Add MI "-break-insert --qualified"
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61 38#include "bcache.h"
82ca8957 39#include "dwarf2/loc.h"
80180f79 40#include "gdbcore.h"
1841ee5d 41#include "floatformat.h"
ef83a141 42#include <algorithm>
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
e15c3eb4 56const struct rank CV_CONVERSION_BADNESS = {1, 0};
a9d5ef47
SW
57const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 61const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
62const struct rank BASE_CONVERSION_BADNESS = {2,0};
63const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
06acc08f 64const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
da096638 65const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 66const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 67const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 68
8da61cc4 69/* Floatformat pairs. */
f9e9243a
UW
70const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73};
8da61cc4
DJ
74const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77};
78const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81};
82const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85};
86const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89};
90const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93};
94const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97};
98const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101};
102const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105};
106const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109};
110const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113};
b14d30e1 114const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
b14d30e1 117};
2a67f09d
FW
118const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
119 &floatformat_bfloat16_big,
120 &floatformat_bfloat16_little
121};
8da61cc4 122
2873700e
KS
123/* Should opaque types be resolved? */
124
491144b5 125static bool opaque_type_resolution = true;
2873700e 126
79bb1944 127/* See gdbtypes.h. */
2873700e
KS
128
129unsigned int overload_debug = 0;
130
a451cb65
KS
131/* A flag to enable strict type checking. */
132
491144b5 133static bool strict_type_checking = true;
a451cb65 134
2873700e 135/* A function to show whether opaque types are resolved. */
5212577a 136
920d2a44
AC
137static void
138show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
139 struct cmd_list_element *c,
140 const char *value)
920d2a44 141{
3e43a32a
MS
142 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
143 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
144 value);
145}
146
2873700e 147/* A function to show whether C++ overload debugging is enabled. */
5212577a 148
920d2a44
AC
149static void
150show_overload_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152{
7ba81444
MS
153 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
154 value);
920d2a44 155}
c906108c 156
a451cb65
KS
157/* A function to show the status of strict type checking. */
158
159static void
160show_strict_type_checking (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
164}
165
5212577a 166\f
e9bb382b
UW
167/* Allocate a new OBJFILE-associated type structure and fill it
168 with some defaults. Space for the type structure is allocated
169 on the objfile's objfile_obstack. */
c906108c
SS
170
171struct type *
fba45db2 172alloc_type (struct objfile *objfile)
c906108c 173{
52f0bd74 174 struct type *type;
c906108c 175
e9bb382b
UW
176 gdb_assert (objfile != NULL);
177
7ba81444 178 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
179 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
180 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
181 struct main_type);
182 OBJSTAT (objfile, n_types++);
c906108c 183
e9bb382b
UW
184 TYPE_OBJFILE_OWNED (type) = 1;
185 TYPE_OWNER (type).objfile = objfile;
c906108c 186
7ba81444 187 /* Initialize the fields that might not be zero. */
c906108c 188
67607e24 189 type->set_code (TYPE_CODE_UNDEF);
2fdde8f8 190 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 191
c16abbde 192 return type;
c906108c
SS
193}
194
e9bb382b
UW
195/* Allocate a new GDBARCH-associated type structure and fill it
196 with some defaults. Space for the type structure is allocated
8f57eec2 197 on the obstack associated with GDBARCH. */
e9bb382b
UW
198
199struct type *
200alloc_type_arch (struct gdbarch *gdbarch)
201{
202 struct type *type;
203
204 gdb_assert (gdbarch != NULL);
205
206 /* Alloc the structure and start off with all fields zeroed. */
207
8f57eec2
PP
208 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
209 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
e9bb382b
UW
210
211 TYPE_OBJFILE_OWNED (type) = 0;
212 TYPE_OWNER (type).gdbarch = gdbarch;
213
214 /* Initialize the fields that might not be zero. */
215
67607e24 216 type->set_code (TYPE_CODE_UNDEF);
e9bb382b
UW
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
218
219 return type;
220}
221
222/* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
225
226struct type *
227alloc_type_copy (const struct type *type)
228{
229 if (TYPE_OBJFILE_OWNED (type))
230 return alloc_type (TYPE_OWNER (type).objfile);
231 else
232 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
233}
234
235/* If TYPE is gdbarch-associated, return that architecture.
236 If TYPE is objfile-associated, return that objfile's architecture. */
237
238struct gdbarch *
239get_type_arch (const struct type *type)
240{
2fabdf33
AB
241 struct gdbarch *arch;
242
e9bb382b 243 if (TYPE_OBJFILE_OWNED (type))
08feed99 244 arch = TYPE_OWNER (type).objfile->arch ();
e9bb382b 245 else
2fabdf33
AB
246 arch = TYPE_OWNER (type).gdbarch;
247
248 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
249 a gdbarch, however, this is very rare, and even then, in most cases
250 that get_type_arch is called, we assume that a non-NULL value is
251 returned. */
252 gdb_assert (arch != NULL);
253 return arch;
e9bb382b
UW
254}
255
99ad9427
YQ
256/* See gdbtypes.h. */
257
258struct type *
259get_target_type (struct type *type)
260{
261 if (type != NULL)
262 {
263 type = TYPE_TARGET_TYPE (type);
264 if (type != NULL)
265 type = check_typedef (type);
266 }
267
268 return type;
269}
270
2e056931
SM
271/* See gdbtypes.h. */
272
273unsigned int
274type_length_units (struct type *type)
275{
276 struct gdbarch *arch = get_type_arch (type);
277 int unit_size = gdbarch_addressable_memory_unit_size (arch);
278
279 return TYPE_LENGTH (type) / unit_size;
280}
281
2fdde8f8
DJ
282/* Alloc a new type instance structure, fill it with some defaults,
283 and point it at OLDTYPE. Allocate the new type instance from the
284 same place as OLDTYPE. */
285
286static struct type *
287alloc_type_instance (struct type *oldtype)
288{
289 struct type *type;
290
291 /* Allocate the structure. */
292
e9bb382b 293 if (! TYPE_OBJFILE_OWNED (oldtype))
2fabdf33 294 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
2fdde8f8 295 else
1deafd4e
PA
296 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
297 struct type);
298
2fdde8f8
DJ
299 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
300
301 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
302
c16abbde 303 return type;
2fdde8f8
DJ
304}
305
306/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 307 replacing it with something else. Preserve owner information. */
5212577a 308
2fdde8f8
DJ
309static void
310smash_type (struct type *type)
311{
e9bb382b
UW
312 int objfile_owned = TYPE_OBJFILE_OWNED (type);
313 union type_owner owner = TYPE_OWNER (type);
314
2fdde8f8
DJ
315 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
316
e9bb382b
UW
317 /* Restore owner information. */
318 TYPE_OBJFILE_OWNED (type) = objfile_owned;
319 TYPE_OWNER (type) = owner;
320
2fdde8f8
DJ
321 /* For now, delete the rings. */
322 TYPE_CHAIN (type) = type;
323
324 /* For now, leave the pointer/reference types alone. */
325}
326
c906108c
SS
327/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
328 to a pointer to memory where the pointer type should be stored.
329 If *TYPEPTR is zero, update it to point to the pointer type we return.
330 We allocate new memory if needed. */
331
332struct type *
fba45db2 333make_pointer_type (struct type *type, struct type **typeptr)
c906108c 334{
52f0bd74 335 struct type *ntype; /* New type */
053cb41b 336 struct type *chain;
c906108c
SS
337
338 ntype = TYPE_POINTER_TYPE (type);
339
c5aa993b 340 if (ntype)
c906108c 341 {
c5aa993b 342 if (typeptr == 0)
7ba81444
MS
343 return ntype; /* Don't care about alloc,
344 and have new type. */
c906108c 345 else if (*typeptr == 0)
c5aa993b 346 {
7ba81444 347 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 348 return ntype;
c5aa993b 349 }
c906108c
SS
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
e9bb382b 354 ntype = alloc_type_copy (type);
c906108c
SS
355 if (typeptr)
356 *typeptr = ntype;
357 }
7ba81444 358 else /* We have storage, but need to reset it. */
c906108c
SS
359 {
360 ntype = *typeptr;
053cb41b 361 chain = TYPE_CHAIN (ntype);
2fdde8f8 362 smash_type (ntype);
053cb41b 363 TYPE_CHAIN (ntype) = chain;
c906108c
SS
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_POINTER_TYPE (type) = ntype;
368
5212577a 369 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 370
50810684
UW
371 TYPE_LENGTH (ntype)
372 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
67607e24 373 ntype->set_code (TYPE_CODE_PTR);
c906108c 374
67b2adb2 375 /* Mark pointers as unsigned. The target converts between pointers
76e71323 376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 377 gdbarch_address_to_pointer. */
876cecd0 378 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 379
053cb41b
JB
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
c906108c
SS
388 return ntype;
389}
390
391/* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
393
394struct type *
fba45db2 395lookup_pointer_type (struct type *type)
c906108c 396{
c5aa993b 397 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
398}
399
7ba81444
MS
400/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
3b224330
AV
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
c906108c
SS
405
406struct type *
3b224330
AV
407make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
c906108c 409{
52f0bd74 410 struct type *ntype; /* New type */
3b224330 411 struct type **reftype;
1e98b326 412 struct type *chain;
c906108c 413
3b224330
AV
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
415
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
c906108c 418
c5aa993b 419 if (ntype)
c906108c 420 {
c5aa993b 421 if (typeptr == 0)
7ba81444
MS
422 return ntype; /* Don't care about alloc,
423 and have new type. */
c906108c 424 else if (*typeptr == 0)
c5aa993b 425 {
7ba81444 426 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 427 return ntype;
c5aa993b 428 }
c906108c
SS
429 }
430
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
432 {
e9bb382b 433 ntype = alloc_type_copy (type);
c906108c
SS
434 if (typeptr)
435 *typeptr = ntype;
436 }
7ba81444 437 else /* We have storage, but need to reset it. */
c906108c
SS
438 {
439 ntype = *typeptr;
1e98b326 440 chain = TYPE_CHAIN (ntype);
2fdde8f8 441 smash_type (ntype);
1e98b326 442 TYPE_CHAIN (ntype) = chain;
c906108c
SS
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
3b224330
AV
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
448
449 *reftype = ntype;
c906108c 450
7ba81444
MS
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
453 pointers! */
c906108c 454
50810684
UW
455 TYPE_LENGTH (ntype) =
456 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
67607e24 457 ntype->set_code (refcode);
c5aa993b 458
3b224330 459 *reftype = ntype;
c906108c 460
1e98b326
JB
461 /* Update the length of all the other variants of this type. */
462 chain = TYPE_CHAIN (ntype);
463 while (chain != ntype)
464 {
465 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
466 chain = TYPE_CHAIN (chain);
467 }
468
c906108c
SS
469 return ntype;
470}
471
7ba81444
MS
472/* Same as above, but caller doesn't care about memory allocation
473 details. */
c906108c
SS
474
475struct type *
3b224330
AV
476lookup_reference_type (struct type *type, enum type_code refcode)
477{
478 return make_reference_type (type, (struct type **) 0, refcode);
479}
480
481/* Lookup the lvalue reference type for the type TYPE. */
482
483struct type *
484lookup_lvalue_reference_type (struct type *type)
485{
486 return lookup_reference_type (type, TYPE_CODE_REF);
487}
488
489/* Lookup the rvalue reference type for the type TYPE. */
490
491struct type *
492lookup_rvalue_reference_type (struct type *type)
c906108c 493{
3b224330 494 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
c906108c
SS
495}
496
7ba81444
MS
497/* Lookup a function type that returns type TYPE. TYPEPTR, if
498 nonzero, points to a pointer to memory where the function type
499 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 500 function type we return. We allocate new memory if needed. */
c906108c
SS
501
502struct type *
0c8b41f1 503make_function_type (struct type *type, struct type **typeptr)
c906108c 504{
52f0bd74 505 struct type *ntype; /* New type */
c906108c
SS
506
507 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
508 {
e9bb382b 509 ntype = alloc_type_copy (type);
c906108c
SS
510 if (typeptr)
511 *typeptr = ntype;
512 }
7ba81444 513 else /* We have storage, but need to reset it. */
c906108c
SS
514 {
515 ntype = *typeptr;
2fdde8f8 516 smash_type (ntype);
c906108c
SS
517 }
518
519 TYPE_TARGET_TYPE (ntype) = type;
520
521 TYPE_LENGTH (ntype) = 1;
67607e24 522 ntype->set_code (TYPE_CODE_FUNC);
c5aa993b 523
b6cdc2c1
JK
524 INIT_FUNC_SPECIFIC (ntype);
525
c906108c
SS
526 return ntype;
527}
528
c906108c
SS
529/* Given a type TYPE, return a type of functions that return that type.
530 May need to construct such a type if this is the first use. */
531
532struct type *
fba45db2 533lookup_function_type (struct type *type)
c906108c 534{
0c8b41f1 535 return make_function_type (type, (struct type **) 0);
c906108c
SS
536}
537
71918a86 538/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
539 function type. If the final type in PARAM_TYPES is NULL, make a
540 varargs function. */
71918a86
TT
541
542struct type *
543lookup_function_type_with_arguments (struct type *type,
544 int nparams,
545 struct type **param_types)
546{
547 struct type *fn = make_function_type (type, (struct type **) 0);
548 int i;
549
e314d629 550 if (nparams > 0)
a6fb9c08 551 {
e314d629
TT
552 if (param_types[nparams - 1] == NULL)
553 {
554 --nparams;
555 TYPE_VARARGS (fn) = 1;
556 }
78134374 557 else if (check_typedef (param_types[nparams - 1])->code ()
e314d629
TT
558 == TYPE_CODE_VOID)
559 {
560 --nparams;
561 /* Caller should have ensured this. */
562 gdb_assert (nparams == 0);
563 TYPE_PROTOTYPED (fn) = 1;
564 }
54990598
PA
565 else
566 TYPE_PROTOTYPED (fn) = 1;
a6fb9c08
TT
567 }
568
5e33d5f4 569 fn->set_num_fields (nparams);
3cabb6b0
SM
570 fn->set_fields
571 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
71918a86 572 for (i = 0; i < nparams; ++i)
5d14b6e5 573 fn->field (i).set_type (param_types[i]);
71918a86
TT
574
575 return fn;
576}
577
47663de5
MS
578/* Identify address space identifier by name --
579 return the integer flag defined in gdbtypes.h. */
5212577a
DE
580
581int
61f4b350
TT
582address_space_name_to_int (struct gdbarch *gdbarch,
583 const char *space_identifier)
47663de5 584{
8b2dbe47 585 int type_flags;
d8734c88 586
7ba81444 587 /* Check for known address space delimiters. */
47663de5 588 if (!strcmp (space_identifier, "code"))
876cecd0 589 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 590 else if (!strcmp (space_identifier, "data"))
876cecd0 591 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
592 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
593 && gdbarch_address_class_name_to_type_flags (gdbarch,
594 space_identifier,
595 &type_flags))
8b2dbe47 596 return type_flags;
47663de5 597 else
8a3fe4f8 598 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
599}
600
601/* Identify address space identifier by integer flag as defined in
7ba81444 602 gdbtypes.h -- return the string version of the adress space name. */
47663de5 603
321432c0 604const char *
50810684 605address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 606{
876cecd0 607 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 608 return "code";
876cecd0 609 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 610 return "data";
876cecd0 611 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
612 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
613 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
614 else
615 return NULL;
616}
617
2fdde8f8 618/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
619
620 If STORAGE is non-NULL, create the new type instance there.
621 STORAGE must be in the same obstack as TYPE. */
47663de5 622
b9362cc7 623static struct type *
2fdde8f8
DJ
624make_qualified_type (struct type *type, int new_flags,
625 struct type *storage)
47663de5
MS
626{
627 struct type *ntype;
628
629 ntype = type;
5f61c20e
JK
630 do
631 {
632 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
633 return ntype;
634 ntype = TYPE_CHAIN (ntype);
635 }
636 while (ntype != type);
47663de5 637
2fdde8f8
DJ
638 /* Create a new type instance. */
639 if (storage == NULL)
640 ntype = alloc_type_instance (type);
641 else
642 {
7ba81444
MS
643 /* If STORAGE was provided, it had better be in the same objfile
644 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
645 if one objfile is freed and the other kept, we'd have
646 dangling pointers. */
ad766c0a
JB
647 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
648
2fdde8f8
DJ
649 ntype = storage;
650 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
651 TYPE_CHAIN (ntype) = ntype;
652 }
47663de5
MS
653
654 /* Pointers or references to the original type are not relevant to
2fdde8f8 655 the new type. */
47663de5
MS
656 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
657 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 658
2fdde8f8
DJ
659 /* Chain the new qualified type to the old type. */
660 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
661 TYPE_CHAIN (type) = ntype;
662
663 /* Now set the instance flags and return the new type. */
664 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 665
ab5d3da6
KB
666 /* Set length of new type to that of the original type. */
667 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
668
47663de5
MS
669 return ntype;
670}
671
2fdde8f8
DJ
672/* Make an address-space-delimited variant of a type -- a type that
673 is identical to the one supplied except that it has an address
674 space attribute attached to it (such as "code" or "data").
675
7ba81444
MS
676 The space attributes "code" and "data" are for Harvard
677 architectures. The address space attributes are for architectures
678 which have alternately sized pointers or pointers with alternate
679 representations. */
2fdde8f8
DJ
680
681struct type *
682make_type_with_address_space (struct type *type, int space_flag)
683{
2fdde8f8 684 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
685 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
686 | TYPE_INSTANCE_FLAG_DATA_SPACE
687 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
688 | space_flag);
689
690 return make_qualified_type (type, new_flags, NULL);
691}
c906108c
SS
692
693/* Make a "c-v" variant of a type -- a type that is identical to the
694 one supplied except that it may have const or volatile attributes
695 CNST is a flag for setting the const attribute
696 VOLTL is a flag for setting the volatile attribute
697 TYPE is the base type whose variant we are creating.
c906108c 698
ad766c0a
JB
699 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
700 storage to hold the new qualified type; *TYPEPTR and TYPE must be
701 in the same objfile. Otherwise, allocate fresh memory for the new
702 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
703 new type we construct. */
5212577a 704
c906108c 705struct type *
7ba81444
MS
706make_cv_type (int cnst, int voltl,
707 struct type *type,
708 struct type **typeptr)
c906108c 709{
52f0bd74 710 struct type *ntype; /* New type */
c906108c 711
2fdde8f8 712 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
713 & ~(TYPE_INSTANCE_FLAG_CONST
714 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 715
c906108c 716 if (cnst)
876cecd0 717 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
718
719 if (voltl)
876cecd0 720 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 721
2fdde8f8 722 if (typeptr && *typeptr != NULL)
a02fd225 723 {
ad766c0a
JB
724 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
725 a C-V variant chain that threads across objfiles: if one
726 objfile gets freed, then the other has a broken C-V chain.
727
728 This code used to try to copy over the main type from TYPE to
729 *TYPEPTR if they were in different objfiles, but that's
730 wrong, too: TYPE may have a field list or member function
731 lists, which refer to types of their own, etc. etc. The
732 whole shebang would need to be copied over recursively; you
733 can't have inter-objfile pointers. The only thing to do is
734 to leave stub types as stub types, and look them up afresh by
735 name each time you encounter them. */
736 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
737 }
738
7ba81444
MS
739 ntype = make_qualified_type (type, new_flags,
740 typeptr ? *typeptr : NULL);
c906108c 741
2fdde8f8
DJ
742 if (typeptr != NULL)
743 *typeptr = ntype;
a02fd225 744
2fdde8f8 745 return ntype;
a02fd225 746}
c906108c 747
06d66ee9
TT
748/* Make a 'restrict'-qualified version of TYPE. */
749
750struct type *
751make_restrict_type (struct type *type)
752{
753 return make_qualified_type (type,
754 (TYPE_INSTANCE_FLAGS (type)
755 | TYPE_INSTANCE_FLAG_RESTRICT),
756 NULL);
757}
758
f1660027
TT
759/* Make a type without const, volatile, or restrict. */
760
761struct type *
762make_unqualified_type (struct type *type)
763{
764 return make_qualified_type (type,
765 (TYPE_INSTANCE_FLAGS (type)
766 & ~(TYPE_INSTANCE_FLAG_CONST
767 | TYPE_INSTANCE_FLAG_VOLATILE
768 | TYPE_INSTANCE_FLAG_RESTRICT)),
769 NULL);
770}
771
a2c2acaf
MW
772/* Make a '_Atomic'-qualified version of TYPE. */
773
774struct type *
775make_atomic_type (struct type *type)
776{
777 return make_qualified_type (type,
778 (TYPE_INSTANCE_FLAGS (type)
779 | TYPE_INSTANCE_FLAG_ATOMIC),
780 NULL);
781}
782
2fdde8f8
DJ
783/* Replace the contents of ntype with the type *type. This changes the
784 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
785 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 786
cda6c68a
JB
787 In order to build recursive types, it's inevitable that we'll need
788 to update types in place --- but this sort of indiscriminate
789 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
790 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
791 clear if more steps are needed. */
5212577a 792
dd6bda65
DJ
793void
794replace_type (struct type *ntype, struct type *type)
795{
ab5d3da6 796 struct type *chain;
dd6bda65 797
ad766c0a
JB
798 /* These two types had better be in the same objfile. Otherwise,
799 the assignment of one type's main type structure to the other
800 will produce a type with references to objects (names; field
801 lists; etc.) allocated on an objfile other than its own. */
e46dd0f4 802 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
ad766c0a 803
2fdde8f8 804 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 805
7ba81444
MS
806 /* The type length is not a part of the main type. Update it for
807 each type on the variant chain. */
ab5d3da6 808 chain = ntype;
5f61c20e
JK
809 do
810 {
811 /* Assert that this element of the chain has no address-class bits
812 set in its flags. Such type variants might have type lengths
813 which are supposed to be different from the non-address-class
814 variants. This assertion shouldn't ever be triggered because
815 symbol readers which do construct address-class variants don't
816 call replace_type(). */
817 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
818
819 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
820 chain = TYPE_CHAIN (chain);
821 }
822 while (ntype != chain);
ab5d3da6 823
2fdde8f8
DJ
824 /* Assert that the two types have equivalent instance qualifiers.
825 This should be true for at least all of our debug readers. */
826 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
827}
828
c906108c
SS
829/* Implement direct support for MEMBER_TYPE in GNU C++.
830 May need to construct such a type if this is the first use.
831 The TYPE is the type of the member. The DOMAIN is the type
832 of the aggregate that the member belongs to. */
833
834struct type *
0d5de010 835lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 836{
52f0bd74 837 struct type *mtype;
c906108c 838
e9bb382b 839 mtype = alloc_type_copy (type);
0d5de010 840 smash_to_memberptr_type (mtype, domain, type);
c16abbde 841 return mtype;
c906108c
SS
842}
843
0d5de010
DJ
844/* Return a pointer-to-method type, for a method of type TO_TYPE. */
845
846struct type *
847lookup_methodptr_type (struct type *to_type)
848{
849 struct type *mtype;
850
e9bb382b 851 mtype = alloc_type_copy (to_type);
0b92b5bb 852 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
853 return mtype;
854}
855
7ba81444
MS
856/* Allocate a stub method whose return type is TYPE. This apparently
857 happens for speed of symbol reading, since parsing out the
858 arguments to the method is cpu-intensive, the way we are doing it.
