unsigned long -> unsigned int */
3250 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3251 }
3252 else
3253 {
7ba81444
MS
3254 if (integer_types_same_name_p (TYPE_NAME (arg),
3255 "long")
3256 && integer_types_same_name_p (TYPE_NAME (parm),
3257 "int"))
3e43a32a
MS
3258 /* signed long -> unsigned int */
3259 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3260 else
3e43a32a
MS
3261 /* signed int/long -> unsigned int/long */
3262 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3263 }
3264 }
3265 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3266 {
7ba81444
MS
3267 if (integer_types_same_name_p (TYPE_NAME (parm),
3268 TYPE_NAME (arg)))
6403aeea 3269 return EXACT_MATCH_BADNESS;
7ba81444
MS
3270 else if (integer_types_same_name_p (TYPE_NAME (arg),
3271 "int")
3272 && integer_types_same_name_p (TYPE_NAME (parm),
3273 "long"))
c5aa993b
JM
3274 return INTEGER_PROMOTION_BADNESS;
3275 else
1c5cb38e 3276 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3277 }
3278 else
1c5cb38e 3279 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3280 }
3281 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3282 return INTEGER_PROMOTION_BADNESS;
3283 else
1c5cb38e 3284 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3285 case TYPE_CODE_ENUM:
4f2aea11 3286 case TYPE_CODE_FLAGS:
c5aa993b
JM
3287 case TYPE_CODE_CHAR:
3288 case TYPE_CODE_RANGE:
3289 case TYPE_CODE_BOOL:
3d567982
TT
3290 if (TYPE_DECLARED_CLASS (arg))
3291 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3292 return INTEGER_PROMOTION_BADNESS;
3293 case TYPE_CODE_FLT:
3294 return INT_FLOAT_CONVERSION_BADNESS;
3295 case TYPE_CODE_PTR:
3296 return NS_POINTER_CONVERSION_BADNESS;
3297 default:
3298 return INCOMPATIBLE_TYPE_BADNESS;
3299 }
3300 break;
3301 case TYPE_CODE_ENUM:
3302 switch (TYPE_CODE (arg))
3303 {
3304 case TYPE_CODE_INT:
3305 case TYPE_CODE_CHAR:
3306 case TYPE_CODE_RANGE:
3307 case TYPE_CODE_BOOL:
3308 case TYPE_CODE_ENUM:
3d567982
TT
3309 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3310 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3311 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3312 case TYPE_CODE_FLT:
3313 return INT_FLOAT_CONVERSION_BADNESS;
3314 default:
3315 return INCOMPATIBLE_TYPE_BADNESS;
3316 }
3317 break;
3318 case TYPE_CODE_CHAR:
3319 switch (TYPE_CODE (arg))
3320 {
3321 case TYPE_CODE_RANGE:
3322 case TYPE_CODE_BOOL:
3323 case TYPE_CODE_ENUM:
3d567982
TT
3324 if (TYPE_DECLARED_CLASS (arg))
3325 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3326 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3327 case TYPE_CODE_FLT:
3328 return INT_FLOAT_CONVERSION_BADNESS;
3329 case TYPE_CODE_INT:
3330 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3331 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3332 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3333 return INTEGER_PROMOTION_BADNESS;
3334 /* >>> !! else fall through !! <<< */
3335 case TYPE_CODE_CHAR:
7ba81444
MS
3336 /* Deal with signed, unsigned, and plain chars for C++ and
3337 with int cases falling through from previous case. */
c5aa993b
JM
3338 if (TYPE_NOSIGN (parm))
3339 {
3340 if (TYPE_NOSIGN (arg))
6403aeea 3341 return EXACT_MATCH_BADNESS;
c5aa993b 3342 else
1c5cb38e 3343 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3344 }
3345 else if (TYPE_UNSIGNED (parm))
3346 {
3347 if (TYPE_UNSIGNED (arg))
6403aeea 3348 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3349 else
3350 return INTEGER_PROMOTION_BADNESS;
3351 }
3352 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3353 return EXACT_MATCH_BADNESS;
c5aa993b 3354 else
1c5cb38e 3355 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3356 default:
3357 return INCOMPATIBLE_TYPE_BADNESS;
3358 }
3359 break;
3360 case TYPE_CODE_RANGE:
3361 switch (TYPE_CODE (arg))
3362 {
3363 case TYPE_CODE_INT:
3364 case TYPE_CODE_CHAR:
3365 case TYPE_CODE_RANGE:
3366 case TYPE_CODE_BOOL:
3367 case TYPE_CODE_ENUM:
1c5cb38e 3368 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3369 case TYPE_CODE_FLT:
3370 return INT_FLOAT_CONVERSION_BADNESS;
3371 default:
3372 return INCOMPATIBLE_TYPE_BADNESS;
3373 }
3374 break;
3375 case TYPE_CODE_BOOL:
3376 switch (TYPE_CODE (arg))
3377 {
5b4f6e25
KS
3378 /* n3290 draft, section 4.12.1 (conv.bool):
3379
3380 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3381 pointer to member type can be converted to a prvalue of type
3382 bool. A zero value, null pointer value, or null member pointer
3383 value is converted to false; any other value is converted to
3384 true. A prvalue of type std::nullptr_t can be converted to a
3385 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3386 case TYPE_CODE_INT:
3387 case TYPE_CODE_CHAR:
c5aa993b
JM
3388 case TYPE_CODE_ENUM:
3389 case TYPE_CODE_FLT:
5b4f6e25 3390 case TYPE_CODE_MEMBERPTR:
c5aa993b 3391 case TYPE_CODE_PTR:
5b4f6e25
KS
3392 return BOOL_CONVERSION_BADNESS;
3393 case TYPE_CODE_RANGE:
3394 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3395 case TYPE_CODE_BOOL:
6403aeea 3396 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3397 default:
3398 return INCOMPATIBLE_TYPE_BADNESS;
3399 }
3400 break;
3401 case TYPE_CODE_FLT:
3402 switch (TYPE_CODE (arg))
3403 {
3404 case TYPE_CODE_FLT:
3405 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3406 return FLOAT_PROMOTION_BADNESS;
3407 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3408 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3409 else
3410 return FLOAT_CONVERSION_BADNESS;
3411 case TYPE_CODE_INT:
3412 case TYPE_CODE_BOOL:
3413 case TYPE_CODE_ENUM:
3414 case TYPE_CODE_RANGE:
3415 case TYPE_CODE_CHAR:
3416 return INT_FLOAT_CONVERSION_BADNESS;
3417 default:
3418 return INCOMPATIBLE_TYPE_BADNESS;
3419 }
3420 break;
3421 case TYPE_CODE_COMPLEX:
3422 switch (TYPE_CODE (arg))
7ba81444 3423 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3424 case TYPE_CODE_FLT:
3425 return FLOAT_PROMOTION_BADNESS;
3426 case TYPE_CODE_COMPLEX:
6403aeea 3427 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3428 default:
