gdb/gdbserver: Remove reference to vec-ipa.o
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ac3aafc7 42
6403aeea
SW
43/* Initialize BADNESS constants. */
44
a9d5ef47 45const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 46
a9d5ef47
SW
47const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 49
a9d5ef47 50const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 51
a9d5ef47
SW
52const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 55const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 60const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 65const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 66
8da61cc4 67/* Floatformat pairs. */
f9e9243a
UW
68const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71};
8da61cc4
DJ
72const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75};
76const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79};
80const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83};
84const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87};
88const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91};
92const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95};
96const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99};
100const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103};
104const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107};
108const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111};
b14d30e1 112const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
b14d30e1 115};
8da61cc4 116
2873700e
KS
117/* Should opaque types be resolved? */
118
491144b5 119static bool opaque_type_resolution = true;
2873700e 120
79bb1944 121/* See gdbtypes.h. */
2873700e
KS
122
123unsigned int overload_debug = 0;
124
a451cb65
KS
125/* A flag to enable strict type checking. */
126
491144b5 127static bool strict_type_checking = true;
a451cb65 128
2873700e 129/* A function to show whether opaque types are resolved. */
5212577a 130
920d2a44
AC
131static void
132show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
133 struct cmd_list_element *c,
134 const char *value)
920d2a44 135{
3e43a32a
MS
136 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
137 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
138 value);
139}
140
2873700e 141/* A function to show whether C++ overload debugging is enabled. */
5212577a 142
920d2a44
AC
143static void
144show_overload_debug (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
7ba81444
MS
147 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
148 value);
920d2a44 149}
c906108c 150
a451cb65
KS
151/* A function to show the status of strict type checking. */
152
153static void
154show_strict_type_checking (struct ui_file *file, int from_tty,
155 struct cmd_list_element *c, const char *value)
156{
157 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
158}
159
5212577a 160\f
e9bb382b
UW
161/* Allocate a new OBJFILE-associated type structure and fill it
162 with some defaults. Space for the type structure is allocated
163 on the objfile's objfile_obstack. */
c906108c
SS
164
165struct type *
fba45db2 166alloc_type (struct objfile *objfile)
c906108c 167{
52f0bd74 168 struct type *type;
c906108c 169
e9bb382b
UW
170 gdb_assert (objfile != NULL);
171
7ba81444 172 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
173 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
174 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
175 struct main_type);
176 OBJSTAT (objfile, n_types++);
c906108c 177
e9bb382b
UW
178 TYPE_OBJFILE_OWNED (type) = 1;
179 TYPE_OWNER (type).objfile = objfile;
c906108c 180
7ba81444 181 /* Initialize the fields that might not be zero. */
c906108c
SS
182
183 TYPE_CODE (type) = TYPE_CODE_UNDEF;
2fdde8f8 184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 185
c16abbde 186 return type;
c906108c
SS
187}
188
e9bb382b
UW
189/* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
8f57eec2 191 on the obstack associated with GDBARCH. */
e9bb382b
UW
192
193struct type *
194alloc_type_arch (struct gdbarch *gdbarch)
195{
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
8f57eec2
PP
202 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
203 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
e9bb382b
UW
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214}
215
216/* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220struct type *
221alloc_type_copy (const struct type *type)
222{
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227}
228
229/* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232struct gdbarch *
233get_type_arch (const struct type *type)
234{
2fabdf33
AB
235 struct gdbarch *arch;
236
e9bb382b 237 if (TYPE_OBJFILE_OWNED (type))
2fabdf33 238 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
e9bb382b 239 else
2fabdf33
AB
240 arch = TYPE_OWNER (type).gdbarch;
241
242 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
243 a gdbarch, however, this is very rare, and even then, in most cases
244 that get_type_arch is called, we assume that a non-NULL value is
245 returned. */
246 gdb_assert (arch != NULL);
247 return arch;
e9bb382b
UW
248}
249
99ad9427
YQ
250/* See gdbtypes.h. */
251
252struct type *
253get_target_type (struct type *type)
254{
255 if (type != NULL)
256 {
257 type = TYPE_TARGET_TYPE (type);
258 if (type != NULL)
259 type = check_typedef (type);
260 }
261
262 return type;
263}
264
2e056931
SM
265/* See gdbtypes.h. */
266
267unsigned int
268type_length_units (struct type *type)
269{
270 struct gdbarch *arch = get_type_arch (type);
271 int unit_size = gdbarch_addressable_memory_unit_size (arch);
272
273 return TYPE_LENGTH (type) / unit_size;
274}
275
2fdde8f8
DJ
276/* Alloc a new type instance structure, fill it with some defaults,
277 and point it at OLDTYPE. Allocate the new type instance from the
278 same place as OLDTYPE. */
279
280static struct type *
281alloc_type_instance (struct type *oldtype)
282{
283 struct type *type;
284
285 /* Allocate the structure. */
286
e9bb382b 287 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 288 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 289 else
1deafd4e
PA
290 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
291 struct type);
292
2fdde8f8
DJ
293 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
294
295 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
296
c16abbde 297 return type;
2fdde8f8
DJ
298}
299
300/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 301 replacing it with something else. Preserve owner information. */
5212577a 302
2fdde8f8
DJ
303static void
304smash_type (struct type *type)
305{
e9bb382b
UW
306 int objfile_owned = TYPE_OBJFILE_OWNED (type);
307 union type_owner owner = TYPE_OWNER (type);
308
2fdde8f8
DJ
309 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
310
e9bb382b
UW
311 /* Restore owner information. */
312 TYPE_OBJFILE_OWNED (type) = objfile_owned;
313 TYPE_OWNER (type) = owner;
314
2fdde8f8
DJ
315 /* For now, delete the rings. */
316 TYPE_CHAIN (type) = type;
317
318 /* For now, leave the pointer/reference types alone. */
319}
320
c906108c
SS
321/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
322 to a pointer to memory where the pointer type should be stored.
323 If *TYPEPTR is zero, update it to point to the pointer type we return.
324 We allocate new memory if needed. */
325
326struct type *
fba45db2 327make_pointer_type (struct type *type, struct type **typeptr)
c906108c 328{
52f0bd74 329 struct type *ntype; /* New type */
053cb41b 330 struct type *chain;
c906108c
SS
331
332 ntype = TYPE_POINTER_TYPE (type);
333
c5aa993b 334 if (ntype)
c906108c 335 {
c5aa993b 336 if (typeptr == 0)
7ba81444
MS
337 return ntype; /* Don't care about alloc,
338 and have new type. */
c906108c 339 else if (*typeptr == 0)
c5aa993b 340 {
7ba81444 341 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 342 return ntype;
c5aa993b 343 }
c906108c
SS
344 }
345
346 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
347 {
e9bb382b 348 ntype = alloc_type_copy (type);
c906108c
SS
349 if (typeptr)
350 *typeptr = ntype;
351 }
7ba81444 352 else /* We have storage, but need to reset it. */
c906108c
SS
353 {
354 ntype = *typeptr;
053cb41b 355 chain = TYPE_CHAIN (ntype);
2fdde8f8 356 smash_type (ntype);
053cb41b 357 TYPE_CHAIN (ntype) = chain;
c906108c
SS
358 }
359
360 TYPE_TARGET_TYPE (ntype) = type;
361 TYPE_POINTER_TYPE (type) = ntype;
362
5212577a 363 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 364
50810684
UW
365 TYPE_LENGTH (ntype)
366 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
367 TYPE_CODE (ntype) = TYPE_CODE_PTR;
368
67b2adb2 369 /* Mark pointers as unsigned. The target converts between pointers
76e71323 370 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 371 gdbarch_address_to_pointer. */
876cecd0 372 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 373
053cb41b
JB
374 /* Update the length of all the other variants of this type. */
375 chain = TYPE_CHAIN (ntype);
376 while (chain != ntype)
377 {
378 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
379 chain = TYPE_CHAIN (chain);
380 }
381
c906108c
SS
382 return ntype;
383}
384
385/* Given a type TYPE, return a type of pointers to that type.
386 May need to construct such a type if this is the first use. */
387
388struct type *
fba45db2 389lookup_pointer_type (struct type *type)
c906108c 390{
c5aa993b 391 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
392}
393
7ba81444
MS
394/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
395 points to a pointer to memory where the reference type should be
396 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
397 type we return. We allocate new memory if needed. REFCODE denotes
398 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
399
400struct type *
3b224330
AV
401make_reference_type (struct type *type, struct type **typeptr,
402 enum type_code refcode)
c906108c 403{
52f0bd74 404 struct type *ntype; /* New type */
3b224330 405 struct type **reftype;
1e98b326 406 struct type *chain;
c906108c 407
3b224330
AV
408 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
409
410 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
411 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 412
c5aa993b 413 if (ntype)
c906108c 414 {
c5aa993b 415 if (typeptr == 0)
7ba81444
MS
416 return ntype; /* Don't care about alloc,
417 and have new type. */
c906108c 418 else if (*typeptr == 0)
c5aa993b 419 {
7ba81444 420 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 421 return ntype;
c5aa993b 422 }
c906108c
SS
423 }
424
425 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
426 {
e9bb382b 427 ntype = alloc_type_copy (type);
c906108c
SS
428 if (typeptr)
429 *typeptr = ntype;
430 }
7ba81444 431 else /* We have storage, but need to reset it. */
c906108c
SS
432 {
433 ntype = *typeptr;
1e98b326 434 chain = TYPE_CHAIN (ntype);
2fdde8f8 435 smash_type (ntype);
1e98b326 436 TYPE_CHAIN (ntype) = chain;
c906108c
SS
437 }
438
439 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
440 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
441 : &TYPE_RVALUE_REFERENCE_TYPE (type));
442
443 *reftype = ntype;
c906108c 444
7ba81444
MS
445 /* FIXME! Assume the machine has only one representation for
446 references, and that it matches the (only) representation for
447 pointers! */
c906108c 448
50810684
UW
449 TYPE_LENGTH (ntype) =
450 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
3b224330 451 TYPE_CODE (ntype) = refcode;
c5aa993b 452
3b224330 453 *reftype = ntype;
c906108c 454
1e98b326
JB
455 /* Update the length of all the other variants of this type. */
456 chain = TYPE_CHAIN (ntype);
457 while (chain != ntype)
458 {
459 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
460 chain = TYPE_CHAIN (chain);
461 }
462
c906108c
SS
463 return ntype;
464}
465
7ba81444
MS
466/* Same as above, but caller doesn't care about memory allocation
467 details. */
c906108c
SS
468
469struct type *
3b224330
AV
470lookup_reference_type (struct type *type, enum type_code refcode)
471{
472 return make_reference_type (type, (struct type **) 0, refcode);
473}
474
475/* Lookup the lvalue reference type for the type TYPE. */
476
477struct type *
478lookup_lvalue_reference_type (struct type *type)
479{
480 return lookup_reference_type (type, TYPE_CODE_REF);
481}
482
483/* Lookup the rvalue reference type for the type TYPE. */
484
485struct type *
486lookup_rvalue_reference_type (struct type *type)
c906108c 487{
3b224330 488 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
489}
490
7ba81444
MS
491/* Lookup a function type that returns type TYPE. TYPEPTR, if
492 nonzero, points to a pointer to memory where the function type
493 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 494 function type we return. We allocate new memory if needed. */
c906108c
SS
495
496struct type *
0c8b41f1 497make_function_type (struct type *type, struct type **typeptr)
c906108c 498{
52f0bd74 499 struct type *ntype; /* New type */
c906108c
SS
500
501 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
502 {
e9bb382b 503 ntype = alloc_type_copy (type);
c906108c
SS
504 if (typeptr)
505 *typeptr = ntype;
506 }
7ba81444 507 else /* We have storage, but need to reset it. */
c906108c
SS
508 {
509 ntype = *typeptr;
2fdde8f8 510 smash_type (ntype);
c906108c
SS
511 }
512
513 TYPE_TARGET_TYPE (ntype) = type;
514
515 TYPE_LENGTH (ntype) = 1;
516 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 517
b6cdc2c1
JK
518 INIT_FUNC_SPECIFIC (ntype);
519
c906108c
SS
520 return ntype;
521}
522
c906108c
SS
523/* Given a type TYPE, return a type of functions that return that type.
524 May need to construct such a type if this is the first use. */
525
526struct type *
fba45db2 527lookup_function_type (struct type *type)
c906108c 528{
0c8b41f1 529 return make_function_type (type, (struct type **) 0);
c906108c
SS
530}
531
71918a86 532/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
533 function type. If the final type in PARAM_TYPES is NULL, make a
534 varargs function. */
71918a86
TT
535
536struct type *
537lookup_function_type_with_arguments (struct type *type,
538 int nparams,
539 struct type **param_types)
540{
541 struct type *fn = make_function_type (type, (struct type **) 0);
542 int i;
543
e314d629 544 if (nparams > 0)
a6fb9c08 545 {
e314d629
TT
546 if (param_types[nparams - 1] == NULL)
547 {
548 --nparams;
549 TYPE_VARARGS (fn) = 1;
550 }
551 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
552 == TYPE_CODE_VOID)
553 {
554 --nparams;
555 /* Caller should have ensured this. */
556 gdb_assert (nparams == 0);
557 TYPE_PROTOTYPED (fn) = 1;
558 }
54990598
PA
559 else
560 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
561 }
562
71918a86 563 TYPE_NFIELDS (fn) = nparams;
224c3ddb
SM
564 TYPE_FIELDS (fn)
565 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
71918a86
TT
566 for (i = 0; i < nparams; ++i)
567 TYPE_FIELD_TYPE (fn, i) = param_types[i];
568
569 return fn;
570}
571
47663de5
MS
572/* Identify address space identifier by name --
573 return the integer flag defined in gdbtypes.h. */
5212577a
DE
574
575int
61f4b350
TT
576address_space_name_to_int (struct gdbarch *gdbarch,
577 const char *space_identifier)
47663de5 578{
8b2dbe47 579 int type_flags;
d8734c88 580
7ba81444 581 /* Check for known address space delimiters. */
47663de5 582 if (!strcmp (space_identifier, "code"))
876cecd0 583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 584 else if (!strcmp (space_identifier, "data"))
876cecd0 585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
8b2dbe47 590 return type_flags;
47663de5 591 else
8a3fe4f8 592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
593}
594
595/* Identify address space identifier by integer flag as defined in
7ba81444 596 gdbtypes.h -- return the string version of the adress space name. */
47663de5 597
321432c0 598const char *
50810684 599address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 600{
876cecd0 601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 602 return "code";
876cecd0 603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 604 return "data";
876cecd0 605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
608 else
609 return NULL;
610}
611
2fdde8f8 612/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
47663de5 616
b9362cc7 617static struct type *
2fdde8f8
DJ
618make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
47663de5
MS
620{
621 struct type *ntype;
622
623 ntype = type;
5f61c20e
JK
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
47663de5 631
2fdde8f8
DJ
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
7ba81444
MS
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
ad766c0a
JB
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
2fdde8f8
DJ
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
47663de5
MS
647
648 /* Pointers or references to the original type are not relevant to
2fdde8f8 649 the new type. */
47663de5
MS
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 652
2fdde8f8
DJ
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 659
ab5d3da6
KB
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
47663de5
MS
663 return ntype;
664}
665
2fdde8f8
DJ
666/* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
7ba81444
MS
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
2fdde8f8
DJ
674
675struct type *
676make_type_with_address_space (struct type *type, int space_flag)
677{
2fdde8f8 678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685}
c906108c
SS
686
687/* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
c906108c 692
ad766c0a
JB
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
5212577a 698
c906108c 699struct type *
7ba81444
MS
700make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
c906108c 703{
52f0bd74 704 struct type *ntype; /* New type */
c906108c 705
2fdde8f8 706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 709
c906108c 710 if (cnst)
876cecd0 711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
712
713 if (voltl)
876cecd0 714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 715
2fdde8f8 716 if (typeptr && *typeptr != NULL)
a02fd225 717 {
ad766c0a
JB
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
731 }
732
7ba81444
MS
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
c906108c 735
2fdde8f8
DJ
736 if (typeptr != NULL)
737 *typeptr = ntype;
a02fd225 738
2fdde8f8 739 return ntype;
a02fd225 740}
c906108c 741
06d66ee9
TT
742/* Make a 'restrict'-qualified version of TYPE. */
743
744struct type *
745make_restrict_type (struct type *type)
746{
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751}
752
f1660027
TT
753/* Make a type without const, volatile, or restrict. */
754
755struct type *
756make_unqualified_type (struct type *type)
757{
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764}
765
a2c2acaf
MW
766/* Make a '_Atomic'-qualified version of TYPE. */
767
768struct type *
769make_atomic_type (struct type *type)
770{
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775}
776
2fdde8f8
DJ
777/* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 780
cda6c68a
JB
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
5212577a 786
dd6bda65
DJ
787void
788replace_type (struct type *ntype, struct type *type)
789{
ab5d3da6 790 struct type *chain;
dd6bda65 791
ad766c0a
JB
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 797
2fdde8f8 798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 799
7ba81444
MS
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
ab5d3da6 802 chain = ntype;
5f61c20e
JK
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
ab5d3da6 817
2fdde8f8
DJ
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
821}
822
c906108c
SS
823/* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828struct type *
0d5de010 829lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 830{
52f0bd74 831 struct type *mtype;
c906108c 832
e9bb382b 833 mtype = alloc_type_copy (type);
0d5de010 834 smash_to_memberptr_type (mtype, domain, type);
c16abbde 835 return mtype;
c906108c
SS
836}
837
0d5de010
DJ
838/* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840struct type *
841lookup_methodptr_type (struct type *to_type)
842{
843 struct type *mtype;
844
e9bb382b 845 mtype = alloc_type_copy (to_type);
0b92b5bb 846 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
847 return mtype;
848}
849
7ba81444
MS
850/* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
c906108c
SS
855
856struct type *
fba45db2 857allocate_stub_method (struct type *type)
c906108c
SS
858{
859 struct type *mtype;
860
e9bb382b
UW
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
c906108c 865 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 867 return mtype;
c906108c
SS
868}
869
0f59d5fc
PA
870/* See gdbtypes.h. */
871
872bool
873operator== (const dynamic_prop &l, const dynamic_prop &r)
874{
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891}
892
893/* See gdbtypes.h. */
894
895bool
896operator== (const range_bounds &l, const range_bounds &r)
897{
898#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
903 && FIELD_EQ (flag_bound_evaluated)
904 && FIELD_EQ (bias));
0f59d5fc
PA
905
906#undef FIELD_EQ
907}
908
729efb13
SA
909/* Create a range type with a dynamic range from LOW_BOUND to
910 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
911
912struct type *
729efb13
SA
913create_range_type (struct type *result_type, struct type *index_type,
914 const struct dynamic_prop *low_bound,
4e962e74
TT
915 const struct dynamic_prop *high_bound,
916 LONGEST bias)
c906108c 917{
b86352cf
AB
918 /* The INDEX_TYPE should be a type capable of holding the upper and lower
919 bounds, as such a zero sized, or void type makes no sense. */
920 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
921 gdb_assert (TYPE_LENGTH (index_type) > 0);
922
c906108c 923 if (result_type == NULL)
e9bb382b 924 result_type = alloc_type_copy (index_type);
c906108c
SS
925 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
926 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 927 if (TYPE_STUB (index_type))
876cecd0 928 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
929 else
930 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 931
43bbcdc2
PH
932 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
933 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
934 TYPE_RANGE_DATA (result_type)->low = *low_bound;
935 TYPE_RANGE_DATA (result_type)->high = *high_bound;
4e962e74 936 TYPE_RANGE_DATA (result_type)->bias = bias;
c906108c 937
729efb13 938 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 939 TYPE_UNSIGNED (result_type) = 1;
c906108c 940
45e44d27
JB
941 /* Ada allows the declaration of range types whose upper bound is
942 less than the lower bound, so checking the lower bound is not
943 enough. Make sure we do not mark a range type whose upper bound
944 is negative as unsigned. */
945 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
946 TYPE_UNSIGNED (result_type) = 0;
947
262452ec 948 return result_type;
c906108c
SS
949}
950
729efb13
SA
951/* Create a range type using either a blank type supplied in
952 RESULT_TYPE, or creating a new type, inheriting the objfile from
953 INDEX_TYPE.
954
955 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
956 to HIGH_BOUND, inclusive.