859 So, we will fill in arguments later. This always returns a fresh
860 type. */
c906108c
SS
861
862struct type *
fba45db2 863allocate_stub_method (struct type *type)
c906108c
SS
864{
865 struct type *mtype;
866
e9bb382b 867 mtype = alloc_type_copy (type);
67607e24 868 mtype->set_code (TYPE_CODE_METHOD);
e9bb382b
UW
869 TYPE_LENGTH (mtype) = 1;
870 TYPE_STUB (mtype) = 1;
c906108c 871 TYPE_TARGET_TYPE (mtype) = type;
4bfb94b8 872 /* TYPE_SELF_TYPE (mtype) = unknown yet */
c16abbde 873 return mtype;
c906108c
SS
874}
875
0f59d5fc
PA
876/* See gdbtypes.h. */
877
878bool
879operator== (const dynamic_prop &l, const dynamic_prop &r)
880{
8c2e4e06 881 if (l.kind () != r.kind ())
0f59d5fc
PA
882 return false;
883
8c2e4e06 884 switch (l.kind ())
0f59d5fc
PA
885 {
886 case PROP_UNDEFINED:
887 return true;
888 case PROP_CONST:
8c2e4e06 889 return l.const_val () == r.const_val ();
0f59d5fc
PA
890 case PROP_ADDR_OFFSET:
891 case PROP_LOCEXPR:
892 case PROP_LOCLIST:
8c2e4e06 893 return l.baton () == r.baton ();
ef83a141 894 case PROP_VARIANT_PARTS:
8c2e4e06 895 return l.variant_parts () == r.variant_parts ();
ef83a141 896 case PROP_TYPE:
8c2e4e06 897 return l.original_type () == r.original_type ();
0f59d5fc
PA
898 }
899
900 gdb_assert_not_reached ("unhandled dynamic_prop kind");
901}
902
903/* See gdbtypes.h. */
904
905bool
906operator== (const range_bounds &l, const range_bounds &r)
907{
908#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
909
910 return (FIELD_EQ (low)
911 && FIELD_EQ (high)
912 && FIELD_EQ (flag_upper_bound_is_count)
4e962e74
TT
913 && FIELD_EQ (flag_bound_evaluated)
914 && FIELD_EQ (bias));
0f59d5fc
PA
915
916#undef FIELD_EQ
917}
918
729efb13
SA
919/* Create a range type with a dynamic range from LOW_BOUND to
920 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
921
922struct type *
729efb13
SA
923create_range_type (struct type *result_type, struct type *index_type,
924 const struct dynamic_prop *low_bound,
4e962e74
TT
925 const struct dynamic_prop *high_bound,
926 LONGEST bias)
c906108c 927{
b86352cf
AB
928 /* The INDEX_TYPE should be a type capable of holding the upper and lower
929 bounds, as such a zero sized, or void type makes no sense. */
78134374 930 gdb_assert (index_type->code () != TYPE_CODE_VOID);
b86352cf
AB
931 gdb_assert (TYPE_LENGTH (index_type) > 0);
932
c906108c 933 if (result_type == NULL)
e9bb382b 934 result_type = alloc_type_copy (index_type);
67607e24 935 result_type->set_code (TYPE_CODE_RANGE);
c906108c 936 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 937 if (TYPE_STUB (index_type))
876cecd0 938 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
939 else
940 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 941
c4dfcb36
SM
942 range_bounds *bounds
943 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
944 bounds->low = *low_bound;
945 bounds->high = *high_bound;
946 bounds->bias = bias;
8c2e4e06 947 bounds->stride.set_const_val (0);
c4dfcb36
SM
948
949 result_type->set_bounds (bounds);
5bbd8269 950
8c2e4e06 951 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
876cecd0 952 TYPE_UNSIGNED (result_type) = 1;
c906108c 953
45e44d27
JB
954 /* Ada allows the declaration of range types whose upper bound is
955 less than the lower bound, so checking the lower bound is not
956 enough. Make sure we do not mark a range type whose upper bound
957 is negative as unsigned. */
8c2e4e06 958 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
45e44d27
JB
959 TYPE_UNSIGNED (result_type) = 0;
960
a05cf17a
TT
961 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
962 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
963
262452ec 964 return result_type;
c906108c
SS
965}
966
5bbd8269
AB
967/* See gdbtypes.h. */
968
969struct type *
970create_range_type_with_stride (struct type *result_type,
971 struct type *index_type,
972 const struct dynamic_prop *low_bound,
973 const struct dynamic_prop *high_bound,
974 LONGEST bias,
975 const struct dynamic_prop *stride,
976 bool byte_stride_p)
977{
978 result_type = create_range_type (result_type, index_type, low_bound,
979 high_bound, bias);
980
981 gdb_assert (stride != nullptr);
599088e3
SM
982 result_type->bounds ()->stride = *stride;
983 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
5bbd8269
AB
984
985 return result_type;
986}
987
988
989
729efb13
SA
990/* Create a range type using either a blank type supplied in
991 RESULT_TYPE, or creating a new type, inheriting the objfile from
992 INDEX_TYPE.
993
994 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
995 to HIGH_BOUND, inclusive.
996
997 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
998 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
999
1000struct type *
1001create_static_range_type (struct type *result_type, struct type *index_type,
1002 LONGEST low_bound, LONGEST high_bound)
1003{
1004 struct dynamic_prop low, high;
1005
8c2e4e06
SM
1006 low.set_const_val (low_bound);
1007 high.set_const_val (high_bound);
729efb13 1008
4e962e74 1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
729efb13
SA
1010
1011 return result_type;
1012}
1013
80180f79
SA
1014/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
5bbd8269 1017static bool
80180f79
SA
1018has_static_range (const struct range_bounds *bounds)
1019{
5bbd8269
AB
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
8c2e4e06
SM
1022 return (bounds->low.kind () == PROP_CONST
1023 && bounds->high.kind () == PROP_CONST
1024 && bounds->stride.kind () == PROP_CONST);
80180f79
SA
1025}
1026
1027
7ba81444 1028/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
7c6f2712
SM
1029 TYPE.
1030
1031 Return 1 if type is a range type with two defined, constant bounds.
1032 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1033 Else, return -1. */
c906108c
SS
1034
1035int
fba45db2 1036get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c 1037{
f168693b 1038 type = check_typedef (type);
78134374 1039 switch (type->code ())
c906108c
SS
1040 {
1041 case TYPE_CODE_RANGE:
7c6f2712
SM
1042 /* This function currently only works for ranges with two defined,
1043 constant bounds. */
1044 if (type->bounds ()->low.kind () != PROP_CONST
1045 || type->bounds ()->high.kind () != PROP_CONST)
1046 return -1;
1047
5537ddd0
SM
1048 *lowp = type->bounds ()->low.const_val ();
1049 *highp = type->bounds ()->high.const_val ();
7c6f2712 1050
53a47a3e
TT
1051 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1052 {
1053 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1054 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1055 return 0;
1056 }
c906108c
SS
1057 return 1;
1058 case TYPE_CODE_ENUM:
1f704f76 1059 if (type->num_fields () > 0)
c906108c
SS
1060 {
1061 /* The enums may not be sorted by value, so search all
0963b4bd 1062 entries. */
c906108c
SS
1063 int i;
1064
14e75d8e 1065 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1f704f76 1066 for (i = 0; i < type->num_fields (); i++)
c906108c 1067 {
14e75d8e
JK
1068 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1069 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1070 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1071 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
1072 }
1073
7ba81444 1074 /* Set unsigned indicator if warranted. */
c5aa993b 1075 if (*lowp >= 0)
c906108c 1076 {
876cecd0 1077 TYPE_UNSIGNED (type) = 1;
c906108c
SS
1078 }
1079 }
1080 else
1081 {
1082 *lowp = 0;
1083 *highp = -1;
1084 }
1085 return 0;
1086 case TYPE_CODE_BOOL:
1087 *lowp = 0;
1088 *highp = 1;
1089 return 0;
1090 case TYPE_CODE_INT:
c5aa993b 1091 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
1092 return -1;
1093 if (!TYPE_UNSIGNED (type))
1094 {
c5aa993b 1095 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
1096 *highp = -*lowp - 1;
1097 return 0;
1098 }
86a73007 1099 /* fall through */
c906108c
SS
1100 case TYPE_CODE_CHAR:
1101 *lowp = 0;
1102 /* This round-about calculation is to avoid shifting by
7b83ea04 1103 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 1104 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
1105 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1106 *highp = (*highp - 1) | *highp;
1107 return 0;
1108 default:
1109 return -1;
1110 }
1111}
1112
dbc98a8b
KW
1113/* Assuming TYPE is a simple, non-empty array type, compute its upper
1114 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1115 Save the high bound into HIGH_BOUND if not NULL.
1116
0963b4bd 1117 Return 1 if the operation was successful. Return zero otherwise,
7c6f2712 1118 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
dbc98a8b
KW
1119
1120int
1121get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1122{
3d967001 1123 struct type *index = type->index_type ();
dbc98a8b
KW
1124 LONGEST low = 0;
1125 LONGEST high = 0;
1126 int res;
1127
1128 if (index == NULL)
1129 return 0;
1130
1131 res = get_discrete_bounds (index, &low, &high);
1132 if (res == -1)
1133 return 0;
1134
dbc98a8b
KW
1135 if (low_bound)
1136 *low_bound = low;
1137
1138 if (high_bound)
1139 *high_bound = high;
1140
1141 return 1;
1142}
1143
aa715135
JG
1144/* Assuming that TYPE is a discrete type and VAL is a valid integer
1145 representation of a value of this type, save the corresponding
1146 position number in POS.
1147
1148 Its differs from VAL only in the case of enumeration types. In
1149 this case, the position number of the value of the first listed
1150 enumeration literal is zero; the position number of the value of
1151 each subsequent enumeration literal is one more than that of its
1152 predecessor in the list.
1153
1154 Return 1 if the operation was successful. Return zero otherwise,
1155 in which case the value of POS is unmodified.
1156*/
1157
1158int
1159discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1160{
0bc2354b
TT
1161 if (type->code () == TYPE_CODE_RANGE)
1162 type = TYPE_TARGET_TYPE (type);
1163
78134374 1164 if (type->code () == TYPE_CODE_ENUM)
aa715135
JG
1165 {
1166 int i;
1167
1f704f76 1168 for (i = 0; i < type->num_fields (); i += 1)
aa715135
JG
1169 {
1170 if (val == TYPE_FIELD_ENUMVAL (type, i))
1171 {
1172 *pos = i;
1173 return 1;
1174 }
1175 }
1176 /* Invalid enumeration value. */
1177 return 0;
1178 }
1179 else
1180 {
1181 *pos = val;
1182 return 1;
1183 }
1184}
1185
8dbb1375
HD
1186/* If the array TYPE has static bounds calculate and update its
1187 size, then return true. Otherwise return false and leave TYPE
1188 unchanged. */
1189
1190static bool
1191update_static_array_size (struct type *type)
1192{
78134374 1193 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8dbb1375 1194
3d967001 1195 struct type *range_type = type->index_type ();
8dbb1375 1196
24e99c6c 1197 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
599088e3 1198 && has_static_range (range_type->bounds ())
8dbb1375
HD
1199 && (!type_not_associated (type)
1200 && !type_not_allocated (type)))
1201 {
1202 LONGEST low_bound, high_bound;
1203 int stride;
1204 struct type *element_type;
1205
1206 /* If the array itself doesn't provide a stride value then take
1207 whatever stride the range provides. Don't update BIT_STRIDE as
1208 we don't want to place the stride value from the range into this
1209 arrays bit size field. */
1210 stride = TYPE_FIELD_BITSIZE (type, 0);
1211 if (stride == 0)
107406b7 1212 stride = range_type->bit_stride ();
8dbb1375
HD
1213
1214 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1215 low_bound = high_bound = 0;
1216 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1217 /* Be careful when setting the array length. Ada arrays can be
1218 empty arrays with the high_bound being smaller than the low_bound.
1219 In such cases, the array length should be zero. */
1220 if (high_bound < low_bound)
1221 TYPE_LENGTH (type) = 0;
1222 else if (stride != 0)
1223 {
1224 /* Ensure that the type length is always positive, even in the
1225 case where (for example in Fortran) we have a negative
1226 stride. It is possible to have a single element array with a
1227 negative stride in Fortran (this doesn't mean anything
1228 special, it's still just a single element array) so do
1229 consider that case when touching this code. */
1230 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1231 TYPE_LENGTH (type)
1232 = ((std::abs (stride) * element_count) + 7) / 8;
1233 }
1234 else
1235 TYPE_LENGTH (type) =
1236 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1237
1238 return true;
1239 }
1240
1241 return false;
1242}
1243
7ba81444
MS
1244/* Create an array type using either a blank type supplied in
1245 RESULT_TYPE, or creating a new type, inheriting the objfile from
1246 RANGE_TYPE.
c906108c
SS
1247
1248 Elements will be of type ELEMENT_TYPE, the indices will be of type
1249 RANGE_TYPE.
1250
a405673c
JB
1251 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1252 This byte stride property is added to the resulting array type
1253 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1254 argument can only be used to create types that are objfile-owned
1255 (see add_dyn_prop), meaning that either this function must be called
1256 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1257
1258 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
dc53a7ad
JB
1259 If BIT_STRIDE is not zero, build a packed array type whose element
1260 size is BIT_STRIDE. Otherwise, ignore this parameter.
1261
7ba81444
MS
1262 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1263 sure it is TYPE_CODE_UNDEF before we bash it into an array
1264 type? */
c906108c
SS
1265
1266struct type *
dc53a7ad
JB
1267create_array_type_with_stride (struct type *result_type,
1268 struct type *element_type,
1269 struct type *range_type,
a405673c 1270 struct dynamic_prop *byte_stride_prop,
dc53a7ad 1271 unsigned int bit_stride)
c906108c 1272{
a405673c 1273 if (byte_stride_prop != NULL
8c2e4e06 1274 && byte_stride_prop->kind () == PROP_CONST)
a405673c
JB
1275 {
1276 /* The byte stride is actually not dynamic. Pretend we were
1277 called with bit_stride set instead of byte_stride_prop.
1278 This will give us the same result type, while avoiding
1279 the need to handle this as a special case. */
8c2e4e06 1280 bit_stride = byte_stride_prop->const_val () * 8;
a405673c
JB
1281 byte_stride_prop = NULL;
1282 }
1283
c906108c 1284 if (result_type == NULL)
e9bb382b
UW
1285 result_type = alloc_type_copy (range_type);
1286
67607e24 1287 result_type->set_code (TYPE_CODE_ARRAY);
c906108c 1288 TYPE_TARGET_TYPE (result_type) = element_type;
5bbd8269 1289
5e33d5f4 1290 result_type->set_num_fields (1);
3cabb6b0
SM
1291 result_type->set_fields
1292 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
262abc0d 1293 result_type->set_index_type (range_type);
8dbb1375 1294 if (byte_stride_prop != NULL)
5c54719c 1295 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
8dbb1375
HD
1296 else if (bit_stride > 0)
1297 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
80180f79 1298
8dbb1375 1299 if (!update_static_array_size (result_type))
80180f79
SA
1300 {
1301 /* This type is dynamic and its length needs to be computed
1302 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1303 undefined by setting it to zero. Although we are not expected
1304 to trust TYPE_LENGTH in this case, setting the size to zero
1305 allows us to avoid allocating objects of random sizes in case
1306 we accidently do. */
1307 TYPE_LENGTH (result_type) = 0;
1308 }
1309
a9ff5f12 1310 /* TYPE_TARGET_STUB will take care of zero length arrays. */
c906108c 1311 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1312 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1313
c16abbde 1314 return result_type;
c906108c
SS
1315}
1316
dc53a7ad
JB
1317/* Same as create_array_type_with_stride but with no bit_stride
1318 (BIT_STRIDE = 0), thus building an unpacked array. */
1319
1320struct type *
1321create_array_type (struct type *result_type,
1322 struct type *element_type,
1323 struct type *range_type)
1324{
1325 return create_array_type_with_stride (result_type, element_type,
a405673c 1326 range_type, NULL, 0);
dc53a7ad
JB
1327}
1328
e3506a9f
UW
1329struct type *
1330lookup_array_range_type (struct type *element_type,
63375b74 1331 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1332{
929b5ad4
JB
1333 struct type *index_type;
1334 struct type *range_type;
1335
1336 if (TYPE_OBJFILE_OWNED (element_type))
1337 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1338 else
1339 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1340 range_type = create_static_range_type (NULL, index_type,
1341 low_bound, high_bound);
d8734c88 1342
e3506a9f
UW
1343 return create_array_type (NULL, element_type, range_type);
1344}
1345
7ba81444
MS
1346/* Create a string type using either a blank type supplied in
1347 RESULT_TYPE, or creating a new type. String types are similar
1348 enough to array of char types that we can use create_array_type to
1349 build the basic type and then bash it into a string type.
c906108c
SS
1350
1351 For fixed length strings, the range type contains 0 as the lower
1352 bound and the length of the string minus one as the upper bound.
1353
7ba81444
MS
1354 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1355 sure it is TYPE_CODE_UNDEF before we bash it into a string
1356 type? */
c906108c
SS
1357
1358struct type *
3b7538c0
UW
1359create_string_type (struct type *result_type,
1360 struct type *string_char_type,
7ba81444 1361 struct type *range_type)
c906108c
SS
1362{
1363 result_type = create_array_type (result_type,
f290d38e 1364 string_char_type,
c906108c 1365 range_type);
67607e24 1366 result_type->set_code (TYPE_CODE_STRING);
c16abbde 1367 return result_type;
c906108c
SS
1368}
1369
e3506a9f
UW
1370struct type *
1371lookup_string_range_type (struct type *string_char_type,
63375b74 1372 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1373{
1374 struct type *result_type;
d8734c88 1375
e3506a9f
UW
1376 result_type = lookup_array_range_type (string_char_type,
1377 low_bound, high_bound);
67607e24 1378 result_type->set_code (TYPE_CODE_STRING);
e3506a9f
UW
1379 return result_type;
1380}
1381
c906108c 1382struct type *
fba45db2 1383create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1384{
c906108c 1385 if (result_type == NULL)
e9bb382b
UW
1386 result_type = alloc_type_copy (domain_type);
1387
67607e24 1388 result_type->set_code (TYPE_CODE_SET);
5e33d5f4 1389 result_type->set_num_fields (1);
3cabb6b0
SM
1390 result_type->set_fields
1391 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
c906108c 1392
74a9bb82 1393 if (!TYPE_STUB (domain_type))
c906108c 1394 {
f9780d5b 1395 LONGEST low_bound, high_bound, bit_length;
d8734c88 1396
c906108c
SS
1397 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1398 low_bound = high_bound = 0;
1399 bit_length = high_bound - low_bound + 1;
1400 TYPE_LENGTH (result_type)
1401 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1402 if (low_bound >= 0)
876cecd0 1403 TYPE_UNSIGNED (result_type) = 1;
c906108c 1404 }
5d14b6e5 1405 result_type->field (0).set_type (domain_type);
c906108c 1406
c16abbde 1407 return result_type;
c906108c
SS
1408}
1409
ea37ba09
DJ
1410/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1411 and any array types nested inside it. */
1412
1413void
1414make_vector_type (struct type *array_type)
1415{
1416 struct type *inner_array, *elt_type;
1417 int flags;
1418
1419 /* Find the innermost array type, in case the array is
1420 multi-dimensional. */
1421 inner_array = array_type;
78134374 1422 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
ea37ba09
DJ
1423 inner_array = TYPE_TARGET_TYPE (inner_array);
1424
1425 elt_type = TYPE_TARGET_TYPE (inner_array);
78134374 1426 if (elt_type->code () == TYPE_CODE_INT)
ea37ba09 1427 {
2844d6b5 1428 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1429 elt_type = make_qualified_type (elt_type, flags, NULL);
1430 TYPE_TARGET_TYPE (inner_array) = elt_type;
1431 }
1432
876cecd0 1433 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1434}
1435
794ac428 1436struct type *
ac3aafc7
EZ
1437init_vector_type (struct type *elt_type, int n)
1438{
1439 struct type *array_type;
d8734c88 1440
e3506a9f 1441 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1442 make_vector_type (array_type);
ac3aafc7
EZ
1443 return array_type;
1444}
1445
09e2d7c7
DE
1446/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1447 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1448 confusing. "self" is a common enough replacement for "this".
1449 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1450 TYPE_CODE_METHOD. */
1451
1452struct type *
1453internal_type_self_type (struct type *type)
1454{
78134374 1455 switch (type->code ())
09e2d7c7
DE
1456 {
1457 case TYPE_CODE_METHODPTR:
1458 case TYPE_CODE_MEMBERPTR:
eaaf76ab
DE
1459 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1460 return NULL;
09e2d7c7
DE
1461 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1462 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1463 case TYPE_CODE_METHOD:
eaaf76ab
DE
1464 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1465 return NULL;
09e2d7c7
DE
1466 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1467 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1468 default:
1469 gdb_assert_not_reached ("bad type");
1470 }
1471}
1472
1473/* Set the type of the class that TYPE belongs to.
1474 In c++ this is the class of "this".
1475 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1476 TYPE_CODE_METHOD. */
1477
1478void
1479set_type_self_type (struct type *type, struct type *self_type)
1480{
78134374 1481 switch (type->code ())
09e2d7c7
DE
1482 {
1483 case TYPE_CODE_METHODPTR:
1484 case TYPE_CODE_MEMBERPTR:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1488 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1489 break;
1490 case TYPE_CODE_METHOD:
1491 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1492 INIT_FUNC_SPECIFIC (type);
1493 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1494 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1495 break;
1496 default:
1497 gdb_assert_not_reached ("bad type");
1498 }
1499}
1500
1501/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
0d5de010
DJ
1502 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1503 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1504 TYPE doesn't include the offset (that's the value of the MEMBER
1505 itself), but does include the structure type into which it points
1506 (for some reason).
c906108c 1507
7ba81444
MS
1508 When "smashing" the type, we preserve the objfile that the old type
1509 pointed to, since we aren't changing where the type is actually
c906108c
SS
1510 allocated. */
1511
1512void
09e2d7c7 1513smash_to_memberptr_type (struct type *type, struct type *self_type,
0d5de010 1514 struct type *to_type)
c906108c 1515{
2fdde8f8 1516 smash_type (type);
67607e24 1517 type->set_code (TYPE_CODE_MEMBERPTR);
c906108c 1518 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1519 set_type_self_type (type, self_type);
0d5de010
DJ
1520 /* Assume that a data member pointer is the same size as a normal
1521 pointer. */
50810684
UW
1522 TYPE_LENGTH (type)
1523 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
c906108c
SS
1524}
1525
0b92b5bb
TT
1526/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1527
1528 When "smashing" the type, we preserve the objfile that the old type
1529 pointed to, since we aren't changing where the type is actually
1530 allocated. */
1531
1532void
1533smash_to_methodptr_type (struct type *type, struct type *to_type)
1534{
1535 smash_type (type);
67607e24 1536 type->set_code (TYPE_CODE_METHODPTR);
0b92b5bb 1537 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1538 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
0b92b5bb 1539 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
0b92b5bb
TT
1540}
1541
09e2d7c7 1542/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
c906108c
SS
1543 METHOD just means `function that gets an extra "this" argument'.
1544
7ba81444
MS
1545 When "smashing" the type, we preserve the objfile that the old type
1546 pointed to, since we aren't changing where the type is actually
c906108c
SS
1547 allocated. */
1548
1549void
09e2d7c7 1550smash_to_method_type (struct type *type, struct type *self_type,
ad2f7632
DJ
1551 struct type *to_type, struct field *args,
1552 int nargs, int varargs)
c906108c 1553{
2fdde8f8 1554 smash_type (type);
67607e24 1555 type->set_code (TYPE_CODE_METHOD);
c906108c 1556 TYPE_TARGET_TYPE (type) = to_type;
09e2d7c7 1557 set_type_self_type (type, self_type);
3cabb6b0 1558 type->set_fields (args);
5e33d5f4 1559 type->set_num_fields (nargs);
ad2f7632 1560 if (varargs)
876cecd0 1561 TYPE_VARARGS (type) = 1;
c906108c 1562 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
c906108c
SS
1563}
1564
a737d952 1565/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
d8228535
JK
1566 Since GCC PR debug/47510 DWARF provides associated information to detect the
1567 anonymous class linkage name from its typedef.
