Resolve more problems with readelf uncovered by fuzzing binary files.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4f2aea11 4
c906108c
SS
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
c906108c
SS
23#include "bfd.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "objfiles.h"
27#include "gdbtypes.h"
28#include "expression.h"
29#include "language.h"
30#include "target.h"
31#include "value.h"
32#include "demangle.h"
33#include "complaints.h"
34#include "gdbcmd.h"
015a42b4 35#include "cp-abi.h"
ae5a43e0 36#include "hashtab.h"
8de20a37 37#include "cp-support.h"
ca092b61
DE
38#include "bcache.h"
39#include "dwarf2loc.h"
80180f79 40#include "gdbcore.h"
ac3aafc7 41
6403aeea
SW
42/* Initialize BADNESS constants. */
43
a9d5ef47 44const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 45
a9d5ef47
SW
46const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 48
a9d5ef47 49const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 50
a9d5ef47
SW
51const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
5b4f6e25 58const struct rank BOOL_CONVERSION_BADNESS = {3,0};
a9d5ef47
SW
59const struct rank BASE_CONVERSION_BADNESS = {2,0};
60const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 61const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 62const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
a451cb65 63const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
6403aeea 64
8da61cc4 65/* Floatformat pairs. */
f9e9243a
UW
66const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69};
8da61cc4
DJ
70const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73};
74const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77};
78const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81};
82const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85};
86const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89};
90const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93};
94const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97};
98const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101};
102const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105};
106const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109};
b14d30e1 110const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
f5aee5ee
AM
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
b14d30e1 113};
8da61cc4 114
2873700e
KS
115/* Should opaque types be resolved? */
116
117static int opaque_type_resolution = 1;
118
119/* A flag to enable printing of debugging information of C++
120 overloading. */
121
122unsigned int overload_debug = 0;
123
a451cb65
KS
124/* A flag to enable strict type checking. */
125
126static int strict_type_checking = 1;
127
2873700e 128/* A function to show whether opaque types are resolved. */
5212577a 129
920d2a44
AC
130static void
131show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
132 struct cmd_list_element *c,
133 const char *value)
920d2a44 134{
3e43a32a
MS
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
137 value);
138}
139
2873700e 140/* A function to show whether C++ overload debugging is enabled. */
5212577a 141
920d2a44
AC
142static void
143show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
7ba81444
MS
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
920d2a44 148}
c906108c 149
a451cb65
KS
150/* A function to show the status of strict type checking. */
151
152static void
153show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157}
158
5212577a 159\f
e9bb382b
UW
160/* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
c906108c
SS
163
164struct type *
fba45db2 165alloc_type (struct objfile *objfile)
c906108c 166{
52f0bd74 167 struct type *type;
c906108c 168
e9bb382b
UW
169 gdb_assert (objfile != NULL);
170
7ba81444 171 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
c906108c 176
e9bb382b
UW
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
c906108c 179
7ba81444 180 /* Initialize the fields that might not be zero. */
c906108c
SS
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 183 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 185
c16abbde 186 return type;
c906108c
SS
187}
188
e9bb382b
UW
189/* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193struct type *
194alloc_type_arch (struct gdbarch *gdbarch)
195{
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
41bf6aca
TT
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
e9bb382b
UW
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215}
216
217/* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221struct type *
222alloc_type_copy (const struct type *type)
223{
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228}
229
230/* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233struct gdbarch *
234get_type_arch (const struct type *type)
235{
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240}
241
99ad9427
YQ
242/* See gdbtypes.h. */
243
244struct type *
245get_target_type (struct type *type)