957
958 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
959 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
960
961struct type *
962create_static_range_type (struct type *result_type, struct type *index_type,
963 LONGEST low_bound, LONGEST high_bound)
964{
965 struct dynamic_prop low, high;
966
967 low.kind = PROP_CONST;
968 low.data.const_val = low_bound;
969
970 high.kind = PROP_CONST;
971 high.data.const_val = high_bound;
972
4e962e74 973 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
974
975 return result_type;
976}
977
80180f79
SA
978/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
979 are static, otherwise returns 0. */
980
981static int
982has_static_range (const struct range_bounds *bounds)
983{
984 return (bounds->low.kind == PROP_CONST
985 && bounds->high.kind == PROP_CONST);
986}
987
988
7ba81444
MS
989/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
990 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
991 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
992
993int
fba45db2 994get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 995{
f168693b 996 type = check_typedef (type);
c906108c
SS
997 switch (TYPE_CODE (type))
998 {
999 case TYPE_CODE_RANGE:
1000 *lowp = TYPE_LOW_BOUND (type);
1001 *highp = TYPE_HIGH_BOUND (type);
1002 return 1;
1003 case TYPE_CODE_ENUM:
1004 if (TYPE_NFIELDS (type) > 0)
1005 {
1006 /* The enums may not be sorted by value, so search all
0963b4bd 1007 entries. */
c906108c
SS
1008 int i;
1009
14e75d8e 1010 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
1011 for (i = 0; i < TYPE_NFIELDS (type); i++)
1012 {
14e75d8e
JK
1013 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1014 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1015 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1016 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1017 }
1018
7ba81444 1019 /* Set unsigned indicator if warranted. */
c5aa993b 1020 if (*lowp >= 0)
c906108c 1021 {
876cecd0 1022 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1023 }
1024 }
1025 else
1026 {
1027 *lowp = 0;
1028 *highp = -1;
1029 }
1030 return 0;
1031 case TYPE_CODE_BOOL:
1032 *lowp = 0;
1033 *highp = 1;
1034 return 0;
1035 case TYPE_CODE_INT:
c5aa993b 1036 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1037 return -1;
1038 if (!TYPE_UNSIGNED (type))
1039 {
c5aa993b 1040 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1041 *highp = -*lowp - 1;
1042 return 0;
1043 }
86a73007 1044 /* fall through */
c906108c
SS
1045 case TYPE_CODE_CHAR:
1046 *lowp = 0;
1047 /* This round-about calculation is to avoid shifting by
7b83ea04 1048 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1049 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1050 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1051 *highp = (*highp - 1) | *highp;
1052 return 0;
1053 default:
1054 return -1;
1055 }
1056}
1057
dbc98a8b
KW
1058/* Assuming TYPE is a simple, non-empty array type, compute its upper
1059 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1060 Save the high bound into HIGH_BOUND if not NULL.
1061
0963b4bd 1062 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
1063 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1064
1065 We now simply use get_discrete_bounds call to get the values
1066 of the low and high bounds.
1067 get_discrete_bounds can return three values:
1068 1, meaning that index is a range,
1069 0, meaning that index is a discrete type,
1070 or -1 for failure. */
1071
1072int
1073get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1074{
1075 struct type *index = TYPE_INDEX_TYPE (type);
1076 LONGEST low = 0;
1077 LONGEST high = 0;
1078 int res;
1079
1080 if (index == NULL)
1081 return 0;
1082
1083 res = get_discrete_bounds (index, &low, &high);
1084 if (res == -1)
1085 return 0;
1086
1087 /* Check if the array bounds are undefined. */
1088 if (res == 1
1089 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1090 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1091 return 0;
1092
1093 if (low_bound)
1094 *low_bound = low;
1095
1096 if (high_bound)
1097 *high_bound = high;
1098
1099 return 1;
1100}
1101
aa715135
JG
1102/* Assuming that TYPE is a discrete type and VAL is a valid integer
1103 representation of a value of this type, save the corresponding
1104 position number in POS.
1105
1106 Its differs from VAL only in the case of enumeration types. In
1107 this case, the position number of the value of the first listed
1108 enumeration literal is zero; the position number of the value of
1109 each subsequent enumeration literal is one more than that of its
1110 predecessor in the list.
1111
1112 Return 1 if the operation was successful. Return zero otherwise,
1113 in which case the value of POS is unmodified.
1114*/
1115
1116int
1117discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1118{
1119 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1120 {
1121 int i;
1122
1123 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1124 {
1125 if (val == TYPE_FIELD_ENUMVAL (type, i))
1126 {
1127 *pos = i;
1128 return 1;
1129 }
1130 }
1131 /* Invalid enumeration value. */
1132 return 0;
1133 }
1134 else
1135 {
1136 *pos = val;
1137 return 1;
1138 }
1139}
1140
7ba81444
MS
1141/* Create an array type using either a blank type supplied in
1142 RESULT_TYPE, or creating a new type, inheriting the objfile from
1143 RANGE_TYPE.
c906108c
SS
1144
1145 Elements will be of type ELEMENT_TYPE, the indices will be of type
1146 RANGE_TYPE.
1147
a405673c
JB
1148 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1149 This byte stride property is added to the resulting array type
1150 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1151 argument can only be used to create types that are objfile-owned
1152 (see add_dyn_prop), meaning that either this function must be called
1153 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1154
1155 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1156 If BIT_STRIDE is not zero, build a packed array type whose element
1157 size is BIT_STRIDE. Otherwise, ignore this parameter.
1158
7ba81444
MS
1159 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1160 sure it is TYPE_CODE_UNDEF before we bash it into an array
1161 type? */
c906108c
SS
1162
1163struct type *
dc53a7ad
JB
1164create_array_type_with_stride (struct type *result_type,
1165 struct type *element_type,
1166 struct type *range_type,
a405673c 1167 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1168 unsigned int bit_stride)
c906108c 1169{
a405673c
JB
1170 if (byte_stride_prop != NULL
1171 && byte_stride_prop->kind == PROP_CONST)
1172 {
1173 /* The byte stride is actually not dynamic. Pretend we were
1174 called with bit_stride set instead of byte_stride_prop.
1175 This will give us the same result type, while avoiding
1176 the need to handle this as a special case. */
1177 bit_stride = byte_stride_prop->data.const_val * 8;
1178 byte_stride_prop = NULL;
1179 }
1180
c906108c 1181 if (result_type == NULL)
e9bb382b
UW
1182 result_type = alloc_type_copy (range_type);
1183
c906108c
SS
1184 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1185 TYPE_TARGET_TYPE (result_type) = element_type;
a405673c
JB
1186 if (byte_stride_prop == NULL
1187 && has_static_range (TYPE_RANGE_DATA (range_type))
b4a7fcab
JB
1188 && (!type_not_associated (result_type)
1189 && !type_not_allocated (result_type)))
80180f79
SA
1190 {
1191 LONGEST low_bound, high_bound;
1192
1193 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1194 low_bound = high_bound = 0;
f168693b 1195 element_type = check_typedef (element_type);
80180f79
SA
1196 /* Be careful when setting the array length. Ada arrays can be
1197 empty arrays with the high_bound being smaller than the low_bound.
1198 In such cases, the array length should be zero. */
1199 if (high_bound < low_bound)
1200 TYPE_LENGTH (result_type) = 0;
1201 else if (bit_stride > 0)
1202 TYPE_LENGTH (result_type) =
1203 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1204 else
1205 TYPE_LENGTH (result_type) =
1206 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1207 }
ab0d6e0d 1208 else
80180f79
SA
1209 {
1210 /* This type is dynamic and its length needs to be computed
1211 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1212 undefined by setting it to zero. Although we are not expected
1213 to trust TYPE_LENGTH in this case, setting the size to zero
1214 allows us to avoid allocating objects of random sizes in case
1215 we accidently do. */
1216 TYPE_LENGTH (result_type) = 0;
1217 }
1218
c906108c
SS
1219 TYPE_NFIELDS (result_type) = 1;
1220 TYPE_FIELDS (result_type) =
1deafd4e 1221 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1222 TYPE_INDEX_TYPE (result_type) = range_type;
a405673c 1223 if (byte_stride_prop != NULL)
50a82047 1224 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
a405673c 1225 else if (bit_stride > 0)
dc53a7ad 1226 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1227
a9ff5f12 1228 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1229 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1230 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1231
c16abbde 1232 return result_type;
c906108c
SS
1233}
1234
dc53a7ad
JB
1235/* Same as create_array_type_with_stride but with no bit_stride
1236 (BIT_STRIDE = 0), thus building an unpacked array. */
1237
1238struct type *
1239create_array_type (struct type *result_type,
1240 struct type *element_type,
1241 struct type *range_type)
1242{
1243 return create_array_type_with_stride (result_type, element_type,
a405673c 1244 range_type, NULL, 0);
dc53a7ad
JB
1245}
1246
e3506a9f
UW
1247struct type *
1248lookup_array_range_type (struct type *element_type,
63375b74 1249 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1250{
929b5ad4
JB
1251 struct type *index_type;
1252 struct type *range_type;
1253
1254 if (TYPE_OBJFILE_OWNED (element_type))
1255 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1256 else
1257 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1258 range_type = create_static_range_type (NULL, index_type,
1259 low_bound, high_bound);
d8734c88 1260
e3506a9f
UW
1261 return create_array_type (NULL, element_type, range_type);
1262}
1263
7ba81444
MS
1264/* Create a string type using either a blank type supplied in
1265 RESULT_TYPE, or creating a new type. String types are similar
1266 enough to array of char types that we can use create_array_type to
1267 build the basic type and then bash it into a string type.
c906108c
SS
1268
1269 For fixed length strings, the range type contains 0 as the lower
1270 bound and the length of the string minus one as the upper bound.
1271
7ba81444
MS
1272 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1273 sure it is TYPE_CODE_UNDEF before we bash it into a string
1274 type? */
c906108c
SS
1275
1276struct type *
3b7538c0
UW
1277create_string_type (struct type *result_type,
1278 struct type *string_char_type,
7ba81444 1279 struct type *range_type)
c906108c
SS
1280{
1281 result_type = create_array_type (result_type,
f290d38e 1282 string_char_type,
c906108c
SS
1283 range_type);
1284 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1285 return result_type;
c906108c
SS
1286}
1287
e3506a9f
UW
1288struct type *
1289lookup_string_range_type (struct type *string_char_type,
63375b74 1290 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1291{
1292 struct type *result_type;
d8734c88 1293
e3506a9f
UW
1294 result_type = lookup_array_range_type (string_char_type,
1295 low_bound, high_bound);
1296 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1297 return result_type;
1298}
1299
c906108c 1300struct type *
fba45db2 1301create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1302{
c906108c 1303 if (result_type == NULL)
e9bb382b
UW
1304 result_type = alloc_type_copy (domain_type);
1305
c906108c
SS
1306 TYPE_CODE (result_type) = TYPE_CODE_SET;
1307 TYPE_NFIELDS (result_type) = 1;
224c3ddb
SM
1308 TYPE_FIELDS (result_type)
1309 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1310
74a9bb82 1311 if (!TYPE_STUB (domain_type))
c906108c 1312 {
f9780d5b 1313 LONGEST low_bound, high_bound, bit_length;
d8734c88 1314
c906108c
SS
1315 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1316 low_bound = high_bound = 0;
1317 bit_length = high_bound - low_bound + 1;
1318 TYPE_LENGTH (result_type)
1319 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1320 if (low_bound >= 0)
876cecd0 1321 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1322 }
1323 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1324
c16abbde 1325 return result_type;
c906108c
SS
1326}
1327
ea37ba09
DJ
1328/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1329 and any array types nested inside it. */
1330
1331void
1332make_vector_type (struct type *array_type)
1333{
1334 struct type *inner_array, *elt_type;
1335 int flags;
1336
1337 /* Find the innermost array type, in case the array is
1338 multi-dimensional. */
1339 inner_array = array_type;
1340 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1341 inner_array = TYPE_TARGET_TYPE (inner_array);
1342
1343 elt_type = TYPE_TARGET_TYPE (inner_array);
1344 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1345 {
2844d6b5 1346 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1347 elt_type = make_qualified_type (elt_type, flags, NULL);
1348 TYPE_TARGET_TYPE (inner_array) = elt_type;
1349 }
1350
876cecd0 1351 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1352}
1353
794ac428 1354struct type *
ac3aafc7
EZ
1355init_vector_type (struct type *elt_type, int n)
1356{
1357 struct type *array_type;
d8734c88 1358
e3506a9f 1359 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1360 make_vector_type (array_type);
ac3aafc7
EZ
1361 return array_type;
1362}
1363
09e2d7c7
DE
1364/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1365 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1366 confusing. "self" is a common enough replacement for "this".
1367 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1368 TYPE_CODE_METHOD. */
1369
1370struct type *
1371internal_type_self_type (struct type *type)
1372{
1373 switch (TYPE_CODE (type))
1374 {
1375 case TYPE_CODE_METHODPTR:
1376 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1377 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1378 return NULL;
09e2d7c7
DE
1379 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1380 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1381 case TYPE_CODE_METHOD:
eaaf76ab
DE
1382 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1383 return NULL;
09e2d7c7
DE
1384 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1385 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1386 default:
1387 gdb_assert_not_reached ("bad type");
1388 }
1389}
1390
1391/* Set the type of the class that TYPE belongs to.
1392 In c++ this is the class of "this".
1393 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1394 TYPE_CODE_METHOD. */
1395
1396void
1397set_type_self_type (struct type *type, struct type *self_type)
1398{
1399 switch (TYPE_CODE (type))
1400 {
1401 case TYPE_CODE_METHODPTR:
1402 case TYPE_CODE_MEMBERPTR:
1403 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1404 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1405 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1406 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1407 break;
1408 case TYPE_CODE_METHOD:
1409 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1410 INIT_FUNC_SPECIFIC (type);
1411 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1412 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1413 break;
1414 default:
1415 gdb_assert_not_reached ("bad type");
1416 }
1417}
1418
1419/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1420 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1421 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1422 TYPE doesn't include the offset (that's the value of the MEMBER
1423 itself), but does include the structure type into which it points
1424 (for some reason).
c906108c 1425
7ba81444
MS
1426 When "smashing" the type, we preserve the objfile that the old type
1427 pointed to, since we aren't changing where the type is actually
c906108c
SS
1428 allocated. */
1429
1430void
09e2d7c7 1431smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1432 struct type *to_type)
c906108c 1433{
2fdde8f8 1434 smash_type (type);
09e2d7c7 1435 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c 1436 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1437 set_type_self_type (type, self_type);
0d5de010
DJ
1438 /* Assume that a data member pointer is the same size as a normal
1439 pointer. */
50810684
UW
1440 TYPE_LENGTH (type)
1441 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1442}
1443
0b92b5bb
TT
1444/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1445
1446 When "smashing" the type, we preserve the objfile that the old type
1447 pointed to, since we aren't changing where the type is actually
1448 allocated. */
1449
1450void
1451smash_to_methodptr_type (struct type *type, struct type *to_type)
1452{
1453 smash_type (type);
09e2d7c7 1454 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
0b92b5bb 1455 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1456 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1457 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1458}
1459
09e2d7c7 1460/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1461 METHOD just means `function that gets an extra "this" argument'.
1462
7ba81444
MS
1463 When "smashing" the type, we preserve the objfile that the old type
1464 pointed to, since we aren't changing where the type is actually
c906108c
SS
1465 allocated. */
1466
1467void
09e2d7c7 1468smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1469 struct type *to_type, struct field *args,
1470 int nargs, int varargs)
c906108c 1471{
2fdde8f8 1472 smash_type (type);
09e2d7c7 1473 TYPE_CODE (type) = TYPE_CODE_METHOD;
c906108c 1474 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1475 set_type_self_type (type, self_type);
ad2f7632
DJ
1476 TYPE_FIELDS (type) = args;
1477 TYPE_NFIELDS (type) = nargs;
1478 if (varargs)
876cecd0 1479 TYPE_VARARGS (type) = 1;
c906108c 1480 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1481}
1482
a737d952 1483/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1484 Since GCC PR debug/47510 DWARF provides associated information to detect the
1485 anonymous class linkage name from its typedef.
1486
1487 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1488 apply it itself. */
1489
1490const char *
a737d952 1491type_name_or_error (struct type *type)
d8228535
JK
1492{
1493 struct type *saved_type = type;
1494 const char *name;
1495 struct objfile *objfile;
1496
f168693b 1497 type = check_typedef (type);
d8228535 1498
a737d952 1499 name = TYPE_NAME (type);
d8228535
JK
1500 if (name != NULL)
1501 return name;
1502
a737d952 1503 name = TYPE_NAME (saved_type);
d8228535
JK
1504 objfile = TYPE_OBJFILE (saved_type);
1505 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1506 name ? name : "<anonymous>",
1507 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1508}
1509
7ba81444
MS
1510/* Lookup a typedef or primitive type named NAME, visible in lexical
1511 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1512 suitably defined. */
c906108c
SS
1513
1514struct type *
e6c014f2 1515lookup_typename (const struct language_defn *language,
ddd49eee 1516 struct gdbarch *gdbarch, const char *name,
34eaf542 1517 const struct block *block, int noerr)
c906108c 1518{
52f0bd74 1519 struct symbol *sym;
c906108c 1520
1994afbf 1521 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1522 language->la_language, NULL).symbol;
c51fe631
DE
1523 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1524 return SYMBOL_TYPE (sym);
1525
c51fe631
DE
1526 if (noerr)
1527 return NULL;
1528 error (_("No type named %s."), name);
c906108c
SS
1529}
1530
1531struct type *
e6c014f2 1532lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1533 struct gdbarch *gdbarch, const char *name)
c906108c 1534{
224c3ddb 1535 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1536
1537 strcpy (uns, "unsigned ");
1538 strcpy (uns + 9, name);
582942f4 1539 return lookup_typename (language, gdbarch, uns, NULL, 0);
c906108c
SS
1540}
1541
1542struct type *
e6c014f2 1543lookup_signed_typename (const struct language_defn *language,
0d5cff50 1544 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1545{
1546 struct type *t;
224c3ddb 1547 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1548
1549 strcpy (uns, "signed ");
1550 strcpy (uns + 7, name);
582942f4 1551 t = lookup_typename (language, gdbarch, uns, NULL, 1);
7ba81444 1552 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1553 if (t != NULL)
1554 return t;
582942f4 1555 return lookup_typename (language, gdbarch, name, NULL, 0);
c906108c
SS
1556}
1557
1558/* Lookup a structure type named "struct NAME",
1559 visible in lexical block BLOCK. */
1560
1561struct type *
270140bd 1562lookup_struct (const char *name, const struct block *block)
c906108c 1563{
52f0bd74 1564 struct symbol *sym;
c906108c 1565
d12307c1 1566 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1567
1568 if (sym == NULL)
1569 {
8a3fe4f8 1570 error (_("No struct type named %s."), name);
c906108c
SS
1571 }
1572 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1573 {
7ba81444
MS
1574 error (_("This context has class, union or enum %s, not a struct."),
1575 name);
c906108c
SS
1576 }
1577 return (SYMBOL_TYPE (sym));
1578}
1579
1580/* Lookup a union type named "union NAME",
1581 visible in lexical block BLOCK. */
1582
1583struct type *
270140bd 1584lookup_union (const char *name, const struct block *block)
c906108c 1585{
52f0bd74 1586 struct symbol *sym;
c5aa993b 1587 struct type *t;
c906108c 1588
d12307c1 1589 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1590
1591 if (sym == NULL)
8a3fe4f8 1592 error (_("No union type named %s."), name);
c906108c 1593
c5aa993b 1594 t = SYMBOL_TYPE (sym);
c906108c
SS
1595
1596 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1597 return t;
c906108c 1598
7ba81444
MS
1599 /* If we get here, it's not a union. */
1600 error (_("This context has class, struct or enum %s, not a union."),
1601 name);
c906108c
SS
1602}
1603
c906108c
SS
1604/* Lookup an enum type named "enum NAME",
1605 visible in lexical block BLOCK. */
1606
1607struct type *
270140bd 1608lookup_enum (const char *name, const struct block *block)
c906108c 1609{
52f0bd74 1610 struct symbol *sym;
c906108c 1611
d12307c1 1612 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1613 if (sym == NULL)
1614 {
8a3fe4f8 1615 error (_("No enum type named %s."), name);
c906108c
SS
1616 }
1617 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1618 {
7ba81444
MS
1619 error (_("This context has class, struct or union %s, not an enum."),
1620 name);
c906108c
SS
1621 }
1622 return (SYMBOL_TYPE (sym));
1623}
1624
1625/* Lookup a template type named "template NAME<TYPE>",
1626 visible in lexical block BLOCK. */
1627
1628struct type *
61f4b350 1629lookup_template_type (const char *name, struct type *type,
270140bd 1630 const struct block *block)
c906108c
SS
1631{
1632 struct symbol *sym;
7ba81444
MS
1633 char *nam = (char *)
1634 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1635
c906108c
SS
1636 strcpy (nam, name);
1637 strcat (nam, "<");
0004e5a2 1638 strcat (nam, TYPE_NAME (type));
0963b4bd 1639 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1640
d12307c1 1641 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1642
1643 if (sym == NULL)
1644 {
8a3fe4f8 1645 error (_("No template type named %s."), name);
c906108c
SS
1646 }
1647 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1648 {
7ba81444
MS
1649 error (_("This context has class, union or enum %s, not a struct."),
1650 name);
c906108c
SS
1651 }
1652 return (SYMBOL_TYPE (sym));
1653}
1654
ef0bd204 1655/* See gdbtypes.h. */
c906108c 1656
ef0bd204
JB
1657struct_elt
1658lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1659{
1660 int i;
1661
1662 for (;;)
1663 {
f168693b 1664 type = check_typedef (type);
c906108c
SS
1665 if (TYPE_CODE (type) != TYPE_CODE_PTR
1666 && TYPE_CODE (type) != TYPE_CODE_REF)
1667 break;
1668 type = TYPE_TARGET_TYPE (type);
1669 }
1670
687d6395
MS
1671 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1672 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1673 {
2f408ecb
PA
1674 std::string type_name = type_to_string (type);
1675 error (_("Type %s is not a structure or union type."),
1676 type_name.c_str ());
c906108c
SS
1677 }
1678
c906108c
SS
1679 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1680 {
0d5cff50 1681 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1682
db577aea 1683 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1684 {
ef0bd204 1685 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1686 }
f5a010c0
PM
1687 else if (!t_field_name || *t_field_name == '\0')
1688 {
ef0bd204
JB
1689 struct_elt elt
1690 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1691 if (elt.field != NULL)
1692 {
1693 elt.offset += TYPE_FIELD_BITPOS (type, i);
1694 return elt;
1695 }
f5a010c0 1696 }
c906108c
SS
1697 }
1698
1699 /* OK, it's not in this class. Recursively check the baseclasses. */
1700 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1701 {
ef0bd204
JB
1702 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1703 if (elt.field != NULL)
1704 return elt;
c906108c
SS
1705 }
1706
1707 if (noerr)
ef0bd204 1708 return {nullptr, 0};
c5aa993b 1709
2f408ecb
PA
1710 std::string type_name = type_to_string (type);
1711 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1712}
1713
ef0bd204
JB
1714/* See gdbtypes.h. */
1715
1716struct type *
1717lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1718{
1719 struct_elt elt = lookup_struct_elt (type, name, noerr);
1720 if (elt.field != NULL)
1721 return FIELD_TYPE (*elt.field);
1722 else
1723 return NULL;
1724}
1725
ed3ef339
DE
1726/* Store in *MAX the largest number representable by unsigned integer type
1727 TYPE. */
1728
1729void
1730get_unsigned_type_max (struct type *type, ULONGEST *max)
1731{
1732 unsigned int n;
1733
f168693b 1734 type = check_typedef (type);
ed3ef339
DE
1735 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1736 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1737
1738 /* Written this way to avoid overflow. */
1739 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1740 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1741}
1742
1743/* Store in *MIN, *MAX the smallest and largest numbers representable by
1744 signed integer type TYPE. */
1745
1746void
1747get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1748{
1749 unsigned int n;
1750
f168693b 1751 type = check_typedef (type);
ed3ef339
DE
1752 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1753 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1754
1755 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1756 *min = -((ULONGEST) 1 << (n - 1));
1757 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1758}
1759
ae6ae975
DE
1760/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1761 cplus_stuff.vptr_fieldno.