1568
1569 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1570 apply it itself. */
1571
1572const char *
a737d952 1573type_name_or_error (struct type *type)
d8228535
JK
1574{
1575 struct type *saved_type = type;
1576 const char *name;
1577 struct objfile *objfile;
1578
f168693b 1579 type = check_typedef (type);
d8228535 1580
7d93a1e0 1581 name = type->name ();
d8228535
JK
1582 if (name != NULL)
1583 return name;
1584
7d93a1e0 1585 name = saved_type->name ();
d8228535
JK
1586 objfile = TYPE_OBJFILE (saved_type);
1587 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1588 name ? name : "<anonymous>",
1589 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1590}
1591
7ba81444
MS
1592/* Lookup a typedef or primitive type named NAME, visible in lexical
1593 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1594 suitably defined. */
c906108c
SS
1595
1596struct type *
e6c014f2 1597lookup_typename (const struct language_defn *language,
b858499d 1598 const char *name,
34eaf542 1599 const struct block *block, int noerr)
c906108c 1600{
52f0bd74 1601 struct symbol *sym;
c906108c 1602
1994afbf 1603 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
d12307c1 1604 language->la_language, NULL).symbol;
c51fe631
DE
1605 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1606 return SYMBOL_TYPE (sym);
1607
c51fe631
DE
1608 if (noerr)
1609 return NULL;
1610 error (_("No type named %s."), name);
c906108c
SS
1611}
1612
1613struct type *
e6c014f2 1614lookup_unsigned_typename (const struct language_defn *language,
b858499d 1615 const char *name)
c906108c 1616{
224c3ddb 1617 char *uns = (char *) alloca (strlen (name) + 10);
c906108c
SS
1618
1619 strcpy (uns, "unsigned ");
1620 strcpy (uns + 9, name);
b858499d 1621 return lookup_typename (language, uns, NULL, 0);
c906108c
SS
1622}
1623
1624struct type *
b858499d 1625lookup_signed_typename (const struct language_defn *language, const char *name)
c906108c
SS
1626{
1627 struct type *t;
224c3ddb 1628 char *uns = (char *) alloca (strlen (name) + 8);
c906108c
SS
1629
1630 strcpy (uns, "signed ");
1631 strcpy (uns + 7, name);
b858499d 1632 t = lookup_typename (language, uns, NULL, 1);
7ba81444 1633 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1634 if (t != NULL)
1635 return t;
b858499d 1636 return lookup_typename (language, name, NULL, 0);
c906108c
SS
1637}
1638
1639/* Lookup a structure type named "struct NAME",
1640 visible in lexical block BLOCK. */
1641
1642struct type *
270140bd 1643lookup_struct (const char *name, const struct block *block)
c906108c 1644{
52f0bd74 1645 struct symbol *sym;
c906108c 1646
d12307c1 1647 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1648
1649 if (sym == NULL)
1650 {
8a3fe4f8 1651 error (_("No struct type named %s."), name);
c906108c 1652 }
78134374 1653 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
c906108c 1654 {
7ba81444
MS
1655 error (_("This context has class, union or enum %s, not a struct."),
1656 name);
c906108c
SS
1657 }
1658 return (SYMBOL_TYPE (sym));
1659}
1660
1661/* Lookup a union type named "union NAME",
1662 visible in lexical block BLOCK. */
1663
1664struct type *
270140bd 1665lookup_union (const char *name, const struct block *block)
c906108c 1666{
52f0bd74 1667 struct symbol *sym;
c5aa993b 1668 struct type *t;
c906108c 1669
d12307c1 1670 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1671
1672 if (sym == NULL)
8a3fe4f8 1673 error (_("No union type named %s."), name);
c906108c 1674
c5aa993b 1675 t = SYMBOL_TYPE (sym);
c906108c 1676
78134374 1677 if (t->code () == TYPE_CODE_UNION)
c16abbde 1678 return t;
c906108c 1679
7ba81444
MS
1680 /* If we get here, it's not a union. */
1681 error (_("This context has class, struct or enum %s, not a union."),
1682 name);
c906108c
SS
1683}
1684
c906108c
SS
1685/* Lookup an enum type named "enum NAME",
1686 visible in lexical block BLOCK. */
1687
1688struct type *
270140bd 1689lookup_enum (const char *name, const struct block *block)
c906108c 1690{
52f0bd74 1691 struct symbol *sym;
c906108c 1692
d12307c1 1693 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
1694 if (sym == NULL)
1695 {
8a3fe4f8 1696 error (_("No enum type named %s."), name);
c906108c 1697 }
78134374 1698 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
c906108c 1699 {
7ba81444
MS
1700 error (_("This context has class, struct or union %s, not an enum."),
1701 name);
c906108c
SS
1702 }
1703 return (SYMBOL_TYPE (sym));
1704}
1705
1706/* Lookup a template type named "template NAME<TYPE>",
1707 visible in lexical block BLOCK. */
1708
1709struct type *
61f4b350 1710lookup_template_type (const char *name, struct type *type,
270140bd 1711 const struct block *block)
c906108c
SS
1712{
1713 struct symbol *sym;
7ba81444 1714 char *nam = (char *)
7d93a1e0 1715 alloca (strlen (name) + strlen (type->name ()) + 4);
d8734c88 1716
c906108c
SS
1717 strcpy (nam, name);
1718 strcat (nam, "<");
7d93a1e0 1719 strcat (nam, type->name ());
0963b4bd 1720 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1721
d12307c1 1722 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
c906108c
SS
1723
1724 if (sym == NULL)
1725 {
8a3fe4f8 1726 error (_("No template type named %s."), name);
c906108c 1727 }
78134374 1728 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
c906108c 1729 {
7ba81444
MS
1730 error (_("This context has class, union or enum %s, not a struct."),
1731 name);
c906108c
SS
1732 }
1733 return (SYMBOL_TYPE (sym));
1734}
1735
ef0bd204 1736/* See gdbtypes.h. */
c906108c 1737
ef0bd204
JB
1738struct_elt
1739lookup_struct_elt (struct type *type, const char *name, int noerr)
c906108c
SS
1740{
1741 int i;
1742
1743 for (;;)
1744 {
f168693b 1745 type = check_typedef (type);
78134374
SM
1746 if (type->code () != TYPE_CODE_PTR
1747 && type->code () != TYPE_CODE_REF)
c906108c
SS
1748 break;
1749 type = TYPE_TARGET_TYPE (type);
1750 }
1751
78134374
SM
1752 if (type->code () != TYPE_CODE_STRUCT
1753 && type->code () != TYPE_CODE_UNION)
c906108c 1754 {
2f408ecb
PA
1755 std::string type_name = type_to_string (type);
1756 error (_("Type %s is not a structure or union type."),
1757 type_name.c_str ());
c906108c
SS
1758 }
1759
1f704f76 1760 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
c906108c 1761 {
0d5cff50 1762 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1763
db577aea 1764 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c 1765 {
ceacbf6e 1766 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
c906108c 1767 }
f5a010c0
PM
1768 else if (!t_field_name || *t_field_name == '\0')
1769 {
ef0bd204 1770 struct_elt elt
940da03e 1771 = lookup_struct_elt (type->field (i).type (), name, 1);
ef0bd204
JB
1772 if (elt.field != NULL)
1773 {
1774 elt.offset += TYPE_FIELD_BITPOS (type, i);
1775 return elt;
1776 }
f5a010c0 1777 }
c906108c
SS
1778 }
1779
1780 /* OK, it's not in this class. Recursively check the baseclasses. */
1781 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1782 {
ef0bd204
JB
1783 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1784 if (elt.field != NULL)
1785 return elt;
c906108c
SS
1786 }
1787
1788 if (noerr)
ef0bd204 1789 return {nullptr, 0};
c5aa993b 1790
2f408ecb
PA
1791 std::string type_name = type_to_string (type);
1792 error (_("Type %s has no component named %s."), type_name.c_str (), name);
c906108c
SS
1793}
1794
ef0bd204
JB
1795/* See gdbtypes.h. */
1796
1797struct type *
1798lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1799{
1800 struct_elt elt = lookup_struct_elt (type, name, noerr);
1801 if (elt.field != NULL)
b6cdac4b 1802 return elt.field->type ();
ef0bd204
JB
1803 else
1804 return NULL;
1805}
1806
ed3ef339
DE
1807/* Store in *MAX the largest number representable by unsigned integer type
1808 TYPE. */
1809
1810void
1811get_unsigned_type_max (struct type *type, ULONGEST *max)
1812{
1813 unsigned int n;
1814
f168693b 1815 type = check_typedef (type);
78134374 1816 gdb_assert (type->code () == TYPE_CODE_INT && TYPE_UNSIGNED (type));
ed3ef339
DE
1817 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1818
1819 /* Written this way to avoid overflow. */
1820 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1821 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1822}
1823
1824/* Store in *MIN, *MAX the smallest and largest numbers representable by
1825 signed integer type TYPE. */
1826
1827void
1828get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1829{
1830 unsigned int n;
1831
f168693b 1832 type = check_typedef (type);
78134374 1833 gdb_assert (type->code () == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
ed3ef339
DE
1834 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1835
1836 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1837 *min = -((ULONGEST) 1 << (n - 1));
1838 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1839}
1840
ae6ae975
DE
1841/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1842 cplus_stuff.vptr_fieldno.
1843
1844 cplus_stuff is initialized to cplus_struct_default which does not
1845 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1846 designated initializers). We cope with that here. */
1847
1848int
1849internal_type_vptr_fieldno (struct type *type)
1850{
f168693b 1851 type = check_typedef (type);
78134374
SM
1852 gdb_assert (type->code () == TYPE_CODE_STRUCT
1853 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1854 if (!HAVE_CPLUS_STRUCT (type))
1855 return -1;
1856 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1857}
1858
1859/* Set the value of cplus_stuff.vptr_fieldno. */
1860
1861void
1862set_type_vptr_fieldno (struct type *type, int fieldno)
1863{
f168693b 1864 type = check_typedef (type);
78134374
SM
1865 gdb_assert (type->code () == TYPE_CODE_STRUCT
1866 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1867 if (!HAVE_CPLUS_STRUCT (type))
1868 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1869 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1870}
1871
1872/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1873 cplus_stuff.vptr_basetype. */
1874
1875struct type *
1876internal_type_vptr_basetype (struct type *type)
1877{
f168693b 1878 type = check_typedef (type);
78134374
SM
1879 gdb_assert (type->code () == TYPE_CODE_STRUCT
1880 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1881 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1882 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1883}
1884
1885/* Set the value of cplus_stuff.vptr_basetype. */
1886
1887void
1888set_type_vptr_basetype (struct type *type, struct type *basetype)
1889{
f168693b 1890 type = check_typedef (type);
78134374
SM
1891 gdb_assert (type->code () == TYPE_CODE_STRUCT
1892 || type->code () == TYPE_CODE_UNION);
ae6ae975
DE
1893 if (!HAVE_CPLUS_STRUCT (type))
1894 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1895 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1896}
1897
81fe8080
DE
1898/* Lookup the vptr basetype/fieldno values for TYPE.
1899 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1900 vptr_fieldno. Also, if found and basetype is from the same objfile,
1901 cache the results.
1902 If not found, return -1 and ignore BASETYPEP.
1903 Callers should be aware that in some cases (for example,
c906108c 1904 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1905 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1906 this function will not be able to find the
7ba81444 1907 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1908 vptr_basetype will remain NULL or incomplete. */
c906108c 1909
81fe8080
DE
1910int
1911get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c 1912{
f168693b 1913 type = check_typedef (type);
c906108c
SS
1914
1915 if (TYPE_VPTR_FIELDNO (type) < 0)
1916 {
1917 int i;
1918
7ba81444
MS
1919 /* We must start at zero in case the first (and only) baseclass
1920 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1921 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1922 {
81fe8080
DE
1923 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1924 int fieldno;
1925 struct type *basetype;
1926
1927 fieldno = get_vptr_fieldno (baseclass, &basetype);
1928 if (fieldno >= 0)
c906108c 1929 {
81fe8080 1930 /* If the type comes from a different objfile we can't cache
0963b4bd 1931 it, it may have a different lifetime. PR 2384 */
5ef73790 1932 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080 1933 {
ae6ae975
DE
1934 set_type_vptr_fieldno (type, fieldno);
1935 set_type_vptr_basetype (type, basetype);
81fe8080
DE
1936 }
1937 if (basetypep)
1938 *basetypep = basetype;
1939 return fieldno;
c906108c
SS
1940 }
1941 }
81fe8080
DE
1942
1943 /* Not found. */
1944 return -1;
1945 }
1946 else
1947 {
1948 if (basetypep)
1949 *basetypep = TYPE_VPTR_BASETYPE (type);
1950 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1951 }
1952}
1953
44e1a9eb
DJ
1954static void
1955stub_noname_complaint (void)
1956{
b98664d3 1957 complaint (_("stub type has NULL name"));
44e1a9eb
DJ
1958}
1959
a405673c
JB
1960/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1961 attached to it, and that property has a non-constant value. */
1962
1963static int
1964array_type_has_dynamic_stride (struct type *type)
1965{
24e99c6c 1966 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c 1967
8c2e4e06 1968 return (prop != NULL && prop->kind () != PROP_CONST);
a405673c
JB
1969}
1970
d98b7a16 1971/* Worker for is_dynamic_type. */
80180f79 1972
d98b7a16 1973static int
ee715b5a 1974is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1975{
1976 type = check_typedef (type);
1977
e771e4be 1978 /* We only want to recognize references at the outermost level. */
78134374 1979 if (top_level && type->code () == TYPE_CODE_REF)
e771e4be
PMR
1980 type = check_typedef (TYPE_TARGET_TYPE (type));
1981
3cdcd0ce
JB
1982 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1983 dynamic, even if the type itself is statically defined.
1984 From a user's point of view, this may appear counter-intuitive;
1985 but it makes sense in this context, because the point is to determine
1986 whether any part of the type needs to be resolved before it can
1987 be exploited. */
1988 if (TYPE_DATA_LOCATION (type) != NULL
1989 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1990 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1991 return 1;
1992
3f2f83dd
KB
1993 if (TYPE_ASSOCIATED_PROP (type))
1994 return 1;
1995
1996 if (TYPE_ALLOCATED_PROP (type))
1997 return 1;
1998
24e99c6c 1999 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
8c2e4e06 2000 if (prop != nullptr && prop->kind () != PROP_TYPE)
ef83a141
TT
2001 return 1;
2002
f8e89861
TT
2003 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2004 return 1;
2005
78134374 2006 switch (type->code ())
80180f79 2007 {
6f8a3220 2008 case TYPE_CODE_RANGE:
ddb87a81
JB
2009 {
2010 /* A range type is obviously dynamic if it has at least one
2011 dynamic bound. But also consider the range type to be
2012 dynamic when its subtype is dynamic, even if the bounds
2013 of the range type are static. It allows us to assume that
2014 the subtype of a static range type is also static. */
599088e3 2015 return (!has_static_range (type->bounds ())
ee715b5a 2016 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
ddb87a81 2017 }
6f8a3220 2018
216a7e6b
AB
2019 case TYPE_CODE_STRING:
2020 /* Strings are very much like an array of characters, and can be
2021 treated as one here. */
80180f79
SA
2022 case TYPE_CODE_ARRAY:
2023 {
1f704f76 2024 gdb_assert (type->num_fields () == 1);
6f8a3220 2025
a405673c 2026 /* The array is dynamic if either the bounds are dynamic... */
3d967001 2027 if (is_dynamic_type_internal (type->index_type (), 0))
80180f79 2028 return 1;
a405673c
JB
2029 /* ... or the elements it contains have a dynamic contents... */
2030 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2031 return 1;
2032 /* ... or if it has a dynamic stride... */
2033 if (array_type_has_dynamic_stride (type))
2034 return 1;
2035 return 0;
80180f79 2036 }
012370f6
TT
2037
2038 case TYPE_CODE_STRUCT:
2039 case TYPE_CODE_UNION:
2040 {
2041 int i;
2042
7d79de9a
TT
2043 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2044
1f704f76 2045 for (i = 0; i < type->num_fields (); ++i)
7d79de9a
TT
2046 {
2047 /* Static fields can be ignored here. */
ceacbf6e 2048 if (field_is_static (&type->field (i)))
7d79de9a
TT
2049 continue;
2050 /* If the field has dynamic type, then so does TYPE. */
940da03e 2051 if (is_dynamic_type_internal (type->field (i).type (), 0))
7d79de9a
TT
2052 return 1;
2053 /* If the field is at a fixed offset, then it is not
2054 dynamic. */
2055 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2056 continue;
2057 /* Do not consider C++ virtual base types to be dynamic
2058 due to the field's offset being dynamic; these are
2059 handled via other means. */
2060 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2061 continue;
012370f6 2062 return 1;
7d79de9a 2063 }
012370f6
TT
2064 }
2065 break;
80180f79 2066 }
92e2a17f
TT
2067
2068 return 0;
80180f79
SA
2069}
2070
d98b7a16
TT
2071/* See gdbtypes.h. */
2072
2073int
2074is_dynamic_type (struct type *type)
2075{
ee715b5a 2076 return is_dynamic_type_internal (type, 1);
d98b7a16
TT
2077}
2078
df25ebbd 2079static struct type *resolve_dynamic_type_internal
ee715b5a 2080 (struct type *type, struct property_addr_info *addr_stack, int top_level);
d98b7a16 2081
df25ebbd
JB
2082/* Given a dynamic range type (dyn_range_type) and a stack of
2083 struct property_addr_info elements, return a static version
2084 of that type. */
d190df30 2085
80180f79 2086static struct type *
df25ebbd
JB
2087resolve_dynamic_range (struct type *dyn_range_type,
2088 struct property_addr_info *addr_stack)
80180f79
SA
2089{
2090 CORE_ADDR value;
ddb87a81 2091 struct type *static_range_type, *static_target_type;
5bbd8269 2092 struct dynamic_prop low_bound, high_bound, stride;
80180f79 2093
78134374 2094 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
80180f79 2095
599088e3 2096 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
63e43d3a 2097 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2098 low_bound.set_const_val (value);
80180f79 2099 else
8c2e4e06 2100 low_bound.set_undefined ();
80180f79 2101
599088e3 2102 prop = &dyn_range_type->bounds ()->high;
63e43d3a 2103 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
80180f79 2104 {
8c2e4e06 2105 high_bound.set_const_val (value);
c451ebe5 2106
599088e3 2107 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
8c2e4e06
SM
2108 high_bound.set_const_val
2109 (low_bound.const_val () + high_bound.const_val () - 1);
80180f79
SA
2110 }
2111 else
8c2e4e06 2112 high_bound.set_undefined ();
80180f79 2113
599088e3
SM
2114 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2115 prop = &dyn_range_type->bounds ()->stride;
5bbd8269
AB
2116 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2117 {
8c2e4e06 2118 stride.set_const_val (value);
5bbd8269
AB
2119
2120 /* If we have a bit stride that is not an exact number of bytes then
2121 I really don't think this is going to work with current GDB, the
2122 array indexing code in GDB seems to be pretty heavily tied to byte
2123 offsets right now. Assuming 8 bits in a byte. */
2124 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2125 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2126 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2127 error (_("bit strides that are not a multiple of the byte size "
2128 "are currently not supported"));
2129 }
2130 else
2131 {
8c2e4e06 2132 stride.set_undefined ();
5bbd8269
AB
2133 byte_stride_p = true;
2134 }
2135
ddb87a81
JB
2136 static_target_type
2137 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
ee715b5a 2138 addr_stack, 0);
599088e3 2139 LONGEST bias = dyn_range_type->bounds ()->bias;
5bbd8269
AB
2140 static_range_type = create_range_type_with_stride
2141 (copy_type (dyn_range_type), static_target_type,
2142 &low_bound, &high_bound, bias, &stride, byte_stride_p);
599088e3 2143 static_range_type->bounds ()->flag_bound_evaluated = 1;
6f8a3220
JB
2144 return static_range_type;
2145}
2146
216a7e6b
AB
2147/* Resolves dynamic bound values of an array or string type TYPE to static
2148 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2149 needed during the dynamic resolution. */
6f8a3220
JB
2150
2151static struct type *
216a7e6b
AB
2152resolve_dynamic_array_or_string (struct type *type,
2153 struct property_addr_info *addr_stack)
6f8a3220
JB
2154{
2155 CORE_ADDR value;
2156 struct type *elt_type;
2157 struct type *range_type;
2158 struct type *ary_dim;
3f2f83dd 2159 struct dynamic_prop *prop;
a405673c 2160 unsigned int bit_stride = 0;
6f8a3220 2161
216a7e6b
AB
2162 /* For dynamic type resolution strings can be treated like arrays of
2163 characters. */
78134374
SM
2164 gdb_assert (type->code () == TYPE_CODE_ARRAY
2165 || type->code () == TYPE_CODE_STRING);
6f8a3220 2166
3f2f83dd
KB
2167 type = copy_type (type);
2168
6f8a3220 2169 elt_type = type;
3d967001 2170 range_type = check_typedef (elt_type->index_type ());
df25ebbd 2171 range_type = resolve_dynamic_range (range_type, addr_stack);
6f8a3220 2172
3f2f83dd
KB
2173 /* Resolve allocated/associated here before creating a new array type, which
2174 will update the length of the array accordingly. */
2175 prop = TYPE_ALLOCATED_PROP (type);
2176 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06
SM
2177 prop->set_const_val (value);
2178
3f2f83dd
KB
2179 prop = TYPE_ASSOCIATED_PROP (type);
2180 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2181 prop->set_const_val (value);
3f2f83dd 2182
80180f79
SA
2183 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2184
78134374 2185 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
216a7e6b 2186 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
80180f79
SA
2187 else
2188 elt_type = TYPE_TARGET_TYPE (type);
2189
24e99c6c 2190 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2191 if (prop != NULL)
2192 {
603490bf 2193 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
a405673c 2194 {
7aa91313 2195 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
a405673c
JB
2196 bit_stride = (unsigned int) (value * 8);
2197 }
2198 else
2199 {
2200 /* Could be a bug in our code, but it could also happen
2201 if the DWARF info is not correct. Issue a warning,
2202 and assume no byte/bit stride (leave bit_stride = 0). */
2203 warning (_("cannot determine array stride for type %s"),
7d93a1e0 2204 type->name () ? type->name () : "<no name>");
a405673c
JB
2205 }
2206 }
2207 else
2208 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2209
2210 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2211 bit_stride);
80180f79
SA
2212}
2213
012370f6 2214/* Resolve dynamic bounds of members of the union TYPE to static
df25ebbd
JB
2215 bounds. ADDR_STACK is a stack of struct property_addr_info
2216 to be used if needed during the dynamic resolution. */
012370f6
TT
2217
2218static struct type *
df25ebbd
JB
2219resolve_dynamic_union (struct type *type,
2220 struct property_addr_info *addr_stack)
012370f6
TT
2221{
2222 struct type *resolved_type;
2223 int i;
2224 unsigned int max_len = 0;
2225
78134374 2226 gdb_assert (type->code () == TYPE_CODE_UNION);
012370f6
TT
2227
2228 resolved_type = copy_type (type);
3cabb6b0
SM
2229 resolved_type->set_fields
2230 ((struct field *)
2231 TYPE_ALLOC (resolved_type,
2232 resolved_type->num_fields () * sizeof (struct field)));
80fc5e77
SM
2233 memcpy (resolved_type->fields (),
2234 type->fields (),
1f704f76
SM
2235 resolved_type->num_fields () * sizeof (struct field));
2236 for (i = 0; i < resolved_type->num_fields (); ++i)
012370f6
TT
2237 {
2238 struct type *t;
2239
ceacbf6e 2240 if (field_is_static (&type->field (i)))
012370f6
TT
2241 continue;
2242
940da03e 2243 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
ee715b5a 2244 addr_stack, 0);
5d14b6e5 2245 resolved_type->field (i).set_type (t);
2f33032a
KS
2246
2247 struct type *real_type = check_typedef (t);
2248 if (TYPE_LENGTH (real_type) > max_len)
2249 max_len = TYPE_LENGTH (real_type);
012370f6
TT
2250 }
2251
2252 TYPE_LENGTH (resolved_type) = max_len;
2253 return resolved_type;
2254}
2255
ef83a141
TT
2256/* See gdbtypes.h. */
2257
2258bool
2259variant::matches (ULONGEST value, bool is_unsigned) const
2260{
2261 for (const discriminant_range &range : discriminants)
2262 if (range.contains (value, is_unsigned))
2263 return true;
2264 return false;
2265}
2266
2267static void
2268compute_variant_fields_inner (struct type *type,
2269 struct property_addr_info *addr_stack,
2270 const variant_part &part,
2271 std::vector<bool> &flags);
2272
2273/* A helper function to determine which variant fields will be active.
2274 This handles both the variant's direct fields, and any variant
2275 parts embedded in this variant. TYPE is the type we're examining.
2276 ADDR_STACK holds information about the concrete object. VARIANT is
2277 the current variant to be handled. FLAGS is where the results are
2278 stored -- this function sets the Nth element in FLAGS if the
2279 corresponding field is enabled. ENABLED is whether this variant is
2280 enabled or not. */
2281
2282static void
2283compute_variant_fields_recurse (struct type *type,
2284 struct property_addr_info *addr_stack,
2285 const variant &variant,
2286 std::vector<bool> &flags,
2287 bool enabled)
2288{
2289 for (int field = variant.first_field; field < variant.last_field; ++field)
2290 flags[field] = enabled;
2291
2292 for (const variant_part &new_part : variant.parts)
2293 {
2294 if (enabled)
2295 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2296 else
2297 {
2298 for (const auto &sub_variant : new_part.variants)
2299 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2300 flags, enabled);
2301 }
2302 }
2303}
2304
2305/* A helper function to determine which variant fields will be active.