3429 return INCOMPATIBLE_TYPE_BADNESS;
3430 }
3431 break;
3432 case TYPE_CODE_STRUCT:
c5aa993b
JM
3433 switch (TYPE_CODE (arg))
3434 {
3435 case TYPE_CODE_STRUCT:
3436 /* Check for derivation */
a9d5ef47
SW
3437 rank.subrank = distance_to_ancestor (parm, arg, 0);
3438 if (rank.subrank >= 0)
3439 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3440 /* else fall through */
3441 default:
3442 return INCOMPATIBLE_TYPE_BADNESS;
3443 }
3444 break;
3445 case TYPE_CODE_UNION:
3446 switch (TYPE_CODE (arg))
3447 {
3448 case TYPE_CODE_UNION:
3449 default:
3450 return INCOMPATIBLE_TYPE_BADNESS;
3451 }
3452 break;
0d5de010 3453 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3454 switch (TYPE_CODE (arg))
3455 {
3456 default:
3457 return INCOMPATIBLE_TYPE_BADNESS;
3458 }
3459 break;
3460 case TYPE_CODE_METHOD:
3461 switch (TYPE_CODE (arg))
3462 {
3463
3464 default:
3465 return INCOMPATIBLE_TYPE_BADNESS;
3466 }
3467 break;
3468 case TYPE_CODE_REF:
3469 switch (TYPE_CODE (arg))
3470 {
3471
3472 default:
3473 return INCOMPATIBLE_TYPE_BADNESS;
3474 }
3475
3476 break;
3477 case TYPE_CODE_SET:
3478 switch (TYPE_CODE (arg))
3479 {
3480 /* Not in C++ */
3481 case TYPE_CODE_SET:
7ba81444 3482 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3483 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3484 default:
3485 return INCOMPATIBLE_TYPE_BADNESS;
3486 }
3487 break;
3488 case TYPE_CODE_VOID:
3489 default:
3490 return INCOMPATIBLE_TYPE_BADNESS;
3491 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3492}
3493
0963b4bd 3494/* End of functions for overload resolution. */
5212577a
DE
3495\f
3496/* Routines to pretty-print types. */
c906108c 3497
c906108c 3498static void
fba45db2 3499print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3500{
3501 int bitno;
3502
3503 for (bitno = 0; bitno < nbits; bitno++)
3504 {
3505 if ((bitno % 8) == 0)
3506 {
3507 puts_filtered (" ");
3508 }
3509 if (B_TST (bits, bitno))
a3f17187 3510 printf_filtered (("1"));
c906108c 3511 else
a3f17187 3512 printf_filtered (("0"));
c906108c
SS
3513 }
3514}
3515
ad2f7632 3516/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3517 include it since we may get into a infinitely recursive
3518 situation. */
c906108c
SS
3519
3520static void
4c9e8482 3521print_args (struct field *args, int nargs, int spaces)
c906108c
SS
3522{
3523 if (args != NULL)
3524 {
ad2f7632
DJ
3525 int i;
3526
3527 for (i = 0; i < nargs; i++)
4c9e8482
DE
3528 {
3529 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3530 args[i].name != NULL ? args[i].name : "<NULL>");
3531 recursive_dump_type (args[i].type, spaces + 2);
3532 }
c906108c
SS
3533 }
3534}
3535
d6a843b5
JK
3536int
3537field_is_static (struct field *f)
3538{
3539 /* "static" fields are the fields whose location is not relative
3540 to the address of the enclosing struct. It would be nice to
3541 have a dedicated flag that would be set for static fields when
3542 the type is being created. But in practice, checking the field
254e6b9e 3543 loc_kind should give us an accurate answer. */
d6a843b5
JK
3544 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3545 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3546}
3547
c906108c 3548static void
fba45db2 3549dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3550{
3551 int method_idx;
3552 int overload_idx;
3553 struct fn_field *f;
3554
3555 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3556 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3557 printf_filtered ("\n");
3558 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3559 {
3560 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3561 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3562 method_idx,
3563 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3564 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3565 gdb_stdout);
a3f17187 3566 printf_filtered (_(") length %d\n"),
c906108c
SS
3567 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3568 for (overload_idx = 0;
3569 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3570 overload_idx++)
3571 {
3572 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3573 overload_idx,
3574 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3575 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3576 gdb_stdout);
c906108c
SS
3577 printf_filtered (")\n");
3578 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3579 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3580 gdb_stdout);
c906108c
SS
3581 printf_filtered ("\n");
3582
3583 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3584 spaces + 8 + 2);
3585
3586 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3587 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3588 gdb_stdout);
c906108c 3589 printf_filtered ("\n");
4c9e8482
DE
3590 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3591 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3592 spaces + 8 + 2);
c906108c 3593 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3594 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3595 gdb_stdout);
c906108c
SS
3596 printf_filtered ("\n");
3597
3598 printfi_filtered (spaces + 8, "is_const %d\n",
3599 TYPE_FN_FIELD_CONST (f, overload_idx));
3600 printfi_filtered (spaces + 8, "is_volatile %d\n",
3601 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3602 printfi_filtered (spaces + 8, "is_private %d\n",
3603 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3604 printfi_filtered (spaces + 8, "is_protected %d\n",
3605 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3606 printfi_filtered (spaces + 8, "is_stub %d\n",
3607 TYPE_FN_FIELD_STUB (f, overload_idx));
3608 printfi_filtered (spaces + 8, "voffset %u\n",
3609 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3610 }
3611 }
3612}
3613
3614static void
fba45db2 3615print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
3616{
3617 printfi_filtered (spaces, "n_baseclasses %d\n",
3618 TYPE_N_BASECLASSES (type));
3619 printfi_filtered (spaces, "nfn_fields %d\n",
3620 TYPE_NFN_FIELDS (type));
c906108c
SS