1762
1763 cplus_stuff is initialized to cplus_struct_default which does not
1764 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1765 designated initializers). We cope with that here. */
1766
1767int
1768internal_type_vptr_fieldno (struct type *type)
1769{
f168693b 1770 type = check_typedef (type);
ae6ae975
DE
1771 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1772 || TYPE_CODE (type) == TYPE_CODE_UNION);
1773 if (!HAVE_CPLUS_STRUCT (type))
1774 return -1;
1775 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1776}
1777
1778/* Set the value of cplus_stuff.vptr_fieldno. */
1779
1780void
1781set_type_vptr_fieldno (struct type *type, int fieldno)
1782{
f168693b 1783 type = check_typedef (type);
ae6ae975
DE
1784 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1785 || TYPE_CODE (type) == TYPE_CODE_UNION);
1786 if (!HAVE_CPLUS_STRUCT (type))
1787 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1788 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1789}
1790
1791/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1792 cplus_stuff.vptr_basetype. */
1793
1794struct type *
1795internal_type_vptr_basetype (struct type *type)
1796{
f168693b 1797 type = check_typedef (type);
ae6ae975
DE
1798 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1799 || TYPE_CODE (type) == TYPE_CODE_UNION);
1800 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1801 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1802}
1803
1804/* Set the value of cplus_stuff.vptr_basetype. */
1805
1806void
1807set_type_vptr_basetype (struct type *type, struct type *basetype)
1808{
f168693b 1809 type = check_typedef (type);
ae6ae975
DE
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1811 || TYPE_CODE (type) == TYPE_CODE_UNION);
1812 if (!HAVE_CPLUS_STRUCT (type))
1813 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1814 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1815}
1816
81fe8080
DE
1817/* Lookup the vptr basetype/fieldno values for TYPE.
1818 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1819 vptr_fieldno. Also, if found and basetype is from the same objfile,
1820 cache the results.
1821 If not found, return -1 and ignore BASETYPEP.
1822 Callers should be aware that in some cases (for example,
c906108c 1823 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1824 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1825 this function will not be able to find the
7ba81444 1826 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1827 vptr_basetype will remain NULL or incomplete. */
c906108c 1828
81fe8080
DE
1829int
1830get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1831{
f168693b 1832 type = check_typedef (type);
c906108c
SS
1833
1834 if (TYPE_VPTR_FIELDNO (type) < 0)
1835 {
1836 int i;
1837
7ba81444
MS
1838 /* We must start at zero in case the first (and only) baseclass
1839 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1840 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1841 {
81fe8080
DE
1842 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1843 int fieldno;
1844 struct type *basetype;
1845
1846 fieldno = get_vptr_fieldno (baseclass, &basetype);
1847 if (fieldno >= 0)
c906108c 1848 {
81fe8080 1849 /* If the type comes from a different objfile we can't cache
0963b4bd 1850 it, it may have a different lifetime. PR 2384 */
5ef73790 1851 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1852 {
ae6ae975
DE
1853 set_type_vptr_fieldno (type, fieldno);
1854 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1855 }
1856 if (basetypep)
1857 *basetypep = basetype;
1858 return fieldno;
c906108c
SS
1859 }
1860 }
81fe8080
DE
1861
1862 /* Not found. */
1863 return -1;
1864 }
1865 else
1866 {
1867 if (basetypep)
1868 *basetypep = TYPE_VPTR_BASETYPE (type);
1869 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1870 }
1871}
1872
44e1a9eb
DJ
1873static void
1874stub_noname_complaint (void)
1875{
b98664d3 1876 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1877}
1878
a405673c
JB
1879/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1880 attached to it, and that property has a non-constant value. */
1881
1882static int
1883array_type_has_dynamic_stride (struct type *type)
1884{
1885 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1886
1887 return (prop != NULL && prop->kind != PROP_CONST);
1888}
1889
d98b7a16 1890/* Worker for is_dynamic_type. */
80180f79 1891
d98b7a16 1892static int
ee715b5a 1893is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1894{
1895 type = check_typedef (type);
1896
e771e4be
PMR
1897 /* We only want to recognize references at the outermost level. */
1898 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1899 type = check_typedef (TYPE_TARGET_TYPE (type));
1900
3cdcd0ce
JB
1901 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1902 dynamic, even if the type itself is statically defined.
1903 From a user's point of view, this may appear counter-intuitive;
1904 but it makes sense in this context, because the point is to determine
1905 whether any part of the type needs to be resolved before it can
1906 be exploited. */
1907 if (TYPE_DATA_LOCATION (type) != NULL
1908 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1909 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1910 return 1;
1911
3f2f83dd
KB
1912 if (TYPE_ASSOCIATED_PROP (type))
1913 return 1;
1914
1915 if (TYPE_ALLOCATED_PROP (type))
1916 return 1;
1917
80180f79
SA
1918 switch (TYPE_CODE (type))
1919 {
6f8a3220 1920 case TYPE_CODE_RANGE:
ddb87a81
JB
1921 {
1922 /* A range type is obviously dynamic if it has at least one
1923 dynamic bound. But also consider the range type to be
1924 dynamic when its subtype is dynamic, even if the bounds
1925 of the range type are static. It allows us to assume that
1926 the subtype of a static range type is also static. */
1927 return (!has_static_range (TYPE_RANGE_DATA (type))
ee715b5a 1928 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 1929 }
6f8a3220 1930
80180f79
SA
1931 case TYPE_CODE_ARRAY:
1932 {
80180f79 1933 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220 1934
a405673c 1935 /* The array is dynamic if either the bounds are dynamic... */
ee715b5a 1936 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1937 return 1;
a405673c
JB
1938 /* ... or the elements it contains have a dynamic contents... */
1939 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1940 return 1;
1941 /* ... or if it has a dynamic stride... */
1942 if (array_type_has_dynamic_stride (type))
1943 return 1;
1944 return 0;
80180f79 1945 }
012370f6
TT
1946
1947 case TYPE_CODE_STRUCT:
1948 case TYPE_CODE_UNION:
1949 {
1950 int i;
1951
1952 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1953 if (!field_is_static (&TYPE_FIELD (type, i))
ee715b5a 1954 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1955 return 1;
1956 }
1957 break;
80180f79 1958 }
92e2a17f
TT
1959
1960 return 0;
80180f79
SA
1961}
1962
d98b7a16
TT
1963/* See gdbtypes.h. */
1964
1965int
1966is_dynamic_type (struct type *type)
1967{
ee715b5a 1968 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
1969}
1970
df25ebbd 1971static struct type *resolve_dynamic_type_internal
ee715b5a 1972 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 1973
df25ebbd
JB
1974/* Given a dynamic range type (dyn_range_type) and a stack of
1975 struct property_addr_info elements, return a static version
1976 of that type. */
d190df30 1977
80180f79 1978static struct type *
df25ebbd
JB
1979resolve_dynamic_range (struct type *dyn_range_type,
1980 struct property_addr_info *addr_stack)
80180f79
SA
1981{
1982 CORE_ADDR value;
ddb87a81 1983 struct type *static_range_type, *static_target_type;
80180f79 1984 const struct dynamic_prop *prop;
80180f79
SA
1985 struct dynamic_prop low_bound, high_bound;
1986
6f8a3220 1987 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1988
6f8a3220 1989 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
63e43d3a 1990 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
1991 {
1992 low_bound.kind = PROP_CONST;
1993 low_bound.data.const_val = value;
1994 }
1995 else
1996 {
1997 low_bound.kind = PROP_UNDEFINED;
1998 low_bound.data.const_val = 0;
1999 }
2000
6f8a3220 2001 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
63e43d3a 2002 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79
SA
2003 {
2004 high_bound.kind = PROP_CONST;
2005 high_bound.data.const_val = value;
c451ebe5 2006
6f8a3220 2007 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
2008 high_bound.data.const_val
2009 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
2010 }
2011 else
2012 {
2013 high_bound.kind = PROP_UNDEFINED;
2014 high_bound.data.const_val = 0;
2015 }
2016
ddb87a81
JB
2017 static_target_type
2018 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2019 addr_stack, 0);
4e962e74 2020 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
6f8a3220 2021 static_range_type = create_range_type (copy_type (dyn_range_type),
ddb87a81 2022 static_target_type,
4e962e74 2023 &low_bound, &high_bound, bias);
6f8a3220
JB
2024 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2025 return static_range_type;
2026}
2027
2028/* Resolves dynamic bound values of an array type TYPE to static ones.
df25ebbd
JB
2029 ADDR_STACK is a stack of struct property_addr_info to be used
2030 if needed during the dynamic resolution. */
6f8a3220
JB
2031
2032static struct type *
df25ebbd
JB
2033resolve_dynamic_array (struct type *type,
2034 struct property_addr_info *addr_stack)
6f8a3220
JB
2035{
2036 CORE_ADDR value;
2037 struct type *elt_type;
2038 struct type *range_type;
2039 struct type *ary_dim;
3f2f83dd 2040 struct dynamic_prop *prop;
a405673c 2041 unsigned int bit_stride = 0;
6f8a3220
JB
2042
2043 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2044
3f2f83dd
KB
2045 type = copy_type (type);
2046
6f8a3220
JB
2047 elt_type = type;
2048 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
df25ebbd 2049 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2050
3f2f83dd
KB
2051 /* Resolve allocated/associated here before creating a new array type, which
2052 will update the length of the array accordingly. */
2053 prop = TYPE_ALLOCATED_PROP (type);
2054 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2055 {
2056 TYPE_DYN_PROP_ADDR (prop) = value;
2057 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2058 }
2059 prop = TYPE_ASSOCIATED_PROP (type);
2060 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2061 {
2062 TYPE_DYN_PROP_ADDR (prop) = value;
2063 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2064 }
2065
80180f79
SA
2066 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2067
2068 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
d0d84780 2069 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
80180f79
SA
2070 else
2071 elt_type = TYPE_TARGET_TYPE (type);
2072
a405673c
JB
2073 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2074 if (prop != NULL)
2075 {
603490bf 2076 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c
JB
2077 {
2078 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2079 bit_stride = (unsigned int) (value * 8);
2080 }
2081 else
2082 {
2083 /* Could be a bug in our code, but it could also happen
2084 if the DWARF info is not correct. Issue a warning,
2085 and assume no byte/bit stride (leave bit_stride = 0). */
2086 warning (_("cannot determine array stride for type %s"),
2087 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2088 }
2089 }
2090 else
2091 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2092
2093 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2094 bit_stride);
80180f79
SA
2095}
2096
012370f6 2097/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2098 bounds. ADDR_STACK is a stack of struct property_addr_info
2099 to be used if needed during the dynamic resolution. */
012370f6
TT
2100
2101static struct type *
df25ebbd
JB
2102resolve_dynamic_union (struct type *type,
2103 struct property_addr_info *addr_stack)
012370f6
TT
2104{
2105 struct type *resolved_type;
2106 int i;
2107 unsigned int max_len = 0;
2108
2109 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2110
2111 resolved_type = copy_type (type);
2112 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2113 = (struct field *) TYPE_ALLOC (resolved_type,
2114 TYPE_NFIELDS (resolved_type)
2115 * sizeof (struct field));
012370f6
TT
2116 memcpy (TYPE_FIELDS (resolved_type),
2117 TYPE_FIELDS (type),
2118 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2119 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2120 {
2121 struct type *t;
2122
2123 if (field_is_static (&TYPE_FIELD (type, i)))
2124 continue;
2125
d98b7a16 2126 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2127 addr_stack, 0);
012370f6
TT
2128 TYPE_FIELD_TYPE (resolved_type, i) = t;
2129 if (TYPE_LENGTH (t) > max_len)
2130 max_len = TYPE_LENGTH (t);
2131 }
2132
2133 TYPE_LENGTH (resolved_type) = max_len;
2134 return resolved_type;
2135}
2136
2137/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2138 bounds. ADDR_STACK is a stack of struct property_addr_info to
2139 be used if needed during the dynamic resolution. */
012370f6
TT
2140
2141static struct type *
df25ebbd
JB
2142resolve_dynamic_struct (struct type *type,
2143 struct property_addr_info *addr_stack)
012370f6
TT
2144{
2145 struct type *resolved_type;
2146 int i;
6908c509 2147 unsigned resolved_type_bit_length = 0;
012370f6
TT
2148
2149 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2150 gdb_assert (TYPE_NFIELDS (type) > 0);
2151
2152 resolved_type = copy_type (type);
2153 TYPE_FIELDS (resolved_type)
224c3ddb
SM
2154 = (struct field *) TYPE_ALLOC (resolved_type,
2155 TYPE_NFIELDS (resolved_type)
2156 * sizeof (struct field));
012370f6
TT
2157 memcpy (TYPE_FIELDS (resolved_type),
2158 TYPE_FIELDS (type),
2159 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2160 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2161 {
6908c509 2162 unsigned new_bit_length;
df25ebbd 2163 struct property_addr_info pinfo;
012370f6
TT
2164
2165 if (field_is_static (&TYPE_FIELD (type, i)))
2166 continue;
2167
6908c509
JB
2168 /* As we know this field is not a static field, the field's
2169 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2170 this is the case, but only trigger a simple error rather
2171 than an internal error if that fails. While failing
2172 that verification indicates a bug in our code, the error
2173 is not severe enough to suggest to the user he stops
2174 his debugging session because of it. */
df25ebbd 2175 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2176 error (_("Cannot determine struct field location"
2177 " (invalid location kind)"));
df25ebbd
JB
2178
2179 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
c3345124 2180 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2181 pinfo.addr
2182 = (addr_stack->addr
2183 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2184 pinfo.next = addr_stack;
2185
2186 TYPE_FIELD_TYPE (resolved_type, i)
2187 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
ee715b5a 2188 &pinfo, 0);
df25ebbd
JB
2189 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2190 == FIELD_LOC_KIND_BITPOS);
2191
6908c509
JB
2192 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2193 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2194 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2195 else
2196 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2197 * TARGET_CHAR_BIT);
2198
2199 /* Normally, we would use the position and size of the last field
2200 to determine the size of the enclosing structure. But GCC seems
2201 to be encoding the position of some fields incorrectly when
2202 the struct contains a dynamic field that is not placed last.
2203 So we compute the struct size based on the field that has
2204 the highest position + size - probably the best we can do. */
2205 if (new_bit_length > resolved_type_bit_length)
2206 resolved_type_bit_length = new_bit_length;
012370f6
TT
2207 }
2208
9920b434
BH
2209 /* The length of a type won't change for fortran, but it does for C and Ada.
2210 For fortran the size of dynamic fields might change over time but not the
2211 type length of the structure. If we adapt it, we run into problems
2212 when calculating the element offset for arrays of structs. */
2213 if (current_language->la_language != language_fortran)
2214 TYPE_LENGTH (resolved_type)
2215 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2216
9e195661
PMR
2217 /* The Ada language uses this field as a cache for static fixed types: reset
2218 it as RESOLVED_TYPE must have its own static fixed type. */
2219 TYPE_TARGET_TYPE (resolved_type) = NULL;
2220
012370f6
TT
2221 return resolved_type;
2222}
2223
d98b7a16 2224/* Worker for resolved_dynamic_type. */
80180f79 2225
d98b7a16 2226static struct type *
df25ebbd 2227resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2228 struct property_addr_info *addr_stack,
2229 int top_level)
80180f79
SA
2230{
2231 struct type *real_type = check_typedef (type);
6f8a3220 2232 struct type *resolved_type = type;
d9823cbb 2233 struct dynamic_prop *prop;
3cdcd0ce 2234 CORE_ADDR value;
80180f79 2235
ee715b5a 2236 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2237 return type;
2238
5537b577 2239 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
6f8a3220 2240 {
cac9b138
JK
2241 resolved_type = copy_type (type);
2242 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2243 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2244 top_level);
5537b577
JK
2245 }
2246 else
2247 {
2248 /* Before trying to resolve TYPE, make sure it is not a stub. */
2249 type = real_type;
012370f6 2250
5537b577
JK
2251 switch (TYPE_CODE (type))
2252 {
e771e4be
PMR
2253 case TYPE_CODE_REF:
2254 {
2255 struct property_addr_info pinfo;
2256
2257 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
c3345124
JB
2258 pinfo.valaddr = NULL;
2259 if (addr_stack->valaddr != NULL)
2260 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2261 else
2262 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2263 pinfo.next = addr_stack;
2264
2265 resolved_type = copy_type (type);
2266 TYPE_TARGET_TYPE (resolved_type)
2267 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2268 &pinfo, top_level);
2269 break;
2270 }
2271
5537b577 2272 case TYPE_CODE_ARRAY:
df25ebbd 2273 resolved_type = resolve_dynamic_array (type, addr_stack);
5537b577
JK
2274 break;
2275
2276 case TYPE_CODE_RANGE:
df25ebbd 2277 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2278 break;
2279
2280 case TYPE_CODE_UNION:
df25ebbd 2281 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2282 break;
2283
2284 case TYPE_CODE_STRUCT:
df25ebbd 2285 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2286 break;
2287 }
6f8a3220 2288 }
80180f79 2289
3cdcd0ce
JB
2290 /* Resolve data_location attribute. */
2291 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2292 if (prop != NULL
2293 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
3cdcd0ce 2294 {
d9823cbb
KB
2295 TYPE_DYN_PROP_ADDR (prop) = value;
2296 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
3cdcd0ce 2297 }
3cdcd0ce 2298
80180f79
SA
2299 return resolved_type;
2300}
2301
d98b7a16
TT
2302/* See gdbtypes.h */
2303
2304struct type *
c3345124
JB
2305resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2306 CORE_ADDR addr)
d98b7a16 2307{
c3345124
JB
2308 struct property_addr_info pinfo
2309 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2310
ee715b5a 2311 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2312}
2313
d9823cbb
KB
2314/* See gdbtypes.h */
2315
2316struct dynamic_prop *
2317get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2318{
2319 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2320
2321 while (node != NULL)
2322 {
2323 if (node->prop_kind == prop_kind)
283a9958 2324 return &node->prop;
d9823cbb
KB
2325 node = node->next;
2326 }
2327 return NULL;
2328}
2329
2330/* See gdbtypes.h */
2331
2332void
2333add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
50a82047 2334 struct type *type)
d9823cbb
KB
2335{
2336 struct dynamic_prop_list *temp;
2337
2338 gdb_assert (TYPE_OBJFILE_OWNED (type));
2339
50a82047
TT
2340 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2341 struct dynamic_prop_list);
d9823cbb 2342 temp->prop_kind = prop_kind;
283a9958 2343 temp->prop = prop;
d9823cbb
KB
2344 temp->next = TYPE_DYN_PROP_LIST (type);
2345
2346 TYPE_DYN_PROP_LIST (type) = temp;
2347}
2348
9920b434
BH
2349/* Remove dynamic property from TYPE in case it exists. */
2350
2351void
2352remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2353 struct type *type)
2354{
2355 struct dynamic_prop_list *prev_node, *curr_node;
2356
2357 curr_node = TYPE_DYN_PROP_LIST (type);
2358 prev_node = NULL;
2359
2360 while (NULL != curr_node)
2361 {
2362 if (curr_node->prop_kind == prop_kind)
2363 {
2364 /* Update the linked list but don't free anything.