2306 This evaluates the discriminant, decides which variant (if any) is
2307 active, and then updates FLAGS to reflect which fields should be
2308 available. TYPE is the type we're examining. ADDR_STACK holds
2309 information about the concrete object. VARIANT is the current
2310 variant to be handled. FLAGS is where the results are stored --
2311 this function sets the Nth element in FLAGS if the corresponding
2312 field is enabled. */
2313
2314static void
2315compute_variant_fields_inner (struct type *type,
2316 struct property_addr_info *addr_stack,
2317 const variant_part &part,
2318 std::vector<bool> &flags)
2319{
2320 /* Evaluate the discriminant. */
2321 gdb::optional<ULONGEST> discr_value;
2322 if (part.discriminant_index != -1)
2323 {
2324 int idx = part.discriminant_index;
2325
2326 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2327 error (_("Cannot determine struct field location"
2328 " (invalid location kind)"));
2329
b249d2c2
TT
2330 if (addr_stack->valaddr.data () != NULL)
2331 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2332 idx);
ef83a141
TT
2333 else
2334 {
2335 CORE_ADDR addr = (addr_stack->addr
2336 + (TYPE_FIELD_BITPOS (type, idx)
2337 / TARGET_CHAR_BIT));
2338
2339 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2340 LONGEST size = bitsize / 8;
2341 if (size == 0)
940da03e 2342 size = TYPE_LENGTH (type->field (idx).type ());
ef83a141
TT
2343
2344 gdb_byte bits[sizeof (ULONGEST)];
2345 read_memory (addr, bits, size);
2346
2347 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2348 % TARGET_CHAR_BIT);
2349
940da03e 2350 discr_value = unpack_bits_as_long (type->field (idx).type (),
ef83a141
TT
2351 bits, bitpos, bitsize);
2352 }
2353 }
2354
2355 /* Go through each variant and see which applies. */
2356 const variant *default_variant = nullptr;
2357 const variant *applied_variant = nullptr;
2358 for (const auto &variant : part.variants)
2359 {
2360 if (variant.is_default ())
2361 default_variant = &variant;
2362 else if (discr_value.has_value ()
2363 && variant.matches (*discr_value, part.is_unsigned))
2364 {
2365 applied_variant = &variant;
2366 break;
2367 }
2368 }
2369 if (applied_variant == nullptr)
2370 applied_variant = default_variant;
2371
2372 for (const auto &variant : part.variants)
2373 compute_variant_fields_recurse (type, addr_stack, variant,
2374 flags, applied_variant == &variant);
2375}
2376
2377/* Determine which variant fields are available in TYPE. The enabled
2378 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2379 about the concrete object. PARTS describes the top-level variant
2380 parts for this type. */
2381
2382static void
2383compute_variant_fields (struct type *type,
2384 struct type *resolved_type,
2385 struct property_addr_info *addr_stack,
2386 const gdb::array_view<variant_part> &parts)
2387{
2388 /* Assume all fields are included by default. */
1f704f76 2389 std::vector<bool> flags (resolved_type->num_fields (), true);
ef83a141
TT
2390
2391 /* Now disable fields based on the variants that control them. */
2392 for (const auto &part : parts)
2393 compute_variant_fields_inner (type, addr_stack, part, flags);
2394
5e33d5f4
SM
2395 resolved_type->set_num_fields
2396 (std::count (flags.begin (), flags.end (), true));
3cabb6b0
SM
2397 resolved_type->set_fields
2398 ((struct field *)
2399 TYPE_ALLOC (resolved_type,
2400 resolved_type->num_fields () * sizeof (struct field)));
2401
ef83a141 2402 int out = 0;
1f704f76 2403 for (int i = 0; i < type->num_fields (); ++i)
ef83a141
TT
2404 {
2405 if (!flags[i])
2406 continue;
2407
ceacbf6e 2408 resolved_type->field (out) = type->field (i);
ef83a141
TT
2409 ++out;
2410 }
2411}
2412
012370f6 2413/* Resolve dynamic bounds of members of the struct TYPE to static
df25ebbd
JB
2414 bounds. ADDR_STACK is a stack of struct property_addr_info to
2415 be used if needed during the dynamic resolution. */
012370f6
TT
2416
2417static struct type *
df25ebbd
JB
2418resolve_dynamic_struct (struct type *type,
2419 struct property_addr_info *addr_stack)
012370f6
TT
2420{
2421 struct type *resolved_type;
2422 int i;
6908c509 2423 unsigned resolved_type_bit_length = 0;
012370f6 2424
78134374 2425 gdb_assert (type->code () == TYPE_CODE_STRUCT);
1f704f76 2426 gdb_assert (type->num_fields () > 0);
012370f6
TT
2427
2428 resolved_type = copy_type (type);
ef83a141 2429
24e99c6c 2430 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
8c2e4e06 2431 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
ef83a141
TT
2432 {
2433 compute_variant_fields (type, resolved_type, addr_stack,
8c2e4e06 2434 *variant_prop->variant_parts ());
ef83a141
TT
2435 /* We want to leave the property attached, so that the Rust code
2436 can tell whether the type was originally an enum. */
8c2e4e06 2437 variant_prop->set_original_type (type);
ef83a141
TT
2438 }
2439 else
2440 {
3cabb6b0
SM
2441 resolved_type->set_fields
2442 ((struct field *)
2443 TYPE_ALLOC (resolved_type,
2444 resolved_type->num_fields () * sizeof (struct field)));
80fc5e77
SM
2445 memcpy (resolved_type->fields (),
2446 type->fields (),
1f704f76 2447 resolved_type->num_fields () * sizeof (struct field));
ef83a141
TT
2448 }
2449
1f704f76 2450 for (i = 0; i < resolved_type->num_fields (); ++i)
012370f6 2451 {
6908c509 2452 unsigned new_bit_length;
df25ebbd 2453 struct property_addr_info pinfo;
012370f6 2454
ceacbf6e 2455 if (field_is_static (&resolved_type->field (i)))
012370f6
TT
2456 continue;
2457
7d79de9a
TT
2458 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2459 {
2460 struct dwarf2_property_baton baton;
2461 baton.property_type
940da03e 2462 = lookup_pointer_type (resolved_type->field (i).type ());
7d79de9a
TT
2463 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2464
2465 struct dynamic_prop prop;
8c2e4e06 2466 prop.set_locexpr (&baton);
7d79de9a
TT
2467
2468 CORE_ADDR addr;
2469 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2470 true))
ceacbf6e 2471 SET_FIELD_BITPOS (resolved_type->field (i),
7d79de9a
TT
2472 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2473 }
2474
6908c509
JB
2475 /* As we know this field is not a static field, the field's
2476 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2477 this is the case, but only trigger a simple error rather
2478 than an internal error if that fails. While failing
2479 that verification indicates a bug in our code, the error
2480 is not severe enough to suggest to the user he stops
2481 his debugging session because of it. */
ef83a141 2482 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
6908c509
JB
2483 error (_("Cannot determine struct field location"
2484 " (invalid location kind)"));
df25ebbd 2485
940da03e 2486 pinfo.type = check_typedef (resolved_type->field (i).type ());
c3345124 2487 pinfo.valaddr = addr_stack->valaddr;
9920b434
BH
2488 pinfo.addr
2489 = (addr_stack->addr
2490 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
df25ebbd
JB
2491 pinfo.next = addr_stack;
2492
5d14b6e5 2493 resolved_type->field (i).set_type
940da03e 2494 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
5d14b6e5 2495 &pinfo, 0));
df25ebbd
JB
2496 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2497 == FIELD_LOC_KIND_BITPOS);
2498
6908c509
JB
2499 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2500 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2501 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2502 else
2f33032a
KS
2503 {
2504 struct type *real_type
2505 = check_typedef (resolved_type->field (i).type ());
2506
2507 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2508 }
6908c509
JB
2509
2510 /* Normally, we would use the position and size of the last field
2511 to determine the size of the enclosing structure. But GCC seems
2512 to be encoding the position of some fields incorrectly when
2513 the struct contains a dynamic field that is not placed last.
2514 So we compute the struct size based on the field that has
2515 the highest position + size - probably the best we can do. */
2516 if (new_bit_length > resolved_type_bit_length)
2517 resolved_type_bit_length = new_bit_length;
012370f6
TT
2518 }
2519
9920b434
BH
2520 /* The length of a type won't change for fortran, but it does for C and Ada.
2521 For fortran the size of dynamic fields might change over time but not the
2522 type length of the structure. If we adapt it, we run into problems
2523 when calculating the element offset for arrays of structs. */
2524 if (current_language->la_language != language_fortran)
2525 TYPE_LENGTH (resolved_type)
2526 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
6908c509 2527
9e195661
PMR
2528 /* The Ada language uses this field as a cache for static fixed types: reset
2529 it as RESOLVED_TYPE must have its own static fixed type. */
2530 TYPE_TARGET_TYPE (resolved_type) = NULL;
2531
012370f6
TT
2532 return resolved_type;
2533}
2534
d98b7a16 2535/* Worker for resolved_dynamic_type. */
80180f79 2536
d98b7a16 2537static struct type *
df25ebbd 2538resolve_dynamic_type_internal (struct type *type,
ee715b5a
PMR
2539 struct property_addr_info *addr_stack,
2540 int top_level)
80180f79
SA
2541{
2542 struct type *real_type = check_typedef (type);
f8e89861 2543 struct type *resolved_type = nullptr;
d9823cbb 2544 struct dynamic_prop *prop;
3cdcd0ce 2545 CORE_ADDR value;
80180f79 2546
ee715b5a 2547 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
2548 return type;
2549
f8e89861
TT
2550 gdb::optional<CORE_ADDR> type_length;
2551 prop = TYPE_DYNAMIC_LENGTH (type);
2552 if (prop != NULL
2553 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2554 type_length = value;
2555
78134374 2556 if (type->code () == TYPE_CODE_TYPEDEF)
6f8a3220 2557 {
cac9b138
JK
2558 resolved_type = copy_type (type);
2559 TYPE_TARGET_TYPE (resolved_type)
ee715b5a
PMR
2560 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2561 top_level);
5537b577
JK
2562 }
2563 else
2564 {
2565 /* Before trying to resolve TYPE, make sure it is not a stub. */
2566 type = real_type;
012370f6 2567
78134374 2568 switch (type->code ())
5537b577 2569 {
e771e4be
PMR
2570 case TYPE_CODE_REF:
2571 {
2572 struct property_addr_info pinfo;
2573
2574 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
b249d2c2
TT
2575 pinfo.valaddr = {};
2576 if (addr_stack->valaddr.data () != NULL)
2577 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2578 type);
c3345124
JB
2579 else
2580 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
e771e4be
PMR
2581 pinfo.next = addr_stack;
2582
2583 resolved_type = copy_type (type);
2584 TYPE_TARGET_TYPE (resolved_type)
2585 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2586 &pinfo, top_level);
2587 break;
2588 }
2589
216a7e6b
AB
2590 case TYPE_CODE_STRING:
2591 /* Strings are very much like an array of characters, and can be
2592 treated as one here. */
5537b577 2593 case TYPE_CODE_ARRAY:
216a7e6b 2594 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
5537b577
JK
2595 break;
2596
2597 case TYPE_CODE_RANGE:
df25ebbd 2598 resolved_type = resolve_dynamic_range (type, addr_stack);
5537b577
JK
2599 break;
2600
2601 case TYPE_CODE_UNION:
df25ebbd 2602 resolved_type = resolve_dynamic_union (type, addr_stack);
5537b577
JK
2603 break;
2604
2605 case TYPE_CODE_STRUCT:
df25ebbd 2606 resolved_type = resolve_dynamic_struct (type, addr_stack);
5537b577
JK
2607 break;
2608 }
6f8a3220 2609 }
80180f79 2610
f8e89861
TT
2611 if (resolved_type == nullptr)
2612 return type;
2613
2614 if (type_length.has_value ())
2615 {
2616 TYPE_LENGTH (resolved_type) = *type_length;
7aa91313 2617 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
f8e89861
TT
2618 }
2619
3cdcd0ce
JB
2620 /* Resolve data_location attribute. */
2621 prop = TYPE_DATA_LOCATION (resolved_type);
63e43d3a
PMR
2622 if (prop != NULL
2623 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
8c2e4e06 2624 prop->set_const_val (value);
3cdcd0ce 2625
80180f79
SA
2626 return resolved_type;
2627}
2628
d98b7a16
TT
2629/* See gdbtypes.h */
2630
2631struct type *
b249d2c2
TT
2632resolve_dynamic_type (struct type *type,
2633 gdb::array_view<const gdb_byte> valaddr,
c3345124 2634 CORE_ADDR addr)
d98b7a16 2635{
c3345124
JB
2636 struct property_addr_info pinfo
2637 = {check_typedef (type), valaddr, addr, NULL};
df25ebbd 2638
ee715b5a 2639 return resolve_dynamic_type_internal (type, &pinfo, 1);
d98b7a16
TT
2640}
2641
d9823cbb
KB
2642/* See gdbtypes.h */
2643
24e99c6c
SM
2644dynamic_prop *
2645type::dyn_prop (dynamic_prop_node_kind prop_kind) const
d9823cbb 2646{
98d48915 2647 dynamic_prop_list *node = this->main_type->dyn_prop_list;
d9823cbb
KB
2648
2649 while (node != NULL)
2650 {
2651 if (node->prop_kind == prop_kind)
283a9958 2652 return &node->prop;
d9823cbb
KB
2653 node = node->next;
2654 }
2655 return NULL;
2656}
2657
2658/* See gdbtypes.h */
2659
2660void
5c54719c 2661type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
d9823cbb
KB
2662{
2663 struct dynamic_prop_list *temp;
2664
5c54719c 2665 gdb_assert (TYPE_OBJFILE_OWNED (this));
d9823cbb 2666
5c54719c 2667 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
50a82047 2668 struct dynamic_prop_list);
d9823cbb 2669 temp->prop_kind = prop_kind;
283a9958 2670 temp->prop = prop;
98d48915 2671 temp->next = this->main_type->dyn_prop_list;
d9823cbb 2672
98d48915 2673 this->main_type->dyn_prop_list = temp;
d9823cbb
KB
2674}
2675
7aa91313 2676/* See gdbtypes.h. */
9920b434
BH
2677
2678void
7aa91313 2679type::remove_dyn_prop (dynamic_prop_node_kind kind)
9920b434
BH
2680{
2681 struct dynamic_prop_list *prev_node, *curr_node;
2682
98d48915 2683 curr_node = this->main_type->dyn_prop_list;
9920b434
BH
2684 prev_node = NULL;
2685
2686 while (NULL != curr_node)
2687 {
7aa91313 2688 if (curr_node->prop_kind == kind)
9920b434
BH
2689 {
2690 /* Update the linked list but don't free anything.
2691 The property was allocated on objstack and it is not known
2692 if we are on top of it. Nevertheless, everything is released
2693 when the complete objstack is freed. */
2694 if (NULL == prev_node)
98d48915 2695 this->main_type->dyn_prop_list = curr_node->next;
9920b434
BH
2696 else
2697 prev_node->next = curr_node->next;
2698
2699 return;
2700 }
2701
2702 prev_node = curr_node;
2703 curr_node = curr_node->next;
2704 }
2705}
d9823cbb 2706
92163a10
JK
2707/* Find the real type of TYPE. This function returns the real type,
2708 after removing all layers of typedefs, and completing opaque or stub
2709 types. Completion changes the TYPE argument, but stripping of
2710 typedefs does not.
2711
2712 Instance flags (e.g. const/volatile) are preserved as typedefs are
2713 stripped. If necessary a new qualified form of the underlying type
2714 is created.
2715
2716 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2717 not been computed and we're either in the middle of reading symbols, or
2718 there was no name for the typedef in the debug info.
2719
9bc118a5
DE
2720 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2721 QUITs in the symbol reading code can also throw.
2722 Thus this function can throw an exception.
2723
92163a10
JK
2724 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2725 the target type.
c906108c
SS
2726
2727 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 2728 we can find a full definition in some other file. If so, copy this
7ba81444
MS
2729 definition, so we can use it in future. There used to be a comment
2730 (but not any code) that if we don't find a full definition, we'd
2731 set a flag so we don't spend time in the future checking the same
2732 type. That would be a mistake, though--we might load in more
92163a10 2733 symbols which contain a full definition for the type. */
c906108c
SS
2734
2735struct type *
a02fd225 2736check_typedef (struct type *type)
c906108c
SS
2737{
2738 struct type *orig_type = type;
92163a10
JK
2739 /* While we're removing typedefs, we don't want to lose qualifiers.
2740 E.g., const/volatile. */
2741 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 2742
423c0af8
MS
2743 gdb_assert (type);
2744
78134374 2745 while (type->code () == TYPE_CODE_TYPEDEF)
c906108c
SS
2746 {
2747 if (!TYPE_TARGET_TYPE (type))
2748 {
0d5cff50 2749 const char *name;
c906108c
SS
2750 struct symbol *sym;
2751
2752 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 2753 reading a symtab. Infinite recursion is one danger. */
c906108c 2754 if (currently_reading_symtab)
92163a10 2755 return make_qualified_type (type, instance_flags, NULL);
c906108c 2756
7d93a1e0 2757 name = type->name ();
e86ca25f
TT
2758 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2759 VAR_DOMAIN as appropriate? */
c906108c
SS
2760 if (name == NULL)
2761 {
23136709 2762 stub_noname_complaint ();
92163a10 2763 return make_qualified_type (type, instance_flags, NULL);
c906108c 2764 }
d12307c1 2765 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c
SS
2766 if (sym)
2767 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 2768 else /* TYPE_CODE_UNDEF */
e9bb382b 2769 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2770 }
2771 type = TYPE_TARGET_TYPE (type);
c906108c 2772
92163a10
JK
2773 /* Preserve the instance flags as we traverse down the typedef chain.
2774
2775 Handling address spaces/classes is nasty, what do we do if there's a
2776 conflict?
2777 E.g., what if an outer typedef marks the type as class_1 and an inner
2778 typedef marks the type as class_2?
2779 This is the wrong place to do such error checking. We leave it to
2780 the code that created the typedef in the first place to flag the
2781 error. We just pick the outer address space (akin to letting the
2782 outer cast in a chain of casting win), instead of assuming
2783 "it can't happen". */
2784 {
2785 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2786 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2787 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2788 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2789
2790 /* Treat code vs data spaces and address classes separately. */
2791 if ((instance_flags & ALL_SPACES) != 0)
2792 new_instance_flags &= ~ALL_SPACES;
2793 if ((instance_flags & ALL_CLASSES) != 0)
2794 new_instance_flags &= ~ALL_CLASSES;
2795
2796 instance_flags |= new_instance_flags;
2797 }
2798 }
a02fd225 2799
7ba81444
MS
2800 /* If this is a struct/class/union with no fields, then check
2801 whether a full definition exists somewhere else. This is for
2802 systems where a type definition with no fields is issued for such
2803 types, instead of identifying them as stub types in the first
2804 place. */
c5aa993b 2805
7ba81444
MS
2806 if (TYPE_IS_OPAQUE (type)
2807 && opaque_type_resolution
2808 && !currently_reading_symtab)
c906108c 2809 {
7d93a1e0 2810 const char *name = type->name ();
c5aa993b 2811 struct type *newtype;
d8734c88 2812
c906108c
SS
2813 if (name == NULL)
2814 {
23136709 2815 stub_noname_complaint ();
92163a10 2816 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2817 }
2818 newtype = lookup_transparent_type (name);
ad766c0a 2819
c906108c 2820 if (newtype)
ad766c0a 2821 {
7ba81444
MS
2822 /* If the resolved type and the stub are in the same
2823 objfile, then replace the stub type with the real deal.
2824 But if they're in separate objfiles, leave the stub
2825 alone; we'll just look up the transparent type every time
2826 we call check_typedef. We can't create pointers between
2827 types allocated to different objfiles, since they may
2828 have different lifetimes. Trying to copy NEWTYPE over to
2829 TYPE's objfile is pointless, too, since you'll have to
2830 move over any other types NEWTYPE refers to, which could
2831 be an unbounded amount of stuff. */
ad766c0a 2832 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2833 type = make_qualified_type (newtype,
2834 TYPE_INSTANCE_FLAGS (type),
2835 type);
ad766c0a
JB
2836 else
2837 type = newtype;
2838 }
c906108c 2839 }
7ba81444
MS
2840 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2841 types. */
74a9bb82 2842 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2843 {
7d93a1e0 2844 const char *name = type->name ();
e86ca25f
TT
2845 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2846 as appropriate? */
c906108c 2847 struct symbol *sym;
d8734c88 2848
c906108c
SS
2849 if (name == NULL)
2850 {
23136709 2851 stub_noname_complaint ();
92163a10 2852 return make_qualified_type (type, instance_flags, NULL);
c906108c 2853 }
d12307c1 2854 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
c906108c 2855 if (sym)
c26f2453
JB
2856 {
2857 /* Same as above for opaque types, we can replace the stub
92163a10 2858 with the complete type only if they are in the same
c26f2453 2859 objfile. */
78134374 2860 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
92163a10
JK
2861 type = make_qualified_type (SYMBOL_TYPE (sym),
2862 TYPE_INSTANCE_FLAGS (type),
2863 type);
c26f2453
JB
2864 else
2865 type = SYMBOL_TYPE (sym);
2866 }
c906108c
SS
2867 }
2868
74a9bb82 2869 if (TYPE_TARGET_STUB (type))
c906108c 2870 {
c906108c
SS
2871 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2872
74a9bb82 2873 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2874 {
73e2eb35 2875 /* Nothing we can do. */
c5aa993b 2876 }
78134374 2877 else if (type->code () == TYPE_CODE_RANGE)
c906108c
SS
2878 {
2879 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2880 TYPE_TARGET_STUB (type) = 0;
c906108c 2881 }
78134374 2882 else if (type->code () == TYPE_CODE_ARRAY
8dbb1375
HD
2883 && update_static_array_size (type))
2884 TYPE_TARGET_STUB (type) = 0;
c906108c 2885 }
92163a10
JK
2886
2887 type = make_qualified_type (type, instance_flags, NULL);
2888
7ba81444 2889 /* Cache TYPE_LENGTH for future use. */
c906108c 2890 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2891
c906108c
SS
2892 return type;
2893}
2894
7ba81444 2895/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2896 occurs, silently return a void type. */
c91ecb25 2897
b9362cc7 2898static struct type *
48319d1f 2899safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2900{
2901 struct ui_file *saved_gdb_stderr;
34365054 2902 struct type *type = NULL; /* Initialize to keep gcc happy. */
c91ecb25 2903
7ba81444 2904 /* Suppress error messages. */
c91ecb25 2905 saved_gdb_stderr = gdb_stderr;
d7e74731 2906 gdb_stderr = &null_stream;
c91ecb25 2907
7ba81444 2908 /* Call parse_and_eval_type() without fear of longjmp()s. */
a70b8144 2909 try
8e7b59a5
KS
2910 {
2911 type = parse_and_eval_type (p, length);
2912 }
230d2906 2913 catch (const gdb_exception_error &except)
492d29ea
PA
2914 {
2915 type = builtin_type (gdbarch)->builtin_void;
2916 }
c91ecb25 2917
7ba81444 2918 /* Stop suppressing error messages. */
c91ecb25
ND
2919 gdb_stderr = saved_gdb_stderr;
2920
2921 return type;
2922}
2923
c906108c
SS
2924/* Ugly hack to convert method stubs into method types.
2925
7ba81444
MS
2926 He ain't kiddin'. This demangles the name of the method into a
2927 string including argument types, parses out each argument type,
2928 generates a string casting a zero to that type, evaluates the
2929 string, and stuffs the resulting type into an argtype vector!!!
2930 Then it knows the type of the whole function (including argument
2931 types for overloading), which info used to be in the stab's but was
2932 removed to hack back the space required for them. */
c906108c 2933
de17c821 2934static void
fba45db2 2935check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2936{
50810684 2937 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2938 struct fn_field *f;
2939 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2940 char *demangled_name = gdb_demangle (mangled_name,
2941 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2942 char *argtypetext, *p;
2943 int depth = 0, argcount = 1;
ad2f7632 2944 struct field *argtypes;
c906108c
SS
2945 struct type *mtype;
2946
2947 /* Make sure we got back a function string that we can use. */
2948 if (demangled_name)
2949 p = strchr (demangled_name, '(');
502dcf4e
AC
2950 else
2951 p = NULL;
c906108c
SS
2952
2953 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2954 error (_("Internal: Cannot demangle mangled name `%s'."),
2955 mangled_name);
c906108c
SS
2956
2957 /* Now, read in the parameters that define this type. */
2958 p += 1;
2959 argtypetext = p;
2960 while (*p)
2961 {
070ad9f0 2962 if (*p == '(' || *p == '<')
c906108c
SS
2963 {
2964 depth += 1;
2965 }
070ad9f0 2966 else if (*p == ')' || *p == '>')
c906108c
SS
2967 {
2968 depth -= 1;
2969 }
2970 else if (*p == ',' && depth == 0)
2971 {
2972 argcount += 1;
2973 }
2974
2975 p += 1;
2976 }
2977
ad2f7632 2978 /* If we read one argument and it was ``void'', don't count it. */
61012eef 2979 if (startswith (argtypetext, "(void)"))
ad2f7632 2980 argcount -= 1;
c906108c 2981
ad2f7632
DJ
2982 /* We need one extra slot, for the THIS pointer. */
2983
2984 argtypes = (struct field *)
2985 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2986 p = argtypetext;
4a1970e4
DJ
2987
2988 /* Add THIS pointer for non-static methods. */
2989 f = TYPE_FN_FIELDLIST1 (type, method_id);
2990 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2991 argcount = 0;
2992 else
2993 {
5d14b6e5 2994 argtypes[0].set_type (lookup_pointer_type (type));
4a1970e4
DJ
2995 argcount = 1;
2996 }
c906108c 2997
0963b4bd 2998 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2999 {
3000 depth = 0;
3001 while (*p)
3002 {
3003 if (depth <= 0 && (*p == ',' || *p == ')'))
3004 {
ad2f7632
DJ
3005 /* Avoid parsing of ellipsis, they will be handled below.
3006 Also avoid ``void'' as above. */
3007 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3008 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 3009 {
5d14b6e5
SM
3010 argtypes[argcount].set_type
3011 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
c906108c
SS
3012 argcount += 1;
3013 }
3014 argtypetext = p + 1;
3015 }
3016
070ad9f0 3017 if (*p == '(' || *p == '<')
c906108c
SS
3018 {
3019 depth += 1;
3020 }
070ad9f0 3021 else if (*p == ')' || *p == '>')
c906108c
SS
3022 {
3023 depth -= 1;
3024 }
3025
3026 p += 1;
3027 }
3028 }
3029
c906108c
SS
3030 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3031
3032 /* Now update the old "stub" type into a real type. */
3033 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
09e2d7c7
DE
3034 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3035 We want a method (TYPE_CODE_METHOD). */
3036 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3037 argtypes, argcount, p[-2] == '.');
876cecd0 3038 TYPE_STUB (mtype) = 0;
c906108c 3039 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632
DJ
3040
3041 xfree (demangled_name);
c906108c
SS
3042}
3043
7ba81444
MS
3044/* This is the external interface to check_stub_method, above. This
3045 function unstubs all of the signatures for TYPE's METHOD_ID method
3046 name. After calling this function TYPE_FN_FIELD_STUB will be
3047 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3048 correct.
de17c821
DJ
3049
3050 This function unfortunately can not die until stabs do. */
3051
3052void
3053check_stub_method_group (struct type *type, int method_id)
3054{
3055 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3056 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
de17c821 3057
041be526
SM
3058 for (int j = 0; j < len; j++)
3059 {
3060 if (TYPE_FN_FIELD_STUB (f, j))
de17c821 3061 check_stub_method (type, method_id, j);
de17c821
DJ
3062 }
3063}
3064
405feb71 3065/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
9655fd1a 3066const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
3067
3068void
fba45db2 3069allocate_cplus_struct_type (struct type *type)
c906108c 3070{
b4ba55a1
JB
3071 if (HAVE_CPLUS_STRUCT (type))
3072 /* Structure was already allocated. Nothing more to do. */
3073 return;
3074
3075 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3076 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3077 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3078 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
ae6ae975 3079 set_type_vptr_fieldno (type, -1);
c906108c
SS
3080}
3081
b4ba55a1
JB
3082const struct gnat_aux_type gnat_aux_default =
3083 { NULL };
3084
3085/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3086 and allocate the associated gnat-specific data. The gnat-specific
3087 data is also initialized to gnat_aux_default. */
5212577a 3088
b4ba55a1
JB
3089void
3090allocate_gnat_aux_type (struct type *type)
3091{
3092 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3093 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3094 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3095 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3096}
3097
ae438bc5
UW
3098/* Helper function to initialize a newly allocated type. Set type code
3099 to CODE and initialize the type-specific fields accordingly. */
3100
3101static void
3102set_type_code (struct type *type, enum type_code code)
3103{
67607e24 3104 type->set_code (code);
ae438bc5
UW
3105
3106 switch (code)
3107 {
3108 case TYPE_CODE_STRUCT:
3109 case TYPE_CODE_UNION:
3110 case TYPE_CODE_NAMESPACE:
3111 INIT_CPLUS_SPECIFIC (type);
3112 break;
3113 case TYPE_CODE_FLT:
3114 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3115 break;
3116 case TYPE_CODE_FUNC:
3117 INIT_FUNC_SPECIFIC (type);
3118 break;
3119 }
3120}
3121
19f392bc
UW
3122/* Helper function to verify floating-point format and size.