3621 if (TYPE_N_BASECLASSES (type) > 0)
3622 {
3623 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3624 TYPE_N_BASECLASSES (type));
7ba81444
MS
3625 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3626 gdb_stdout);
c906108c
SS
3627 printf_filtered (")");
3628
3629 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3630 TYPE_N_BASECLASSES (type));
3631 puts_filtered ("\n");
3632 }
3633 if (TYPE_NFIELDS (type) > 0)
3634 {
3635 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3636 {
7ba81444
MS
3637 printfi_filtered (spaces,
3638 "private_field_bits (%d bits at *",
c906108c 3639 TYPE_NFIELDS (type));
7ba81444
MS
3640 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3641 gdb_stdout);
c906108c
SS
3642 printf_filtered (")");
3643 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3644 TYPE_NFIELDS (type));
3645 puts_filtered ("\n");
3646 }
3647 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3648 {
7ba81444
MS
3649 printfi_filtered (spaces,
3650 "protected_field_bits (%d bits at *",
c906108c 3651 TYPE_NFIELDS (type));
7ba81444
MS
3652 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3653 gdb_stdout);
c906108c
SS
3654 printf_filtered (")");
3655 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3656 TYPE_NFIELDS (type));
3657 puts_filtered ("\n");
3658 }
3659 }
3660 if (TYPE_NFN_FIELDS (type) > 0)
3661 {
3662 dump_fn_fieldlists (type, spaces);
3663 }
3664}
3665
b4ba55a1
JB
3666/* Print the contents of the TYPE's type_specific union, assuming that
3667 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3668
3669static void
3670print_gnat_stuff (struct type *type, int spaces)
3671{
3672 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3673
3674 recursive_dump_type (descriptive_type, spaces + 2);
3675}
3676
c906108c
SS
3677static struct obstack dont_print_type_obstack;
3678
3679void
fba45db2 3680recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3681{
3682 int idx;
3683
3684 if (spaces == 0)
3685 obstack_begin (&dont_print_type_obstack, 0);
3686
3687 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3688 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3689 {
3690 struct type **first_dont_print
7ba81444 3691 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3692
7ba81444
MS
3693 int i = (struct type **)
3694 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3695
3696 while (--i >= 0)
3697 {
3698 if (type == first_dont_print[i])
3699 {
3700 printfi_filtered (spaces, "type node ");
d4f3574e 3701 gdb_print_host_address (type, gdb_stdout);
a3f17187 3702 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3703 return;
3704 }
3705 }
3706
3707 obstack_ptr_grow (&dont_print_type_obstack, type);
3708 }
3709
3710 printfi_filtered (spaces, "type node ");
d4f3574e 3711 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3712 printf_filtered ("\n");
3713 printfi_filtered (spaces, "name '%s' (",
3714 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3715 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3716 printf_filtered (")\n");
e9e79dd9
FF
3717 printfi_filtered (spaces, "tagname '%s' (",
3718 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3719 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3720 printf_filtered (")\n");
c906108c
SS
3721 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3722 switch (TYPE_CODE (type))
3723 {
c5aa993b
JM
3724 case TYPE_CODE_UNDEF:
3725 printf_filtered ("(TYPE_CODE_UNDEF)");
3726 break;
3727 case TYPE_CODE_PTR:
3728 printf_filtered ("(TYPE_CODE_PTR)");
3729 break;
3730 case TYPE_CODE_ARRAY:
3731 printf_filtered ("(TYPE_CODE_ARRAY)");
3732 break;
3733 case TYPE_CODE_STRUCT:
3734 printf_filtered ("(TYPE_CODE_STRUCT)");
3735 break;
3736 case TYPE_CODE_UNION:
3737 printf_filtered ("(TYPE_CODE_UNION)");
3738 break;
3739 case TYPE_CODE_ENUM:
3740 printf_filtered ("(TYPE_CODE_ENUM)");
3741 break;
4f2aea11
MK
3742 case TYPE_CODE_FLAGS:
3743 printf_filtered ("(TYPE_CODE_FLAGS)");
3744 break;
c5aa993b
JM
3745 case TYPE_CODE_FUNC:
3746 printf_filtered ("(TYPE_CODE_FUNC)");
3747 break;
3748 case TYPE_CODE_INT:
3749 printf_filtered ("(TYPE_CODE_INT)");
3750 break;
3751 case TYPE_CODE_FLT:
3752 printf_filtered ("(TYPE_CODE_FLT)");
3753 break;
3754 case TYPE_CODE_VOID:
3755 printf_filtered ("(TYPE_CODE_VOID)");
3756 break;
3757 case TYPE_CODE_SET:
3758 printf_filtered ("(TYPE_CODE_SET)");
3759 break;
3760 case TYPE_CODE_RANGE:
3761 printf_filtered ("(TYPE_CODE_RANGE)");
3762 break;
3763 case TYPE_CODE_STRING:
3764 printf_filtered ("(TYPE_CODE_STRING)");
3765 break;
3766 case TYPE_CODE_ERROR:
3767 printf_filtered ("(TYPE_CODE_ERROR)");
3768 break;
0d5de010
DJ
3769 case TYPE_CODE_MEMBERPTR:
3770 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3771 break;
3772 case TYPE_CODE_METHODPTR:
3773 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3774 break;
3775 case TYPE_CODE_METHOD:
3776 printf_filtered ("(TYPE_CODE_METHOD)");
3777 break;
3778 case TYPE_CODE_REF:
3779 printf_filtered ("(TYPE_CODE_REF)");
3780 break;
3781 case TYPE_CODE_CHAR:
3782 printf_filtered ("(TYPE_CODE_CHAR)");
3783 break;
3784 case TYPE_CODE_BOOL:
3785 printf_filtered ("(TYPE_CODE_BOOL)");
3786 break;
e9e79dd9
FF
3787 case TYPE_CODE_COMPLEX:
3788 printf_filtered ("(TYPE_CODE_COMPLEX)");
3789 break;
c5aa993b
JM
3790 case TYPE_CODE_TYPEDEF:
3791 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3792 break;
5c4e30ca
DC
3793 case TYPE_CODE_NAMESPACE:
3794 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3795 break;
c5aa993b
JM
3796 default:
3797 printf_filtered ("(UNKNOWN TYPE CODE)");
3798 break;
c906108c
SS
3799 }
3800 puts_filtered ("\n");
3801 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3802 if (TYPE_OBJFILE_OWNED (type))
3803 {
3804 printfi_filtered (spaces, "objfile ");
3805 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3806 }
3807 else
3808 {
3809 printfi_filtered (spaces, "gdbarch ");
3810 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3811 }
c906108c
SS
3812 printf_filtered ("\n");
3813 printfi_filtered (spaces, "target_type ");