2365 The property was allocated on objstack and it is not known
2366 if we are on top of it. Nevertheless, everything is released
2367 when the complete objstack is freed. */
2368 if (NULL == prev_node)
2369 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2370 else
2371 prev_node->next = curr_node->next;
2372
2373 return;
2374 }
2375
2376 prev_node = curr_node;
2377 curr_node = curr_node->next;
2378 }
2379}
d9823cbb 2380
92163a10
JK
2381/* Find the real type of TYPE. This function returns the real type,
2382 after removing all layers of typedefs, and completing opaque or stub
2383 types. Completion changes the TYPE argument, but stripping of
2384 typedefs does not.
2385
2386 Instance flags (e.g. const/volatile) are preserved as typedefs are
2387 stripped. If necessary a new qualified form of the underlying type
2388 is created.
2389
2390 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2391 not been computed and we're either in the middle of reading symbols, or
2392 there was no name for the typedef in the debug info.
2393
9bc118a5
DE
2394 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2395 QUITs in the symbol reading code can also throw.
2396 Thus this function can throw an exception.
2397
92163a10
JK
2398 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2399 the target type.
c906108c
SS
2400
2401 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2402 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2403 definition, so we can use it in future. There used to be a comment
2404 (but not any code) that if we don't find a full definition, we'd
2405 set a flag so we don't spend time in the future checking the same
2406 type. That would be a mistake, though--we might load in more
92163a10 2407 symbols which contain a full definition for the type. */
c906108c
SS
2408
2409struct type *
a02fd225 2410check_typedef (struct type *type)
c906108c
SS
2411{
2412 struct type *orig_type = type;
92163a10
JK
2413 /* While we're removing typedefs, we don't want to lose qualifiers.
2414 E.g., const/volatile. */
2415 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2416
423c0af8
MS
2417 gdb_assert (type);
2418
c906108c
SS
2419 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2420 {
2421 if (!TYPE_TARGET_TYPE (type))
2422 {
0d5cff50 2423 const char *name;
c906108c
SS
2424 struct symbol *sym;
2425
2426 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2427 reading a symtab. Infinite recursion is one danger. */
c906108c 2428 if (currently_reading_symtab)
92163a10 2429 return make_qualified_type (type, instance_flags, NULL);
c906108c 2430
a737d952 2431 name = TYPE_NAME (type);
e86ca25f
TT
2432 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2433 VAR_DOMAIN as appropriate? */
c906108c
SS
2434 if (name == NULL)
2435 {
23136709 2436 stub_noname_complaint ();
92163a10 2437 return make_qualified_type (type, instance_flags, NULL);
c906108c 2438 }
d12307c1 2439 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2440 if (sym)
2441 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2442 else /* TYPE_CODE_UNDEF */
e9bb382b 2443 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2444 }
2445 type = TYPE_TARGET_TYPE (type);
c906108c 2446
92163a10
JK
2447 /* Preserve the instance flags as we traverse down the typedef chain.
2448
2449 Handling address spaces/classes is nasty, what do we do if there's a
2450 conflict?
2451 E.g., what if an outer typedef marks the type as class_1 and an inner
2452 typedef marks the type as class_2?
2453 This is the wrong place to do such error checking. We leave it to
2454 the code that created the typedef in the first place to flag the
2455 error. We just pick the outer address space (akin to letting the
2456 outer cast in a chain of casting win), instead of assuming
2457 "it can't happen". */
2458 {
2459 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2460 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2461 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2462 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2463
2464 /* Treat code vs data spaces and address classes separately. */
2465 if ((instance_flags & ALL_SPACES) != 0)
2466 new_instance_flags &= ~ALL_SPACES;
2467 if ((instance_flags & ALL_CLASSES) != 0)
2468 new_instance_flags &= ~ALL_CLASSES;
2469
2470 instance_flags |= new_instance_flags;
2471 }
2472 }
a02fd225 2473
7ba81444
MS
2474 /* If this is a struct/class/union with no fields, then check
2475 whether a full definition exists somewhere else. This is for
2476 systems where a type definition with no fields is issued for such
2477 types, instead of identifying them as stub types in the first
2478 place. */
c5aa993b 2479
7ba81444
MS
2480 if (TYPE_IS_OPAQUE (type)
2481 && opaque_type_resolution
2482 && !currently_reading_symtab)
c906108c 2483 {
a737d952 2484 const char *name = TYPE_NAME (type);
c5aa993b 2485 struct type *newtype;
d8734c88 2486
c906108c
SS
2487 if (name == NULL)
2488 {
23136709 2489 stub_noname_complaint ();
92163a10 2490 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2491 }
2492 newtype = lookup_transparent_type (name);
ad766c0a 2493
c906108c 2494 if (newtype)
ad766c0a 2495 {
7ba81444
MS
2496 /* If the resolved type and the stub are in the same
2497 objfile, then replace the stub type with the real deal.
2498 But if they're in separate objfiles, leave the stub
2499 alone; we'll just look up the transparent type every time
2500 we call check_typedef. We can't create pointers between
2501 types allocated to different objfiles, since they may
2502 have different lifetimes. Trying to copy NEWTYPE over to
2503 TYPE's objfile is pointless, too, since you'll have to
2504 move over any other types NEWTYPE refers to, which could
2505 be an unbounded amount of stuff. */
ad766c0a 2506 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2507 type = make_qualified_type (newtype,
2508 TYPE_INSTANCE_FLAGS (type),
2509 type);
ad766c0a
JB
2510 else
2511 type = newtype;
2512 }
c906108c 2513 }
7ba81444
MS
2514 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2515 types. */
74a9bb82 2516 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2517 {
a737d952 2518 const char *name = TYPE_NAME (type);
e86ca25f
TT
2519 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2520 as appropriate? */
c906108c 2521 struct symbol *sym;
d8734c88 2522
c906108c
SS
2523 if (name == NULL)
2524 {
23136709 2525 stub_noname_complaint ();
92163a10 2526 return make_qualified_type (type, instance_flags, NULL);
c906108c 2527 }
d12307c1 2528 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2529 if (sym)
c26f2453
JB
2530 {
2531 /* Same as above for opaque types, we can replace the stub
92163a10 2532 with the complete type only if they are in the same
c26f2453
JB
2533 objfile. */
2534 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2535 type = make_qualified_type (SYMBOL_TYPE (sym),
2536 TYPE_INSTANCE_FLAGS (type),
2537 type);
c26f2453
JB
2538 else
2539 type = SYMBOL_TYPE (sym);
2540 }
c906108c
SS
2541 }
2542
74a9bb82 2543 if (TYPE_TARGET_STUB (type))
c906108c 2544 {
c906108c
SS
2545 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2546
74a9bb82 2547 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2548 {
73e2eb35 2549 /* Nothing we can do. */
c5aa993b 2550 }
c906108c
SS
2551 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2552 {
2553 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2554 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2555 }
2556 }
92163a10
JK
2557
2558 type = make_qualified_type (type, instance_flags, NULL);
2559
7ba81444 2560 /* Cache TYPE_LENGTH for future use. */
c906108c 2561 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2562
c906108c
SS
2563 return type;
2564}
2565
7ba81444 2566/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2567 occurs, silently return a void type. */
c91ecb25 2568
b9362cc7 2569static struct type *
48319d1f 2570safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2571{
2572 struct ui_file *saved_gdb_stderr;
34365054 2573 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2574
7ba81444 2575 /* Suppress error messages. */
c91ecb25 2576 saved_gdb_stderr = gdb_stderr;
d7e74731 2577 gdb_stderr = &null_stream;
c91ecb25 2578
7ba81444 2579 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2580 try
8e7b59a5
KS
2581 {
2582 type = parse_and_eval_type (p, length);
2583 }
230d2906 2584 catch (const gdb_exception_error &except)
492d29ea
PA
2585 {
2586 type = builtin_type (gdbarch)->builtin_void;
2587 }
c91ecb25 2588
7ba81444 2589 /* Stop suppressing error messages. */
c91ecb25
ND
2590 gdb_stderr = saved_gdb_stderr;
2591
2592 return type;
2593}
2594
c906108c
SS
2595/* Ugly hack to convert method stubs into method types.
2596
7ba81444
MS
2597 He ain't kiddin'. This demangles the name of the method into a
2598 string including argument types, parses out each argument type,
2599 generates a string casting a zero to that type, evaluates the
2600 string, and stuffs the resulting type into an argtype vector!!!
2601 Then it knows the type of the whole function (including argument
2602 types for overloading), which info used to be in the stab's but was
2603 removed to hack back the space required for them. */
c906108c 2604
de17c821 2605static void
fba45db2 2606check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2607{
50810684 2608 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2609 struct fn_field *f;
2610 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2611 char *demangled_name = gdb_demangle (mangled_name,
2612 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2613 char *argtypetext, *p;
2614 int depth = 0, argcount = 1;
ad2f7632 2615 struct field *argtypes;
c906108c
SS
2616 struct type *mtype;
2617
2618 /* Make sure we got back a function string that we can use. */
2619 if (demangled_name)
2620 p = strchr (demangled_name, '(');
502dcf4e
AC
2621 else
2622 p = NULL;
c906108c
SS
2623
2624 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2625 error (_("Internal: Cannot demangle mangled name `%s'."),
2626 mangled_name);
c906108c
SS
2627
2628 /* Now, read in the parameters that define this type. */
2629 p += 1;
2630 argtypetext = p;
2631 while (*p)
2632 {
070ad9f0 2633 if (*p == '(' || *p == '<')
c906108c
SS
2634 {
2635 depth += 1;
2636 }
070ad9f0 2637 else if (*p == ')' || *p == '>')
c906108c
SS
2638 {
2639 depth -= 1;
2640 }
2641 else if (*p == ',' && depth == 0)
2642 {
2643 argcount += 1;
2644 }
2645
2646 p += 1;
2647 }
2648
ad2f7632 2649 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2650 if (startswith (argtypetext, "(void)"))
ad2f7632 2651 argcount -= 1;
c906108c 2652
ad2f7632
DJ
2653 /* We need one extra slot, for the THIS pointer. */
2654
2655 argtypes = (struct field *)
2656 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2657 p = argtypetext;
4a1970e4
DJ
2658
2659 /* Add THIS pointer for non-static methods. */
2660 f = TYPE_FN_FIELDLIST1 (type, method_id);
2661 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2662 argcount = 0;
2663 else
2664 {
ad2f7632 2665 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2666 argcount = 1;
2667 }
c906108c 2668
0963b4bd 2669 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2670 {
2671 depth = 0;
2672 while (*p)
2673 {
2674 if (depth <= 0 && (*p == ',' || *p == ')'))
2675 {
ad2f7632
DJ
2676 /* Avoid parsing of ellipsis, they will be handled below.
2677 Also avoid ``void'' as above. */
2678 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2679 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2680 {
ad2f7632 2681 argtypes[argcount].type =
48319d1f 2682 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2683 argcount += 1;
2684 }
2685 argtypetext = p + 1;
2686 }
2687
070ad9f0 2688 if (*p == '(' || *p == '<')
c906108c
SS
2689 {
2690 depth += 1;
2691 }
070ad9f0 2692 else if (*p == ')' || *p == '>')
c906108c
SS
2693 {
2694 depth -= 1;
2695 }
2696
2697 p += 1;
2698 }
2699 }
2700
c906108c
SS
2701 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2702
2703 /* Now update the old "stub" type into a real type. */
2704 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
2705 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2706 We want a method (TYPE_CODE_METHOD). */
2707 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2708 argtypes, argcount, p[-2] == '.');
876cecd0 2709 TYPE_STUB (mtype) = 0;
c906108c 2710 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
2711
2712 xfree (demangled_name);
c906108c
SS
2713}
2714
7ba81444
MS
2715/* This is the external interface to check_stub_method, above. This
2716 function unstubs all of the signatures for TYPE's METHOD_ID method
2717 name. After calling this function TYPE_FN_FIELD_STUB will be
2718 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2719 correct.
de17c821
DJ
2720
2721 This function unfortunately can not die until stabs do. */
2722
2723void
2724check_stub_method_group (struct type *type, int method_id)
2725{
2726 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2727 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 2728
041be526
SM
2729 for (int j = 0; j < len; j++)
2730 {
2731 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 2732 check_stub_method (type, method_id, j);
de17c821
DJ
2733 }
2734}
2735
9655fd1a
JK
2736/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2737const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2738
2739void
fba45db2 2740allocate_cplus_struct_type (struct type *type)
c906108c 2741{
b4ba55a1
JB
2742 if (HAVE_CPLUS_STRUCT (type))
2743 /* Structure was already allocated. Nothing more to do. */
2744 return;
2745
2746 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2747 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2748 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2749 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 2750 set_type_vptr_fieldno (type, -1);
c906108c
SS
2751}
2752
b4ba55a1
JB
2753const struct gnat_aux_type gnat_aux_default =
2754 { NULL };
2755
2756/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2757 and allocate the associated gnat-specific data. The gnat-specific
2758 data is also initialized to gnat_aux_default. */
5212577a 2759
b4ba55a1
JB
2760void
2761allocate_gnat_aux_type (struct type *type)
2762{
2763 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2764 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2765 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2766 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2767}
2768
ae438bc5
UW
2769/* Helper function to initialize a newly allocated type. Set type code
2770 to CODE and initialize the type-specific fields accordingly. */
2771
2772static void
2773set_type_code (struct type *type, enum type_code code)
2774{
2775 TYPE_CODE (type) = code;
2776
2777 switch (code)
2778 {
2779 case TYPE_CODE_STRUCT:
2780 case TYPE_CODE_UNION:
2781 case TYPE_CODE_NAMESPACE:
2782 INIT_CPLUS_SPECIFIC (type);
2783 break;
2784 case TYPE_CODE_FLT:
2785 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2786 break;
2787 case TYPE_CODE_FUNC:
2788 INIT_FUNC_SPECIFIC (type);
2789 break;
2790 }
2791}
2792
19f392bc
UW
2793/* Helper function to verify floating-point format and size.
2794 BIT is the type size in bits; if BIT equals -1, the size is
2795 determined by the floatformat. Returns size to be used. */
2796
2797static int
0db7851f 2798verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 2799{
0db7851f 2800 gdb_assert (floatformat != NULL);
9b790ce7 2801
19f392bc 2802 if (bit == -1)
0db7851f 2803 bit = floatformat->totalsize;
19f392bc 2804
0db7851f
UW
2805 gdb_assert (bit >= 0);
2806 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
2807
2808 return bit;
2809}
2810
0db7851f
UW
2811/* Return the floating-point format for a floating-point variable of
2812 type TYPE. */
2813
2814const struct floatformat *
2815floatformat_from_type (const struct type *type)
2816{
2817 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2818 gdb_assert (TYPE_FLOATFORMAT (type));
2819 return TYPE_FLOATFORMAT (type);
2820}
2821
c906108c
SS
2822/* Helper function to initialize the standard scalar types.
2823
86f62fd7
TT
2824 If NAME is non-NULL, then it is used to initialize the type name.
2825 Note that NAME is not copied; it is required to have a lifetime at
2826 least as long as OBJFILE. */
c906108c
SS
2827
2828struct type *
77b7c781 2829init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 2830 const char *name)
c906108c 2831{
52f0bd74 2832 struct type *type;
c906108c
SS
2833
2834 type = alloc_type (objfile);
ae438bc5 2835 set_type_code (type, code);
77b7c781
UW
2836 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2837 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
86f62fd7 2838 TYPE_NAME (type) = name;
c906108c 2839
c16abbde 2840 return type;
c906108c 2841}
19f392bc 2842
46a4882b
PA
2843/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2844 to use with variables that have no debug info. NAME is the type
2845 name. */
2846
2847static struct type *
2848init_nodebug_var_type (struct objfile *objfile, const char *name)
2849{
2850 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2851}
2852
19f392bc
UW
2853/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2854 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2855 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2856
2857struct type *
2858init_integer_type (struct objfile *objfile,
2859 int bit, int unsigned_p, const char *name)
2860{
2861 struct type *t;
2862
77b7c781 2863 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
2864 if (unsigned_p)
2865 TYPE_UNSIGNED (t) = 1;
2866
2867 return t;
2868}
2869
2870/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2871 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2872 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2873
2874struct type *
2875init_character_type (struct objfile *objfile,
2876 int bit, int unsigned_p, const char *name)
2877{
2878 struct type *t;
2879
77b7c781 2880 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
2881 if (unsigned_p)
2882 TYPE_UNSIGNED (t) = 1;
2883
2884 return t;
2885}
2886
2887/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2888 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2889 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2890
2891struct type *
2892init_boolean_type (struct objfile *objfile,
2893 int bit, int unsigned_p, const char *name)
2894{
2895 struct type *t;
2896
77b7c781 2897 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
2898 if (unsigned_p)
2899 TYPE_UNSIGNED (t) = 1;
2900
2901 return t;
2902}
2903
2904/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2905 BIT is the type size in bits; if BIT equals -1, the size is
2906 determined by the floatformat. NAME is the type name. Set the
2907 TYPE_FLOATFORMAT from FLOATFORMATS. */
2908
2909struct type *
2910init_float_type (struct objfile *objfile,
2911 int bit, const char *name,
2912 const struct floatformat **floatformats)
2913{
0db7851f
UW
2914 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2915 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
19f392bc
UW
2916 struct type *t;
2917
0db7851f 2918 bit = verify_floatformat (bit, fmt);
77b7c781 2919 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 2920 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
2921
2922 return t;
2923}
2924
2925/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2926 BIT is the type size in bits. NAME is the type name. */
2927
2928struct type *
2929init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2930{
2931 struct type *t;
2932
77b7c781 2933 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
2934 return t;
2935}
2936
2937/* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2938 NAME is the type name. TARGET_TYPE is the component float type. */
2939
2940struct type *
2941init_complex_type (struct objfile *objfile,
2942 const char *name, struct type *target_type)
2943{
2944 struct type *t;
2945
2946 t = init_type (objfile, TYPE_CODE_COMPLEX,
77b7c781 2947 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
19f392bc
UW
2948 TYPE_TARGET_TYPE (t) = target_type;
2949 return t;
2950}
2951
2952/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2953 BIT is the pointer type size in bits. NAME is the type name.