3123 BIT is the type size in bits; if BIT equals -1, the size is
3124 determined by the floatformat. Returns size to be used. */
3125
3126static int
0db7851f 3127verify_floatformat (int bit, const struct floatformat *floatformat)
19f392bc 3128{
0db7851f 3129 gdb_assert (floatformat != NULL);
9b790ce7 3130
19f392bc 3131 if (bit == -1)
0db7851f 3132 bit = floatformat->totalsize;
19f392bc 3133
0db7851f
UW
3134 gdb_assert (bit >= 0);
3135 gdb_assert (bit >= floatformat->totalsize);
19f392bc
UW
3136
3137 return bit;
3138}
3139
0db7851f
UW
3140/* Return the floating-point format for a floating-point variable of
3141 type TYPE. */
3142
3143const struct floatformat *
3144floatformat_from_type (const struct type *type)
3145{
78134374 3146 gdb_assert (type->code () == TYPE_CODE_FLT);
0db7851f
UW
3147 gdb_assert (TYPE_FLOATFORMAT (type));
3148 return TYPE_FLOATFORMAT (type);
3149}
3150
c906108c
SS
3151/* Helper function to initialize the standard scalar types.
3152
86f62fd7
TT
3153 If NAME is non-NULL, then it is used to initialize the type name.
3154 Note that NAME is not copied; it is required to have a lifetime at
3155 least as long as OBJFILE. */
c906108c
SS
3156
3157struct type *
77b7c781 3158init_type (struct objfile *objfile, enum type_code code, int bit,
19f392bc 3159 const char *name)
c906108c 3160{
52f0bd74 3161 struct type *type;
c906108c
SS
3162
3163 type = alloc_type (objfile);
ae438bc5 3164 set_type_code (type, code);
77b7c781
UW
3165 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3166 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
d0e39ea2 3167 type->set_name (name);
c906108c 3168
c16abbde 3169 return type;
c906108c 3170}
19f392bc 3171
46a4882b
PA
3172/* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3173 to use with variables that have no debug info. NAME is the type
3174 name. */
3175
3176static struct type *
3177init_nodebug_var_type (struct objfile *objfile, const char *name)
3178{
3179 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3180}
3181
19f392bc
UW
3182/* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3183 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3184 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3185
3186struct type *
3187init_integer_type (struct objfile *objfile,
3188 int bit, int unsigned_p, const char *name)
3189{
3190 struct type *t;
3191
77b7c781 3192 t = init_type (objfile, TYPE_CODE_INT, bit, name);
19f392bc
UW
3193 if (unsigned_p)
3194 TYPE_UNSIGNED (t) = 1;
3195
3196 return t;
3197}
3198
3199/* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3200 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3201 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3202
3203struct type *
3204init_character_type (struct objfile *objfile,
3205 int bit, int unsigned_p, const char *name)
3206{
3207 struct type *t;
3208
77b7c781 3209 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
19f392bc
UW
3210 if (unsigned_p)
3211 TYPE_UNSIGNED (t) = 1;
3212
3213 return t;
3214}
3215
3216/* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3217 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3218 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3219
3220struct type *
3221init_boolean_type (struct objfile *objfile,
3222 int bit, int unsigned_p, const char *name)
3223{
3224 struct type *t;
3225
77b7c781 3226 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
19f392bc
UW
3227 if (unsigned_p)
3228 TYPE_UNSIGNED (t) = 1;
3229
3230 return t;
3231}
3232
3233/* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3234 BIT is the type size in bits; if BIT equals -1, the size is
3235 determined by the floatformat. NAME is the type name. Set the
103a685e
TT
3236 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3237 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3238 order of the objfile's architecture is used. */
19f392bc
UW
3239
3240struct type *
3241init_float_type (struct objfile *objfile,
3242 int bit, const char *name,
103a685e
TT
3243 const struct floatformat **floatformats,
3244 enum bfd_endian byte_order)
19f392bc 3245{
103a685e
TT
3246 if (byte_order == BFD_ENDIAN_UNKNOWN)
3247 {
08feed99 3248 struct gdbarch *gdbarch = objfile->arch ();
103a685e
TT
3249 byte_order = gdbarch_byte_order (gdbarch);
3250 }
3251 const struct floatformat *fmt = floatformats[byte_order];
19f392bc
UW
3252 struct type *t;
3253
0db7851f 3254 bit = verify_floatformat (bit, fmt);
77b7c781 3255 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
0db7851f 3256 TYPE_FLOATFORMAT (t) = fmt;
19f392bc
UW
3257
3258 return t;
3259}
3260
3261/* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3262 BIT is the type size in bits. NAME is the type name. */
3263
3264struct type *
3265init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3266{
3267 struct type *t;
3268
77b7c781 3269 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
19f392bc
UW
3270 return t;
3271}
3272
5b930b45
TT
3273/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3274 name. TARGET_TYPE is the component type. */
19f392bc
UW
3275
3276struct type *
5b930b45 3277init_complex_type (const char *name, struct type *target_type)
19f392bc
UW
3278{
3279 struct type *t;
3280
78134374
SM
3281 gdb_assert (target_type->code () == TYPE_CODE_INT
3282 || target_type->code () == TYPE_CODE_FLT);
5b930b45
TT
3283
3284 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3285 {
3286 if (name == nullptr)
3287 {
3288 char *new_name
3289 = (char *) TYPE_ALLOC (target_type,
7d93a1e0 3290 strlen (target_type->name ())
5b930b45
TT
3291 + strlen ("_Complex ") + 1);
3292 strcpy (new_name, "_Complex ");
7d93a1e0 3293 strcat (new_name, target_type->name ());
5b930b45
TT
3294 name = new_name;
3295 }
3296
3297 t = alloc_type_copy (target_type);
3298 set_type_code (t, TYPE_CODE_COMPLEX);
3299 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
d0e39ea2 3300 t->set_name (name);
5b930b45
TT
3301
3302 TYPE_TARGET_TYPE (t) = target_type;
3303 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3304 }
3305
3306 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
19f392bc
UW
3307}
3308
3309/* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3310 BIT is the pointer type size in bits. NAME is the type name.
3311 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3312 TYPE_UNSIGNED flag. */
3313
3314struct type *
3315init_pointer_type (struct objfile *objfile,
3316 int bit, const char *name, struct type *target_type)
3317{
3318 struct type *t;
3319
77b7c781 3320 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
19f392bc
UW
3321 TYPE_TARGET_TYPE (t) = target_type;
3322 TYPE_UNSIGNED (t) = 1;
3323 return t;
3324}
3325
2b4424c3
TT
3326/* See gdbtypes.h. */
3327
3328unsigned
3329type_raw_align (struct type *type)
3330{
3331 if (type->align_log2 != 0)
3332 return 1 << (type->align_log2 - 1);
3333 return 0;
3334}
3335
3336/* See gdbtypes.h. */
3337
3338unsigned
3339type_align (struct type *type)
3340{
5561fc30 3341 /* Check alignment provided in the debug information. */
2b4424c3
TT
3342 unsigned raw_align = type_raw_align (type);
3343 if (raw_align != 0)
3344 return raw_align;
3345
5561fc30
AB
3346 /* Allow the architecture to provide an alignment. */
3347 struct gdbarch *arch = get_type_arch (type);
3348 ULONGEST align = gdbarch_type_align (arch, type);
3349 if (align != 0)
3350 return align;
3351
78134374 3352 switch (type->code ())
2b4424c3
TT
3353 {
3354 case TYPE_CODE_PTR:
3355 case TYPE_CODE_FUNC:
3356 case TYPE_CODE_FLAGS:
3357 case TYPE_CODE_INT:
75ba10dc 3358 case TYPE_CODE_RANGE:
2b4424c3
TT
3359 case TYPE_CODE_FLT:
3360 case TYPE_CODE_ENUM:
3361 case TYPE_CODE_REF:
3362 case TYPE_CODE_RVALUE_REF:
3363 case TYPE_CODE_CHAR:
3364 case TYPE_CODE_BOOL:
3365 case TYPE_CODE_DECFLOAT:
70cd633e
AB
3366 case TYPE_CODE_METHODPTR:
3367 case TYPE_CODE_MEMBERPTR:
5561fc30 3368 align = type_length_units (check_typedef (type));
2b4424c3
TT
3369 break;
3370
3371 case TYPE_CODE_ARRAY:
3372 case TYPE_CODE_COMPLEX:
3373 case TYPE_CODE_TYPEDEF:
3374 align = type_align (TYPE_TARGET_TYPE (type));
3375 break;
3376
3377 case TYPE_CODE_STRUCT:
3378 case TYPE_CODE_UNION:
3379 {
41077b66 3380 int number_of_non_static_fields = 0;
1f704f76 3381 for (unsigned i = 0; i < type->num_fields (); ++i)
2b4424c3 3382 {
ceacbf6e 3383 if (!field_is_static (&type->field (i)))
2b4424c3 3384 {
41077b66 3385 number_of_non_static_fields++;
940da03e 3386 ULONGEST f_align = type_align (type->field (i).type ());
bf9a735e
AB
3387 if (f_align == 0)
3388 {
3389 /* Don't pretend we know something we don't. */
3390 align = 0;
3391 break;
3392 }
3393 if (f_align > align)
3394 align = f_align;
2b4424c3 3395 }
2b4424c3 3396 }
41077b66
AB
3397 /* A struct with no fields, or with only static fields has an
3398 alignment of 1. */
3399 if (number_of_non_static_fields == 0)
3400 align = 1;
2b4424c3
TT
3401 }
3402 break;
3403
3404 case TYPE_CODE_SET:
2b4424c3
TT
3405 case TYPE_CODE_STRING:
3406 /* Not sure what to do here, and these can't appear in C or C++
3407 anyway. */
3408 break;
3409
2b4424c3
TT
3410 case TYPE_CODE_VOID:
3411 align = 1;
3412 break;
3413
3414 case TYPE_CODE_ERROR:
3415 case TYPE_CODE_METHOD:
3416 default:
3417 break;
3418 }
3419
3420 if ((align & (align - 1)) != 0)
3421 {
3422 /* Not a power of 2, so pass. */
3423 align = 0;
3424 }
3425
3426 return align;
3427}
3428
3429/* See gdbtypes.h. */
3430
3431bool
3432set_type_align (struct type *type, ULONGEST align)
3433{
3434 /* Must be a power of 2. Zero is ok. */
3435 gdb_assert ((align & (align - 1)) == 0);
3436
3437 unsigned result = 0;
3438 while (align != 0)
3439 {
3440 ++result;
3441 align >>= 1;
3442 }
3443
3444 if (result >= (1 << TYPE_ALIGN_BITS))
3445 return false;
3446
3447 type->align_log2 = result;
3448 return true;
3449}
3450
5212577a
DE
3451\f
3452/* Queries on types. */
c906108c 3453
c906108c 3454int
fba45db2 3455can_dereference (struct type *t)
c906108c 3456{
7ba81444
MS
3457 /* FIXME: Should we return true for references as well as
3458 pointers? */
f168693b 3459 t = check_typedef (t);
c906108c
SS
3460 return
3461 (t != NULL
78134374
SM
3462 && t->code () == TYPE_CODE_PTR
3463 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
c906108c
SS
3464}
3465
adf40b2e 3466int
fba45db2 3467is_integral_type (struct type *t)
adf40b2e 3468{
f168693b 3469 t = check_typedef (t);
adf40b2e
JM
3470 return
3471 ((t != NULL)
78134374
SM
3472 && ((t->code () == TYPE_CODE_INT)
3473 || (t->code () == TYPE_CODE_ENUM)
3474 || (t->code () == TYPE_CODE_FLAGS)
3475 || (t->code () == TYPE_CODE_CHAR)
3476 || (t->code () == TYPE_CODE_RANGE)
3477 || (t->code () == TYPE_CODE_BOOL)));
adf40b2e
JM
3478}
3479
70100014
UW
3480int
3481is_floating_type (struct type *t)
3482{
3483 t = check_typedef (t);
3484 return
3485 ((t != NULL)
78134374
SM
3486 && ((t->code () == TYPE_CODE_FLT)
3487 || (t->code () == TYPE_CODE_DECFLOAT)));
70100014
UW
3488}
3489
e09342b5
TJB
3490/* Return true if TYPE is scalar. */
3491
220475ed 3492int
e09342b5
TJB
3493is_scalar_type (struct type *type)
3494{
f168693b 3495 type = check_typedef (type);
e09342b5 3496
78134374 3497 switch (type->code ())
e09342b5
TJB
3498 {
3499 case TYPE_CODE_ARRAY:
3500 case TYPE_CODE_STRUCT:
3501 case TYPE_CODE_UNION:
3502 case TYPE_CODE_SET:
3503 case TYPE_CODE_STRING:
e09342b5
TJB
3504 return 0;
3505 default:
3506 return 1;
3507 }
3508}
3509
3510/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
3511 the memory layout of a scalar type. E.g., an array or struct with only
3512 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
3513
3514int
3515is_scalar_type_recursive (struct type *t)
3516{
f168693b 3517 t = check_typedef (t);
e09342b5
TJB
3518
3519 if (is_scalar_type (t))
3520 return 1;
3521 /* Are we dealing with an array or string of known dimensions? */
78134374 3522 else if ((t->code () == TYPE_CODE_ARRAY
1f704f76 3523 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3d967001 3524 && t->index_type ()->code () == TYPE_CODE_RANGE)
e09342b5
TJB
3525 {
3526 LONGEST low_bound, high_bound;
3527 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3528
3d967001 3529 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
e09342b5
TJB
3530
3531 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3532 }
3533 /* Are we dealing with a struct with one element? */
1f704f76 3534 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
940da03e 3535 return is_scalar_type_recursive (t->field (0).type ());
78134374 3536 else if (t->code () == TYPE_CODE_UNION)
e09342b5 3537 {
1f704f76 3538 int i, n = t->num_fields ();
e09342b5
TJB
3539
3540 /* If all elements of the union are scalar, then the union is scalar. */
3541 for (i = 0; i < n; i++)
940da03e 3542 if (!is_scalar_type_recursive (t->field (i).type ()))
e09342b5
TJB
3543 return 0;
3544
3545 return 1;
3546 }
3547
3548 return 0;
3549}
3550
6c659fc2
SC
3551/* Return true is T is a class or a union. False otherwise. */
3552
3553int
3554class_or_union_p (const struct type *t)
3555{
78134374
SM
3556 return (t->code () == TYPE_CODE_STRUCT
3557 || t->code () == TYPE_CODE_UNION);
6c659fc2
SC
3558}
3559
4e8f195d
TT
3560/* A helper function which returns true if types A and B represent the
3561 "same" class type. This is true if the types have the same main
3562 type, or the same name. */
3563
3564int
3565class_types_same_p (const struct type *a, const struct type *b)
3566{
3567 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
7d93a1e0
SM
3568 || (a->name () && b->name ()
3569 && !strcmp (a->name (), b->name ())));
4e8f195d
TT
3570}
3571
a9d5ef47
SW
3572/* If BASE is an ancestor of DCLASS return the distance between them.
3573 otherwise return -1;
3574 eg:
3575
3576 class A {};
3577 class B: public A {};
3578 class C: public B {};
3579 class D: C {};
3580
3581 distance_to_ancestor (A, A, 0) = 0
3582 distance_to_ancestor (A, B, 0) = 1
3583 distance_to_ancestor (A, C, 0) = 2
3584 distance_to_ancestor (A, D, 0) = 3
3585
3586 If PUBLIC is 1 then only public ancestors are considered,
3587 and the function returns the distance only if BASE is a public ancestor
3588 of DCLASS.
3589 Eg:
3590
0963b4bd 3591 distance_to_ancestor (A, D, 1) = -1. */
c906108c 3592
0526b37a 3593static int
fe978cb0 3594distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
c906108c
SS
3595{
3596 int i;
a9d5ef47 3597 int d;
c5aa993b 3598
f168693b
SM
3599 base = check_typedef (base);
3600 dclass = check_typedef (dclass);
c906108c 3601
4e8f195d 3602 if (class_types_same_p (base, dclass))
a9d5ef47 3603 return 0;
c906108c
SS
3604
3605 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 3606 {
fe978cb0 3607 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
0526b37a
SW
3608 continue;
3609
fe978cb0 3610 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
a9d5ef47
SW
3611 if (d >= 0)
3612 return 1 + d;
4e8f195d 3613 }
c906108c 3614
a9d5ef47 3615 return -1;
c906108c 3616}
4e8f195d 3617
0526b37a
SW
3618/* Check whether BASE is an ancestor or base class or DCLASS
3619 Return 1 if so, and 0 if not.
3620 Note: If BASE and DCLASS are of the same type, this function
3621 will return 1. So for some class A, is_ancestor (A, A) will
3622 return 1. */
3623
3624int
3625is_ancestor (struct type *base, struct type *dclass)
3626{
a9d5ef47 3627 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
3628}
3629
4e8f195d
TT
3630/* Like is_ancestor, but only returns true when BASE is a public
3631 ancestor of DCLASS. */
3632
3633int
3634is_public_ancestor (struct type *base, struct type *dclass)
3635{
a9d5ef47 3636 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
3637}
3638
3639/* A helper function for is_unique_ancestor. */
3640
3641static int
3642is_unique_ancestor_worker (struct type *base, struct type *dclass,
3643 int *offset,
8af8e3bc
PA
3644 const gdb_byte *valaddr, int embedded_offset,
3645 CORE_ADDR address, struct value *val)
4e8f195d
TT
3646{
3647 int i, count = 0;
3648
f168693b
SM
3649 base = check_typedef (base);
3650 dclass = check_typedef (dclass);
4e8f195d
TT
3651
3652 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3653 {
8af8e3bc
PA
3654 struct type *iter;
3655 int this_offset;
4e8f195d 3656
8af8e3bc
PA
3657 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3658
3659 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3660 address, val);
4e8f195d
TT
3661
3662 if (class_types_same_p (base, iter))
3663 {
3664 /* If this is the first subclass, set *OFFSET and set count
3665 to 1. Otherwise, if this is at the same offset as
3666 previous instances, do nothing. Otherwise, increment
3667 count. */
3668 if (*offset == -1)
3669 {
3670 *offset = this_offset;
3671 count = 1;
3672 }
3673 else if (this_offset == *offset)
3674 {
3675 /* Nothing. */
3676 }
3677 else
3678 ++count;
3679 }
3680 else
3681 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
3682 valaddr,
3683 embedded_offset + this_offset,
3684 address, val);
4e8f195d
TT
3685 }
3686
3687 return count;
3688}
3689
3690/* Like is_ancestor, but only returns true if BASE is a unique base
3691 class of the type of VAL. */
3692
3693int
3694is_unique_ancestor (struct type *base, struct value *val)
3695{
3696 int offset = -1;
3697
3698 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
3699 value_contents_for_printing (val),
3700 value_embedded_offset (val),
3701 value_address (val), val) == 1;
4e8f195d
TT
3702}
3703
7ab4a236
TT
3704/* See gdbtypes.h. */
3705
3706enum bfd_endian
3707type_byte_order (const struct type *type)
3708{
3709 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3710 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3711 {
3712 if (byteorder == BFD_ENDIAN_BIG)
3713 return BFD_ENDIAN_LITTLE;
3714 else
3715 {
3716 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3717 return BFD_ENDIAN_BIG;
3718 }
3719 }
3720
3721 return byteorder;
3722}
3723
c906108c 3724\f
5212577a 3725/* Overload resolution. */
c906108c 3726
6403aeea
SW
3727/* Return the sum of the rank of A with the rank of B. */
3728
3729struct rank
3730sum_ranks (struct rank a, struct rank b)
3731{
3732 struct rank c;
3733 c.rank = a.rank + b.rank;
a9d5ef47 3734 c.subrank = a.subrank + b.subrank;
6403aeea
SW
3735 return c;
3736}
3737
3738/* Compare rank A and B and return:
3739 0 if a = b
3740 1 if a is better than b
3741 -1 if b is better than a. */
3742
3743int
3744compare_ranks (struct rank a, struct rank b)
3745{
3746 if (a.rank == b.rank)
a9d5ef47
SW
3747 {
3748 if (a.subrank == b.subrank)
3749 return 0;
3750 if (a.subrank < b.subrank)
3751 return 1;
3752 if (a.subrank > b.subrank)
3753 return -1;
3754 }
6403aeea
SW
3755
3756 if (a.rank < b.rank)
3757 return 1;
3758
0963b4bd 3759 /* a.rank > b.rank */
6403aeea
SW
3760 return -1;
3761}
c5aa993b 3762
0963b4bd 3763/* Functions for overload resolution begin here. */
c906108c
SS
3764
3765/* Compare two badness vectors A and B and return the result.
7ba81444
MS
3766 0 => A and B are identical
3767 1 => A and B are incomparable
3768 2 => A is better than B
3769 3 => A is worse than B */
c906108c
SS
3770
3771int
82ceee50 3772compare_badness (const badness_vector &a, const badness_vector &b)
c906108c
SS
3773{
3774 int i;
3775 int tmp;
c5aa993b
JM
3776 short found_pos = 0; /* any positives in c? */
3777 short found_neg = 0; /* any negatives in c? */
3778
82ceee50
PA
3779 /* differing sizes => incomparable */
3780 if (a.size () != b.size ())
c906108c
SS
3781 return 1;
3782
c5aa993b 3783 /* Subtract b from a */
82ceee50 3784 for (i = 0; i < a.size (); i++)
c906108c 3785 {
82ceee50 3786 tmp = compare_ranks (b[i], a[i]);
c906108c 3787 if (tmp > 0)
c5aa993b 3788 found_pos = 1;
c906108c 3789 else if (tmp < 0)
c5aa993b 3790 found_neg = 1;
c906108c
SS
3791 }
3792
3793 if (found_pos)
3794 {
3795 if (found_neg)
c5aa993b 3796 return 1; /* incomparable */
c906108c 3797 else
c5aa993b 3798 return 3; /* A > B */
c906108c 3799 }
c5aa993b
JM
3800 else
3801 /* no positives */
c906108c
SS
3802 {
3803 if (found_neg)
c5aa993b 3804 return 2; /* A < B */
c906108c 3805 else
c5aa993b 3806 return 0; /* A == B */
c906108c
SS
3807 }
3808}
3809
6b1747cd 3810/* Rank a function by comparing its parameter types (PARMS), to the
82ceee50
PA
3811 types of an argument list (ARGS). Return the badness vector. This
3812 has ARGS.size() + 1 entries. */
c906108c 3813
82ceee50 3814badness_vector
6b1747cd
PA
3815rank_function (gdb::array_view<type *> parms,
3816 gdb::array_view<value *> args)
c906108c 3817{
82ceee50
PA
3818 /* add 1 for the length-match rank. */
3819 badness_vector bv;
3820 bv.reserve (1 + args.size ());
c906108c
SS
3821
3822 /* First compare the lengths of the supplied lists.