d4f3574e 3814 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3815 printf_filtered ("\n");
3816 if (TYPE_TARGET_TYPE (type) != NULL)
3817 {
3818 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3819 }
3820 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3821 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3822 printf_filtered ("\n");
3823 printfi_filtered (spaces, "reference_type ");
d4f3574e 3824 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3825 printf_filtered ("\n");
2fdde8f8
DJ
3826 printfi_filtered (spaces, "type_chain ");
3827 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3828 printf_filtered ("\n");
7ba81444
MS
3829 printfi_filtered (spaces, "instance_flags 0x%x",
3830 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3831 if (TYPE_CONST (type))
3832 {
3833 puts_filtered (" TYPE_FLAG_CONST");
3834 }
3835 if (TYPE_VOLATILE (type))
3836 {
3837 puts_filtered (" TYPE_FLAG_VOLATILE");
3838 }
3839 if (TYPE_CODE_SPACE (type))
3840 {
3841 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3842 }
3843 if (TYPE_DATA_SPACE (type))
3844 {
3845 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3846 }
8b2dbe47
KB
3847 if (TYPE_ADDRESS_CLASS_1 (type))
3848 {
3849 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3850 }
3851 if (TYPE_ADDRESS_CLASS_2 (type))
3852 {
3853 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3854 }
06d66ee9
TT
3855 if (TYPE_RESTRICT (type))
3856 {
3857 puts_filtered (" TYPE_FLAG_RESTRICT");
3858 }
2fdde8f8 3859 puts_filtered ("\n");
876cecd0
TT
3860
3861 printfi_filtered (spaces, "flags");
762a036f 3862 if (TYPE_UNSIGNED (type))
c906108c
SS
3863 {
3864 puts_filtered (" TYPE_FLAG_UNSIGNED");
3865 }
762a036f
FF
3866 if (TYPE_NOSIGN (type))
3867 {
3868 puts_filtered (" TYPE_FLAG_NOSIGN");
3869 }
3870 if (TYPE_STUB (type))
c906108c
SS
3871 {
3872 puts_filtered (" TYPE_FLAG_STUB");
3873 }
762a036f
FF
3874 if (TYPE_TARGET_STUB (type))
3875 {
3876 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3877 }
3878 if (TYPE_STATIC (type))
3879 {
3880 puts_filtered (" TYPE_FLAG_STATIC");
3881 }
762a036f
FF
3882 if (TYPE_PROTOTYPED (type))
3883 {
3884 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3885 }
3886 if (TYPE_INCOMPLETE (type))
3887 {
3888 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3889 }
762a036f
FF
3890 if (TYPE_VARARGS (type))
3891 {
3892 puts_filtered (" TYPE_FLAG_VARARGS");
3893 }
f5f8a009
EZ
3894 /* This is used for things like AltiVec registers on ppc. Gcc emits
3895 an attribute for the array type, which tells whether or not we
3896 have a vector, instead of a regular array. */
3897 if (TYPE_VECTOR (type))
3898 {
3899 puts_filtered (" TYPE_FLAG_VECTOR");
3900 }
876cecd0
TT
3901 if (TYPE_FIXED_INSTANCE (type))
3902 {
3903 puts_filtered (" TYPE_FIXED_INSTANCE");
3904 }
3905 if (TYPE_STUB_SUPPORTED (type))
3906 {
3907 puts_filtered (" TYPE_STUB_SUPPORTED");
3908 }
3909 if (TYPE_NOTTEXT (type))
3910 {
3911 puts_filtered (" TYPE_NOTTEXT");
3912 }
c906108c
SS
3913 puts_filtered ("\n");
3914 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3915 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3916 puts_filtered ("\n");
3917 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3918 {
14e75d8e
JK
3919 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3920 printfi_filtered (spaces + 2,
3921 "[%d] enumval %s type ",
3922 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3923 else
3924 printfi_filtered (spaces + 2,
3925 "[%d] bitpos %d bitsize %d type ",
3926 idx, TYPE_FIELD_BITPOS (type, idx),
3927 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3928 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3929 printf_filtered (" name '%s' (",
3930 TYPE_FIELD_NAME (type, idx) != NULL
3931 ? TYPE_FIELD_NAME (type, idx)
3932 : "<NULL>");
d4f3574e 3933 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3934 printf_filtered (")\n");
3935 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3936 {
3937 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3938 }
3939 }
43bbcdc2
PH
3940 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3941 {
3942 printfi_filtered (spaces, "low %s%s high %s%s\n",
3943 plongest (TYPE_LOW_BOUND (type)),
3944 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3945 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3946 TYPE_HIGH_BOUND_UNDEFINED (type)
3947 ? " (undefined)" : "");
43bbcdc2 3948 }
c906108c 3949 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3950 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3951 puts_filtered ("\n");
3952 if (TYPE_VPTR_BASETYPE (type) != NULL)
3953 {
3954 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3955 }
7ba81444
MS
3956 printfi_filtered (spaces, "vptr_fieldno %d\n",
3957 TYPE_VPTR_FIELDNO (type));
c906108c 3958
b4ba55a1
JB
3959 switch (TYPE_SPECIFIC_FIELD (type))
3960 {
3961 case TYPE_SPECIFIC_CPLUS_STUFF:
3962 printfi_filtered (spaces, "cplus_stuff ");
3963 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3964 gdb_stdout);
3965 puts_filtered ("\n");
3966 print_cplus_stuff (type, spaces);
3967 break;
8da61cc4 3968
b4ba55a1
JB
3969 case TYPE_SPECIFIC_GNAT_STUFF:
3970 printfi_filtered (spaces, "gnat_stuff ");
3971 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3972 puts_filtered ("\n");
3973 print_gnat_stuff (type, spaces);
3974 break;
701c159d 3975
b4ba55a1
JB
3976 case TYPE_SPECIFIC_FLOATFORMAT:
3977 printfi_filtered (spaces, "floatformat ");
3978 if (TYPE_FLOATFORMAT (type) == NULL)
3979 puts_filtered ("(null)");
3980 else
3981 {
3982 puts_filtered ("{ ");
3983 if (TYPE_FLOATFORMAT (type)[0] == NULL
3984 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3985 puts_filtered ("(null)");
3986 else
3987 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3988
3989 puts_filtered (", ");
3990 if (TYPE_FLOATFORMAT (type)[1] == NULL
3991 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3992 puts_filtered ("(null)");
3993 else
3994 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3995
3996 puts_filtered (" }");
3997 }
3998 puts_filtered ("\n");
3999 break;