2954 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2955 TYPE_UNSIGNED flag. */
2956
2957struct type *
2958init_pointer_type (struct objfile *objfile,
2959 int bit, const char *name, struct type *target_type)
2960{
2961 struct type *t;
2962
77b7c781 2963 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
2964 TYPE_TARGET_TYPE (t) = target_type;
2965 TYPE_UNSIGNED (t) = 1;
2966 return t;
2967}
2968
2b4424c3
TT
2969/* See gdbtypes.h. */
2970
2971unsigned
2972type_raw_align (struct type *type)
2973{
2974 if (type->align_log2 != 0)
2975 return 1 << (type->align_log2 - 1);
2976 return 0;
2977}
2978
2979/* See gdbtypes.h. */
2980
2981unsigned
2982type_align (struct type *type)
2983{
5561fc30 2984 /* Check alignment provided in the debug information. */
2b4424c3
TT
2985 unsigned raw_align = type_raw_align (type);
2986 if (raw_align != 0)
2987 return raw_align;
2988
5561fc30
AB
2989 /* Allow the architecture to provide an alignment. */
2990 struct gdbarch *arch = get_type_arch (type);
2991 ULONGEST align = gdbarch_type_align (arch, type);
2992 if (align != 0)
2993 return align;
2994
2b4424c3
TT
2995 switch (TYPE_CODE (type))
2996 {
2997 case TYPE_CODE_PTR:
2998 case TYPE_CODE_FUNC:
2999 case TYPE_CODE_FLAGS:
3000 case TYPE_CODE_INT:
75ba10dc 3001 case TYPE_CODE_RANGE:
2b4424c3
TT
3002 case TYPE_CODE_FLT:
3003 case TYPE_CODE_ENUM:
3004 case TYPE_CODE_REF:
3005 case TYPE_CODE_RVALUE_REF:
3006 case TYPE_CODE_CHAR:
3007 case TYPE_CODE_BOOL:
3008 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3009 case TYPE_CODE_METHODPTR:
3010 case TYPE_CODE_MEMBERPTR:
5561fc30 3011 align = type_length_units (check_typedef (type));
2b4424c3
TT
3012 break;
3013
3014 case TYPE_CODE_ARRAY:
3015 case TYPE_CODE_COMPLEX:
3016 case TYPE_CODE_TYPEDEF:
3017 align = type_align (TYPE_TARGET_TYPE (type));
3018 break;
3019
3020 case TYPE_CODE_STRUCT:
3021 case TYPE_CODE_UNION:
3022 {
41077b66 3023 int number_of_non_static_fields = 0;
2b4424c3
TT
3024 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3025 {
bf9a735e 3026 if (!field_is_static (&TYPE_FIELD (type, i)))
2b4424c3 3027 {
41077b66 3028 number_of_non_static_fields++;
bf9a735e
AB
3029 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3030 if (f_align == 0)
3031 {
3032 /* Don't pretend we know something we don't. */
3033 align = 0;
3034 break;
3035 }
3036 if (f_align > align)
3037 align = f_align;
2b4424c3 3038 }
2b4424c3 3039 }
41077b66
AB
3040 /* A struct with no fields, or with only static fields has an
3041 alignment of 1. */
3042 if (number_of_non_static_fields == 0)
3043 align = 1;
2b4424c3
TT
3044 }
3045 break;
3046
3047 case TYPE_CODE_SET:
2b4424c3
TT
3048 case TYPE_CODE_STRING:
3049 /* Not sure what to do here, and these can't appear in C or C++
3050 anyway. */
3051 break;
3052
2b4424c3
TT
3053 case TYPE_CODE_VOID:
3054 align = 1;
3055 break;
3056
3057 case TYPE_CODE_ERROR:
3058 case TYPE_CODE_METHOD:
3059 default:
3060 break;
3061 }
3062
3063 if ((align & (align - 1)) != 0)
3064 {
3065 /* Not a power of 2, so pass. */
3066 align = 0;
3067 }
3068
3069 return align;
3070}
3071
3072/* See gdbtypes.h. */
3073
3074bool
3075set_type_align (struct type *type, ULONGEST align)
3076{
3077 /* Must be a power of 2. Zero is ok. */
3078 gdb_assert ((align & (align - 1)) == 0);
3079
3080 unsigned result = 0;
3081 while (align != 0)
3082 {
3083 ++result;
3084 align >>= 1;
3085 }
3086
3087 if (result >= (1 << TYPE_ALIGN_BITS))
3088 return false;
3089
3090 type->align_log2 = result;
3091 return true;
3092}
3093
5212577a
DE
3094\f
3095/* Queries on types. */
c906108c 3096
c906108c 3097int
fba45db2 3098can_dereference (struct type *t)
c906108c 3099{
7ba81444
MS
3100 /* FIXME: Should we return true for references as well as
3101 pointers? */
f168693b 3102 t = check_typedef (t);
c906108c
SS
3103 return
3104 (t != NULL
3105 && TYPE_CODE (t) == TYPE_CODE_PTR
3106 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3107}
3108
adf40b2e 3109int
fba45db2 3110is_integral_type (struct type *t)
adf40b2e 3111{
f168693b 3112 t = check_typedef (t);
adf40b2e
JM
3113 return
3114 ((t != NULL)
d4f3574e
SS
3115 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3116 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 3117 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
3118 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3119 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3120 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
3121}
3122
70100014
UW
3123int
3124is_floating_type (struct type *t)
3125{
3126 t = check_typedef (t);
3127 return
3128 ((t != NULL)
3129 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3130 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3131}
3132
e09342b5
TJB
3133/* Return true if TYPE is scalar. */
3134
220475ed 3135int
e09342b5
TJB
3136is_scalar_type (struct type *type)
3137{
f168693b 3138 type = check_typedef (type);
e09342b5
TJB
3139
3140 switch (TYPE_CODE (type))
3141 {
3142 case TYPE_CODE_ARRAY:
3143 case TYPE_CODE_STRUCT:
3144 case TYPE_CODE_UNION:
3145 case TYPE_CODE_SET:
3146 case TYPE_CODE_STRING:
e09342b5
TJB
3147 return 0;
3148 default:
3149 return 1;
3150 }
3151}
3152
3153/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3154 the memory layout of a scalar type. E.g., an array or struct with only
3155 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3156
3157int
3158is_scalar_type_recursive (struct type *t)
3159{
f168693b 3160 t = check_typedef (t);
e09342b5
TJB
3161
3162 if (is_scalar_type (t))
3163 return 1;
3164 /* Are we dealing with an array or string of known dimensions? */
3165 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3166 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3167 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3168 {
3169 LONGEST low_bound, high_bound;
3170 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3171
3172 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3173
3174 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3175 }
3176 /* Are we dealing with a struct with one element? */
3177 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3178 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3179 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3180 {
3181 int i, n = TYPE_NFIELDS (t);
3182
3183 /* If all elements of the union are scalar, then the union is scalar. */
3184 for (i = 0; i < n; i++)
3185 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3186 return 0;
3187
3188 return 1;
3189 }
3190
3191 return 0;
3192}
3193
6c659fc2
SC
3194/* Return true is T is a class or a union. False otherwise. */
3195
3196int
3197class_or_union_p (const struct type *t)
3198{
3199 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3200 || TYPE_CODE (t) == TYPE_CODE_UNION);
3201}
3202
4e8f195d
TT
3203/* A helper function which returns true if types A and B represent the
3204 "same" class type. This is true if the types have the same main
3205 type, or the same name. */
3206
3207int
3208class_types_same_p (const struct type *a, const struct type *b)
3209{
3210 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3211 || (TYPE_NAME (a) && TYPE_NAME (b)
3212 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3213}
3214
a9d5ef47
SW
3215/* If BASE is an ancestor of DCLASS return the distance between them.
3216 otherwise return -1;
3217 eg:
3218
3219 class A {};
3220 class B: public A {};
3221 class C: public B {};
3222 class D: C {};
3223
3224 distance_to_ancestor (A, A, 0) = 0
3225 distance_to_ancestor (A, B, 0) = 1
3226 distance_to_ancestor (A, C, 0) = 2
3227 distance_to_ancestor (A, D, 0) = 3
3228
3229 If PUBLIC is 1 then only public ancestors are considered,
3230 and the function returns the distance only if BASE is a public ancestor
3231 of DCLASS.
3232 Eg:
3233
0963b4bd 3234 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3235
0526b37a 3236static int
fe978cb0 3237distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3238{
3239 int i;
a9d5ef47 3240 int d;
c5aa993b 3241
f168693b
SM
3242 base = check_typedef (base);
3243 dclass = check_typedef (dclass);
c906108c 3244
4e8f195d 3245 if (class_types_same_p (base, dclass))
a9d5ef47 3246 return 0;
c906108c
SS
3247
3248 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3249 {
fe978cb0 3250 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3251 continue;
3252
fe978cb0 3253 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3254 if (d >= 0)
3255 return 1 + d;
4e8f195d 3256 }
c906108c 3257
a9d5ef47 3258 return -1;
c906108c 3259}
4e8f195d 3260
0526b37a
SW
3261/* Check whether BASE is an ancestor or base class or DCLASS
3262 Return 1 if so, and 0 if not.
3263 Note: If BASE and DCLASS are of the same type, this function
3264 will return 1. So for some class A, is_ancestor (A, A) will
3265 return 1. */
3266
3267int
3268is_ancestor (struct type *base, struct type *dclass)
3269{
a9d5ef47 3270 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3271}
3272
4e8f195d
TT
3273/* Like is_ancestor, but only returns true when BASE is a public
3274 ancestor of DCLASS. */
3275
3276int
3277is_public_ancestor (struct type *base, struct type *dclass)
3278{
a9d5ef47 3279 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3280}
3281
3282/* A helper function for is_unique_ancestor. */
3283
3284static int
3285is_unique_ancestor_worker (struct type *base, struct type *dclass,
3286 int *offset,
8af8e3bc
PA
3287 const gdb_byte *valaddr, int embedded_offset,
3288 CORE_ADDR address, struct value *val)
4e8f195d
TT
3289{
3290 int i, count = 0;
3291
f168693b
SM
3292 base = check_typedef (base);
3293 dclass = check_typedef (dclass);
4e8f195d
TT
3294
3295 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3296 {
8af8e3bc
PA
3297 struct type *iter;
3298 int this_offset;
4e8f195d 3299
8af8e3bc
PA
3300 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3301
3302 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3303 address, val);
4e8f195d
TT
3304
3305 if (class_types_same_p (base, iter))
3306 {
3307 /* If this is the first subclass, set *OFFSET and set count
3308 to 1. Otherwise, if this is at the same offset as
3309 previous instances, do nothing. Otherwise, increment
3310 count. */
3311 if (*offset == -1)
3312 {
3313 *offset = this_offset;
3314 count = 1;
3315 }
3316 else if (this_offset == *offset)
3317 {
3318 /* Nothing. */
3319 }
3320 else
3321 ++count;
3322 }
3323 else
3324 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3325 valaddr,
3326 embedded_offset + this_offset,
3327 address, val);
4e8f195d
TT
3328 }
3329
3330 return count;
3331}
3332
3333/* Like is_ancestor, but only returns true if BASE is a unique base
3334 class of the type of VAL. */
3335
3336int
3337is_unique_ancestor (struct type *base, struct value *val)
3338{
3339 int offset = -1;
3340
3341 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3342 value_contents_for_printing (val),
3343 value_embedded_offset (val),
3344 value_address (val), val) == 1;
4e8f195d
TT
3345}
3346
c906108c 3347\f
5212577a 3348/* Overload resolution. */
c906108c 3349
6403aeea
SW
3350/* Return the sum of the rank of A with the rank of B. */
3351
3352struct rank
3353sum_ranks (struct rank a, struct rank b)
3354{
3355 struct rank c;
3356 c.rank = a.rank + b.rank;
a9d5ef47 3357 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3358 return c;
3359}
3360
3361/* Compare rank A and B and return:
3362 0 if a = b
3363 1 if a is better than b
3364 -1 if b is better than a. */
3365
3366int
3367compare_ranks (struct rank a, struct rank b)
3368{
3369 if (a.rank == b.rank)
a9d5ef47
SW
3370 {
3371 if (a.subrank == b.subrank)
3372 return 0;
3373 if (a.subrank < b.subrank)
3374 return 1;
3375 if (a.subrank > b.subrank)
3376 return -1;
3377 }
6403aeea
SW
3378
3379 if (a.rank < b.rank)
3380 return 1;
3381
0963b4bd 3382 /* a.rank > b.rank */
6403aeea
SW
3383 return -1;
3384}
c5aa993b 3385
0963b4bd 3386/* Functions for overload resolution begin here. */
c906108c
SS
3387
3388/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3389 0 => A and B are identical
3390 1 => A and B are incomparable
3391 2 => A is better than B
3392 3 => A is worse than B */
c906108c
SS
3393
3394int
82ceee50 3395compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3396{
3397 int i;
3398 int tmp;
c5aa993b
JM
3399 short found_pos = 0; /* any positives in c? */
3400 short found_neg = 0; /* any negatives in c? */
3401
82ceee50
PA
3402 /* differing sizes => incomparable */
3403 if (a.size () != b.size ())
c906108c
SS
3404 return 1;
3405
c5aa993b 3406 /* Subtract b from a */
82ceee50 3407 for (i = 0; i < a.size (); i++)
c906108c 3408 {
82ceee50 3409 tmp = compare_ranks (b[i], a[i]);
c906108c 3410 if (tmp > 0)
c5aa993b 3411 found_pos = 1;
c906108c 3412 else if (tmp < 0)
c5aa993b 3413 found_neg = 1;
c906108c
SS
3414 }
3415
3416 if (found_pos)
3417 {
3418 if (found_neg)
c5aa993b 3419 return 1; /* incomparable */
c906108c 3420 else
c5aa993b 3421 return 3; /* A > B */
c906108c 3422 }
c5aa993b
JM
3423 else
3424 /* no positives */
c906108c
SS
3425 {
3426 if (found_neg)
c5aa993b 3427 return 2; /* A < B */
c906108c 3428 else
c5aa993b 3429 return 0; /* A == B */
c906108c
SS
3430 }
3431}
3432
6b1747cd 3433/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3434 types of an argument list (ARGS). Return the badness vector. This
3435 has ARGS.size() + 1 entries. */
c906108c 3436
82ceee50 3437badness_vector
6b1747cd
PA
3438rank_function (gdb::array_view<type *> parms,
3439 gdb::array_view<value *> args)
c906108c 3440{
82ceee50
PA
3441 /* add 1 for the length-match rank. */
3442 badness_vector bv;
3443 bv.reserve (1 + args.size ());
c906108c
SS
3444
3445 /* First compare the lengths of the supplied lists.
7ba81444 3446 If there is a mismatch, set it to a high value. */
c5aa993b 3447
c906108c 3448 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3449 arguments and ellipsis parameter lists, we should consider those
3450 and rank the length-match more finely. */
c906108c 3451
82ceee50
PA
3452 bv.push_back ((args.size () != parms.size ())
3453 ? LENGTH_MISMATCH_BADNESS
3454 : EXACT_MATCH_BADNESS);
c906108c 3455
0963b4bd 3456 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3457 size_t min_len = std::min (parms.size (), args.size ());
3458
3459 for (size_t i = 0; i < min_len; i++)
3460 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3461 args[i]));
c906108c 3462
0963b4bd 3463 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3464 for (size_t i = min_len; i < args.size (); i++)
3465 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3466
3467 return bv;
3468}
3469
973ccf8b
DJ
3470/* Compare the names of two integer types, assuming that any sign
3471 qualifiers have been checked already. We do it this way because
3472 there may be an "int" in the name of one of the types. */
3473
3474static int
3475integer_types_same_name_p (const char *first, const char *second)
3476{
3477 int first_p, second_p;
3478
7ba81444
MS
3479 /* If both are shorts, return 1; if neither is a short, keep
3480 checking. */
973ccf8b
DJ
3481 first_p = (strstr (first, "short") != NULL);
3482 second_p = (strstr (second, "short") != NULL);
3483 if (first_p && second_p)
3484 return 1;
3485 if (first_p || second_p)
3486 return 0;
3487
3488 /* Likewise for long. */
3489 first_p = (strstr (first, "long") != NULL);
3490 second_p = (strstr (second, "long") != NULL);
3491 if (first_p && second_p)
3492 return 1;
3493 if (first_p || second_p)
3494 return 0;
3495
3496 /* Likewise for char. */
3497 first_p = (strstr (first, "char") != NULL);
3498 second_p = (strstr (second, "char") != NULL);
3499 if (first_p && second_p)
3500 return 1;
3501 if (first_p || second_p)
3502 return 0;
3503
3504 /* They must both be ints. */
3505 return 1;
3506}
3507
894882e3
TT
3508/* Compares type A to type B. Returns true if they represent the same
3509 type, false otherwise. */
7062b0a0 3510
894882e3 3511bool
7062b0a0
SW
3512types_equal (struct type *a, struct type *b)
3513{
3514 /* Identical type pointers. */
3515 /* However, this still doesn't catch all cases of same type for b
3516 and a. The reason is that builtin types are different from
3517 the same ones constructed from the object. */
3518 if (a == b)
894882e3 3519 return true;
7062b0a0
SW
3520
3521 /* Resolve typedefs */
3522 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3523 a = check_typedef (a);
3524 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3525 b = check_typedef (b);
3526
3527 /* If after resolving typedefs a and b are not of the same type
3528 code then they are not equal. */
3529 if (TYPE_CODE (a) != TYPE_CODE (b))
894882e3 3530 return false;
7062b0a0
SW
3531
3532 /* If a and b are both pointers types or both reference types then
3533 they are equal of the same type iff the objects they refer to are
3534 of the same type. */
3535 if (TYPE_CODE (a) == TYPE_CODE_PTR
3536 || TYPE_CODE (a) == TYPE_CODE_REF)
3537 return types_equal (TYPE_TARGET_TYPE (a),
3538 TYPE_TARGET_TYPE (b));
3539
0963b4bd 3540 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3541 are exactly the same. This happens when we generate method
3542 stubs. The types won't point to the same address, but they
0963b4bd 3543 really are the same. */
7062b0a0
SW
3544
3545 if (TYPE_NAME (a) && TYPE_NAME (b)
3546 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
894882e3 3547 return true;
7062b0a0
SW
3548
3549 /* Check if identical after resolving typedefs. */
3550 if (a == b)
894882e3 3551 return true;
7062b0a0 3552
9ce98649
TT
3553 /* Two function types are equal if their argument and return types
3554 are equal. */
3555 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3556 {
3557 int i;
3558
3559 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
894882e3 3560 return false;
9ce98649
TT
3561
3562 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3563 return false;
9ce98649
TT
3564
3565 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3566 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
894882e3 3567 return false;
9ce98649 3568
894882e3 3569 return true;
9ce98649
TT
3570 }
3571
894882e3 3572 return false;
7062b0a0 3573}
ca092b61
DE
3574\f
3575/* Deep comparison of types. */
3576
3577/* An entry in the type-equality bcache. */
3578
894882e3 3579struct type_equality_entry
ca092b61 3580{
894882e3
TT
3581 type_equality_entry (struct type *t1, struct type *t2)
3582 : type1 (t1),
3583 type2 (t2)
3584 {
3585 }
ca092b61 3586
894882e3
TT
3587 struct type *type1, *type2;
3588};
ca092b61 3589
894882e3
TT
3590/* A helper function to compare two strings. Returns true if they are
3591 the same, false otherwise. Handles NULLs properly. */
ca092b61 3592
894882e3 3593static bool
ca092b61
DE
3594compare_maybe_null_strings (const char *s, const char *t)
3595{
894882e3
TT
3596 if (s == NULL || t == NULL)
3597 return s == t;
ca092b61
DE
3598 return strcmp (s, t) == 0;
3599}
3600
3601/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3602 "deep" equality. Returns true if the types are considered the
3603 same, false otherwise. */
ca092b61 3604
894882e3 3605static bool
ca092b61 3606check_types_equal (struct type *type1, struct type *type2,
894882e3 3607 std::vector<type_equality_entry> *worklist)
ca092b61 3608{
f168693b
SM
3609 type1 = check_typedef (type1);
3610 type2 = check_typedef (type2);
ca092b61
DE
3611
3612 if (type1 == type2)
894882e3 3613 return true;
ca092b61
DE
3614
3615 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3616 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3617 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3618 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3619 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3620 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3621 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3622 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3623 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
894882e3 3624 return false;
ca092b61 3625
e86ca25f 3626 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3627 return false;
ca092b61 3628 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
894882e3 3629 return false;
ca092b61
DE
3630
3631 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3632 {
0f59d5fc 3633 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
894882e3 3634 return false;
ca092b61
DE
3635 }
3636 else
3637 {
3638 int i;
3639
3640 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3641 {
3642 const struct field *field1 = &TYPE_FIELD (type1, i);
3643 const struct field *field2 = &TYPE_FIELD (type2, i);
ca092b61
DE
3644
3645 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3646 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3647 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 3648 return false;
ca092b61
DE
3649 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3650 FIELD_NAME (*field2)))
894882e3 3651 return false;
ca092b61
DE
3652 switch (FIELD_LOC_KIND (*field1))
3653 {
3654 case FIELD_LOC_KIND_BITPOS:
3655 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 3656 return false;
ca092b61
DE
3657 break;
3658 case FIELD_LOC_KIND_ENUMVAL:
3659 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 3660 return false;
ca092b61
DE
3661 break;
3662 case FIELD_LOC_KIND_PHYSADDR:
3663 if (FIELD_STATIC_PHYSADDR (*field1)
3664 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 3665 return false;
ca092b61
DE
3666 break;
3667 case FIELD_LOC_KIND_PHYSNAME:
3668 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3669 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 3670 return false;
ca092b61
DE
3671 break;
3672 case FIELD_LOC_KIND_DWARF_BLOCK:
3673 {
3674 struct dwarf2_locexpr_baton *block1, *block2;
3675
3676 block1 = FIELD_DWARF_BLOCK (*field1);
3677 block2 = FIELD_DWARF_BLOCK (*field2);
3678 if (block1->per_cu != block2->per_cu
3679 || block1->size != block2->size
3680 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 3681 return false;
ca092b61
DE
3682 }
3683 break;
3684 default:
3685 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3686 "%d by check_types_equal"),
3687 FIELD_LOC_KIND (*field1));
3688 }
3689
894882e3 3690 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
ca092b61
DE
3691 }
3692 }
3693
3694 if (TYPE_TARGET_TYPE (type1) != NULL)
3695 {
ca092b61 3696 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 3697 return false;
ca092b61 3698
894882e3
TT
3699 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3700 TYPE_TARGET_TYPE (type2));
ca092b61
DE
3701 }
3702 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 3703 return false;
ca092b61 3704
894882e3 3705 return true;
ca092b61
DE
3706}
3707
894882e3
TT
3708/* Check types on a worklist for equality. Returns false if any pair
3709 is not equal, true if they are all considered equal. */
ca092b61 3710
894882e3
TT
3711static bool
3712check_types_worklist (std::vector<type_equality_entry> *worklist,
ca092b61
DE
3713 struct bcache *cache)
3714{
894882e3 3715 while (!worklist->empty ())
ca092b61 3716 {
ca092b61
DE
3717 int added;
3718
894882e3
TT
3719 struct type_equality_entry entry = std::move (worklist->back ());
3720 worklist->pop_back ();
ca092b61
DE
3721
3722 /* If the type pair has already been visited, we know it is
3723 ok. */
25629dfd 3724 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
3725 if (!added)
3726 continue;
3727
894882e3
TT
3728 if (!check_types_equal (entry.type1, entry.type2, worklist))
3729 return false;
ca092b61 3730 }
7062b0a0 3731
894882e3 3732 return true;
ca092b61
DE
3733}
3734
894882e3
TT
3735/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3736 "deep comparison". Otherwise return false. */
ca092b61 3737
894882e3 3738bool
ca092b61
DE
3739types_deeply_equal (struct type *type1, struct type *type2)
3740{
894882e3 3741 std::vector<type_equality_entry> worklist;
ca092b61
DE
3742
3743 gdb_assert (type1 != NULL && type2 != NULL);
3744
3745 /* Early exit for the simple case. */
3746 if (type1 == type2)
894882e3 3747 return true;
ca092b61 3748
25629dfd 3749 struct bcache cache (nullptr, nullptr);
894882e3 3750 worklist.emplace_back (type1, type2);
25629dfd 3751 return check_types_worklist (&worklist, &cache);
ca092b61 3752}
3f2f83dd
KB
3753
3754/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3755 Otherwise return one. */
3756
3757int
3758type_not_allocated (const struct type *type)
3759{
3760 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3761
3762 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3763 && !TYPE_DYN_PROP_ADDR (prop));
3764}
3765
3766/* Associated status of type TYPE. Return zero if type TYPE is associated.