246{
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255}
256
2fdde8f8
DJ
257/* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261static struct type *
262alloc_type_instance (struct type *oldtype)
263{
264 struct type *type;
265
266 /* Allocate the structure. */
267
e9bb382b 268 if (! TYPE_OBJFILE_OWNED (oldtype))
41bf6aca 269 type = XCNEW (struct type);
2fdde8f8 270 else
1deafd4e
PA
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
2fdde8f8
DJ
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
c16abbde 278 return type;
2fdde8f8
DJ
279}
280
281/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 282 replacing it with something else. Preserve owner information. */
5212577a 283
2fdde8f8
DJ
284static void
285smash_type (struct type *type)
286{
e9bb382b
UW
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
2fdde8f8
DJ
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
e9bb382b
UW
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
2fdde8f8
DJ
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300}
301
c906108c
SS
302/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307struct type *
fba45db2 308make_pointer_type (struct type *type, struct type **typeptr)
c906108c 309{
52f0bd74 310 struct type *ntype; /* New type */
053cb41b 311 struct type *chain;
c906108c
SS
312
313 ntype = TYPE_POINTER_TYPE (type);
314
c5aa993b 315 if (ntype)
c906108c 316 {
c5aa993b 317 if (typeptr == 0)
7ba81444
MS
318 return ntype; /* Don't care about alloc,
319 and have new type. */
c906108c 320 else if (*typeptr == 0)
c5aa993b 321 {
7ba81444 322 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 323 return ntype;
c5aa993b 324 }
c906108c
SS
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
e9bb382b 329 ntype = alloc_type_copy (type);
c906108c
SS
330 if (typeptr)
331 *typeptr = ntype;
332 }
7ba81444 333 else /* We have storage, but need to reset it. */
c906108c
SS
334 {
335 ntype = *typeptr;
053cb41b 336 chain = TYPE_CHAIN (ntype);
2fdde8f8 337 smash_type (ntype);
053cb41b 338 TYPE_CHAIN (ntype) = chain;
c906108c
SS
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
5212577a 344 /* FIXME! Assumes the machine has only one representation for pointers! */
c906108c 345
50810684
UW
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
67b2adb2 350 /* Mark pointers as unsigned. The target converts between pointers
76e71323 351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 352 gdbarch_address_to_pointer. */
876cecd0 353 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 354
053cb41b
JB
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
c906108c
SS
363 return ntype;
364}
365
366/* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369struct type *
fba45db2 370lookup_pointer_type (struct type *type)
c906108c 371{
c5aa993b 372 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
373}
374
7ba81444
MS
375/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
c906108c
SS
379
380struct type *
fba45db2 381make_reference_type (struct type *type, struct type **typeptr)
c906108c 382{
52f0bd74 383 struct type *ntype; /* New type */
1e98b326 384 struct type *chain;
c906108c
SS
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
c5aa993b 388 if (ntype)
c906108c 389 {
c5aa993b 390 if (typeptr == 0)
7ba81444
MS
391 return ntype; /* Don't care about alloc,
392 and have new type. */
c906108c 393 else if (*typeptr == 0)
c5aa993b 394 {
7ba81444 395 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 396 return ntype;
c5aa993b 397 }
c906108c
SS
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
e9bb382b 402 ntype = alloc_type_copy (type);
c906108c
SS
403 if (typeptr)
404 *typeptr = ntype;
405 }
7ba81444 406 else /* We have storage, but need to reset it. */
c906108c
SS
407 {
408 ntype = *typeptr;
1e98b326 409 chain = TYPE_CHAIN (ntype);
2fdde8f8 410 smash_type (ntype);
1e98b326 411 TYPE_CHAIN (ntype) = chain;
c906108c
SS
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
7ba81444
MS
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
c906108c 420
50810684
UW
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 423 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 424
c906108c
SS
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
1e98b326
JB
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
c906108c
SS
436 return ntype;
437}
438
7ba81444
MS
439/* Same as above, but caller doesn't care about memory allocation
440 details. */
c906108c
SS
441
442struct type *
fba45db2 443lookup_reference_type (struct type *type)
c906108c 444{
c5aa993b 445 return make_reference_type (type, (struct type **) 0);
c906108c
SS
446}
447
7ba81444
MS
448/* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 451 function type we return. We allocate new memory if needed. */
c906108c
SS
452
453struct type *
0c8b41f1 454make_function_type (struct type *type, struct type **typeptr)
c906108c 455{
52f0bd74 456 struct type *ntype; /* New type */
c906108c
SS