c906108c 4000
b6cdc2c1 4001 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4002 printfi_filtered (spaces, "calling_convention %d\n",
4003 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4004 /* tail_call_list is not printed. */
b4ba55a1 4005 break;
c906108c 4006 }
b4ba55a1 4007
c906108c
SS
4008 if (spaces == 0)
4009 obstack_free (&dont_print_type_obstack, NULL);
4010}
5212577a 4011\f
ae5a43e0
DJ
4012/* Trivial helpers for the libiberty hash table, for mapping one
4013 type to another. */
4014
4015struct type_pair
4016{
4017 struct type *old, *new;
4018};
4019
4020static hashval_t
4021type_pair_hash (const void *item)
4022{
4023 const struct type_pair *pair = item;
d8734c88 4024
ae5a43e0
DJ
4025 return htab_hash_pointer (pair->old);
4026}
4027
4028static int
4029type_pair_eq (const void *item_lhs, const void *item_rhs)
4030{
4031 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 4032
ae5a43e0
DJ
4033 return lhs->old == rhs->old;
4034}
4035
4036/* Allocate the hash table used by copy_type_recursive to walk
4037 types without duplicates. We use OBJFILE's obstack, because
4038 OBJFILE is about to be deleted. */
4039
4040htab_t
4041create_copied_types_hash (struct objfile *objfile)
4042{
4043 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4044 NULL, &objfile->objfile_obstack,
4045 hashtab_obstack_allocate,
4046 dummy_obstack_deallocate);
4047}
4048
7ba81444
MS
4049/* Recursively copy (deep copy) TYPE, if it is associated with
4050 OBJFILE. Return a new type allocated using malloc, a saved type if
4051 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4052 not associated with OBJFILE. */
ae5a43e0
DJ
4053
4054struct type *
7ba81444
MS
4055copy_type_recursive (struct objfile *objfile,
4056 struct type *type,
ae5a43e0
DJ
4057 htab_t copied_types)
4058{
4059 struct type_pair *stored, pair;
4060 void **slot;
4061 struct type *new_type;
4062
e9bb382b 4063 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4064 return type;
4065
7ba81444
MS
4066 /* This type shouldn't be pointing to any types in other objfiles;
4067 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4068 gdb_assert (TYPE_OBJFILE (type) == objfile);
4069
4070 pair.old = type;
4071 slot = htab_find_slot (copied_types, &pair, INSERT);
4072 if (*slot != NULL)
4073 return ((struct type_pair *) *slot)->new;
4074
e9bb382b 4075 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4076
4077 /* We must add the new type to the hash table immediately, in case
4078 we encounter this type again during a recursive call below. */
3e43a32a
MS
4079 stored
4080 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
4081 stored->old = type;
4082 stored->new = new_type;
4083 *slot = stored;
4084
876cecd0
TT
4085 /* Copy the common fields of types. For the main type, we simply
4086 copy the entire thing and then update specific fields as needed. */
4087 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4088 TYPE_OBJFILE_OWNED (new_type) = 0;
4089 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4090
ae5a43e0
DJ
4091 if (TYPE_NAME (type))
4092 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4093 if (TYPE_TAG_NAME (type))
4094 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4095
4096 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4097 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4098
4099 /* Copy the fields. */
ae5a43e0
DJ
4100 if (TYPE_NFIELDS (type))
4101 {
4102 int i, nfields;
4103
4104 nfields = TYPE_NFIELDS (type);
fc270c35 4105 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4106 for (i = 0; i < nfields; i++)
4107 {
7ba81444
MS
4108 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4109 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4110 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4111 if (TYPE_FIELD_TYPE (type, i))
4112 TYPE_FIELD_TYPE (new_type, i)
4113 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4114 copied_types);
4115 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4116 TYPE_FIELD_NAME (new_type, i) =
4117 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4118 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4119 {
d6a843b5
JK
4120 case FIELD_LOC_KIND_BITPOS:
4121 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4122 TYPE_FIELD_BITPOS (type, i));
4123 break;
14e75d8e
JK
4124 case FIELD_LOC_KIND_ENUMVAL:
4125 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4126 TYPE_FIELD_ENUMVAL (type, i));
4127 break;
d6a843b5
JK
4128 case FIELD_LOC_KIND_PHYSADDR:
4129 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4130 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4131 break;
4132 case FIELD_LOC_KIND_PHYSNAME:
4133 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4134 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4135 i)));
4136 break;
4137 default:
4138 internal_error (__FILE__, __LINE__,
4139 _("Unexpected type field location kind: %d"),
4140 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4141 }
4142 }
4143 }
4144
0963b4bd 4145 /* For range types, copy the bounds information. */
43bbcdc2
PH
4146 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4147 {
4148 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4149 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4150 }
4151
3cdcd0ce
JB
4152 /* Copy the data location information. */
4153 if (TYPE_DATA_LOCATION (type) != NULL)
4154 {
4155 TYPE_DATA_LOCATION (new_type)
4156 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4157 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4158 sizeof (struct dynamic_prop));
4159 }
4160
ae5a43e0
DJ
4161 /* Copy pointers to other types. */
4162 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4163 TYPE_TARGET_TYPE (new_type) =
4164 copy_type_recursive (objfile,
4165 TYPE_TARGET_TYPE (type),
4166 copied_types);
ae5a43e0 4167 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
4168 TYPE_VPTR_BASETYPE (new_type) =
4169 copy_type_recursive (objfile,
4170 TYPE_VPTR_BASETYPE (type),
4171 copied_types);
ae5a43e0
DJ
4172 /* Maybe copy the type_specific bits.