3767 Otherwise return one. */
3768
3769int
3770type_not_associated (const struct type *type)
3771{
3772 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3773
3774 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3775 && !TYPE_DYN_PROP_ADDR (prop));
3776}
9293fc63
SM
3777
3778/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3779
3780static struct rank
3781rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3782{
3783 struct rank rank = {0,0};
3784
3785 switch (TYPE_CODE (arg))
3786 {
3787 case TYPE_CODE_PTR:
3788
3789 /* Allowed pointer conversions are:
3790 (a) pointer to void-pointer conversion. */
3791 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3792 return VOID_PTR_CONVERSION_BADNESS;
3793
3794 /* (b) pointer to ancestor-pointer conversion. */
3795 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3796 TYPE_TARGET_TYPE (arg),
3797 0);
3798 if (rank.subrank >= 0)
3799 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3800
3801 return INCOMPATIBLE_TYPE_BADNESS;
3802 case TYPE_CODE_ARRAY:
3803 {
3804 struct type *t1 = TYPE_TARGET_TYPE (parm);
3805 struct type *t2 = TYPE_TARGET_TYPE (arg);
3806
3807 if (types_equal (t1, t2))
3808 {
3809 /* Make sure they are CV equal. */
3810 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3811 rank.subrank |= CV_CONVERSION_CONST;
3812 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3813 rank.subrank |= CV_CONVERSION_VOLATILE;
3814 if (rank.subrank != 0)
3815 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3816 return EXACT_MATCH_BADNESS;
3817 }
3818 return INCOMPATIBLE_TYPE_BADNESS;
3819 }
3820 case TYPE_CODE_FUNC:
3821 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3822 case TYPE_CODE_INT:
3823 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3824 {
3825 if (value_as_long (value) == 0)
3826 {
3827 /* Null pointer conversion: allow it to be cast to a pointer.
3828 [4.10.1 of C++ standard draft n3290] */
3829 return NULL_POINTER_CONVERSION_BADNESS;
3830 }
3831 else
3832 {
3833 /* If type checking is disabled, allow the conversion. */
3834 if (!strict_type_checking)
3835 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3836 }
3837 }
3838 /* fall through */
3839 case TYPE_CODE_ENUM:
3840 case TYPE_CODE_FLAGS:
3841 case TYPE_CODE_CHAR:
3842 case TYPE_CODE_RANGE:
3843 case TYPE_CODE_BOOL:
3844 default:
3845 return INCOMPATIBLE_TYPE_BADNESS;
3846 }
3847}
3848
b9f4512f
SM
3849/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3850
3851static struct rank
3852rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3853{
3854 switch (TYPE_CODE (arg))
3855 {
3856 case TYPE_CODE_PTR:
3857 case TYPE_CODE_ARRAY:
3858 return rank_one_type (TYPE_TARGET_TYPE (parm),
3859 TYPE_TARGET_TYPE (arg), NULL);
3860 default:
3861 return INCOMPATIBLE_TYPE_BADNESS;
3862 }
3863}
3864
f1f832d6
SM
3865/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3866
3867static struct rank
3868rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3869{
3870 switch (TYPE_CODE (arg))
3871 {
3872 case TYPE_CODE_PTR: /* funcptr -> func */
3873 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3874 default:
3875 return INCOMPATIBLE_TYPE_BADNESS;
3876 }
3877}
3878
34910087
SM
3879/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3880
3881static struct rank
3882rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3883{
3884 switch (TYPE_CODE (arg))
3885 {
3886 case TYPE_CODE_INT:
3887 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3888 {
3889 /* Deal with signed, unsigned, and plain chars and
3890 signed and unsigned ints. */
3891 if (TYPE_NOSIGN (parm))
3892 {
3893 /* This case only for character types. */
3894 if (TYPE_NOSIGN (arg))
3895 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3896 else /* signed/unsigned char -> plain char */
3897 return INTEGER_CONVERSION_BADNESS;
3898 }
3899 else if (TYPE_UNSIGNED (parm))
3900 {
3901 if (TYPE_UNSIGNED (arg))
3902 {
3903 /* unsigned int -> unsigned int, or
3904 unsigned long -> unsigned long */
3905 if (integer_types_same_name_p (TYPE_NAME (parm),
3906 TYPE_NAME (arg)))
3907 return EXACT_MATCH_BADNESS;
3908 else if (integer_types_same_name_p (TYPE_NAME (arg),
3909 "int")
3910 && integer_types_same_name_p (TYPE_NAME (parm),
3911 "long"))
3912 /* unsigned int -> unsigned long */
3913 return INTEGER_PROMOTION_BADNESS;
3914 else
3915 /* unsigned long -> unsigned int */
3916 return INTEGER_CONVERSION_BADNESS;
3917 }
3918 else
3919 {
3920 if (integer_types_same_name_p (TYPE_NAME (arg),
3921 "long")
3922 && integer_types_same_name_p (TYPE_NAME (parm),
3923 "int"))
3924 /* signed long -> unsigned int */
3925 return INTEGER_CONVERSION_BADNESS;
3926 else
3927 /* signed int/long -> unsigned int/long */
3928 return INTEGER_CONVERSION_BADNESS;
3929 }
3930 }
3931 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3932 {
3933 if (integer_types_same_name_p (TYPE_NAME (parm),
3934 TYPE_NAME (arg)))
3935 return EXACT_MATCH_BADNESS;
3936 else if (integer_types_same_name_p (TYPE_NAME (arg),
3937 "int")
3938 && integer_types_same_name_p (TYPE_NAME (parm),
3939 "long"))
3940 return INTEGER_PROMOTION_BADNESS;
3941 else
3942 return INTEGER_CONVERSION_BADNESS;
3943 }
3944 else
3945 return INTEGER_CONVERSION_BADNESS;
3946 }
3947 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3948 return INTEGER_PROMOTION_BADNESS;
3949 else
3950 return INTEGER_CONVERSION_BADNESS;
3951 case TYPE_CODE_ENUM:
3952 case TYPE_CODE_FLAGS:
3953 case TYPE_CODE_CHAR:
3954 case TYPE_CODE_RANGE:
3955 case TYPE_CODE_BOOL:
3956 if (TYPE_DECLARED_CLASS (arg))
3957 return INCOMPATIBLE_TYPE_BADNESS;
3958 return INTEGER_PROMOTION_BADNESS;
3959 case TYPE_CODE_FLT:
3960 return INT_FLOAT_CONVERSION_BADNESS;
3961 case TYPE_CODE_PTR:
3962 return NS_POINTER_CONVERSION_BADNESS;
3963 default:
3964 return INCOMPATIBLE_TYPE_BADNESS;
3965 }
3966}
3967
793cd1d2
SM
3968/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3969
3970static struct rank
3971rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3972{
3973 switch (TYPE_CODE (arg))
3974 {
3975 case TYPE_CODE_INT:
3976 case TYPE_CODE_CHAR:
3977 case TYPE_CODE_RANGE:
3978 case TYPE_CODE_BOOL:
3979 case TYPE_CODE_ENUM:
3980 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3981 return INCOMPATIBLE_TYPE_BADNESS;
3982 return INTEGER_CONVERSION_BADNESS;
3983 case TYPE_CODE_FLT:
3984 return INT_FLOAT_CONVERSION_BADNESS;
3985 default:
3986 return INCOMPATIBLE_TYPE_BADNESS;
3987 }
3988}
3989
41ea4728
SM
3990/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3991
3992static struct rank
3993rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3994{
3995 switch (TYPE_CODE (arg))
3996 {
3997 case TYPE_CODE_RANGE:
3998 case TYPE_CODE_BOOL:
3999 case TYPE_CODE_ENUM:
4000 if (TYPE_DECLARED_CLASS (arg))
4001 return INCOMPATIBLE_TYPE_BADNESS;
4002 return INTEGER_CONVERSION_BADNESS;
4003 case TYPE_CODE_FLT:
4004 return INT_FLOAT_CONVERSION_BADNESS;
4005 case TYPE_CODE_INT:
4006 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4007 return INTEGER_CONVERSION_BADNESS;
4008 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4009 return INTEGER_PROMOTION_BADNESS;
4010 /* fall through */
4011 case TYPE_CODE_CHAR:
4012 /* Deal with signed, unsigned, and plain chars for C++ and
4013 with int cases falling through from previous case. */
4014 if (TYPE_NOSIGN (parm))
4015 {
4016 if (TYPE_NOSIGN (arg))
4017 return EXACT_MATCH_BADNESS;
4018 else
4019 return INTEGER_CONVERSION_BADNESS;
4020 }
4021 else if (TYPE_UNSIGNED (parm))
4022 {
4023 if (TYPE_UNSIGNED (arg))
4024 return EXACT_MATCH_BADNESS;
4025 else
4026 return INTEGER_PROMOTION_BADNESS;
4027 }
4028 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4029 return EXACT_MATCH_BADNESS;
4030 else
4031 return INTEGER_CONVERSION_BADNESS;
4032 default:
4033 return INCOMPATIBLE_TYPE_BADNESS;
4034 }
4035}
4036
0dd322dc
SM
4037/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4038
4039static struct rank
4040rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4041{
4042 switch (TYPE_CODE (arg))
4043 {
4044 case TYPE_CODE_INT:
4045 case TYPE_CODE_CHAR:
4046 case TYPE_CODE_RANGE:
4047 case TYPE_CODE_BOOL:
4048 case TYPE_CODE_ENUM:
4049 return INTEGER_CONVERSION_BADNESS;
4050 case TYPE_CODE_FLT:
4051 return INT_FLOAT_CONVERSION_BADNESS;
4052 default:
4053 return INCOMPATIBLE_TYPE_BADNESS;
4054 }
4055}
4056
2c509035
SM
4057/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4058
4059static struct rank
4060rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4061{
4062 switch (TYPE_CODE (arg))
4063 {
4064 /* n3290 draft, section 4.12.1 (conv.bool):
4065
4066 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4067 pointer to member type can be converted to a prvalue of type
4068 bool. A zero value, null pointer value, or null member pointer
4069 value is converted to false; any other value is converted to
4070 true. A prvalue of type std::nullptr_t can be converted to a
4071 prvalue of type bool; the resulting value is false." */
4072 case TYPE_CODE_INT:
4073 case TYPE_CODE_CHAR:
4074 case TYPE_CODE_ENUM:
4075 case TYPE_CODE_FLT:
4076 case TYPE_CODE_MEMBERPTR:
4077 case TYPE_CODE_PTR:
4078 return BOOL_CONVERSION_BADNESS;
4079 case TYPE_CODE_RANGE:
4080 return INCOMPATIBLE_TYPE_BADNESS;
4081 case TYPE_CODE_BOOL:
4082 return EXACT_MATCH_BADNESS;
4083 default:
4084 return INCOMPATIBLE_TYPE_BADNESS;
4085 }
4086}
4087
7f17b20d
SM
4088/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4089
4090static struct rank
4091rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4092{
4093 switch (TYPE_CODE (arg))
4094 {
4095 case TYPE_CODE_FLT:
4096 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4097 return FLOAT_PROMOTION_BADNESS;
4098 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4099 return EXACT_MATCH_BADNESS;
4100 else
4101 return FLOAT_CONVERSION_BADNESS;
4102 case TYPE_CODE_INT:
4103 case TYPE_CODE_BOOL:
4104 case TYPE_CODE_ENUM:
4105 case TYPE_CODE_RANGE:
4106 case TYPE_CODE_CHAR:
4107 return INT_FLOAT_CONVERSION_BADNESS;
4108 default:
4109 return INCOMPATIBLE_TYPE_BADNESS;
4110 }
4111}
4112
2598a94b
SM
4113/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4114
4115static struct rank
4116rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4117{
4118 switch (TYPE_CODE (arg))
4119 { /* Strictly not needed for C++, but... */
4120 case TYPE_CODE_FLT:
4121 return FLOAT_PROMOTION_BADNESS;
4122 case TYPE_CODE_COMPLEX:
4123 return EXACT_MATCH_BADNESS;
4124 default:
4125 return INCOMPATIBLE_TYPE_BADNESS;
4126 }
4127}
4128
595f96a9
SM
4129/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4130
4131static struct rank
4132rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4133{
4134 struct rank rank = {0, 0};
4135
4136 switch (TYPE_CODE (arg))
4137 {
4138 case TYPE_CODE_STRUCT:
4139 /* Check for derivation */
4140 rank.subrank = distance_to_ancestor (parm, arg, 0);
4141 if (rank.subrank >= 0)
4142 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4143 /* fall through */
4144 default:
4145 return INCOMPATIBLE_TYPE_BADNESS;
4146 }
4147}
4148
f09ce22d
SM
4149/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4150
4151static struct rank
4152rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4153{
4154 switch (TYPE_CODE (arg))
4155 {
4156 /* Not in C++ */
4157 case TYPE_CODE_SET:
4158 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4159 TYPE_FIELD_TYPE (arg, 0), NULL);
4160 default:
4161 return INCOMPATIBLE_TYPE_BADNESS;
4162 }
4163}
4164
c906108c
SS
4165/* Compare one type (PARM) for compatibility with another (ARG).
4166 * PARM is intended to be the parameter type of a function; and
4167 * ARG is the supplied argument's type. This function tests if
4168 * the latter can be converted to the former.
da096638 4169 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4170 *
4171 * Return 0 if they are identical types;
4172 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4173 * PARM is to ARG. The higher the return value, the worse the match.