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
e9bb382b 460 ntype = alloc_type_copy (type);
c906108c
SS
461 if (typeptr)
462 *typeptr = ntype;
463 }
7ba81444 464 else /* We have storage, but need to reset it. */
c906108c
SS
465 {
466 ntype = *typeptr;
2fdde8f8 467 smash_type (ntype);
c906108c
SS
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 474
b6cdc2c1
JK
475 INIT_FUNC_SPECIFIC (ntype);
476
c906108c
SS
477 return ntype;
478}
479
c906108c
SS
480/* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483struct type *
fba45db2 484lookup_function_type (struct type *type)
c906108c 485{
0c8b41f1 486 return make_function_type (type, (struct type **) 0);
c906108c
SS
487}
488
71918a86 489/* Given a type TYPE and argument types, return the appropriate
a6fb9c08
TT
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
71918a86
TT
492
493struct type *
494lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497{
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
e314d629 501 if (nparams > 0)
a6fb9c08 502 {
e314d629
TT
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
a6fb9c08
TT
516 }
517
71918a86
TT
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524}
525
47663de5
MS
526/* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
5212577a
DE
528
529int
50810684 530address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 531{
8b2dbe47 532 int type_flags;
d8734c88 533
7ba81444 534 /* Check for known address space delimiters. */
47663de5 535 if (!strcmp (space_identifier, "code"))
876cecd0 536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 537 else if (!strcmp (space_identifier, "data"))
876cecd0 538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
8b2dbe47 543 return type_flags;
47663de5 544 else
8a3fe4f8 545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
546}
547
548/* Identify address space identifier by integer flag as defined in
7ba81444 549 gdbtypes.h -- return the string version of the adress space name. */
47663de5 550
321432c0 551const char *
50810684 552address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 553{
876cecd0 554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 555 return "code";
876cecd0 556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 557 return "data";
876cecd0 558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
561 else
562 return NULL;
563}
564
2fdde8f8 565/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
47663de5 569
b9362cc7 570static struct type *
2fdde8f8
DJ
571make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
47663de5
MS
573{
574 struct type *ntype;
575
576 ntype = type;
5f61c20e
JK
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
47663de5 584
2fdde8f8
DJ
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
7ba81444
MS
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
ad766c0a
JB
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
2fdde8f8
DJ
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
47663de5
MS
600
601 /* Pointers or references to the original type are not relevant to
2fdde8f8 602 the new type. */
47663de5
MS
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 605
2fdde8f8
DJ
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 612
ab5d3da6
KB
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
47663de5
MS
616 return ntype;
617}
618
2fdde8f8
DJ
619/* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
7ba81444
MS
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
2fdde8f8
DJ
627
628struct type *
629make_type_with_address_space (struct type *type, int space_flag)
630{
2fdde8f8 631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638}
c906108c
SS
639
640/* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
c906108c 645
ad766c0a
JB
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
5212577a 651
c906108c 652struct type *
7ba81444
MS
653make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
c906108c 656{
52f0bd74 657 struct type *ntype; /* New type */
c906108c 658
2fdde8f8 659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 662
c906108c 663 if (cnst)
876cecd0 664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
665
666 if (voltl)
876cecd0 667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 668
2fdde8f8 669 if (typeptr && *typeptr != NULL)
a02fd225 670 {
ad766c0a
JB
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
684 }
685
7ba81444
MS
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
c906108c 688
2fdde8f8
DJ
689 if (typeptr != NULL)
690 *typeptr = ntype;
a02fd225 691
2fdde8f8 692 return ntype;
a02fd225 693}
c906108c 694
06d66ee9
TT
695/* Make a 'restrict'-qualified version of TYPE. */
696
697struct type *
698make_restrict_type (struct type *type)
699{
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704}
705
2fdde8f8
DJ
706/* Replace the contents of ntype with the type *type. This changes the
707 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
708 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 709