4173
4174 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4175 base classes and methods. There's no fundamental reason why we
4176 can't, but at the moment it is not needed. */
4177
4178 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 4179 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
4180 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4181 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
4182 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4183 INIT_CPLUS_SPECIFIC (new_type);
4184
4185 return new_type;
4186}
4187
4af88198
JB
4188/* Make a copy of the given TYPE, except that the pointer & reference
4189 types are not preserved.
4190
4191 This function assumes that the given type has an associated objfile.
4192 This objfile is used to allocate the new type. */
4193
4194struct type *
4195copy_type (const struct type *type)
4196{
4197 struct type *new_type;
4198
e9bb382b 4199 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4200
e9bb382b 4201 new_type = alloc_type_copy (type);
4af88198
JB
4202 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4203 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4204 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4205 sizeof (struct main_type));
3cdcd0ce
JB
4206 if (TYPE_DATA_LOCATION (type) != NULL)
4207 {
4208 TYPE_DATA_LOCATION (new_type)
4209 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4210 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4211 sizeof (struct dynamic_prop));
4212 }
4af88198
JB
4213
4214 return new_type;
4215}
5212577a 4216\f
e9bb382b
UW
4217/* Helper functions to initialize architecture-specific types. */
4218
4219/* Allocate a type structure associated with GDBARCH and set its
4220 CODE, LENGTH, and NAME fields. */
5212577a 4221
e9bb382b
UW
4222struct type *
4223arch_type (struct gdbarch *gdbarch,
4224 enum type_code code, int length, char *name)
4225{
4226 struct type *type;
4227
4228 type = alloc_type_arch (gdbarch);
4229 TYPE_CODE (type) = code;
4230 TYPE_LENGTH (type) = length;
4231
4232 if (name)
4233 TYPE_NAME (type) = xstrdup (name);
4234
4235 return type;
4236}
4237
4238/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4239 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4240 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4241
e9bb382b
UW
4242struct type *
4243arch_integer_type (struct gdbarch *gdbarch,
4244 int bit, int unsigned_p, char *name)
4245{
4246 struct type *t;
4247
4248 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4249 if (unsigned_p)
4250 TYPE_UNSIGNED (t) = 1;
4251 if (name && strcmp (name, "char") == 0)
4252 TYPE_NOSIGN (t) = 1;
4253
4254 return t;
4255}
4256
4257/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4258 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4259 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4260
e9bb382b
UW
4261struct type *
4262arch_character_type (struct gdbarch *gdbarch,
4263 int bit, int unsigned_p, char *name)
4264{
4265 struct type *t;
4266
4267 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4268 if (unsigned_p)
4269 TYPE_UNSIGNED (t) = 1;
4270
4271 return t;
4272}
4273
4274/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4275 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4276 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4277
e9bb382b
UW
4278struct type *
4279arch_boolean_type (struct gdbarch *gdbarch,
4280 int bit, int unsigned_p, char *name)
4281{
4282 struct type *t;
4283
4284 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4285 if (unsigned_p)
4286 TYPE_UNSIGNED (t) = 1;
4287
4288 return t;
4289}
4290
4291/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4292 BIT is the type size in bits; if BIT equals -1, the size is
4293 determined by the floatformat. NAME is the type name. Set the
4294 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4295
27067745 4296struct type *
e9bb382b
UW
4297arch_float_type (struct gdbarch *gdbarch,
4298 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4299{
4300 struct type *t;
4301
4302 if (bit == -1)
4303 {
4304 gdb_assert (floatformats != NULL);
4305 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4306 bit = floatformats[0]->totalsize;
4307 }
4308 gdb_assert (bit >= 0);
4309
e9bb382b 4310 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4311 TYPE_FLOATFORMAT (t) = floatformats;
4312 return t;
4313}
4314
e9bb382b
UW
4315/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4316 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4317
27067745 4318struct type *
e9bb382b
UW
4319arch_complex_type (struct gdbarch *gdbarch,
4320 char *name, struct type *target_type)
27067745
UW
4321{
4322 struct type *t;
d8734c88 4323
e9bb382b
UW
4324 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4325 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4326 TYPE_TARGET_TYPE (t) = target_type;
4327 return t;
4328}
4329
e9bb382b 4330/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4331 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4332
e9bb382b
UW
4333struct type *
4334arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4335{
4336 int nfields = length * TARGET_CHAR_BIT;
4337 struct type *type;
4338
4339 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4340 TYPE_UNSIGNED (type) = 1;
4341 TYPE_NFIELDS (type) = nfields;
4342 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4343
4344 return type;
4345}
4346
4347/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4348 position BITPOS is called NAME. */
5212577a 4349
e9bb382b
UW
4350void
4351append_flags_type_flag (struct type *type, int bitpos, char *name)
4352{
4353 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4354 gdb_assert (bitpos < TYPE_NFIELDS (type));
4355 gdb_assert (bitpos >= 0);
4356
4357 if (name)
4358 {
4359 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4360 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4361 }
4362 else
4363 {
4364 /* Don't show this field to the user. */
945b3a32 4365 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4366 }
4367}
4368
4369/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4370 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4371
e9bb382b
UW
4372struct type *
4373arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4374{
4375 struct type *t;
d8734c88 4376
e9bb382b
UW
4377 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4378 t = arch_type (gdbarch, code, 0, NULL);
4379 TYPE_TAG_NAME (t) = name;
4380 INIT_CPLUS_SPECIFIC (t);
4381 return t;
4382}
4383
4384/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4385 Do not set the field's position or adjust the type's length;
4386 the caller should do so. Return the new field. */
5212577a 4387
f5dff777
DJ
4388struct field *
4389append_composite_type_field_raw (struct type *t, char *name,
4390 struct type *field)
e9bb382b
UW
4391{
4392 struct field *f;
d8734c88 4393
e9bb382b
UW
4394 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4395 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4396 sizeof (struct field) * TYPE_NFIELDS (t));
4397 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4398 memset (f, 0, sizeof f[0]);
4399 FIELD_TYPE (f[0]) = field;
4400 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4401 return f;
4402}
4403
4404/* Add new field with name NAME and type FIELD to composite type T.