7ba81444 3823 If there is a mismatch, set it to a high value. */
c5aa993b 3824
c906108c 3825 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
3826 arguments and ellipsis parameter lists, we should consider those
3827 and rank the length-match more finely. */
c906108c 3828
82ceee50
PA
3829 bv.push_back ((args.size () != parms.size ())
3830 ? LENGTH_MISMATCH_BADNESS
3831 : EXACT_MATCH_BADNESS);
c906108c 3832
0963b4bd 3833 /* Now rank all the parameters of the candidate function. */
82ceee50
PA
3834 size_t min_len = std::min (parms.size (), args.size ());
3835
3836 for (size_t i = 0; i < min_len; i++)
3837 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3838 args[i]));
c906108c 3839
0963b4bd 3840 /* If more arguments than parameters, add dummy entries. */
82ceee50
PA
3841 for (size_t i = min_len; i < args.size (); i++)
3842 bv.push_back (TOO_FEW_PARAMS_BADNESS);
c906108c
SS
3843
3844 return bv;
3845}
3846
973ccf8b
DJ
3847/* Compare the names of two integer types, assuming that any sign
3848 qualifiers have been checked already. We do it this way because
3849 there may be an "int" in the name of one of the types. */
3850
3851static int
3852integer_types_same_name_p (const char *first, const char *second)
3853{
3854 int first_p, second_p;
3855
7ba81444
MS
3856 /* If both are shorts, return 1; if neither is a short, keep
3857 checking. */
973ccf8b
DJ
3858 first_p = (strstr (first, "short") != NULL);
3859 second_p = (strstr (second, "short") != NULL);
3860 if (first_p && second_p)
3861 return 1;
3862 if (first_p || second_p)
3863 return 0;
3864
3865 /* Likewise for long. */
3866 first_p = (strstr (first, "long") != NULL);
3867 second_p = (strstr (second, "long") != NULL);
3868 if (first_p && second_p)
3869 return 1;
3870 if (first_p || second_p)
3871 return 0;
3872
3873 /* Likewise for char. */
3874 first_p = (strstr (first, "char") != NULL);
3875 second_p = (strstr (second, "char") != NULL);
3876 if (first_p && second_p)
3877 return 1;
3878 if (first_p || second_p)
3879 return 0;
3880
3881 /* They must both be ints. */
3882 return 1;
3883}
3884
894882e3
TT
3885/* Compares type A to type B. Returns true if they represent the same
3886 type, false otherwise. */
7062b0a0 3887
894882e3 3888bool
7062b0a0
SW
3889types_equal (struct type *a, struct type *b)
3890{
3891 /* Identical type pointers. */
3892 /* However, this still doesn't catch all cases of same type for b
3893 and a. The reason is that builtin types are different from
3894 the same ones constructed from the object. */
3895 if (a == b)
894882e3 3896 return true;
7062b0a0
SW
3897
3898 /* Resolve typedefs */
78134374 3899 if (a->code () == TYPE_CODE_TYPEDEF)
7062b0a0 3900 a = check_typedef (a);
78134374 3901 if (b->code () == TYPE_CODE_TYPEDEF)
7062b0a0
SW
3902 b = check_typedef (b);
3903
3904 /* If after resolving typedefs a and b are not of the same type
3905 code then they are not equal. */
78134374 3906 if (a->code () != b->code ())
894882e3 3907 return false;
7062b0a0
SW
3908
3909 /* If a and b are both pointers types or both reference types then
3910 they are equal of the same type iff the objects they refer to are
3911 of the same type. */
78134374
SM
3912 if (a->code () == TYPE_CODE_PTR
3913 || a->code () == TYPE_CODE_REF)
7062b0a0
SW
3914 return types_equal (TYPE_TARGET_TYPE (a),
3915 TYPE_TARGET_TYPE (b));
3916
0963b4bd 3917 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
3918 are exactly the same. This happens when we generate method
3919 stubs. The types won't point to the same address, but they
0963b4bd 3920 really are the same. */
7062b0a0 3921
7d93a1e0
SM
3922 if (a->name () && b->name ()
3923 && strcmp (a->name (), b->name ()) == 0)
894882e3 3924 return true;
7062b0a0
SW
3925
3926 /* Check if identical after resolving typedefs. */
3927 if (a == b)
894882e3 3928 return true;
7062b0a0 3929
9ce98649
TT
3930 /* Two function types are equal if their argument and return types
3931 are equal. */
78134374 3932 if (a->code () == TYPE_CODE_FUNC)
9ce98649
TT
3933 {
3934 int i;
3935
1f704f76 3936 if (a->num_fields () != b->num_fields ())
894882e3 3937 return false;
9ce98649
TT
3938
3939 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
894882e3 3940 return false;
9ce98649 3941
1f704f76 3942 for (i = 0; i < a->num_fields (); ++i)
940da03e 3943 if (!types_equal (a->field (i).type (), b->field (i).type ()))
894882e3 3944 return false;
9ce98649 3945
894882e3 3946 return true;
9ce98649
TT
3947 }
3948
894882e3 3949 return false;
7062b0a0 3950}
ca092b61
DE
3951\f
3952/* Deep comparison of types. */
3953
3954/* An entry in the type-equality bcache. */
3955
894882e3 3956struct type_equality_entry
ca092b61 3957{
894882e3
TT
3958 type_equality_entry (struct type *t1, struct type *t2)
3959 : type1 (t1),
3960 type2 (t2)
3961 {
3962 }
ca092b61 3963
894882e3
TT
3964 struct type *type1, *type2;
3965};
ca092b61 3966
894882e3
TT
3967/* A helper function to compare two strings. Returns true if they are
3968 the same, false otherwise. Handles NULLs properly. */
ca092b61 3969
894882e3 3970static bool
ca092b61
DE
3971compare_maybe_null_strings (const char *s, const char *t)
3972{
894882e3
TT
3973 if (s == NULL || t == NULL)
3974 return s == t;
ca092b61
DE
3975 return strcmp (s, t) == 0;
3976}
3977
3978/* A helper function for check_types_worklist that checks two types for
894882e3
TT
3979 "deep" equality. Returns true if the types are considered the
3980 same, false otherwise. */
ca092b61 3981
894882e3 3982static bool
ca092b61 3983check_types_equal (struct type *type1, struct type *type2,
894882e3 3984 std::vector<type_equality_entry> *worklist)
ca092b61 3985{
f168693b
SM
3986 type1 = check_typedef (type1);
3987 type2 = check_typedef (type2);
ca092b61
DE
3988
3989 if (type1 == type2)
894882e3 3990 return true;
ca092b61 3991
78134374 3992 if (type1->code () != type2->code ()
ca092b61
DE
3993 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3994 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3995 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
34877895 3996 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
ca092b61
DE
3997 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3998 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3999 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4000 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
1f704f76 4001 || type1->num_fields () != type2->num_fields ())
894882e3 4002 return false;
ca092b61 4003
7d93a1e0 4004 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
894882e3 4005 return false;
7d93a1e0 4006 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
894882e3 4007 return false;
ca092b61 4008
78134374 4009 if (type1->code () == TYPE_CODE_RANGE)
ca092b61 4010 {
599088e3 4011 if (*type1->bounds () != *type2->bounds ())
894882e3 4012 return false;
ca092b61
DE
4013 }
4014 else
4015 {
4016 int i;
4017
1f704f76 4018 for (i = 0; i < type1->num_fields (); ++i)
ca092b61 4019 {
ceacbf6e
SM
4020 const struct field *field1 = &type1->field (i);
4021 const struct field *field2 = &type2->field (i);
ca092b61
DE
4022
4023 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4024 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4025 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
894882e3 4026 return false;
ca092b61
DE
4027 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4028 FIELD_NAME (*field2)))
894882e3 4029 return false;
ca092b61
DE
4030 switch (FIELD_LOC_KIND (*field1))
4031 {
4032 case FIELD_LOC_KIND_BITPOS:
4033 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
894882e3 4034 return false;
ca092b61
DE
4035 break;
4036 case FIELD_LOC_KIND_ENUMVAL:
4037 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
894882e3 4038 return false;
ca092b61
DE
4039 break;
4040 case FIELD_LOC_KIND_PHYSADDR:
4041 if (FIELD_STATIC_PHYSADDR (*field1)
4042 != FIELD_STATIC_PHYSADDR (*field2))
894882e3 4043 return false;
ca092b61
DE
4044 break;
4045 case FIELD_LOC_KIND_PHYSNAME:
4046 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4047 FIELD_STATIC_PHYSNAME (*field2)))
894882e3 4048 return false;
ca092b61
DE
4049 break;
4050 case FIELD_LOC_KIND_DWARF_BLOCK:
4051 {
4052 struct dwarf2_locexpr_baton *block1, *block2;
4053
4054 block1 = FIELD_DWARF_BLOCK (*field1);
4055 block2 = FIELD_DWARF_BLOCK (*field2);
4056 if (block1->per_cu != block2->per_cu
4057 || block1->size != block2->size
4058 || memcmp (block1->data, block2->data, block1->size) != 0)
894882e3 4059 return false;
ca092b61
DE
4060 }
4061 break;
4062 default:
4063 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4064 "%d by check_types_equal"),
4065 FIELD_LOC_KIND (*field1));
4066 }
4067
b6cdac4b 4068 worklist->emplace_back (field1->type (), field2->type ());
ca092b61
DE
4069 }
4070 }
4071
4072 if (TYPE_TARGET_TYPE (type1) != NULL)
4073 {
ca092b61 4074 if (TYPE_TARGET_TYPE (type2) == NULL)
894882e3 4075 return false;
ca092b61 4076
894882e3
TT
4077 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4078 TYPE_TARGET_TYPE (type2));
ca092b61
DE
4079 }
4080 else if (TYPE_TARGET_TYPE (type2) != NULL)
894882e3 4081 return false;
ca092b61 4082
894882e3 4083 return true;
ca092b61
DE
4084}
4085
894882e3
TT
4086/* Check types on a worklist for equality. Returns false if any pair
4087 is not equal, true if they are all considered equal. */
ca092b61 4088
894882e3
TT
4089static bool
4090check_types_worklist (std::vector<type_equality_entry> *worklist,
dfb65191 4091 gdb::bcache *cache)
ca092b61 4092{
894882e3 4093 while (!worklist->empty ())
ca092b61 4094 {
ef5e5b0b 4095 bool added;
ca092b61 4096
894882e3
TT
4097 struct type_equality_entry entry = std::move (worklist->back ());
4098 worklist->pop_back ();
ca092b61
DE
4099
4100 /* If the type pair has already been visited, we know it is
4101 ok. */
25629dfd 4102 cache->insert (&entry, sizeof (entry), &added);
ca092b61
DE
4103 if (!added)
4104 continue;
4105
894882e3
TT
4106 if (!check_types_equal (entry.type1, entry.type2, worklist))
4107 return false;
ca092b61 4108 }
7062b0a0 4109
894882e3 4110 return true;
ca092b61
DE
4111}
4112
894882e3
TT
4113/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4114 "deep comparison". Otherwise return false. */
ca092b61 4115
894882e3 4116bool
ca092b61
DE
4117types_deeply_equal (struct type *type1, struct type *type2)
4118{
894882e3 4119 std::vector<type_equality_entry> worklist;
ca092b61
DE
4120
4121 gdb_assert (type1 != NULL && type2 != NULL);
4122
4123 /* Early exit for the simple case. */
4124 if (type1 == type2)
894882e3 4125 return true;
ca092b61 4126
dfb65191 4127 gdb::bcache cache (nullptr, nullptr);
894882e3 4128 worklist.emplace_back (type1, type2);
25629dfd 4129 return check_types_worklist (&worklist, &cache);
ca092b61 4130}
3f2f83dd
KB
4131
4132/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4133 Otherwise return one. */
4134
4135int
4136type_not_allocated (const struct type *type)
4137{
4138 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4139
8a6d5e35 4140 return (prop != nullptr && prop->kind () == PROP_CONST
5555c86d 4141 && prop->const_val () == 0);
3f2f83dd
KB
4142}
4143
4144/* Associated status of type TYPE. Return zero if type TYPE is associated.
4145 Otherwise return one. */
4146
4147int
4148type_not_associated (const struct type *type)
4149{
4150 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4151
8a6d5e35 4152 return (prop != nullptr && prop->kind () == PROP_CONST
5555c86d 4153 && prop->const_val () == 0);
3f2f83dd 4154}
9293fc63
SM
4155
4156/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4157
4158static struct rank
4159rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4160{
4161 struct rank rank = {0,0};
4162
78134374 4163 switch (arg->code ())
9293fc63
SM
4164 {
4165 case TYPE_CODE_PTR:
4166
4167 /* Allowed pointer conversions are:
4168 (a) pointer to void-pointer conversion. */
78134374 4169 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
9293fc63
SM
4170 return VOID_PTR_CONVERSION_BADNESS;
4171
4172 /* (b) pointer to ancestor-pointer conversion. */
4173 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4174 TYPE_TARGET_TYPE (arg),
4175 0);
4176 if (rank.subrank >= 0)
4177 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4178
4179 return INCOMPATIBLE_TYPE_BADNESS;
4180 case TYPE_CODE_ARRAY:
4181 {
4182 struct type *t1 = TYPE_TARGET_TYPE (parm);
4183 struct type *t2 = TYPE_TARGET_TYPE (arg);
4184
4185 if (types_equal (t1, t2))
4186 {
4187 /* Make sure they are CV equal. */
4188 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4189 rank.subrank |= CV_CONVERSION_CONST;
4190 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4191 rank.subrank |= CV_CONVERSION_VOLATILE;
4192 if (rank.subrank != 0)
4193 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4194 return EXACT_MATCH_BADNESS;
4195 }
4196 return INCOMPATIBLE_TYPE_BADNESS;
4197 }
4198 case TYPE_CODE_FUNC:
4199 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4200 case TYPE_CODE_INT:
78134374 4201 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
9293fc63
SM
4202 {
4203 if (value_as_long (value) == 0)
4204 {
4205 /* Null pointer conversion: allow it to be cast to a pointer.
4206 [4.10.1 of C++ standard draft n3290] */
4207 return NULL_POINTER_CONVERSION_BADNESS;
4208 }
4209 else
4210 {
4211 /* If type checking is disabled, allow the conversion. */
4212 if (!strict_type_checking)
4213 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4214 }
4215 }
4216 /* fall through */
4217 case TYPE_CODE_ENUM:
4218 case TYPE_CODE_FLAGS:
4219 case TYPE_CODE_CHAR:
4220 case TYPE_CODE_RANGE:
4221 case TYPE_CODE_BOOL:
4222 default:
4223 return INCOMPATIBLE_TYPE_BADNESS;
4224 }
4225}
4226
b9f4512f
SM
4227/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4228
4229static struct rank
4230rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4231{
78134374 4232 switch (arg->code ())
b9f4512f
SM
4233 {
4234 case TYPE_CODE_PTR:
4235 case TYPE_CODE_ARRAY:
4236 return rank_one_type (TYPE_TARGET_TYPE (parm),
4237 TYPE_TARGET_TYPE (arg), NULL);
4238 default:
4239 return INCOMPATIBLE_TYPE_BADNESS;
4240 }
4241}
4242
f1f832d6
SM
4243/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4244
4245static struct rank
4246rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4247{
78134374 4248 switch (arg->code ())
f1f832d6
SM
4249 {
4250 case TYPE_CODE_PTR: /* funcptr -> func */
4251 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4252 default:
4253 return INCOMPATIBLE_TYPE_BADNESS;
4254 }
4255}
4256
34910087
SM
4257/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4258
4259static struct rank
4260rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4261{
78134374 4262 switch (arg->code ())
34910087
SM
4263 {
4264 case TYPE_CODE_INT:
4265 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4266 {
4267 /* Deal with signed, unsigned, and plain chars and
4268 signed and unsigned ints. */
4269 if (TYPE_NOSIGN (parm))
4270 {
4271 /* This case only for character types. */
4272 if (TYPE_NOSIGN (arg))
4273 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4274 else /* signed/unsigned char -> plain char */
4275 return INTEGER_CONVERSION_BADNESS;
4276 }
4277 else if (TYPE_UNSIGNED (parm))
4278 {
4279 if (TYPE_UNSIGNED (arg))
4280 {
4281 /* unsigned int -> unsigned int, or
4282 unsigned long -> unsigned long */
7d93a1e0
SM
4283 if (integer_types_same_name_p (parm->name (),
4284 arg->name ()))
34910087 4285 return EXACT_MATCH_BADNESS;
7d93a1e0 4286 else if (integer_types_same_name_p (arg->name (),
34910087 4287 "int")
7d93a1e0 4288 && integer_types_same_name_p (parm->name (),
34910087
SM
4289 "long"))
4290 /* unsigned int -> unsigned long */
4291 return INTEGER_PROMOTION_BADNESS;
4292 else
4293 /* unsigned long -> unsigned int */
4294 return INTEGER_CONVERSION_BADNESS;
4295 }
4296 else
4297 {
7d93a1e0 4298 if (integer_types_same_name_p (arg->name (),
34910087 4299 "long")
7d93a1e0 4300 && integer_types_same_name_p (parm->name (),
34910087
SM
4301 "int"))
4302 /* signed long -> unsigned int */
4303 return INTEGER_CONVERSION_BADNESS;
4304 else
4305 /* signed int/long -> unsigned int/long */
4306 return INTEGER_CONVERSION_BADNESS;
4307 }
4308 }
4309 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4310 {
7d93a1e0
SM
4311 if (integer_types_same_name_p (parm->name (),
4312 arg->name ()))
34910087 4313 return EXACT_MATCH_BADNESS;
7d93a1e0 4314 else if (integer_types_same_name_p (arg->name (),
34910087 4315 "int")
7d93a1e0 4316 && integer_types_same_name_p (parm->name (),
34910087
SM
4317 "long"))
4318 return INTEGER_PROMOTION_BADNESS;
4319 else
4320 return INTEGER_CONVERSION_BADNESS;
4321 }
4322 else
4323 return INTEGER_CONVERSION_BADNESS;
4324 }
4325 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4326 return INTEGER_PROMOTION_BADNESS;
4327 else
4328 return INTEGER_CONVERSION_BADNESS;
4329 case TYPE_CODE_ENUM:
4330 case TYPE_CODE_FLAGS:
4331 case TYPE_CODE_CHAR:
4332 case TYPE_CODE_RANGE:
4333 case TYPE_CODE_BOOL:
4334 if (TYPE_DECLARED_CLASS (arg))
4335 return INCOMPATIBLE_TYPE_BADNESS;
4336 return INTEGER_PROMOTION_BADNESS;
4337 case TYPE_CODE_FLT:
4338 return INT_FLOAT_CONVERSION_BADNESS;
4339 case TYPE_CODE_PTR:
4340 return NS_POINTER_CONVERSION_BADNESS;
4341 default:
4342 return INCOMPATIBLE_TYPE_BADNESS;
4343 }
4344}
4345
793cd1d2
SM
4346/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4347
4348static struct rank
4349rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4350{
78134374 4351 switch (arg->code ())
793cd1d2
SM
4352 {
4353 case TYPE_CODE_INT:
4354 case TYPE_CODE_CHAR:
4355 case TYPE_CODE_RANGE:
4356 case TYPE_CODE_BOOL:
4357 case TYPE_CODE_ENUM:
4358 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4359 return INCOMPATIBLE_TYPE_BADNESS;
4360 return INTEGER_CONVERSION_BADNESS;
4361 case TYPE_CODE_FLT:
4362 return INT_FLOAT_CONVERSION_BADNESS;
4363 default:
4364 return INCOMPATIBLE_TYPE_BADNESS;
4365 }
4366}
4367
41ea4728
SM
4368/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4369
4370static struct rank
4371rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4372{
78134374 4373 switch (arg->code ())
41ea4728
SM
4374 {
4375 case TYPE_CODE_RANGE:
4376 case TYPE_CODE_BOOL:
4377 case TYPE_CODE_ENUM:
4378 if (TYPE_DECLARED_CLASS (arg))
4379 return INCOMPATIBLE_TYPE_BADNESS;
4380 return INTEGER_CONVERSION_BADNESS;
4381 case TYPE_CODE_FLT:
4382 return INT_FLOAT_CONVERSION_BADNESS;
4383 case TYPE_CODE_INT:
4384 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4385 return INTEGER_CONVERSION_BADNESS;
4386 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4387 return INTEGER_PROMOTION_BADNESS;
4388 /* fall through */
4389 case TYPE_CODE_CHAR:
4390 /* Deal with signed, unsigned, and plain chars for C++ and
4391 with int cases falling through from previous case. */
4392 if (TYPE_NOSIGN (parm))
4393 {
4394 if (TYPE_NOSIGN (arg))
4395 return EXACT_MATCH_BADNESS;
4396 else
4397 return INTEGER_CONVERSION_BADNESS;
4398 }
4399 else if (TYPE_UNSIGNED (parm))
4400 {
4401 if (TYPE_UNSIGNED (arg))
4402 return EXACT_MATCH_BADNESS;
4403 else
4404 return INTEGER_PROMOTION_BADNESS;
4405 }
4406 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4407 return EXACT_MATCH_BADNESS;
4408 else
4409 return INTEGER_CONVERSION_BADNESS;
4410 default:
4411 return INCOMPATIBLE_TYPE_BADNESS;
4412 }
4413}
4414
0dd322dc
SM
4415/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4416
4417static struct rank
4418rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4419{
78134374 4420 switch (arg->code ())
0dd322dc
SM
4421 {
4422 case TYPE_CODE_INT:
4423 case TYPE_CODE_CHAR:
4424 case TYPE_CODE_RANGE:
4425 case TYPE_CODE_BOOL:
4426 case TYPE_CODE_ENUM:
4427 return INTEGER_CONVERSION_BADNESS;
4428 case TYPE_CODE_FLT:
4429 return INT_FLOAT_CONVERSION_BADNESS;
4430 default:
4431 return INCOMPATIBLE_TYPE_BADNESS;
4432 }
4433}
4434
2c509035
SM
4435/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4436
4437static struct rank
4438rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4439{
78134374 4440 switch (arg->code ())
2c509035
SM
4441 {
4442 /* n3290 draft, section 4.12.1 (conv.bool):
4443
4444 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4445 pointer to member type can be converted to a prvalue of type
4446 bool. A zero value, null pointer value, or null member pointer
4447 value is converted to false; any other value is converted to
4448 true. A prvalue of type std::nullptr_t can be converted to a
4449 prvalue of type bool; the resulting value is false." */
4450 case TYPE_CODE_INT:
4451 case TYPE_CODE_CHAR:
4452 case TYPE_CODE_ENUM:
4453 case TYPE_CODE_FLT:
4454 case TYPE_CODE_MEMBERPTR:
4455 case TYPE_CODE_PTR:
4456 return BOOL_CONVERSION_BADNESS;
4457 case TYPE_CODE_RANGE:
4458 return INCOMPATIBLE_TYPE_BADNESS;
4459 case TYPE_CODE_BOOL:
4460 return EXACT_MATCH_BADNESS;
4461 default:
4462 return INCOMPATIBLE_TYPE_BADNESS;
4463 }
4464}
4465
7f17b20d
SM
4466/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4467
4468static struct rank
4469rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4470{
78134374 4471 switch (arg->code ())
7f17b20d
SM
4472 {
4473 case TYPE_CODE_FLT:
4474 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4475 return FLOAT_PROMOTION_BADNESS;
4476 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4477 return EXACT_MATCH_BADNESS;
4478 else
4479 return FLOAT_CONVERSION_BADNESS;
4480 case TYPE_CODE_INT:
4481 case TYPE_CODE_BOOL:
4482 case TYPE_CODE_ENUM:
4483 case TYPE_CODE_RANGE:
4484 case TYPE_CODE_CHAR:
4485 return INT_FLOAT_CONVERSION_BADNESS;
4486 default:
4487 return INCOMPATIBLE_TYPE_BADNESS;
4488 }
4489}
4490
2598a94b
SM
4491/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4492
4493static struct rank
4494rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4495{
78134374 4496 switch (arg->code ())
2598a94b
SM
4497 { /* Strictly not needed for C++, but... */
4498 case TYPE_CODE_FLT:
4499 return FLOAT_PROMOTION_BADNESS;
4500 case TYPE_CODE_COMPLEX:
4501 return EXACT_MATCH_BADNESS;
4502 default:
4503 return INCOMPATIBLE_TYPE_BADNESS;
4504 }
4505}
4506
595f96a9
SM
4507/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4508
4509static struct rank
4510rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4511{
4512 struct rank rank = {0, 0};
4513
78134374 4514 switch (arg->code ())
595f96a9
SM
4515 {
4516 case TYPE_CODE_STRUCT:
4517 /* Check for derivation */
4518 rank.subrank = distance_to_ancestor (parm, arg, 0);
4519 if (rank.subrank >= 0)
4520 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4521 /* fall through */
4522 default:
4523 return INCOMPATIBLE_TYPE_BADNESS;
4524 }
4525}
4526
f09ce22d
SM
4527/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4528
4529static struct rank
4530rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4531{
78134374 4532 switch (arg->code ())
f09ce22d
SM
4533 {
4534 /* Not in C++ */
4535 case TYPE_CODE_SET:
940da03e
SM
4536 return rank_one_type (parm->field (0).type (),
4537 arg->field (0).type (), NULL);
f09ce22d
SM
4538 default:
4539 return INCOMPATIBLE_TYPE_BADNESS;
4540 }
4541}
4542
c906108c
SS
4543/* Compare one type (PARM) for compatibility with another (ARG).
4544 * PARM is intended to be the parameter type of a function; and
4545 * ARG is the supplied argument's type. This function tests if
4546 * the latter can be converted to the former.
da096638 4547 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
4548 *
4549 * Return 0 if they are identical types;
4550 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
4551 * PARM is to ARG. The higher the return value, the worse the match.