4174 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4175
6403aeea 4176struct rank
da096638 4177rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4178{
a9d5ef47 4179 struct rank rank = {0,0};
7062b0a0 4180
c906108c
SS
4181 /* Resolve typedefs */
4182 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4183 parm = check_typedef (parm);
4184 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4185 arg = check_typedef (arg);
4186
e15c3eb4 4187 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4188 {
e15c3eb4
KS
4189 if (VALUE_LVAL (value) == not_lval)
4190 {
4191 /* Rvalues should preferably bind to rvalue references or const
4192 lvalue references. */
4193 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4194 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4195 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4196 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4197 else
4198 return INCOMPATIBLE_TYPE_BADNESS;
4199 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4200 }
4201 else
4202 {
4203 /* Lvalues should prefer lvalue overloads. */
4204 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4205 {
4206 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4207 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4208 }
4209 }
15c0a2a9
AV
4210 }
4211
4212 if (types_equal (parm, arg))
15c0a2a9 4213 {
e15c3eb4
KS
4214 struct type *t1 = parm;
4215 struct type *t2 = arg;
15c0a2a9 4216
e15c3eb4
KS
4217 /* For pointers and references, compare target type. */
4218 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4219 {
4220 t1 = TYPE_TARGET_TYPE (parm);
4221 t2 = TYPE_TARGET_TYPE (arg);
4222 }
15c0a2a9 4223
e15c3eb4
KS
4224 /* Make sure they are CV equal, too. */
4225 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4226 rank.subrank |= CV_CONVERSION_CONST;
4227 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4228 rank.subrank |= CV_CONVERSION_VOLATILE;
4229 if (rank.subrank != 0)
4230 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4231 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4232 }
4233
db577aea 4234 /* See through references, since we can almost make non-references
7ba81444 4235 references. */
aa006118
AV
4236
4237 if (TYPE_IS_REFERENCE (arg))
da096638 4238 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 4239 REFERENCE_CONVERSION_BADNESS));
aa006118 4240 if (TYPE_IS_REFERENCE (parm))
da096638 4241 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 4242 REFERENCE_CONVERSION_BADNESS));
5d161b24 4243 if (overload_debug)
7ba81444
MS
4244 /* Debugging only. */
4245 fprintf_filtered (gdb_stderr,
4246 "------ Arg is %s [%d], parm is %s [%d]\n",
4247 TYPE_NAME (arg), TYPE_CODE (arg),
4248 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 4249
0963b4bd 4250 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
4251
4252 switch (TYPE_CODE (parm))
4253 {
c5aa993b 4254 case TYPE_CODE_PTR:
9293fc63 4255 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4256 case TYPE_CODE_ARRAY:
b9f4512f 4257 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4258 case TYPE_CODE_FUNC:
f1f832d6 4259 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4260 case TYPE_CODE_INT:
34910087 4261 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4262 case TYPE_CODE_ENUM:
793cd1d2 4263 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4264 case TYPE_CODE_CHAR:
41ea4728 4265 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4266 case TYPE_CODE_RANGE:
0dd322dc 4267 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4268 case TYPE_CODE_BOOL:
2c509035 4269 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4270 case TYPE_CODE_FLT:
7f17b20d 4271 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4272 case TYPE_CODE_COMPLEX:
2598a94b 4273 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4274 case TYPE_CODE_STRUCT:
595f96a9 4275 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4276 case TYPE_CODE_SET:
f09ce22d 4277 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4278 default:
4279 return INCOMPATIBLE_TYPE_BADNESS;
4280 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
4281}
4282
0963b4bd 4283/* End of functions for overload resolution. */
5212577a
DE
4284\f
4285/* Routines to pretty-print types. */
c906108c 4286
c906108c 4287static void
fba45db2 4288print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4289{
4290 int bitno;
4291
4292 for (bitno = 0; bitno < nbits; bitno++)
4293 {
4294 if ((bitno % 8) == 0)
4295 {
4296 puts_filtered (" ");
4297 }
4298 if (B_TST (bits, bitno))
a3f17187 4299 printf_filtered (("1"));
c906108c 4300 else
a3f17187 4301 printf_filtered (("0"));
c906108c
SS
4302 }
4303}
4304
ad2f7632 4305/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4306 include it since we may get into a infinitely recursive
4307 situation. */
c906108c
SS
4308
4309static void
4c9e8482 4310print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4311{
4312 if (args != NULL)
4313 {
ad2f7632
DJ
4314 int i;
4315
4316 for (i = 0; i < nargs; i++)
4c9e8482
DE
4317 {
4318 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4319 args[i].name != NULL ? args[i].name : "<NULL>");
4320 recursive_dump_type (args[i].type, spaces + 2);
4321 }
c906108c
SS
4322 }
4323}
4324
d6a843b5
JK
4325int
4326field_is_static (struct field *f)
4327{
4328 /* "static" fields are the fields whose location is not relative
4329 to the address of the enclosing struct. It would be nice to
4330 have a dedicated flag that would be set for static fields when
4331 the type is being created. But in practice, checking the field
254e6b9e 4332 loc_kind should give us an accurate answer. */
d6a843b5
JK
4333 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4334 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4335}
4336
c906108c 4337static void
fba45db2 4338dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4339{
4340 int method_idx;
4341 int overload_idx;
4342 struct fn_field *f;
4343
4344 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4345 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4346 printf_filtered ("\n");
4347 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4348 {
4349 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4350 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4351 method_idx,
4352 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4353 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4354 gdb_stdout);
a3f17187 4355 printf_filtered (_(") length %d\n"),
c906108c
SS
4356 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4357 for (overload_idx = 0;
4358 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4359 overload_idx++)
4360 {
4361 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4362 overload_idx,
4363 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4364 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4365 gdb_stdout);
c906108c
SS
4366 printf_filtered (")\n");
4367 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4368 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4369 gdb_stdout);
c906108c
SS
4370 printf_filtered ("\n");
4371
4372 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4373 spaces + 8 + 2);
4374
4375 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4376 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4377 gdb_stdout);
c906108c 4378 printf_filtered ("\n");
4c9e8482
DE
4379 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4380 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4381 spaces + 8 + 2);
c906108c 4382 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4383 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4384 gdb_stdout);
c906108c
SS
4385 printf_filtered ("\n");
4386
4387 printfi_filtered (spaces + 8, "is_const %d\n",
4388 TYPE_FN_FIELD_CONST (f, overload_idx));
4389 printfi_filtered (spaces + 8, "is_volatile %d\n",
4390 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4391 printfi_filtered (spaces + 8, "is_private %d\n",
4392 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4393 printfi_filtered (spaces + 8, "is_protected %d\n",
4394 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4395 printfi_filtered (spaces + 8, "is_stub %d\n",
4396 TYPE_FN_FIELD_STUB (f, overload_idx));
4397 printfi_filtered (spaces + 8, "voffset %u\n",
4398 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4399 }
4400 }
4401}
4402
4403static void
fba45db2 4404print_cplus_stuff (struct type *type, int spaces)
c906108c 4405{
ae6ae975
DE
4406 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4407 printfi_filtered (spaces, "vptr_basetype ");
4408 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4409 puts_filtered ("\n");
4410 if (TYPE_VPTR_BASETYPE (type) != NULL)
4411 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4412
c906108c
SS
4413 printfi_filtered (spaces, "n_baseclasses %d\n",
4414 TYPE_N_BASECLASSES (type));
4415 printfi_filtered (spaces, "nfn_fields %d\n",
4416 TYPE_NFN_FIELDS (type));
c906108c
SS
4417 if (TYPE_N_BASECLASSES (type) > 0)
4418 {
4419 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4420 TYPE_N_BASECLASSES (type));
7ba81444
MS
4421 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4422 gdb_stdout);
c906108c
SS
4423 printf_filtered (")");
4424
4425 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4426 TYPE_N_BASECLASSES (type));
4427 puts_filtered ("\n");
4428 }
4429 if (TYPE_NFIELDS (type) > 0)
4430 {
4431 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4432 {
7ba81444
MS
4433 printfi_filtered (spaces,
4434 "private_field_bits (%d bits at *",
c906108c 4435 TYPE_NFIELDS (type));
7ba81444
MS
4436 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4437 gdb_stdout);
c906108c
SS
4438 printf_filtered (")");
4439 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4440 TYPE_NFIELDS (type));
4441 puts_filtered ("\n");
4442 }
4443 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4444 {
7ba81444
MS
4445 printfi_filtered (spaces,
4446 "protected_field_bits (%d bits at *",
c906108c 4447 TYPE_NFIELDS (type));
7ba81444
MS
4448 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4449 gdb_stdout);
c906108c
SS
4450 printf_filtered (")");
4451 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4452 TYPE_NFIELDS (type));
4453 puts_filtered ("\n");
4454 }
4455 }
4456 if (TYPE_NFN_FIELDS (type) > 0)
4457 {
4458 dump_fn_fieldlists (type, spaces);
4459 }
4460}
4461
b4ba55a1
JB
4462/* Print the contents of the TYPE's type_specific union, assuming that
4463 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4464
4465static void
4466print_gnat_stuff (struct type *type, int spaces)
4467{
4468 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4469
8cd00c59
PMR
4470 if (descriptive_type == NULL)
4471 printfi_filtered (spaces + 2, "no descriptive type\n");
4472 else
4473 {
4474 printfi_filtered (spaces + 2, "descriptive type\n");
4475 recursive_dump_type (descriptive_type, spaces + 4);
4476 }
b4ba55a1
JB
4477}
4478
c906108c
SS
4479static struct obstack dont_print_type_obstack;
4480
4481void
fba45db2 4482recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4483{
4484 int idx;
4485
4486 if (spaces == 0)
4487 obstack_begin (&dont_print_type_obstack, 0);
4488
4489 if (TYPE_NFIELDS (type) > 0
b4ba55a1 4490 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4491 {
4492 struct type **first_dont_print
7ba81444 4493 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4494
7ba81444
MS
4495 int i = (struct type **)
4496 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4497
4498 while (--i >= 0)
4499 {
4500 if (type == first_dont_print[i])
4501 {
4502 printfi_filtered (spaces, "type node ");
d4f3574e 4503 gdb_print_host_address (type, gdb_stdout);
a3f17187 4504 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4505 return;
4506 }
4507 }
4508
4509 obstack_ptr_grow (&dont_print_type_obstack, type);
4510 }
4511
4512 printfi_filtered (spaces, "type node ");
d4f3574e 4513 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4514 printf_filtered ("\n");
4515 printfi_filtered (spaces, "name '%s' (",
4516 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 4517 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 4518 printf_filtered (")\n");
c906108c
SS
4519 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4520 switch (TYPE_CODE (type))
4521 {
c5aa993b
JM
4522 case TYPE_CODE_UNDEF:
4523 printf_filtered ("(TYPE_CODE_UNDEF)");
4524 break;
4525 case TYPE_CODE_PTR:
4526 printf_filtered ("(TYPE_CODE_PTR)");
4527 break;
4528 case TYPE_CODE_ARRAY:
4529 printf_filtered ("(TYPE_CODE_ARRAY)");
4530 break;
4531 case TYPE_CODE_STRUCT:
4532 printf_filtered ("(TYPE_CODE_STRUCT)");
4533 break;
4534 case TYPE_CODE_UNION:
4535 printf_filtered ("(TYPE_CODE_UNION)");
4536 break;
4537 case TYPE_CODE_ENUM:
4538 printf_filtered ("(TYPE_CODE_ENUM)");
4539 break;
4f2aea11
MK
4540 case TYPE_CODE_FLAGS:
4541 printf_filtered ("(TYPE_CODE_FLAGS)");
4542 break;
c5aa993b
JM
4543 case TYPE_CODE_FUNC:
4544 printf_filtered ("(TYPE_CODE_FUNC)");
4545 break;
4546 case TYPE_CODE_INT:
4547 printf_filtered ("(TYPE_CODE_INT)");
4548 break;
4549 case TYPE_CODE_FLT:
4550 printf_filtered ("(TYPE_CODE_FLT)");
4551 break;
4552 case TYPE_CODE_VOID:
4553 printf_filtered ("(TYPE_CODE_VOID)");
4554 break;
4555 case TYPE_CODE_SET:
4556 printf_filtered ("(TYPE_CODE_SET)");
4557 break;
4558 case TYPE_CODE_RANGE:
4559 printf_filtered ("(TYPE_CODE_RANGE)");
4560 break;
4561 case TYPE_CODE_STRING:
4562 printf_filtered ("(TYPE_CODE_STRING)");
4563 break;
4564 case TYPE_CODE_ERROR:
4565 printf_filtered ("(TYPE_CODE_ERROR)");
4566 break;
0d5de010
DJ
4567 case TYPE_CODE_MEMBERPTR:
4568 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4569 break;
4570 case TYPE_CODE_METHODPTR:
4571 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4572 break;
4573 case TYPE_CODE_METHOD:
4574 printf_filtered ("(TYPE_CODE_METHOD)");
4575 break;
4576 case TYPE_CODE_REF:
4577 printf_filtered ("(TYPE_CODE_REF)");
4578 break;
4579 case TYPE_CODE_CHAR:
4580 printf_filtered ("(TYPE_CODE_CHAR)");
4581 break;
4582 case TYPE_CODE_BOOL:
4583 printf_filtered ("(TYPE_CODE_BOOL)");
4584 break;
e9e79dd9
FF
4585 case TYPE_CODE_COMPLEX:
4586 printf_filtered ("(TYPE_CODE_COMPLEX)");
4587 break;
c5aa993b
JM
4588 case TYPE_CODE_TYPEDEF:
4589 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4590 break;
5c4e30ca
DC
4591 case TYPE_CODE_NAMESPACE:
4592 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4593 break;
c5aa993b
JM
4594 default:
4595 printf_filtered ("(UNKNOWN TYPE CODE)");
4596 break;
c906108c
SS
4597 }
4598 puts_filtered ("\n");
cc1defb1 4599 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
4600 if (TYPE_OBJFILE_OWNED (type))
4601 {
4602 printfi_filtered (spaces, "objfile ");
4603 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4604 }
4605 else
4606 {
4607 printfi_filtered (spaces, "gdbarch ");
4608 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4609 }
c906108c
SS
4610 printf_filtered ("\n");
4611 printfi_filtered (spaces, "target_type ");
d4f3574e 4612 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
4613 printf_filtered ("\n");
4614 if (TYPE_TARGET_TYPE (type) != NULL)
4615 {
4616 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4617 }
4618 printfi_filtered (spaces, "pointer_type ");
d4f3574e 4619 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
4620 printf_filtered ("\n");
4621 printfi_filtered (spaces, "reference_type ");
d4f3574e 4622 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 4623 printf_filtered ("\n");
2fdde8f8
DJ
4624 printfi_filtered (spaces, "type_chain ");
4625 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 4626 printf_filtered ("\n");
7ba81444
MS
4627 printfi_filtered (spaces, "instance_flags 0x%x",
4628 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
4629 if (TYPE_CONST (type))
4630 {
a9ff5f12 4631 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
4632 }
4633 if (TYPE_VOLATILE (type))
4634 {
a9ff5f12 4635 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
4636 }
4637 if (TYPE_CODE_SPACE (type))
4638 {
a9ff5f12 4639 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
4640 }
4641 if (TYPE_DATA_SPACE (type))
4642 {
a9ff5f12 4643 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 4644 }
8b2dbe47
KB
4645 if (TYPE_ADDRESS_CLASS_1 (type))
4646 {
a9ff5f12 4647 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
4648 }
4649 if (TYPE_ADDRESS_CLASS_2 (type))
4650 {
a9ff5f12 4651 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 4652 }
06d66ee9
TT
4653 if (TYPE_RESTRICT (type))
4654 {
a9ff5f12 4655 puts_filtered (" TYPE_RESTRICT");
06d66ee9 4656 }
a2c2acaf
MW
4657 if (TYPE_ATOMIC (type))
4658 {
a9ff5f12 4659 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 4660 }
2fdde8f8 4661 puts_filtered ("\n");
876cecd0
TT
4662
4663 printfi_filtered (spaces, "flags");
762a036f 4664 if (TYPE_UNSIGNED (type))
c906108c 4665 {
a9ff5f12 4666 puts_filtered (" TYPE_UNSIGNED");
c906108c 4667 }
762a036f
FF
4668 if (TYPE_NOSIGN (type))
4669 {
a9ff5f12 4670 puts_filtered (" TYPE_NOSIGN");
762a036f
FF
4671 }
4672 if (TYPE_STUB (type))
c906108c 4673 {
a9ff5f12 4674 puts_filtered (" TYPE_STUB");
c906108c 4675 }
762a036f
FF
4676 if (TYPE_TARGET_STUB (type))
4677 {
a9ff5f12 4678 puts_filtered (" TYPE_TARGET_STUB");
762a036f 4679 }
762a036f
FF
4680 if (TYPE_PROTOTYPED (type))
4681 {
a9ff5f12 4682 puts_filtered (" TYPE_PROTOTYPED");
762a036f
FF
4683 }
4684 if (TYPE_INCOMPLETE (type))
4685 {
a9ff5f12 4686 puts_filtered (" TYPE_INCOMPLETE");
762a036f 4687 }
762a036f
FF
4688 if (TYPE_VARARGS (type))
4689 {
a9ff5f12 4690 puts_filtered (" TYPE_VARARGS");
762a036f 4691 }
f5f8a009
EZ
4692 /* This is used for things like AltiVec registers on ppc. Gcc emits
4693 an attribute for the array type, which tells whether or not we
4694 have a vector, instead of a regular array. */
4695 if (TYPE_VECTOR (type))
4696 {
a9ff5f12 4697 puts_filtered (" TYPE_VECTOR");
f5f8a009 4698 }
876cecd0
TT
4699 if (TYPE_FIXED_INSTANCE (type))
4700 {
4701 puts_filtered (" TYPE_FIXED_INSTANCE");
4702 }
4703 if (TYPE_STUB_SUPPORTED (type))
4704 {
4705 puts_filtered (" TYPE_STUB_SUPPORTED");
4706 }
4707 if (TYPE_NOTTEXT (type))
4708 {
4709 puts_filtered (" TYPE_NOTTEXT");
4710 }
c906108c
SS
4711 puts_filtered ("\n");
4712 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 4713 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
4714 puts_filtered ("\n");
4715 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4716 {
14e75d8e
JK
4717 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4718 printfi_filtered (spaces + 2,
4719 "[%d] enumval %s type ",
4720 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4721 else
4722 printfi_filtered (spaces + 2,
6b850546
DT
4723 "[%d] bitpos %s bitsize %d type ",
4724 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 4725 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 4726 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
4727 printf_filtered (" name '%s' (",
4728 TYPE_FIELD_NAME (type, idx) != NULL
4729 ? TYPE_FIELD_NAME (type, idx)
4730 : "<NULL>");
d4f3574e 4731 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
4732 printf_filtered (")\n");
4733 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4734 {
4735 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4736 }
4737 }
43bbcdc2
PH
4738 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4739 {
4740 printfi_filtered (spaces, "low %s%s high %s%s\n",
4741 plongest (TYPE_LOW_BOUND (type)),
4742 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4743 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
4744 TYPE_HIGH_BOUND_UNDEFINED (type)
4745 ? " (undefined)" : "");
43bbcdc2 4746 }
c906108c 4747
b4ba55a1
JB
4748 switch (TYPE_SPECIFIC_FIELD (type))
4749 {
4750 case TYPE_SPECIFIC_CPLUS_STUFF:
4751 printfi_filtered (spaces, "cplus_stuff ");
4752 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4753 gdb_stdout);
4754 puts_filtered ("\n");
4755 print_cplus_stuff (type, spaces);
4756 break;
8da61cc4 4757
b4ba55a1
JB
4758 case TYPE_SPECIFIC_GNAT_STUFF:
4759 printfi_filtered (spaces, "gnat_stuff ");
4760 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4761 puts_filtered ("\n");
4762 print_gnat_stuff (type, spaces);
4763 break;
701c159d 4764
b4ba55a1
JB
4765 case TYPE_SPECIFIC_FLOATFORMAT:
4766 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
4767 if (TYPE_FLOATFORMAT (type) == NULL
4768 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
4769 puts_filtered ("(null)");
4770 else
0db7851f 4771 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
4772 puts_filtered ("\n");
4773 break;
c906108c 4774
b6cdc2c1 4775 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
4776 printfi_filtered (spaces, "calling_convention %d\n",
4777 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 4778 /* tail_call_list is not printed. */
b4ba55a1 4779 break;
09e2d7c7
DE
4780
4781 case TYPE_SPECIFIC_SELF_TYPE:
4782 printfi_filtered (spaces, "self_type ");
4783 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4784 puts_filtered ("\n");
4785 break;
c906108c 4786 }
b4ba55a1 4787
c906108c
SS
4788 if (spaces == 0)
4789 obstack_free (&dont_print_type_obstack, NULL);
4790}
5212577a 4791\f
ae5a43e0
DJ
4792/* Trivial helpers for the libiberty hash table, for mapping one
4793 type to another. */
4794
fd90ace4 4795struct type_pair : public allocate_on_obstack
ae5a43e0 4796{
fd90ace4
YQ
4797 type_pair (struct type *old_, struct type *newobj_)
4798 : old (old_), newobj (newobj_)
4799 {}
4800
4801 struct type * const old, * const newobj;
ae5a43e0
DJ
4802};
4803
4804static hashval_t
4805type_pair_hash (const void *item)
4806{
9a3c8263 4807 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 4808
ae5a43e0
DJ
4809 return htab_hash_pointer (pair->old);
4810}
4811
4812static int
4813type_pair_eq (const void *item_lhs, const void *item_rhs)
4814{
9a3c8263
SM
4815 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4816 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 4817
ae5a43e0
DJ
4818 return lhs->old == rhs->old;
4819}
4820
4821/* Allocate the hash table used by copy_type_recursive to walk
4822 types without duplicates. We use OBJFILE's obstack, because
4823 OBJFILE is about to be deleted. */
4824
4825htab_t
4826create_copied_types_hash (struct objfile *objfile)
4827{
4828 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4829 NULL, &objfile->objfile_obstack,
4830 hashtab_obstack_allocate,
4831 dummy_obstack_deallocate);
4832}
4833
d9823cbb
KB
4834/* Recursively copy (deep copy) a dynamic attribute list of a type. */
4835
4836static struct dynamic_prop_list *
4837copy_dynamic_prop_list (struct obstack *objfile_obstack,
4838 struct dynamic_prop_list *list)
4839{
4840 struct dynamic_prop_list *copy = list;
4841 struct dynamic_prop_list **node_ptr = &copy;
4842
4843 while (*node_ptr != NULL)
4844 {
4845 struct dynamic_prop_list *node_copy;
4846
224c3ddb
SM
4847 node_copy = ((struct dynamic_prop_list *)
4848 obstack_copy (objfile_obstack, *node_ptr,
4849 sizeof (struct dynamic_prop_list)));
283a9958 4850 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
4851 *node_ptr = node_copy;
4852
4853 node_ptr = &node_copy->next;
4854 }
4855
4856 return copy;
4857}
4858
7ba81444 4859/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
4860 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4861 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4862 it is not associated with OBJFILE. */
ae5a43e0
DJ
4863
4864struct type *
7ba81444
MS
4865copy_type_recursive (struct objfile *objfile,
4866 struct type *type,
ae5a43e0
DJ
4867 htab_t copied_types)
4868{
ae5a43e0
DJ
4869 void **slot;
4870 struct type *new_type;
4871
e9bb382b 4872 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4873 return type;
4874
7ba81444
MS
4875 /* This type shouldn't be pointing to any types in other objfiles;
4876 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4877 gdb_assert (TYPE_OBJFILE (type) == objfile);
4878
fd90ace4
YQ
4879 struct type_pair pair (type, nullptr);
4880
ae5a43e0
DJ
4881 slot = htab_find_slot (copied_types, &pair, INSERT);
4882 if (*slot != NULL)
fe978cb0 4883 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 4884
e9bb382b 4885 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4886
4887 /* We must add the new type to the hash table immediately, in case
4888 we encounter this type again during a recursive call below. */
fd90ace4
YQ
4889 struct type_pair *stored
4890 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4891
ae5a43e0
DJ
4892 *slot = stored;
4893
876cecd0
TT
4894 /* Copy the common fields of types. For the main type, we simply
4895 copy the entire thing and then update specific fields as needed. */
4896 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4897 TYPE_OBJFILE_OWNED (new_type) = 0;
4898 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4899
ae5a43e0
DJ
4900 if (TYPE_NAME (type))
4901 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
ae5a43e0
DJ
4902
4903 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4904 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4905
4906 /* Copy the fields. */
ae5a43e0
DJ
4907 if (TYPE_NFIELDS (type))
4908 {
4909 int i, nfields;
4910
4911 nfields = TYPE_NFIELDS (type);
2fabdf33
AB
4912 TYPE_FIELDS (new_type) = (struct field *)
4913 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
ae5a43e0
DJ
4914 for (i = 0; i < nfields; i++)
4915 {
7ba81444
MS
4916 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4917 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4918 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4919 if (TYPE_FIELD_TYPE (type, i))
4920 TYPE_FIELD_TYPE (new_type, i)
4921 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4922 copied_types);
4923 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4924 TYPE_FIELD_NAME (new_type, i) =
4925 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4926 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4927 {
d6a843b5
JK
4928 case FIELD_LOC_KIND_BITPOS:
4929 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4930 TYPE_FIELD_BITPOS (type, i));
4931 break;
14e75d8e
JK
4932 case FIELD_LOC_KIND_ENUMVAL:
4933 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4934 TYPE_FIELD_ENUMVAL (type, i));
4935 break;
d6a843b5
JK
4936 case FIELD_LOC_KIND_PHYSADDR:
4937 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4938 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4939 break;
4940 case FIELD_LOC_KIND_PHYSNAME:
4941 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4942 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4943 i)));
4944 break;
4945 default:
4946 internal_error (__FILE__, __LINE__,
4947 _("Unexpected type field location kind: %d"),
4948 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4949 }
4950 }
4951 }
4952
0963b4bd 4953 /* For range types, copy the bounds information. */
43bbcdc2
PH
4954 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4955 {
2fabdf33
AB
4956 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4957 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
43bbcdc2
PH
4958 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4959 }
4960
d9823cbb
KB
4961 if (TYPE_DYN_PROP_LIST (type) != NULL)
4962 TYPE_DYN_PROP_LIST (new_type)
4963 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4964 TYPE_DYN_PROP_LIST (type));
4965
3cdcd0ce 4966
ae5a43e0
DJ
4967 /* Copy pointers to other types. */
4968 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4969 TYPE_TARGET_TYPE (new_type) =
4970 copy_type_recursive (objfile,
4971 TYPE_TARGET_TYPE (type),
4972 copied_types);
f6b3afbf 4973
ae5a43e0
DJ
4974 /* Maybe copy the type_specific bits.