4405 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4406
f5dff777
DJ
4407void
4408append_composite_type_field_aligned (struct type *t, char *name,
4409 struct type *field, int alignment)
4410{
4411 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4412
e9bb382b
UW
4413 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4414 {
4415 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4416 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4417 }
4418 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4419 {
4420 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4421 if (TYPE_NFIELDS (t) > 1)
4422 {
f41f5e61
PA
4423 SET_FIELD_BITPOS (f[0],
4424 (FIELD_BITPOS (f[-1])
4425 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4426 * TARGET_CHAR_BIT)));
e9bb382b
UW
4427
4428 if (alignment)
4429 {
86c3c1fc
AB
4430 int left;
4431
4432 alignment *= TARGET_CHAR_BIT;
4433 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4434
e9bb382b
UW
4435 if (left)
4436 {
f41f5e61 4437 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4438 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4439 }
4440 }
4441 }
4442 }
4443}
4444
4445/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4446
e9bb382b
UW
4447void
4448append_composite_type_field (struct type *t, char *name,
4449 struct type *field)
4450{
4451 append_composite_type_field_aligned (t, name, field, 0);
4452}
4453
000177f0
AC
4454static struct gdbarch_data *gdbtypes_data;
4455
4456const struct builtin_type *
4457builtin_type (struct gdbarch *gdbarch)
4458{
4459 return gdbarch_data (gdbarch, gdbtypes_data);
4460}
4461
4462static void *
4463gdbtypes_post_init (struct gdbarch *gdbarch)
4464{
4465 struct builtin_type *builtin_type
4466 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4467
46bf5051 4468 /* Basic types. */
e9bb382b
UW
4469 builtin_type->builtin_void
4470 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4471 builtin_type->builtin_char
4472 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4473 !gdbarch_char_signed (gdbarch), "char");
4474 builtin_type->builtin_signed_char
4475 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4476 0, "signed char");
4477 builtin_type->builtin_unsigned_char
4478 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4479 1, "unsigned char");
4480 builtin_type->builtin_short
4481 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4482 0, "short");
4483 builtin_type->builtin_unsigned_short
4484 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4485 1, "unsigned short");
4486 builtin_type->builtin_int
4487 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4488 0, "int");
4489 builtin_type->builtin_unsigned_int
4490 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4491 1, "unsigned int");
4492 builtin_type->builtin_long
4493 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4494 0, "long");
4495 builtin_type->builtin_unsigned_long
4496 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4497 1, "unsigned long");
4498 builtin_type->builtin_long_long
4499 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4500 0, "long long");
4501 builtin_type->builtin_unsigned_long_long
4502 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4503 1, "unsigned long long");
70bd8e24 4504 builtin_type->builtin_float
e9bb382b 4505 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4506 "float", gdbarch_float_format (gdbarch));
70bd8e24 4507 builtin_type->builtin_double
e9bb382b 4508 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4509 "double", gdbarch_double_format (gdbarch));
70bd8e24 4510 builtin_type->builtin_long_double
e9bb382b 4511 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4512 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4513 builtin_type->builtin_complex
e9bb382b
UW
4514 = arch_complex_type (gdbarch, "complex",
4515 builtin_type->builtin_float);
70bd8e24 4516 builtin_type->builtin_double_complex
e9bb382b
UW
4517 = arch_complex_type (gdbarch, "double complex",
4518 builtin_type->builtin_double);
4519 builtin_type->builtin_string
4520 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4521 builtin_type->builtin_bool
4522 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4523
7678ef8f
TJB
4524 /* The following three are about decimal floating point types, which
4525 are 32-bits, 64-bits and 128-bits respectively. */
4526 builtin_type->builtin_decfloat
e9bb382b 4527 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4528 builtin_type->builtin_decdouble
e9bb382b 4529 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4530 builtin_type->builtin_declong
e9bb382b 4531 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4532
69feb676 4533 /* "True" character types. */
e9bb382b
UW
4534 builtin_type->builtin_true_char
4535 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4536 builtin_type->builtin_true_unsigned_char
4537 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4538
df4df182 4539 /* Fixed-size integer types. */
e9bb382b
UW
4540 builtin_type->builtin_int0
4541 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4542 builtin_type->builtin_int8
4543 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4544 builtin_type->builtin_uint8
4545 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4546 builtin_type->builtin_int16
4547 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4548 builtin_type->builtin_uint16
4549 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4550 builtin_type->builtin_int32
4551 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4552 builtin_type->builtin_uint32
4553 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4554 builtin_type->builtin_int64
4555 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4556 builtin_type->builtin_uint64
4557 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4558 builtin_type->builtin_int128
4559 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4560 builtin_type->builtin_uint128
4561 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4562 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4563 TYPE_INSTANCE_FLAG_NOTTEXT;
4564 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4565 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4566
9a22f0d0
PM
4567 /* Wide character types. */
4568 builtin_type->builtin_char16
4569 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4570 builtin_type->builtin_char32
4571 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4572
4573
46bf5051 4574 /* Default data/code pointer types. */
e9bb382b
UW
4575 builtin_type->builtin_data_ptr
4576 = lookup_pointer_type (builtin_type->builtin_void);
4577 builtin_type->builtin_func_ptr
4578 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4579 builtin_type->builtin_func_func
4580 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4581
78267919 4582 /* This type represents a GDB internal function. */
e9bb382b
UW
4583 builtin_type->internal_fn
4584 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4585 "<internal function>");
78267919 4586
e81e7f5e
SC
4587 /* This type represents an xmethod. */
4588 builtin_type->xmethod
4589 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4590
46bf5051
UW
4591 return builtin_type;
4592}
4593
46bf5051
UW
4594/* This set of objfile-based types is intended to be used by symbol
4595 readers as basic types. */
4596
4597static const struct objfile_data *objfile_type_data;
4598
4599const struct objfile_type *
4600objfile_type (struct objfile *objfile)