cda6c68a
JB
710 In order to build recursive types, it's inevitable that we'll need
711 to update types in place --- but this sort of indiscriminate
712 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
713 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
714 clear if more steps are needed. */
5212577a 715
dd6bda65
DJ
716void
717replace_type (struct type *ntype, struct type *type)
718{
ab5d3da6 719 struct type *chain;
dd6bda65 720
ad766c0a
JB
721 /* These two types had better be in the same objfile. Otherwise,
722 the assignment of one type's main type structure to the other
723 will produce a type with references to objects (names; field
724 lists; etc.) allocated on an objfile other than its own. */
725 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
726
2fdde8f8 727 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 728
7ba81444
MS
729 /* The type length is not a part of the main type. Update it for
730 each type on the variant chain. */
ab5d3da6 731 chain = ntype;
5f61c20e
JK
732 do
733 {
734 /* Assert that this element of the chain has no address-class bits
735 set in its flags. Such type variants might have type lengths
736 which are supposed to be different from the non-address-class
737 variants. This assertion shouldn't ever be triggered because
738 symbol readers which do construct address-class variants don't
739 call replace_type(). */
740 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
741
742 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
743 chain = TYPE_CHAIN (chain);
744 }
745 while (ntype != chain);
ab5d3da6 746
2fdde8f8
DJ
747 /* Assert that the two types have equivalent instance qualifiers.
748 This should be true for at least all of our debug readers. */
749 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
750}
751
c906108c
SS
752/* Implement direct support for MEMBER_TYPE in GNU C++.
753 May need to construct such a type if this is the first use.
754 The TYPE is the type of the member. The DOMAIN is the type
755 of the aggregate that the member belongs to. */
756
757struct type *
0d5de010 758lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 759{
52f0bd74 760 struct type *mtype;
c906108c 761
e9bb382b 762 mtype = alloc_type_copy (type);
0d5de010 763 smash_to_memberptr_type (mtype, domain, type);
c16abbde 764 return mtype;
c906108c
SS
765}
766
0d5de010
DJ
767/* Return a pointer-to-method type, for a method of type TO_TYPE. */
768
769struct type *
770lookup_methodptr_type (struct type *to_type)
771{
772 struct type *mtype;
773
e9bb382b 774 mtype = alloc_type_copy (to_type);
0b92b5bb 775 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
776 return mtype;
777}
778
7ba81444
MS
779/* Allocate a stub method whose return type is TYPE. This apparently
780 happens for speed of symbol reading, since parsing out the
781 arguments to the method is cpu-intensive, the way we are doing it.
782 So, we will fill in arguments later. This always returns a fresh
783 type. */
c906108c
SS
784
785struct type *
fba45db2 786allocate_stub_method (struct type *type)
c906108c
SS
787{
788 struct type *mtype;
789
e9bb382b
UW
790 mtype = alloc_type_copy (type);
791 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
792 TYPE_LENGTH (mtype) = 1;
793 TYPE_STUB (mtype) = 1;
c906108c
SS
794 TYPE_TARGET_TYPE (mtype) = type;
795 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 796 return mtype;
c906108c
SS
797}
798
729efb13
SA
799/* Create a range type with a dynamic range from LOW_BOUND to
800 HIGH_BOUND, inclusive. See create_range_type for further details. */
c906108c
SS
801
802struct type *
729efb13
SA
803create_range_type (struct type *result_type, struct type *index_type,
804 const struct dynamic_prop *low_bound,
805 const struct dynamic_prop *high_bound)
c906108c
SS
806{
807 if (result_type == NULL)
e9bb382b 808 result_type = alloc_type_copy (index_type);
c906108c
SS
809 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
810 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 811 if (TYPE_STUB (index_type))
876cecd0 812 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
813 else
814 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
729efb13 815
43bbcdc2
PH
816 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
817 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
729efb13
SA
818 TYPE_RANGE_DATA (result_type)->low = *low_bound;
819 TYPE_RANGE_DATA (result_type)->high = *high_bound;
c906108c 820
729efb13 821 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
876cecd0 822 TYPE_UNSIGNED (result_type) = 1;
c906108c 823
45e44d27
JB
824 /* Ada allows the declaration of range types whose upper bound is
825 less than the lower bound, so checking the lower bound is not
826 enough. Make sure we do not mark a range type whose upper bound
827 is negative as unsigned. */
828 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
829 TYPE_UNSIGNED (result_type) = 0;
830
262452ec 831 return result_type;