4552 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 4553
6403aeea 4554struct rank
da096638 4555rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 4556{
a9d5ef47 4557 struct rank rank = {0,0};
7062b0a0 4558
c906108c 4559 /* Resolve typedefs */
78134374 4560 if (parm->code () == TYPE_CODE_TYPEDEF)
c906108c 4561 parm = check_typedef (parm);
78134374 4562 if (arg->code () == TYPE_CODE_TYPEDEF)
c906108c
SS
4563 arg = check_typedef (arg);
4564
e15c3eb4 4565 if (TYPE_IS_REFERENCE (parm) && value != NULL)
15c0a2a9 4566 {
e15c3eb4
KS
4567 if (VALUE_LVAL (value) == not_lval)
4568 {
4569 /* Rvalues should preferably bind to rvalue references or const
4570 lvalue references. */
78134374 4571 if (parm->code () == TYPE_CODE_RVALUE_REF)
e15c3eb4
KS
4572 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4573 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4574 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4575 else
4576 return INCOMPATIBLE_TYPE_BADNESS;
4577 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4578 }
4579 else
4580 {
330f1d38 4581 /* It's illegal to pass an lvalue as an rvalue. */
78134374 4582 if (parm->code () == TYPE_CODE_RVALUE_REF)
330f1d38 4583 return INCOMPATIBLE_TYPE_BADNESS;
e15c3eb4 4584 }
15c0a2a9
AV
4585 }
4586
4587 if (types_equal (parm, arg))
15c0a2a9 4588 {
e15c3eb4
KS
4589 struct type *t1 = parm;
4590 struct type *t2 = arg;
15c0a2a9 4591
e15c3eb4 4592 /* For pointers and references, compare target type. */
78134374 4593 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
e15c3eb4
KS
4594 {
4595 t1 = TYPE_TARGET_TYPE (parm);
4596 t2 = TYPE_TARGET_TYPE (arg);
4597 }
15c0a2a9 4598
e15c3eb4
KS
4599 /* Make sure they are CV equal, too. */
4600 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4601 rank.subrank |= CV_CONVERSION_CONST;
4602 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4603 rank.subrank |= CV_CONVERSION_VOLATILE;
4604 if (rank.subrank != 0)
4605 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4606 return EXACT_MATCH_BADNESS;
15c0a2a9
AV
4607 }
4608
db577aea 4609 /* See through references, since we can almost make non-references
7ba81444 4610 references. */
aa006118
AV
4611
4612 if (TYPE_IS_REFERENCE (arg))
da096638 4613 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
06acc08f 4614 REFERENCE_SEE_THROUGH_BADNESS));
aa006118 4615 if (TYPE_IS_REFERENCE (parm))
da096638 4616 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
06acc08f 4617 REFERENCE_SEE_THROUGH_BADNESS));
5d161b24 4618 if (overload_debug)
7ba81444 4619 /* Debugging only. */
78134374 4620 fprintf_filtered (gdb_stderr,
7ba81444 4621 "------ Arg is %s [%d], parm is %s [%d]\n",
7d93a1e0
SM
4622 arg->name (), arg->code (),
4623 parm->name (), parm->code ());
c906108c 4624
0963b4bd 4625 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c 4626
78134374 4627 switch (parm->code ())
c906108c 4628 {
c5aa993b 4629 case TYPE_CODE_PTR:
9293fc63 4630 return rank_one_type_parm_ptr (parm, arg, value);
c5aa993b 4631 case TYPE_CODE_ARRAY:
b9f4512f 4632 return rank_one_type_parm_array (parm, arg, value);
c5aa993b 4633 case TYPE_CODE_FUNC:
f1f832d6 4634 return rank_one_type_parm_func (parm, arg, value);
c5aa993b 4635 case TYPE_CODE_INT:
34910087 4636 return rank_one_type_parm_int (parm, arg, value);
c5aa993b 4637 case TYPE_CODE_ENUM:
793cd1d2 4638 return rank_one_type_parm_enum (parm, arg, value);
c5aa993b 4639 case TYPE_CODE_CHAR:
41ea4728 4640 return rank_one_type_parm_char (parm, arg, value);
c5aa993b 4641 case TYPE_CODE_RANGE:
0dd322dc 4642 return rank_one_type_parm_range (parm, arg, value);
c5aa993b 4643 case TYPE_CODE_BOOL:
2c509035 4644 return rank_one_type_parm_bool (parm, arg, value);
c5aa993b 4645 case TYPE_CODE_FLT:
7f17b20d 4646 return rank_one_type_parm_float (parm, arg, value);
c5aa993b 4647 case TYPE_CODE_COMPLEX:
2598a94b 4648 return rank_one_type_parm_complex (parm, arg, value);
c5aa993b 4649 case TYPE_CODE_STRUCT:
595f96a9 4650 return rank_one_type_parm_struct (parm, arg, value);
c5aa993b 4651 case TYPE_CODE_SET:
f09ce22d 4652 return rank_one_type_parm_set (parm, arg, value);
c5aa993b
JM
4653 default:
4654 return INCOMPATIBLE_TYPE_BADNESS;
78134374 4655 } /* switch (arg->code ()) */
c906108c
SS
4656}
4657
0963b4bd 4658/* End of functions for overload resolution. */
5212577a
DE
4659\f
4660/* Routines to pretty-print types. */
c906108c 4661
c906108c 4662static void
fba45db2 4663print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
4664{
4665 int bitno;
4666
4667 for (bitno = 0; bitno < nbits; bitno++)
4668 {
4669 if ((bitno % 8) == 0)
4670 {
4671 puts_filtered (" ");
4672 }
4673 if (B_TST (bits, bitno))
a3f17187 4674 printf_filtered (("1"));
c906108c 4675 else
a3f17187 4676 printf_filtered (("0"));
c906108c
SS
4677 }
4678}
4679
ad2f7632 4680/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
4681 include it since we may get into a infinitely recursive
4682 situation. */
c906108c
SS
4683
4684static void
4c9e8482 4685print_args (struct field *args, int nargs, int spaces)
c906108c
SS
4686{
4687 if (args != NULL)
4688 {
ad2f7632
DJ
4689 int i;
4690
4691 for (i = 0; i < nargs; i++)
4c9e8482
DE
4692 {
4693 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4694 args[i].name != NULL ? args[i].name : "<NULL>");
5d14b6e5 4695 recursive_dump_type (args[i].type (), spaces + 2);
4c9e8482 4696 }
c906108c
SS
4697 }
4698}
4699
d6a843b5
JK
4700int
4701field_is_static (struct field *f)
4702{
4703 /* "static" fields are the fields whose location is not relative
4704 to the address of the enclosing struct. It would be nice to
4705 have a dedicated flag that would be set for static fields when
4706 the type is being created. But in practice, checking the field
254e6b9e 4707 loc_kind should give us an accurate answer. */
d6a843b5
JK
4708 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4709 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4710}
4711
c906108c 4712static void
fba45db2 4713dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
4714{
4715 int method_idx;
4716 int overload_idx;
4717 struct fn_field *f;
4718
4719 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 4720 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
4721 printf_filtered ("\n");
4722 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4723 {
4724 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4725 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4726 method_idx,
4727 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
4728 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4729 gdb_stdout);
a3f17187 4730 printf_filtered (_(") length %d\n"),
c906108c
SS
4731 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4732 for (overload_idx = 0;
4733 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4734 overload_idx++)
4735 {
4736 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4737 overload_idx,
4738 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
4739 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4740 gdb_stdout);
c906108c
SS
4741 printf_filtered (")\n");
4742 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
4743 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4744 gdb_stdout);
c906108c
SS
4745 printf_filtered ("\n");
4746
4747 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4748 spaces + 8 + 2);
4749
4750 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
4751 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4752 gdb_stdout);
c906108c 4753 printf_filtered ("\n");
4c9e8482 4754 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
1f704f76 4755 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4c9e8482 4756 spaces + 8 + 2);
c906108c 4757 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
4758 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4759 gdb_stdout);
c906108c
SS
4760 printf_filtered ("\n");
4761
4762 printfi_filtered (spaces + 8, "is_const %d\n",
4763 TYPE_FN_FIELD_CONST (f, overload_idx));
4764 printfi_filtered (spaces + 8, "is_volatile %d\n",
4765 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4766 printfi_filtered (spaces + 8, "is_private %d\n",
4767 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4768 printfi_filtered (spaces + 8, "is_protected %d\n",
4769 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4770 printfi_filtered (spaces + 8, "is_stub %d\n",
4771 TYPE_FN_FIELD_STUB (f, overload_idx));
e35000a7
TBA
4772 printfi_filtered (spaces + 8, "defaulted %d\n",
4773 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4774 printfi_filtered (spaces + 8, "is_deleted %d\n",
4775 TYPE_FN_FIELD_DELETED (f, overload_idx));
c906108c
SS
4776 printfi_filtered (spaces + 8, "voffset %u\n",
4777 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4778 }
4779 }
4780}
4781
4782static void
fba45db2 4783print_cplus_stuff (struct type *type, int spaces)
c906108c 4784{
ae6ae975
DE
4785 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4786 printfi_filtered (spaces, "vptr_basetype ");
4787 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4788 puts_filtered ("\n");
4789 if (TYPE_VPTR_BASETYPE (type) != NULL)
4790 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4791
c906108c
SS
4792 printfi_filtered (spaces, "n_baseclasses %d\n",
4793 TYPE_N_BASECLASSES (type));
4794 printfi_filtered (spaces, "nfn_fields %d\n",
4795 TYPE_NFN_FIELDS (type));
c906108c
SS
4796 if (TYPE_N_BASECLASSES (type) > 0)
4797 {
4798 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4799 TYPE_N_BASECLASSES (type));
7ba81444
MS
4800 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4801 gdb_stdout);
c906108c
SS
4802 printf_filtered (")");
4803
4804 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4805 TYPE_N_BASECLASSES (type));
4806 puts_filtered ("\n");
4807 }
1f704f76 4808 if (type->num_fields () > 0)
c906108c
SS
4809 {
4810 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4811 {
7ba81444
MS
4812 printfi_filtered (spaces,
4813 "private_field_bits (%d bits at *",
1f704f76 4814 type->num_fields ());
7ba81444
MS
4815 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4816 gdb_stdout);
c906108c
SS
4817 printf_filtered (")");
4818 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
1f704f76 4819 type->num_fields ());
c906108c
SS
4820 puts_filtered ("\n");
4821 }
4822 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4823 {
7ba81444
MS
4824 printfi_filtered (spaces,
4825 "protected_field_bits (%d bits at *",
1f704f76 4826 type->num_fields ());
7ba81444
MS
4827 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4828 gdb_stdout);
c906108c
SS
4829 printf_filtered (")");
4830 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
1f704f76 4831 type->num_fields ());
c906108c
SS
4832 puts_filtered ("\n");
4833 }
4834 }
4835 if (TYPE_NFN_FIELDS (type) > 0)
4836 {
4837 dump_fn_fieldlists (type, spaces);
4838 }
e35000a7
TBA
4839
4840 printfi_filtered (spaces, "calling_convention %d\n",
4841 TYPE_CPLUS_CALLING_CONVENTION (type));
c906108c
SS
4842}
4843
b4ba55a1
JB
4844/* Print the contents of the TYPE's type_specific union, assuming that
4845 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4846
4847static void
4848print_gnat_stuff (struct type *type, int spaces)
4849{
4850 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4851
8cd00c59
PMR
4852 if (descriptive_type == NULL)
4853 printfi_filtered (spaces + 2, "no descriptive type\n");
4854 else
4855 {
4856 printfi_filtered (spaces + 2, "descriptive type\n");
4857 recursive_dump_type (descriptive_type, spaces + 4);
4858 }
b4ba55a1
JB
4859}
4860
c906108c
SS
4861static struct obstack dont_print_type_obstack;
4862
53d5a2a5
TV
4863/* Print the dynamic_prop PROP. */
4864
4865static void
4866dump_dynamic_prop (dynamic_prop const& prop)
4867{
4868 switch (prop.kind ())
4869 {
4870 case PROP_CONST:
4871 printf_filtered ("%s", plongest (prop.const_val ()));
4872 break;
4873 case PROP_UNDEFINED:
4874 printf_filtered ("(undefined)");
4875 break;
4876 case PROP_LOCEXPR:
4877 case PROP_LOCLIST:
4878 printf_filtered ("(dynamic)");
4879 break;
4880 default:
4881 gdb_assert_not_reached ("unhandled prop kind");
4882 break;
4883 }
4884}
4885
c906108c 4886void
fba45db2 4887recursive_dump_type (struct type *type, int spaces)
c906108c
SS
4888{
4889 int idx;
4890
4891 if (spaces == 0)
4892 obstack_begin (&dont_print_type_obstack, 0);
4893
1f704f76 4894 if (type->num_fields () > 0
b4ba55a1 4895 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
4896 {
4897 struct type **first_dont_print
7ba81444 4898 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 4899
7ba81444
MS
4900 int i = (struct type **)
4901 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
4902
4903 while (--i >= 0)
4904 {
4905 if (type == first_dont_print[i])
4906 {
4907 printfi_filtered (spaces, "type node ");
d4f3574e 4908 gdb_print_host_address (type, gdb_stdout);
a3f17187 4909 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
4910 return;
4911 }
4912 }
4913
4914 obstack_ptr_grow (&dont_print_type_obstack, type);
4915 }
4916
4917 printfi_filtered (spaces, "type node ");
d4f3574e 4918 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
4919 printf_filtered ("\n");
4920 printfi_filtered (spaces, "name '%s' (",
7d93a1e0
SM
4921 type->name () ? type->name () : "<NULL>");
4922 gdb_print_host_address (type->name (), gdb_stdout);
c906108c 4923 printf_filtered (")\n");
78134374
SM
4924 printfi_filtered (spaces, "code 0x%x ", type->code ());
4925 switch (type->code ())
c906108c 4926 {
c5aa993b
JM
4927 case TYPE_CODE_UNDEF:
4928 printf_filtered ("(TYPE_CODE_UNDEF)");
4929 break;
4930 case TYPE_CODE_PTR:
4931 printf_filtered ("(TYPE_CODE_PTR)");
4932 break;
4933 case TYPE_CODE_ARRAY:
4934 printf_filtered ("(TYPE_CODE_ARRAY)");
4935 break;
4936 case TYPE_CODE_STRUCT:
4937 printf_filtered ("(TYPE_CODE_STRUCT)");
4938 break;
4939 case TYPE_CODE_UNION:
4940 printf_filtered ("(TYPE_CODE_UNION)");
4941 break;
4942 case TYPE_CODE_ENUM:
4943 printf_filtered ("(TYPE_CODE_ENUM)");
4944 break;
4f2aea11
MK
4945 case TYPE_CODE_FLAGS:
4946 printf_filtered ("(TYPE_CODE_FLAGS)");
4947 break;
c5aa993b
JM
4948 case TYPE_CODE_FUNC:
4949 printf_filtered ("(TYPE_CODE_FUNC)");
4950 break;
4951 case TYPE_CODE_INT:
4952 printf_filtered ("(TYPE_CODE_INT)");
4953 break;
4954 case TYPE_CODE_FLT:
4955 printf_filtered ("(TYPE_CODE_FLT)");
4956 break;
4957 case TYPE_CODE_VOID:
4958 printf_filtered ("(TYPE_CODE_VOID)");
4959 break;
4960 case TYPE_CODE_SET:
4961 printf_filtered ("(TYPE_CODE_SET)");
4962 break;
4963 case TYPE_CODE_RANGE:
4964 printf_filtered ("(TYPE_CODE_RANGE)");
4965 break;
4966 case TYPE_CODE_STRING:
4967 printf_filtered ("(TYPE_CODE_STRING)");
4968 break;
4969 case TYPE_CODE_ERROR:
4970 printf_filtered ("(TYPE_CODE_ERROR)");
4971 break;
0d5de010
DJ
4972 case TYPE_CODE_MEMBERPTR:
4973 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4974 break;
4975 case TYPE_CODE_METHODPTR:
4976 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
4977 break;
4978 case TYPE_CODE_METHOD:
4979 printf_filtered ("(TYPE_CODE_METHOD)");
4980 break;
4981 case TYPE_CODE_REF:
4982 printf_filtered ("(TYPE_CODE_REF)");
4983 break;
4984 case TYPE_CODE_CHAR:
4985 printf_filtered ("(TYPE_CODE_CHAR)");
4986 break;
4987 case TYPE_CODE_BOOL:
4988 printf_filtered ("(TYPE_CODE_BOOL)");
4989 break;
e9e79dd9
FF
4990 case TYPE_CODE_COMPLEX:
4991 printf_filtered ("(TYPE_CODE_COMPLEX)");
4992 break;
c5aa993b
JM
4993 case TYPE_CODE_TYPEDEF:
4994 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4995 break;
5c4e30ca
DC
4996 case TYPE_CODE_NAMESPACE:
4997 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4998 break;
c5aa993b
JM
4999 default:
5000 printf_filtered ("(UNKNOWN TYPE CODE)");
5001 break;
c906108c
SS
5002 }
5003 puts_filtered ("\n");
cc1defb1 5004 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
e9bb382b
UW
5005 if (TYPE_OBJFILE_OWNED (type))
5006 {
5007 printfi_filtered (spaces, "objfile ");
5008 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5009 }
5010 else
5011 {
5012 printfi_filtered (spaces, "gdbarch ");
5013 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5014 }
c906108c
SS
5015 printf_filtered ("\n");
5016 printfi_filtered (spaces, "target_type ");
d4f3574e 5017 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
5018 printf_filtered ("\n");
5019 if (TYPE_TARGET_TYPE (type) != NULL)
5020 {
5021 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5022 }
5023 printfi_filtered (spaces, "pointer_type ");
d4f3574e 5024 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
5025 printf_filtered ("\n");
5026 printfi_filtered (spaces, "reference_type ");
d4f3574e 5027 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 5028 printf_filtered ("\n");
2fdde8f8
DJ
5029 printfi_filtered (spaces, "type_chain ");
5030 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 5031 printf_filtered ("\n");
7ba81444
MS
5032 printfi_filtered (spaces, "instance_flags 0x%x",
5033 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
5034 if (TYPE_CONST (type))
5035 {
a9ff5f12 5036 puts_filtered (" TYPE_CONST");
2fdde8f8
DJ
5037 }
5038 if (TYPE_VOLATILE (type))
5039 {
a9ff5f12 5040 puts_filtered (" TYPE_VOLATILE");
2fdde8f8
DJ
5041 }
5042 if (TYPE_CODE_SPACE (type))
5043 {
a9ff5f12 5044 puts_filtered (" TYPE_CODE_SPACE");
2fdde8f8
DJ
5045 }
5046 if (TYPE_DATA_SPACE (type))
5047 {
a9ff5f12 5048 puts_filtered (" TYPE_DATA_SPACE");
2fdde8f8 5049 }
8b2dbe47
KB
5050 if (TYPE_ADDRESS_CLASS_1 (type))
5051 {
a9ff5f12 5052 puts_filtered (" TYPE_ADDRESS_CLASS_1");
8b2dbe47
KB
5053 }
5054 if (TYPE_ADDRESS_CLASS_2 (type))
5055 {
a9ff5f12 5056 puts_filtered (" TYPE_ADDRESS_CLASS_2");
8b2dbe47 5057 }
06d66ee9
TT
5058 if (TYPE_RESTRICT (type))
5059 {
a9ff5f12 5060 puts_filtered (" TYPE_RESTRICT");
06d66ee9 5061 }
a2c2acaf
MW
5062 if (TYPE_ATOMIC (type))
5063 {
a9ff5f12 5064 puts_filtered (" TYPE_ATOMIC");
a2c2acaf 5065 }
2fdde8f8 5066 puts_filtered ("\n");
876cecd0
TT
5067
5068 printfi_filtered (spaces, "flags");
762a036f 5069 if (TYPE_UNSIGNED (type))
c906108c 5070 {
a9ff5f12 5071 puts_filtered (" TYPE_UNSIGNED");
c906108c 5072 }
762a036f
FF
5073 if (TYPE_NOSIGN (type))
5074 {
a9ff5f12 5075 puts_filtered (" TYPE_NOSIGN");
762a036f 5076 }
34877895
PJ
5077 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5078 {
5079 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5080 }
762a036f 5081 if (TYPE_STUB (type))
c906108c 5082 {
a9ff5f12 5083 puts_filtered (" TYPE_STUB");
c906108c 5084 }
762a036f
FF
5085 if (TYPE_TARGET_STUB (type))
5086 {
a9ff5f12 5087 puts_filtered (" TYPE_TARGET_STUB");
762a036f 5088 }
762a036f
FF
5089 if (TYPE_PROTOTYPED (type))
5090 {
a9ff5f12 5091 puts_filtered (" TYPE_PROTOTYPED");
762a036f 5092 }
762a036f
FF
5093 if (TYPE_VARARGS (type))
5094 {
a9ff5f12 5095 puts_filtered (" TYPE_VARARGS");
762a036f 5096 }
f5f8a009
EZ
5097 /* This is used for things like AltiVec registers on ppc. Gcc emits
5098 an attribute for the array type, which tells whether or not we
5099 have a vector, instead of a regular array. */
5100 if (TYPE_VECTOR (type))
5101 {
a9ff5f12 5102 puts_filtered (" TYPE_VECTOR");
f5f8a009 5103 }
876cecd0
TT
5104 if (TYPE_FIXED_INSTANCE (type))
5105 {
5106 puts_filtered (" TYPE_FIXED_INSTANCE");
5107 }
5108 if (TYPE_STUB_SUPPORTED (type))
5109 {
5110 puts_filtered (" TYPE_STUB_SUPPORTED");
5111 }
5112 if (TYPE_NOTTEXT (type))
5113 {
5114 puts_filtered (" TYPE_NOTTEXT");
5115 }
c906108c 5116 puts_filtered ("\n");
1f704f76 5117 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
80fc5e77 5118 gdb_print_host_address (type->fields (), gdb_stdout);
c906108c 5119 puts_filtered ("\n");
1f704f76 5120 for (idx = 0; idx < type->num_fields (); idx++)
c906108c 5121 {
78134374 5122 if (type->code () == TYPE_CODE_ENUM)
14e75d8e
JK
5123 printfi_filtered (spaces + 2,
5124 "[%d] enumval %s type ",
5125 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5126 else
5127 printfi_filtered (spaces + 2,
6b850546
DT
5128 "[%d] bitpos %s bitsize %d type ",
5129 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
14e75d8e 5130 TYPE_FIELD_BITSIZE (type, idx));
940da03e 5131 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
c906108c
SS
5132 printf_filtered (" name '%s' (",
5133 TYPE_FIELD_NAME (type, idx) != NULL
5134 ? TYPE_FIELD_NAME (type, idx)
5135 : "<NULL>");
d4f3574e 5136 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c 5137 printf_filtered (")\n");
940da03e 5138 if (type->field (idx).type () != NULL)
c906108c 5139 {
940da03e 5140 recursive_dump_type (type->field (idx).type (), spaces + 4);
c906108c
SS
5141 }
5142 }
78134374 5143 if (type->code () == TYPE_CODE_RANGE)
43bbcdc2 5144 {
53d5a2a5
TV
5145 printfi_filtered (spaces, "low ");
5146 dump_dynamic_prop (type->bounds ()->low);
5147 printf_filtered (" high ");
5148 dump_dynamic_prop (type->bounds ()->high);
5149 printf_filtered ("\n");
43bbcdc2 5150 }
c906108c 5151
b4ba55a1
JB
5152 switch (TYPE_SPECIFIC_FIELD (type))
5153 {
5154 case TYPE_SPECIFIC_CPLUS_STUFF:
5155 printfi_filtered (spaces, "cplus_stuff ");
5156 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5157 gdb_stdout);
5158 puts_filtered ("\n");
5159 print_cplus_stuff (type, spaces);
5160 break;
8da61cc4 5161
b4ba55a1
JB
5162 case TYPE_SPECIFIC_GNAT_STUFF:
5163 printfi_filtered (spaces, "gnat_stuff ");
5164 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5165 puts_filtered ("\n");
5166 print_gnat_stuff (type, spaces);
5167 break;
701c159d 5168
b4ba55a1
JB
5169 case TYPE_SPECIFIC_FLOATFORMAT:
5170 printfi_filtered (spaces, "floatformat ");
0db7851f
UW
5171 if (TYPE_FLOATFORMAT (type) == NULL
5172 || TYPE_FLOATFORMAT (type)->name == NULL)
b4ba55a1
JB
5173 puts_filtered ("(null)");
5174 else
0db7851f 5175 puts_filtered (TYPE_FLOATFORMAT (type)->name);
b4ba55a1
JB
5176 puts_filtered ("\n");
5177 break;
c906108c 5178
b6cdc2c1 5179 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
5180 printfi_filtered (spaces, "calling_convention %d\n",
5181 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 5182 /* tail_call_list is not printed. */
b4ba55a1 5183 break;
09e2d7c7
DE
5184
5185 case TYPE_SPECIFIC_SELF_TYPE:
5186 printfi_filtered (spaces, "self_type ");
5187 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5188 puts_filtered ("\n");
5189 break;
c906108c 5190 }
b4ba55a1 5191
c906108c
SS
5192 if (spaces == 0)
5193 obstack_free (&dont_print_type_obstack, NULL);
5194}
5212577a 5195\f
ae5a43e0
DJ
5196/* Trivial helpers for the libiberty hash table, for mapping one
5197 type to another. */
5198
fd90ace4 5199struct type_pair : public allocate_on_obstack
ae5a43e0 5200{
fd90ace4
YQ
5201 type_pair (struct type *old_, struct type *newobj_)
5202 : old (old_), newobj (newobj_)
5203 {}
5204
5205 struct type * const old, * const newobj;
ae5a43e0
DJ
5206};
5207
5208static hashval_t
5209type_pair_hash (const void *item)
5210{
9a3c8263 5211 const struct type_pair *pair = (const struct type_pair *) item;
d8734c88 5212
ae5a43e0
DJ
5213 return htab_hash_pointer (pair->old);
5214}
5215
5216static int
5217type_pair_eq (const void *item_lhs, const void *item_rhs)
5218{
9a3c8263
SM
5219 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5220 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
d8734c88 5221
ae5a43e0
DJ
5222 return lhs->old == rhs->old;
5223}
5224
5225/* Allocate the hash table used by copy_type_recursive to walk
5226 types without duplicates. We use OBJFILE's obstack, because
5227 OBJFILE is about to be deleted. */
5228
5229htab_t
5230create_copied_types_hash (struct objfile *objfile)
5231{
5232 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5233 NULL, &objfile->objfile_obstack,
5234 hashtab_obstack_allocate,
5235 dummy_obstack_deallocate);
5236}
5237
d9823cbb
KB
5238/* Recursively copy (deep copy) a dynamic attribute list of a type. */
5239
5240static struct dynamic_prop_list *
5241copy_dynamic_prop_list (struct obstack *objfile_obstack,
5242 struct dynamic_prop_list *list)
5243{
5244 struct dynamic_prop_list *copy = list;
5245 struct dynamic_prop_list **node_ptr = &copy;
5246
5247 while (*node_ptr != NULL)
5248 {
5249 struct dynamic_prop_list *node_copy;
5250
224c3ddb
SM
5251 node_copy = ((struct dynamic_prop_list *)
5252 obstack_copy (objfile_obstack, *node_ptr,
5253 sizeof (struct dynamic_prop_list)));
283a9958 5254 node_copy->prop = (*node_ptr)->prop;
d9823cbb
KB
5255 *node_ptr = node_copy;
5256
5257 node_ptr = &node_copy->next;
5258 }
5259
5260 return copy;
5261}
5262
7ba81444 5263/* Recursively copy (deep copy) TYPE, if it is associated with
eed8b28a
PP
5264 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5265 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5266 it is not associated with OBJFILE. */
ae5a43e0
DJ
5267
5268struct type *
7ba81444
MS
5269copy_type_recursive (struct objfile *objfile,
5270 struct type *type,
ae5a43e0
DJ
5271 htab_t copied_types)
5272{
ae5a43e0
DJ
5273 void **slot;
5274 struct type *new_type;
5275
e9bb382b 5276 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
5277 return type;
5278
7ba81444
MS
5279 /* This type shouldn't be pointing to any types in other objfiles;
5280 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
5281 gdb_assert (TYPE_OBJFILE (type) == objfile);
5282
fd90ace4
YQ
5283 struct type_pair pair (type, nullptr);
5284
ae5a43e0
DJ
5285 slot = htab_find_slot (copied_types, &pair, INSERT);
5286 if (*slot != NULL)
fe978cb0 5287 return ((struct type_pair *) *slot)->newobj;
ae5a43e0 5288
e9bb382b 5289 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
5290
5291 /* We must add the new type to the hash table immediately, in case
5292 we encounter this type again during a recursive call below. */
fd90ace4
YQ
5293 struct type_pair *stored
5294 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5295
ae5a43e0
DJ
5296 *slot = stored;
5297
876cecd0
TT
5298 /* Copy the common fields of types. For the main type, we simply
5299 copy the entire thing and then update specific fields as needed. */
5300 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
5301 TYPE_OBJFILE_OWNED (new_type) = 0;
5302 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 5303
7d93a1e0
SM
5304 if (type->name ())
5305 new_type->set_name (xstrdup (type->name ()));
ae5a43e0
DJ
5306
5307 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5308 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5309
5310 /* Copy the fields. */
1f704f76 5311 if (type->num_fields ())
ae5a43e0
DJ
5312 {
5313 int i, nfields;
5314
1f704f76 5315 nfields = type->num_fields ();
3cabb6b0
SM
5316 new_type->set_fields
5317 ((struct field *)
5318 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5319
ae5a43e0
DJ
5320 for (i = 0; i < nfields; i++)
5321 {
7ba81444
MS
5322 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5323 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0 5324 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
940da03e 5325 if (type->field (i).type ())
5d14b6e5 5326 new_type->field (i).set_type
940da03e 5327 (copy_type_recursive (objfile, type->field (i).type (),
5d14b6e5 5328 copied_types));
ae5a43e0 5329 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
5330 TYPE_FIELD_NAME (new_type, i) =
5331 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 5332 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 5333 {
d6a843b5 5334 case FIELD_LOC_KIND_BITPOS:
ceacbf6e 5335 SET_FIELD_BITPOS (new_type->field (i),
d6a843b5
JK
5336 TYPE_FIELD_BITPOS (type, i));
5337 break;
14e75d8e 5338 case FIELD_LOC_KIND_ENUMVAL:
ceacbf6e 5339 SET_FIELD_ENUMVAL (new_type->field (i),
14e75d8e
JK
5340 TYPE_FIELD_ENUMVAL (type, i));
5341 break;
d6a843b5 5342 case FIELD_LOC_KIND_PHYSADDR:
ceacbf6e 5343 SET_FIELD_PHYSADDR (new_type->field (i),
d6a843b5
JK
5344 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5345 break;
5346 case FIELD_LOC_KIND_PHYSNAME:
ceacbf6e 5347 SET_FIELD_PHYSNAME (new_type->field (i),
d6a843b5
JK
5348 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5349 i)));
5350 break;
5351 default:
5352 internal_error (__FILE__, __LINE__,
5353 _("Unexpected type field location kind: %d"),
5354 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
5355 }
5356 }
5357 }
5358
0963b4bd 5359 /* For range types, copy the bounds information. */
78134374 5360 if (type->code () == TYPE_CODE_RANGE)
43bbcdc2 5361 {
c4dfcb36
SM
5362 range_bounds *bounds
5363 = ((struct range_bounds *) TYPE_ALLOC
5364 (new_type, sizeof (struct range_bounds)));
5365
5366 *bounds = *type->bounds ();
5367 new_type->set_bounds (bounds);
43bbcdc2
PH
5368 }
5369
98d48915
SM
5370 if (type->main_type->dyn_prop_list != NULL)
5371 new_type->main_type->dyn_prop_list
d9823cbb 5372 = copy_dynamic_prop_list (&objfile->objfile_obstack,
98d48915 5373 type->main_type->dyn_prop_list);
d9823cbb 5374
3cdcd0ce 5375
ae5a43e0
DJ
5376 /* Copy pointers to other types. */
5377 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
5378 TYPE_TARGET_TYPE (new_type) =
5379 copy_type_recursive (objfile,
5380 TYPE_TARGET_TYPE (type),
5381 copied_types);
f6b3afbf 5382
ae5a43e0
DJ
5383 /* Maybe copy the type_specific bits.