4601{
4602 struct gdbarch *gdbarch;
4603 struct objfile_type *objfile_type
4604 = objfile_data (objfile, objfile_type_data);
4605
4606 if (objfile_type)
4607 return objfile_type;
4608
4609 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4610 1, struct objfile_type);
4611
4612 /* Use the objfile architecture to determine basic type properties. */
4613 gdbarch = get_objfile_arch (objfile);
4614
4615 /* Basic types. */
4616 objfile_type->builtin_void
4617 = init_type (TYPE_CODE_VOID, 1,
4618 0,
4619 "void", objfile);
4620
4621 objfile_type->builtin_char
4622 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4623 (TYPE_FLAG_NOSIGN
4624 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4625 "char", objfile);
4626 objfile_type->builtin_signed_char
4627 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4628 0,
4629 "signed char", objfile);
4630 objfile_type->builtin_unsigned_char
4631 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4632 TYPE_FLAG_UNSIGNED,
4633 "unsigned char", objfile);
4634 objfile_type->builtin_short
4635 = init_type (TYPE_CODE_INT,
4636 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4637 0, "short", objfile);
4638 objfile_type->builtin_unsigned_short
4639 = init_type (TYPE_CODE_INT,
4640 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4641 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4642 objfile_type->builtin_int
4643 = init_type (TYPE_CODE_INT,
4644 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4645 0, "int", objfile);
4646 objfile_type->builtin_unsigned_int
4647 = init_type (TYPE_CODE_INT,
4648 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4649 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4650 objfile_type->builtin_long
4651 = init_type (TYPE_CODE_INT,
4652 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4653 0, "long", objfile);
4654 objfile_type->builtin_unsigned_long
4655 = init_type (TYPE_CODE_INT,
4656 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4657 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4658 objfile_type->builtin_long_long
4659 = init_type (TYPE_CODE_INT,
4660 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4661 0, "long long", objfile);
4662 objfile_type->builtin_unsigned_long_long
4663 = init_type (TYPE_CODE_INT,
4664 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4665 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4666
4667 objfile_type->builtin_float
4668 = init_type (TYPE_CODE_FLT,
4669 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4670 0, "float", objfile);
4671 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4672 = gdbarch_float_format (gdbarch);
4673 objfile_type->builtin_double
4674 = init_type (TYPE_CODE_FLT,
4675 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4676 0, "double", objfile);
4677 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4678 = gdbarch_double_format (gdbarch);
4679 objfile_type->builtin_long_double
4680 = init_type (TYPE_CODE_FLT,
4681 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4682 0, "long double", objfile);
4683 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4684 = gdbarch_long_double_format (gdbarch);
4685
4686 /* This type represents a type that was unrecognized in symbol read-in. */
4687 objfile_type->builtin_error
4688 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4689
4690 /* The following set of types is used for symbols with no
4691 debug information. */
4692 objfile_type->nodebug_text_symbol
4693 = init_type (TYPE_CODE_FUNC, 1, 0,
4694 "<text variable, no debug info>", objfile);
4695 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4696 = objfile_type->builtin_int;
0875794a
JK
4697 objfile_type->nodebug_text_gnu_ifunc_symbol
4698 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4699 "<text gnu-indirect-function variable, no debug info>",
4700 objfile);
4701 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4702 = objfile_type->nodebug_text_symbol;
4703 objfile_type->nodebug_got_plt_symbol
4704 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4705 "<text from jump slot in .got.plt, no debug info>",
4706 objfile);
4707 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4708 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4709 objfile_type->nodebug_data_symbol
4710 = init_type (TYPE_CODE_INT,
4711 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4712 "<data variable, no debug info>", objfile);
4713 objfile_type->nodebug_unknown_symbol
4714 = init_type (TYPE_CODE_INT, 1, 0,
4715 "<variable (not text or data), no debug info>", objfile);
4716 objfile_type->nodebug_tls_symbol
4717 = init_type (TYPE_CODE_INT,
4718 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4719 "<thread local variable, no debug info>", objfile);
000177f0
AC
4720
4721 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4722 the same.
000177f0
AC
4723
4724 The upshot is:
4725 - gdb's `struct type' always describes the target's
4726 representation.
4727 - gdb's `struct value' objects should always hold values in
4728 target form.
4729 - gdb's CORE_ADDR values are addresses in the unified virtual
4730 address space that the assembler and linker work with. Thus,
4731 since target_read_memory takes a CORE_ADDR as an argument, it
4732 can access any memory on the target, even if the processor has
4733 separate code and data address spaces.
4734
46bf5051
UW
4735 In this context, objfile_type->builtin_core_addr is a bit odd:
4736 it's a target type for a value the target will never see. It's
4737 only used to hold the values of (typeless) linker symbols, which
4738 are indeed in the unified virtual address space. */
000177f0 4739
46bf5051
UW
4740 objfile_type->builtin_core_addr
4741 = init_type (TYPE_CODE_INT,
4742 gdbarch_addr_bit (gdbarch) / 8,
4743 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4744
46bf5051
UW
4745 set_objfile_data (objfile, objfile_type_data, objfile_type);
4746 return objfile_type;
000177f0
AC
4747}
4748
5212577a 4749extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4750
c906108c 4751void
fba45db2 4752_initialize_gdbtypes (void)
c906108c 4753{
5674de60 4754 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4755 objfile_type_data = register_objfile_data ();
5674de60 4756
ccce17b0
YQ
4757 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4758 _("Set debugging of C++ overloading."),
4759 _("Show debugging of C++ overloading."),
4760 _("When enabled, ranking of the "
4761 "functions is displayed."),
4762 NULL,
4763 show_overload_debug,
4764 &setdebuglist, &showdebuglist);
5674de60 4765
7ba81444 4766 /* Add user knob for controlling resolution of opaque types. */
5674de60 4767 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4768 &opaque_type_resolution,
4769 _("Set resolution of opaque struct/class/union"
4770 " types (if set before loading symbols)."),
4771 _("Show resolution of opaque struct/class/union"
4772 " types (if set before loading symbols)."),
4773 NULL, NULL,
5674de60
UW
4774 show_opaque_type_resolution,
4775 &setlist, &showlist);
a451cb65
KS
4776
4777 /* Add an option to permit non-strict type checking. */
4778 add_setshow_boolean_cmd ("type", class_support,
4779 &strict_type_checking,
4780 _("Set strict type checking."),
4781 _("Show strict type checking."),
4782 NULL, NULL,
4783 show_strict_type_checking,
4784 &setchecklist, &showchecklist);
c906108c 4785}
This page took 1.41152 seconds and 4 git commands to generate.