4975
4976 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4977 base classes and methods. There's no fundamental reason why we
4978 can't, but at the moment it is not needed. */
4979
f6b3afbf
DE
4980 switch (TYPE_SPECIFIC_FIELD (type))
4981 {
4982 case TYPE_SPECIFIC_NONE:
4983 break;
4984 case TYPE_SPECIFIC_FUNC:
4985 INIT_FUNC_SPECIFIC (new_type);
4986 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4987 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4988 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4989 break;
4990 case TYPE_SPECIFIC_FLOATFORMAT:
4991 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4992 break;
4993 case TYPE_SPECIFIC_CPLUS_STUFF:
4994 INIT_CPLUS_SPECIFIC (new_type);
4995 break;
4996 case TYPE_SPECIFIC_GNAT_STUFF:
4997 INIT_GNAT_SPECIFIC (new_type);
4998 break;
09e2d7c7
DE
4999 case TYPE_SPECIFIC_SELF_TYPE:
5000 set_type_self_type (new_type,
5001 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5002 copied_types));
5003 break;
f6b3afbf
DE
5004 default:
5005 gdb_assert_not_reached ("bad type_specific_kind");
5006 }
ae5a43e0
DJ
5007
5008 return new_type;
5009}
5010
4af88198
JB
5011/* Make a copy of the given TYPE, except that the pointer & reference
5012 types are not preserved.
5013
5014 This function assumes that the given type has an associated objfile.
5015 This objfile is used to allocate the new type. */
5016
5017struct type *
5018copy_type (const struct type *type)
5019{
5020 struct type *new_type;
5021
e9bb382b 5022 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5023
e9bb382b 5024 new_type = alloc_type_copy (type);
4af88198
JB
5025 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5026 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5027 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5028 sizeof (struct main_type));
d9823cbb
KB
5029 if (TYPE_DYN_PROP_LIST (type) != NULL)
5030 TYPE_DYN_PROP_LIST (new_type)
5031 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5032 TYPE_DYN_PROP_LIST (type));
4af88198
JB
5033
5034 return new_type;
5035}
5212577a 5036\f
e9bb382b
UW
5037/* Helper functions to initialize architecture-specific types. */
5038
5039/* Allocate a type structure associated with GDBARCH and set its
5040 CODE, LENGTH, and NAME fields. */
5212577a 5041
e9bb382b
UW
5042struct type *
5043arch_type (struct gdbarch *gdbarch,
77b7c781 5044 enum type_code code, int bit, const char *name)
e9bb382b
UW
5045{
5046 struct type *type;
5047
5048 type = alloc_type_arch (gdbarch);
ae438bc5 5049 set_type_code (type, code);
77b7c781
UW
5050 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5051 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5052
5053 if (name)
6c214e7c 5054 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
e9bb382b
UW
5055
5056 return type;
5057}
5058
5059/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5060 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5061 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5062
e9bb382b
UW
5063struct type *
5064arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5065 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5066{
5067 struct type *t;
5068
77b7c781 5069 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5070 if (unsigned_p)
5071 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5072
5073 return t;
5074}
5075
5076/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5077 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5078 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5079
e9bb382b
UW
5080struct type *
5081arch_character_type (struct gdbarch *gdbarch,
695bfa52 5082 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5083{
5084 struct type *t;
5085
77b7c781 5086 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5087 if (unsigned_p)
5088 TYPE_UNSIGNED (t) = 1;
5089
5090 return t;
5091}
5092
5093/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5094 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5095 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5096
e9bb382b
UW
5097struct type *
5098arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5099 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5100{
5101 struct type *t;
5102
77b7c781 5103 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5104 if (unsigned_p)
5105 TYPE_UNSIGNED (t) = 1;
5106
5107 return t;
5108}
5109
5110/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5111 BIT is the type size in bits; if BIT equals -1, the size is
5112 determined by the floatformat. NAME is the type name. Set the
5113 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5114
27067745 5115struct type *
e9bb382b 5116arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5117 int bit, const char *name,
5118 const struct floatformat **floatformats)
8da61cc4 5119{
0db7851f 5120 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5121 struct type *t;
5122
0db7851f 5123 bit = verify_floatformat (bit, fmt);
77b7c781 5124 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5125 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5126
8da61cc4
DJ
5127 return t;
5128}
5129
88dfca6c
UW
5130/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5131 BIT is the type size in bits. NAME is the type name. */
5132
5133struct type *
5134arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5135{
5136 struct type *t;
5137
77b7c781 5138 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5139 return t;
5140}
5141
e9bb382b
UW
5142/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5143 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 5144
27067745 5145struct type *
e9bb382b 5146arch_complex_type (struct gdbarch *gdbarch,
695bfa52 5147 const char *name, struct type *target_type)
27067745
UW
5148{
5149 struct type *t;
d8734c88 5150
e9bb382b 5151 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
77b7c781 5152 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
27067745
UW
5153 TYPE_TARGET_TYPE (t) = target_type;
5154 return t;
5155}
5156
88dfca6c
UW
5157/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5158 BIT is the pointer type size in bits. NAME is the type name.
5159 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5160 TYPE_UNSIGNED flag. */
5161
5162struct type *
5163arch_pointer_type (struct gdbarch *gdbarch,
5164 int bit, const char *name, struct type *target_type)
5165{
5166 struct type *t;
5167
77b7c781 5168 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5169 TYPE_TARGET_TYPE (t) = target_type;
5170 TYPE_UNSIGNED (t) = 1;
5171 return t;
5172}
5173
e9bb382b 5174/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5175 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5176
e9bb382b 5177struct type *
77b7c781 5178arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5179{
e9bb382b
UW
5180 struct type *type;
5181
77b7c781 5182 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5183 TYPE_UNSIGNED (type) = 1;
81516450
DE
5184 TYPE_NFIELDS (type) = 0;
5185 /* Pre-allocate enough space assuming every field is one bit. */
224c3ddb 5186 TYPE_FIELDS (type)
77b7c781 5187 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
e9bb382b
UW
5188
5189 return type;
5190}
5191
5192/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5193 position BITPOS is called NAME. Pass NAME as "" for fields that
5194 should not be printed. */
5195
5196void
5197append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5198 struct type *field_type, const char *name)
81516450
DE
5199{
5200 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5201 int field_nr = TYPE_NFIELDS (type);
5202
5203 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5204 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5205 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5206 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5207 gdb_assert (name != NULL);
5208
5209 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5210 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5211 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5212 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5213 ++TYPE_NFIELDS (type);
5214}
5215
5216/* Special version of append_flags_type_field to add a flag field.
5217 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5218 position BITPOS is called NAME. */
5212577a 5219
e9bb382b 5220void
695bfa52 5221append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5222{
81516450 5223 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5224
81516450
DE
5225 append_flags_type_field (type, bitpos, 1,
5226 builtin_type (gdbarch)->builtin_bool,
5227 name);
e9bb382b
UW
5228}
5229
5230/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5231 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5232
e9bb382b 5233struct type *
695bfa52
TT
5234arch_composite_type (struct gdbarch *gdbarch, const char *name,
5235 enum type_code code)
e9bb382b
UW
5236{
5237 struct type *t;
d8734c88 5238
e9bb382b
UW
5239 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5240 t = arch_type (gdbarch, code, 0, NULL);
e86ca25f 5241 TYPE_NAME (t) = name;
e9bb382b
UW
5242 INIT_CPLUS_SPECIFIC (t);
5243 return t;
5244}
5245
5246/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5247 Do not set the field's position or adjust the type's length;
5248 the caller should do so. Return the new field. */
5212577a 5249
f5dff777 5250struct field *
695bfa52 5251append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5252 struct type *field)
e9bb382b
UW
5253{
5254 struct field *f;
d8734c88 5255
e9bb382b 5256 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
224c3ddb
SM
5257 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5258 TYPE_NFIELDS (t));
e9bb382b
UW
5259 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5260 memset (f, 0, sizeof f[0]);
5261 FIELD_TYPE (f[0]) = field;
5262 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5263 return f;
5264}
5265
5266/* Add new field with name NAME and type FIELD to composite type T.
5267 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5268
f5dff777 5269void
695bfa52 5270append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5271 struct type *field, int alignment)
5272{
5273 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5274
e9bb382b
UW
5275 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5276 {
5277 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5278 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5279 }
5280 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5281 {
5282 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5283 if (TYPE_NFIELDS (t) > 1)
5284 {
f41f5e61
PA
5285 SET_FIELD_BITPOS (f[0],
5286 (FIELD_BITPOS (f[-1])
5287 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5288 * TARGET_CHAR_BIT)));
e9bb382b
UW
5289
5290 if (alignment)
5291 {
86c3c1fc
AB
5292 int left;
5293
5294 alignment *= TARGET_CHAR_BIT;
5295 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5296
e9bb382b
UW
5297 if (left)
5298 {
f41f5e61 5299 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5300 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5301 }
5302 }
5303 }
5304 }
5305}
5306
5307/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5308
e9bb382b 5309void
695bfa52 5310append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5311 struct type *field)
5312{
5313 append_composite_type_field_aligned (t, name, field, 0);
5314}
5315
000177f0
AC
5316static struct gdbarch_data *gdbtypes_data;
5317
5318const struct builtin_type *
5319builtin_type (struct gdbarch *gdbarch)
5320{
9a3c8263 5321 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5322}
5323
5324static void *
5325gdbtypes_post_init (struct gdbarch *gdbarch)
5326{
5327 struct builtin_type *builtin_type
5328 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5329
46bf5051 5330 /* Basic types. */
e9bb382b 5331 builtin_type->builtin_void
77b7c781 5332 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5333 builtin_type->builtin_char
5334 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5335 !gdbarch_char_signed (gdbarch), "char");
c413c448 5336 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5337 builtin_type->builtin_signed_char
5338 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5339 0, "signed char");
5340 builtin_type->builtin_unsigned_char
5341 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5342 1, "unsigned char");
5343 builtin_type->builtin_short
5344 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5345 0, "short");
5346 builtin_type->builtin_unsigned_short
5347 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5348 1, "unsigned short");
5349 builtin_type->builtin_int
5350 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5351 0, "int");
5352 builtin_type->builtin_unsigned_int
5353 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5354 1, "unsigned int");
5355 builtin_type->builtin_long
5356 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5357 0, "long");
5358 builtin_type->builtin_unsigned_long
5359 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5360 1, "unsigned long");
5361 builtin_type->builtin_long_long
5362 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5363 0, "long long");
5364 builtin_type->builtin_unsigned_long_long
5365 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5366 1, "unsigned long long");
a6d0f249
AH
5367 builtin_type->builtin_half
5368 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5369 "half", gdbarch_half_format (gdbarch));
70bd8e24 5370 builtin_type->builtin_float
e9bb382b 5371 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5372 "float", gdbarch_float_format (gdbarch));
70bd8e24 5373 builtin_type->builtin_double
e9bb382b 5374 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5375 "double", gdbarch_double_format (gdbarch));
70bd8e24 5376 builtin_type->builtin_long_double
e9bb382b 5377 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5378 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5379 builtin_type->builtin_complex
e9bb382b
UW
5380 = arch_complex_type (gdbarch, "complex",
5381 builtin_type->builtin_float);
70bd8e24 5382 builtin_type->builtin_double_complex
e9bb382b
UW
5383 = arch_complex_type (gdbarch, "double complex",
5384 builtin_type->builtin_double);
5385 builtin_type->builtin_string
77b7c781 5386 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5387 builtin_type->builtin_bool
77b7c781 5388 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5389
7678ef8f
TJB
5390 /* The following three are about decimal floating point types, which
5391 are 32-bits, 64-bits and 128-bits respectively. */
5392 builtin_type->builtin_decfloat
88dfca6c 5393 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5394 builtin_type->builtin_decdouble
88dfca6c 5395 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5396 builtin_type->builtin_declong
88dfca6c 5397 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5398
69feb676 5399 /* "True" character types. */
e9bb382b
UW
5400 builtin_type->builtin_true_char
5401 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5402 builtin_type->builtin_true_unsigned_char
5403 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5404
df4df182 5405 /* Fixed-size integer types. */
e9bb382b
UW
5406 builtin_type->builtin_int0
5407 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5408 builtin_type->builtin_int8
5409 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5410 builtin_type->builtin_uint8
5411 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5412 builtin_type->builtin_int16
5413 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5414 builtin_type->builtin_uint16
5415 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5416 builtin_type->builtin_int24
5417 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5418 builtin_type->builtin_uint24
5419 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5420 builtin_type->builtin_int32
5421 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5422 builtin_type->builtin_uint32
5423 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5424 builtin_type->builtin_int64
5425 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5426 builtin_type->builtin_uint64
5427 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5428 builtin_type->builtin_int128
5429 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5430 builtin_type->builtin_uint128
5431 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5432 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5433 TYPE_INSTANCE_FLAG_NOTTEXT;
5434 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5435 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5436
9a22f0d0
PM
5437 /* Wide character types. */
5438 builtin_type->builtin_char16
53e710ac 5439 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5440 builtin_type->builtin_char32
53e710ac 5441 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5442 builtin_type->builtin_wchar
5443 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5444 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5445
46bf5051 5446 /* Default data/code pointer types. */
e9bb382b
UW
5447 builtin_type->builtin_data_ptr
5448 = lookup_pointer_type (builtin_type->builtin_void);
5449 builtin_type->builtin_func_ptr
5450 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5451 builtin_type->builtin_func_func
5452 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5453
78267919 5454 /* This type represents a GDB internal function. */
e9bb382b
UW
5455 builtin_type->internal_fn
5456 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5457 "<internal function>");
78267919 5458
e81e7f5e
SC
5459 /* This type represents an xmethod. */
5460 builtin_type->xmethod
5461 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5462
46bf5051
UW
5463 return builtin_type;
5464}
5465
46bf5051
UW
5466/* This set of objfile-based types is intended to be used by symbol
5467 readers as basic types. */
5468
7a102139
TT
5469static const struct objfile_key<struct objfile_type,
5470 gdb::noop_deleter<struct objfile_type>>
5471 objfile_type_data;
46bf5051
UW
5472
5473const struct objfile_type *
5474objfile_type (struct objfile *objfile)
5475{
5476 struct gdbarch *gdbarch;
7a102139 5477 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5478
5479 if (objfile_type)
5480 return objfile_type;
5481
5482 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5483 1, struct objfile_type);
5484
5485 /* Use the objfile architecture to determine basic type properties. */
5486 gdbarch = get_objfile_arch (objfile);
5487
5488 /* Basic types. */
5489 objfile_type->builtin_void
77b7c781 5490 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5491 objfile_type->builtin_char
19f392bc
UW
5492 = init_integer_type (objfile, TARGET_CHAR_BIT,
5493 !gdbarch_char_signed (gdbarch), "char");
c413c448 5494 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5495 objfile_type->builtin_signed_char
19f392bc
UW
5496 = init_integer_type (objfile, TARGET_CHAR_BIT,
5497 0, "signed char");
46bf5051 5498 objfile_type->builtin_unsigned_char
19f392bc
UW
5499 = init_integer_type (objfile, TARGET_CHAR_BIT,
5500 1, "unsigned char");
46bf5051 5501 objfile_type->builtin_short
19f392bc
UW
5502 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5503 0, "short");
46bf5051 5504 objfile_type->builtin_unsigned_short
19f392bc
UW
5505 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5506 1, "unsigned short");
46bf5051 5507 objfile_type->builtin_int
19f392bc
UW
5508 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5509 0, "int");
46bf5051 5510 objfile_type->builtin_unsigned_int
19f392bc
UW
5511 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5512 1, "unsigned int");
46bf5051 5513 objfile_type->builtin_long
19f392bc
UW
5514 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5515 0, "long");
46bf5051 5516 objfile_type->builtin_unsigned_long
19f392bc
UW
5517 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5518 1, "unsigned long");
46bf5051 5519 objfile_type->builtin_long_long
19f392bc
UW
5520 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5521 0, "long long");
46bf5051 5522 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5523 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5524 1, "unsigned long long");
46bf5051 5525 objfile_type->builtin_float
19f392bc
UW
5526 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5527 "float", gdbarch_float_format (gdbarch));
46bf5051 5528 objfile_type->builtin_double
19f392bc
UW
5529 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5530 "double", gdbarch_double_format (gdbarch));
46bf5051 5531 objfile_type->builtin_long_double
19f392bc
UW
5532 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5533 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5534
5535 /* This type represents a type that was unrecognized in symbol read-in. */
5536 objfile_type->builtin_error
19f392bc 5537 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5538
5539 /* The following set of types is used for symbols with no
5540 debug information. */
5541 objfile_type->nodebug_text_symbol
77b7c781 5542 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5543 "<text variable, no debug info>");
0875794a 5544 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5545 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5546 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5547 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5548 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5549 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5550 "<text from jump slot in .got.plt, no debug info>",
5551 objfile_type->nodebug_text_symbol);
46bf5051 5552 objfile_type->nodebug_data_symbol
46a4882b 5553 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5554 objfile_type->nodebug_unknown_symbol
46a4882b 5555 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5556 objfile_type->nodebug_tls_symbol
46a4882b 5557 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5558
5559 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5560 the same.
000177f0
AC
5561
5562 The upshot is:
5563 - gdb's `struct type' always describes the target's
5564 representation.
5565 - gdb's `struct value' objects should always hold values in
5566 target form.
5567 - gdb's CORE_ADDR values are addresses in the unified virtual
5568 address space that the assembler and linker work with. Thus,
5569 since target_read_memory takes a CORE_ADDR as an argument, it
5570 can access any memory on the target, even if the processor has
5571 separate code and data address spaces.
5572
46bf5051
UW
5573 In this context, objfile_type->builtin_core_addr is a bit odd:
5574 it's a target type for a value the target will never see. It's
5575 only used to hold the values of (typeless) linker symbols, which
5576 are indeed in the unified virtual address space. */
000177f0 5577
46bf5051 5578 objfile_type->builtin_core_addr
19f392bc
UW
5579 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5580 "__CORE_ADDR");
64c50499 5581
7a102139 5582 objfile_type_data.set (objfile, objfile_type);
46bf5051 5583 return objfile_type;
000177f0
AC
5584}
5585
c906108c 5586void
fba45db2 5587_initialize_gdbtypes (void)
c906108c 5588{
5674de60
UW
5589 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5590
ccce17b0
YQ
5591 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5592 _("Set debugging of C++ overloading."),
5593 _("Show debugging of C++ overloading."),
5594 _("When enabled, ranking of the "
5595 "functions is displayed."),
5596 NULL,
5597 show_overload_debug,
5598 &setdebuglist, &showdebuglist);
5674de60 5599
7ba81444 5600 /* Add user knob for controlling resolution of opaque types. */
5674de60 5601 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5602 &opaque_type_resolution,
5603 _("Set resolution of opaque struct/class/union"
5604 " types (if set before loading symbols)."),
5605 _("Show resolution of opaque struct/class/union"
5606 " types (if set before loading symbols)."),
5607 NULL, NULL,
5674de60
UW
5608 show_opaque_type_resolution,
5609 &setlist, &showlist);
a451cb65
KS
5610
5611 /* Add an option to permit non-strict type checking. */
5612 add_setshow_boolean_cmd ("type", class_support,
5613 &strict_type_checking,
5614 _("Set strict type checking."),
5615 _("Show strict type checking."),
5616 NULL, NULL,
5617 show_strict_type_checking,
5618 &setchecklist, &showchecklist);
c906108c 5619}
This page took 1.929484 seconds and 4 git commands to generate.