5384
5385 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5386 base classes and methods. There's no fundamental reason why we
5387 can't, but at the moment it is not needed. */
5388
f6b3afbf
DE
5389 switch (TYPE_SPECIFIC_FIELD (type))
5390 {
5391 case TYPE_SPECIFIC_NONE:
5392 break;
5393 case TYPE_SPECIFIC_FUNC:
5394 INIT_FUNC_SPECIFIC (new_type);
5395 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5396 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5397 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5398 break;
5399 case TYPE_SPECIFIC_FLOATFORMAT:
5400 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5401 break;
5402 case TYPE_SPECIFIC_CPLUS_STUFF:
5403 INIT_CPLUS_SPECIFIC (new_type);
5404 break;
5405 case TYPE_SPECIFIC_GNAT_STUFF:
5406 INIT_GNAT_SPECIFIC (new_type);
5407 break;
09e2d7c7
DE
5408 case TYPE_SPECIFIC_SELF_TYPE:
5409 set_type_self_type (new_type,
5410 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5411 copied_types));
5412 break;
f6b3afbf
DE
5413 default:
5414 gdb_assert_not_reached ("bad type_specific_kind");
5415 }
ae5a43e0
DJ
5416
5417 return new_type;
5418}
5419
4af88198
JB
5420/* Make a copy of the given TYPE, except that the pointer & reference
5421 types are not preserved.
5422
5423 This function assumes that the given type has an associated objfile.
5424 This objfile is used to allocate the new type. */
5425
5426struct type *
5427copy_type (const struct type *type)
5428{
5429 struct type *new_type;
5430
e9bb382b 5431 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 5432
e9bb382b 5433 new_type = alloc_type_copy (type);
4af88198
JB
5434 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5435 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5436 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5437 sizeof (struct main_type));
98d48915
SM
5438 if (type->main_type->dyn_prop_list != NULL)
5439 new_type->main_type->dyn_prop_list
d9823cbb 5440 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
98d48915 5441 type->main_type->dyn_prop_list);
4af88198
JB
5442
5443 return new_type;
5444}
5212577a 5445\f
e9bb382b
UW
5446/* Helper functions to initialize architecture-specific types. */
5447
5448/* Allocate a type structure associated with GDBARCH and set its
5449 CODE, LENGTH, and NAME fields. */
5212577a 5450
e9bb382b
UW
5451struct type *
5452arch_type (struct gdbarch *gdbarch,
77b7c781 5453 enum type_code code, int bit, const char *name)
e9bb382b
UW
5454{
5455 struct type *type;
5456
5457 type = alloc_type_arch (gdbarch);
ae438bc5 5458 set_type_code (type, code);
77b7c781
UW
5459 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5460 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
e9bb382b
UW
5461
5462 if (name)
d0e39ea2 5463 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
e9bb382b
UW
5464
5465 return type;
5466}
5467
5468/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5469 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5470 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5471
e9bb382b
UW
5472struct type *
5473arch_integer_type (struct gdbarch *gdbarch,
695bfa52 5474 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5475{
5476 struct type *t;
5477
77b7c781 5478 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
e9bb382b
UW
5479 if (unsigned_p)
5480 TYPE_UNSIGNED (t) = 1;
e9bb382b
UW
5481
5482 return t;
5483}
5484
5485/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5486 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5487 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5488
e9bb382b
UW
5489struct type *
5490arch_character_type (struct gdbarch *gdbarch,
695bfa52 5491 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5492{
5493 struct type *t;
5494
77b7c781 5495 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
e9bb382b
UW
5496 if (unsigned_p)
5497 TYPE_UNSIGNED (t) = 1;
5498
5499 return t;
5500}
5501
5502/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5503 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5504 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 5505
e9bb382b
UW
5506struct type *
5507arch_boolean_type (struct gdbarch *gdbarch,
695bfa52 5508 int bit, int unsigned_p, const char *name)
e9bb382b
UW
5509{
5510 struct type *t;
5511
77b7c781 5512 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
e9bb382b
UW
5513 if (unsigned_p)
5514 TYPE_UNSIGNED (t) = 1;
5515
5516 return t;
5517}
5518
5519/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5520 BIT is the type size in bits; if BIT equals -1, the size is
5521 determined by the floatformat. NAME is the type name. Set the
5522 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 5523
27067745 5524struct type *
e9bb382b 5525arch_float_type (struct gdbarch *gdbarch,
695bfa52
TT
5526 int bit, const char *name,
5527 const struct floatformat **floatformats)
8da61cc4 5528{
0db7851f 5529 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
8da61cc4
DJ
5530 struct type *t;
5531
0db7851f 5532 bit = verify_floatformat (bit, fmt);
77b7c781 5533 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
0db7851f 5534 TYPE_FLOATFORMAT (t) = fmt;
b79497cb 5535
8da61cc4
DJ
5536 return t;
5537}
5538
88dfca6c
UW
5539/* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5540 BIT is the type size in bits. NAME is the type name. */
5541
5542struct type *
5543arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5544{
5545 struct type *t;
5546
77b7c781 5547 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
88dfca6c
UW
5548 return t;
5549}
5550
88dfca6c
UW
5551/* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5552 BIT is the pointer type size in bits. NAME is the type name.
5553 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5554 TYPE_UNSIGNED flag. */
5555
5556struct type *
5557arch_pointer_type (struct gdbarch *gdbarch,
5558 int bit, const char *name, struct type *target_type)
5559{
5560 struct type *t;
5561
77b7c781 5562 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
88dfca6c
UW
5563 TYPE_TARGET_TYPE (t) = target_type;
5564 TYPE_UNSIGNED (t) = 1;
5565 return t;
5566}
5567
e9bb382b 5568/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
77b7c781 5569 NAME is the type name. BIT is the size of the flag word in bits. */
5212577a 5570
e9bb382b 5571struct type *
77b7c781 5572arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
e9bb382b 5573{
e9bb382b
UW
5574 struct type *type;
5575
77b7c781 5576 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
e9bb382b 5577 TYPE_UNSIGNED (type) = 1;
5e33d5f4 5578 type->set_num_fields (0);
81516450 5579 /* Pre-allocate enough space assuming every field is one bit. */
3cabb6b0
SM
5580 type->set_fields
5581 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
e9bb382b
UW
5582
5583 return type;
5584}
5585
5586/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
81516450
DE
5587 position BITPOS is called NAME. Pass NAME as "" for fields that
5588 should not be printed. */
5589
5590void
5591append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
695bfa52 5592 struct type *field_type, const char *name)
81516450
DE
5593{
5594 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1f704f76 5595 int field_nr = type->num_fields ();
81516450 5596
78134374 5597 gdb_assert (type->code () == TYPE_CODE_FLAGS);
1f704f76 5598 gdb_assert (type->num_fields () + 1 <= type_bitsize);
81516450
DE
5599 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5600 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5601 gdb_assert (name != NULL);
5602
5603 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5d14b6e5 5604 type->field (field_nr).set_type (field_type);
ceacbf6e 5605 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
81516450 5606 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5e33d5f4 5607 type->set_num_fields (type->num_fields () + 1);
81516450
DE
5608}
5609
5610/* Special version of append_flags_type_field to add a flag field.
5611 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
e9bb382b 5612 position BITPOS is called NAME. */
5212577a 5613
e9bb382b 5614void
695bfa52 5615append_flags_type_flag (struct type *type, int bitpos, const char *name)
e9bb382b 5616{
81516450 5617 struct gdbarch *gdbarch = get_type_arch (type);
e9bb382b 5618
81516450
DE
5619 append_flags_type_field (type, bitpos, 1,
5620 builtin_type (gdbarch)->builtin_bool,
5621 name);
e9bb382b
UW
5622}
5623
5624/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5625 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 5626
e9bb382b 5627struct type *
695bfa52
TT
5628arch_composite_type (struct gdbarch *gdbarch, const char *name,
5629 enum type_code code)
e9bb382b
UW
5630{
5631 struct type *t;
d8734c88 5632
e9bb382b
UW
5633 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5634 t = arch_type (gdbarch, code, 0, NULL);
d0e39ea2 5635 t->set_name (name);
e9bb382b
UW
5636 INIT_CPLUS_SPECIFIC (t);
5637 return t;
5638}
5639
5640/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
5641 Do not set the field's position or adjust the type's length;
5642 the caller should do so. Return the new field. */
5212577a 5643
f5dff777 5644struct field *
695bfa52 5645append_composite_type_field_raw (struct type *t, const char *name,
f5dff777 5646 struct type *field)
e9bb382b
UW
5647{
5648 struct field *f;
d8734c88 5649
1f704f76 5650 t->set_num_fields (t->num_fields () + 1);
80fc5e77 5651 t->set_fields (XRESIZEVEC (struct field, t->fields (),
3cabb6b0 5652 t->num_fields ()));
80fc5e77 5653 f = &t->field (t->num_fields () - 1);
e9bb382b 5654 memset (f, 0, sizeof f[0]);
5d14b6e5 5655 f[0].set_type (field);
e9bb382b 5656 FIELD_NAME (f[0]) = name;
f5dff777
DJ
5657 return f;
5658}
5659
5660/* Add new field with name NAME and type FIELD to composite type T.
5661 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 5662
f5dff777 5663void
695bfa52 5664append_composite_type_field_aligned (struct type *t, const char *name,
f5dff777
DJ
5665 struct type *field, int alignment)
5666{
5667 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 5668
78134374 5669 if (t->code () == TYPE_CODE_UNION)
e9bb382b
UW
5670 {
5671 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5672 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5673 }
78134374 5674 else if (t->code () == TYPE_CODE_STRUCT)
e9bb382b
UW
5675 {
5676 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1f704f76 5677 if (t->num_fields () > 1)
e9bb382b 5678 {
f41f5e61
PA
5679 SET_FIELD_BITPOS (f[0],
5680 (FIELD_BITPOS (f[-1])
b6cdac4b 5681 + (TYPE_LENGTH (f[-1].type ())
f41f5e61 5682 * TARGET_CHAR_BIT)));
e9bb382b
UW
5683
5684 if (alignment)
5685 {
86c3c1fc
AB
5686 int left;
5687
5688 alignment *= TARGET_CHAR_BIT;
5689 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 5690
e9bb382b
UW
5691 if (left)
5692 {
f41f5e61 5693 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 5694 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
5695 }
5696 }
5697 }
5698 }
5699}
5700
5701/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 5702
e9bb382b 5703void
695bfa52 5704append_composite_type_field (struct type *t, const char *name,
e9bb382b
UW
5705 struct type *field)
5706{
5707 append_composite_type_field_aligned (t, name, field, 0);
5708}
5709
000177f0
AC
5710static struct gdbarch_data *gdbtypes_data;
5711
5712const struct builtin_type *
5713builtin_type (struct gdbarch *gdbarch)
5714{
9a3c8263 5715 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
000177f0
AC
5716}
5717
5718static void *
5719gdbtypes_post_init (struct gdbarch *gdbarch)
5720{
5721 struct builtin_type *builtin_type
5722 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5723
46bf5051 5724 /* Basic types. */
e9bb382b 5725 builtin_type->builtin_void
77b7c781 5726 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
e9bb382b
UW
5727 builtin_type->builtin_char
5728 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5729 !gdbarch_char_signed (gdbarch), "char");
c413c448 5730 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
e9bb382b
UW
5731 builtin_type->builtin_signed_char
5732 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5733 0, "signed char");
5734 builtin_type->builtin_unsigned_char
5735 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5736 1, "unsigned char");
5737 builtin_type->builtin_short
5738 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5739 0, "short");
5740 builtin_type->builtin_unsigned_short
5741 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5742 1, "unsigned short");
5743 builtin_type->builtin_int
5744 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5745 0, "int");
5746 builtin_type->builtin_unsigned_int
5747 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5748 1, "unsigned int");
5749 builtin_type->builtin_long
5750 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5751 0, "long");
5752 builtin_type->builtin_unsigned_long
5753 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5754 1, "unsigned long");
5755 builtin_type->builtin_long_long
5756 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5757 0, "long long");
5758 builtin_type->builtin_unsigned_long_long
5759 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5760 1, "unsigned long long");
a6d0f249
AH
5761 builtin_type->builtin_half
5762 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5763 "half", gdbarch_half_format (gdbarch));
70bd8e24 5764 builtin_type->builtin_float
e9bb382b 5765 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 5766 "float", gdbarch_float_format (gdbarch));
2a67f09d
FW
5767 builtin_type->builtin_bfloat16
5768 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5769 "bfloat16", gdbarch_bfloat16_format (gdbarch));
70bd8e24 5770 builtin_type->builtin_double
e9bb382b 5771 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 5772 "double", gdbarch_double_format (gdbarch));
70bd8e24 5773 builtin_type->builtin_long_double
e9bb382b 5774 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 5775 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 5776 builtin_type->builtin_complex
5b930b45 5777 = init_complex_type ("complex", builtin_type->builtin_float);
70bd8e24 5778 builtin_type->builtin_double_complex
5b930b45 5779 = init_complex_type ("double complex", builtin_type->builtin_double);
e9bb382b 5780 builtin_type->builtin_string
77b7c781 5781 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
e9bb382b 5782 builtin_type->builtin_bool
77b7c781 5783 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
000177f0 5784
7678ef8f
TJB
5785 /* The following three are about decimal floating point types, which
5786 are 32-bits, 64-bits and 128-bits respectively. */
5787 builtin_type->builtin_decfloat
88dfca6c 5788 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
7678ef8f 5789 builtin_type->builtin_decdouble
88dfca6c 5790 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
7678ef8f 5791 builtin_type->builtin_declong
88dfca6c 5792 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
7678ef8f 5793
69feb676 5794 /* "True" character types. */
e9bb382b
UW
5795 builtin_type->builtin_true_char
5796 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5797 builtin_type->builtin_true_unsigned_char
5798 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 5799
df4df182 5800 /* Fixed-size integer types. */
e9bb382b
UW
5801 builtin_type->builtin_int0
5802 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5803 builtin_type->builtin_int8
5804 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5805 builtin_type->builtin_uint8
5806 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5807 builtin_type->builtin_int16
5808 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5809 builtin_type->builtin_uint16
5810 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
d1908f2d
JD
5811 builtin_type->builtin_int24
5812 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5813 builtin_type->builtin_uint24
5814 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
e9bb382b
UW
5815 builtin_type->builtin_int32
5816 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5817 builtin_type->builtin_uint32
5818 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5819 builtin_type->builtin_int64
5820 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5821 builtin_type->builtin_uint64
5822 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5823 builtin_type->builtin_int128
5824 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5825 builtin_type->builtin_uint128
5826 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
5827 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5828 TYPE_INSTANCE_FLAG_NOTTEXT;
5829 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5830 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 5831
9a22f0d0
PM
5832 /* Wide character types. */
5833 builtin_type->builtin_char16
53e710ac 5834 = arch_integer_type (gdbarch, 16, 1, "char16_t");
9a22f0d0 5835 builtin_type->builtin_char32
53e710ac 5836 = arch_integer_type (gdbarch, 32, 1, "char32_t");
53375380
PA
5837 builtin_type->builtin_wchar
5838 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5839 !gdbarch_wchar_signed (gdbarch), "wchar_t");
9a22f0d0 5840
46bf5051 5841 /* Default data/code pointer types. */
e9bb382b
UW
5842 builtin_type->builtin_data_ptr
5843 = lookup_pointer_type (builtin_type->builtin_void);
5844 builtin_type->builtin_func_ptr
5845 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
5846 builtin_type->builtin_func_func
5847 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 5848
78267919 5849 /* This type represents a GDB internal function. */
e9bb382b
UW
5850 builtin_type->internal_fn
5851 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5852 "<internal function>");
78267919 5853
e81e7f5e
SC
5854 /* This type represents an xmethod. */
5855 builtin_type->xmethod
5856 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5857
46bf5051
UW
5858 return builtin_type;
5859}
5860
46bf5051
UW
5861/* This set of objfile-based types is intended to be used by symbol
5862 readers as basic types. */
5863
7a102139
TT
5864static const struct objfile_key<struct objfile_type,
5865 gdb::noop_deleter<struct objfile_type>>
5866 objfile_type_data;
46bf5051
UW
5867
5868const struct objfile_type *
5869objfile_type (struct objfile *objfile)
5870{
5871 struct gdbarch *gdbarch;
7a102139 5872 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
46bf5051
UW
5873
5874 if (objfile_type)
5875 return objfile_type;
5876
5877 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5878 1, struct objfile_type);
5879
5880 /* Use the objfile architecture to determine basic type properties. */
08feed99 5881 gdbarch = objfile->arch ();
46bf5051
UW
5882
5883 /* Basic types. */
5884 objfile_type->builtin_void
77b7c781 5885 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
46bf5051 5886 objfile_type->builtin_char
19f392bc
UW
5887 = init_integer_type (objfile, TARGET_CHAR_BIT,
5888 !gdbarch_char_signed (gdbarch), "char");
c413c448 5889 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
46bf5051 5890 objfile_type->builtin_signed_char
19f392bc
UW
5891 = init_integer_type (objfile, TARGET_CHAR_BIT,
5892 0, "signed char");
46bf5051 5893 objfile_type->builtin_unsigned_char
19f392bc
UW
5894 = init_integer_type (objfile, TARGET_CHAR_BIT,
5895 1, "unsigned char");
46bf5051 5896 objfile_type->builtin_short
19f392bc
UW
5897 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5898 0, "short");
46bf5051 5899 objfile_type->builtin_unsigned_short
19f392bc
UW
5900 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5901 1, "unsigned short");
46bf5051 5902 objfile_type->builtin_int
19f392bc
UW
5903 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5904 0, "int");
46bf5051 5905 objfile_type->builtin_unsigned_int
19f392bc
UW
5906 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5907 1, "unsigned int");
46bf5051 5908 objfile_type->builtin_long
19f392bc
UW
5909 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5910 0, "long");
46bf5051 5911 objfile_type->builtin_unsigned_long
19f392bc
UW
5912 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5913 1, "unsigned long");
46bf5051 5914 objfile_type->builtin_long_long
19f392bc
UW
5915 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5916 0, "long long");
46bf5051 5917 objfile_type->builtin_unsigned_long_long
19f392bc
UW
5918 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5919 1, "unsigned long long");
46bf5051 5920 objfile_type->builtin_float
19f392bc
UW
5921 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5922 "float", gdbarch_float_format (gdbarch));
46bf5051 5923 objfile_type->builtin_double
19f392bc
UW
5924 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5925 "double", gdbarch_double_format (gdbarch));
46bf5051 5926 objfile_type->builtin_long_double
19f392bc
UW
5927 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5928 "long double", gdbarch_long_double_format (gdbarch));
46bf5051
UW
5929
5930 /* This type represents a type that was unrecognized in symbol read-in. */
5931 objfile_type->builtin_error
19f392bc 5932 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
46bf5051
UW
5933
5934 /* The following set of types is used for symbols with no
5935 debug information. */
5936 objfile_type->nodebug_text_symbol
77b7c781 5937 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5938 "<text variable, no debug info>");
0875794a 5939 objfile_type->nodebug_text_gnu_ifunc_symbol
77b7c781 5940 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
19f392bc 5941 "<text gnu-indirect-function variable, no debug info>");
19f392bc 5942 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
0875794a 5943 objfile_type->nodebug_got_plt_symbol
19f392bc
UW
5944 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5945 "<text from jump slot in .got.plt, no debug info>",
5946 objfile_type->nodebug_text_symbol);
46bf5051 5947 objfile_type->nodebug_data_symbol
46a4882b 5948 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
46bf5051 5949 objfile_type->nodebug_unknown_symbol
46a4882b 5950 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
46bf5051 5951 objfile_type->nodebug_tls_symbol
46a4882b 5952 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
000177f0
AC
5953
5954 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 5955 the same.
000177f0
AC
5956
5957 The upshot is:
5958 - gdb's `struct type' always describes the target's
5959 representation.
5960 - gdb's `struct value' objects should always hold values in
5961 target form.
5962 - gdb's CORE_ADDR values are addresses in the unified virtual
5963 address space that the assembler and linker work with. Thus,
5964 since target_read_memory takes a CORE_ADDR as an argument, it
5965 can access any memory on the target, even if the processor has
5966 separate code and data address spaces.
5967
46bf5051
UW
5968 In this context, objfile_type->builtin_core_addr is a bit odd:
5969 it's a target type for a value the target will never see. It's
5970 only used to hold the values of (typeless) linker symbols, which
5971 are indeed in the unified virtual address space. */
000177f0 5972
46bf5051 5973 objfile_type->builtin_core_addr
19f392bc
UW
5974 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5975 "__CORE_ADDR");
64c50499 5976
7a102139 5977 objfile_type_data.set (objfile, objfile_type);
46bf5051 5978 return objfile_type;
000177f0
AC
5979}
5980
6c265988 5981void _initialize_gdbtypes ();
c906108c 5982void
6c265988 5983_initialize_gdbtypes ()
c906108c 5984{
5674de60
UW
5985 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5986
ccce17b0
YQ
5987 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5988 _("Set debugging of C++ overloading."),
5989 _("Show debugging of C++ overloading."),
5990 _("When enabled, ranking of the "
5991 "functions is displayed."),
5992 NULL,
5993 show_overload_debug,
5994 &setdebuglist, &showdebuglist);
5674de60 5995
7ba81444 5996 /* Add user knob for controlling resolution of opaque types. */
5674de60 5997 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
5998 &opaque_type_resolution,
5999 _("Set resolution of opaque struct/class/union"
6000 " types (if set before loading symbols)."),
6001 _("Show resolution of opaque struct/class/union"
6002 " types (if set before loading symbols)."),
6003 NULL, NULL,
5674de60
UW
6004 show_opaque_type_resolution,
6005 &setlist, &showlist);
a451cb65
KS
6006
6007 /* Add an option to permit non-strict type checking. */
6008 add_setshow_boolean_cmd ("type", class_support,
6009 &strict_type_checking,
6010 _("Set strict type checking."),
6011 _("Show strict type checking."),
6012 NULL, NULL,
6013 show_strict_type_checking,
6014 &setchecklist, &showchecklist);
c906108c 6015}
This page took 2.12083 seconds and 4 git commands to generate.