c906108c
SS
832}
833
729efb13
SA
834/* Create a range type using either a blank type supplied in
835 RESULT_TYPE, or creating a new type, inheriting the objfile from
836 INDEX_TYPE.
837
838 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
839 to HIGH_BOUND, inclusive.
840
841 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
842 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
843
844struct type *
845create_static_range_type (struct type *result_type, struct type *index_type,
846 LONGEST low_bound, LONGEST high_bound)
847{
848 struct dynamic_prop low, high;
849
850 low.kind = PROP_CONST;
851 low.data.const_val = low_bound;
852
853 high.kind = PROP_CONST;
854 high.data.const_val = high_bound;
855
856 result_type = create_range_type (result_type, index_type, &low, &high);
857
858 return result_type;
859}
860
80180f79
SA
861/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
862 are static, otherwise returns 0. */
863
864static int
865has_static_range (const struct range_bounds *bounds)
866{
867 return (bounds->low.kind == PROP_CONST
868 && bounds->high.kind == PROP_CONST);
869}
870
871
7ba81444
MS
872/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
873 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
874 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
875
876int
fba45db2 877get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
878{
879 CHECK_TYPEDEF (type);
880 switch (TYPE_CODE (type))
881 {
882 case TYPE_CODE_RANGE:
883 *lowp = TYPE_LOW_BOUND (type);
884 *highp = TYPE_HIGH_BOUND (type);
885 return 1;
886 case TYPE_CODE_ENUM:
887 if (TYPE_NFIELDS (type) > 0)
888 {
889 /* The enums may not be sorted by value, so search all
0963b4bd 890 entries. */
c906108c
SS
891 int i;
892
14e75d8e 893 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
c906108c
SS
894 for (i = 0; i < TYPE_NFIELDS (type); i++)
895 {
14e75d8e
JK
896 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
897 *lowp = TYPE_FIELD_ENUMVAL (type, i);
898 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
899 *highp = TYPE_FIELD_ENUMVAL (type, i);
c906108c
SS
900 }
901
7ba81444 902 /* Set unsigned indicator if warranted. */
c5aa993b 903 if (*lowp >= 0)
c906108c 904 {
876cecd0 905 TYPE_UNSIGNED (type) = 1;
c906108c
SS
906 }
907 }
908 else
909 {
910 *lowp = 0;
911 *highp = -1;
912 }
913 return 0;
914 case TYPE_CODE_BOOL:
915 *lowp = 0;
916 *highp = 1;
917 return 0;
918 case TYPE_CODE_INT:
c5aa993b 919 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
920 return -1;
921 if (!TYPE_UNSIGNED (type))
922 {
c5aa993b 923 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
924 *highp = -*lowp - 1;
925 return 0;
926 }
7ba81444 927 /* ... fall through for unsigned ints ... */
c906108c
SS
928 case TYPE_CODE_CHAR:
929 *lowp = 0;
930 /* This round-about calculation is to avoid shifting by
7b83ea04 931 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 932 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
933 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
934 *highp = (*highp - 1) | *highp;
935 return 0;
936 default:
937 return -1;
938 }
939}
940
dbc98a8b
KW
941/* Assuming TYPE is a simple, non-empty array type, compute its upper
942 and lower bound. Save the low bound into LOW_BOUND if not NULL.
943 Save the high bound into HIGH_BOUND if not NULL.
944
0963b4bd 945 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
946 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
947
948 We now simply use get_discrete_bounds call to get the values
949 of the low and high bounds.
950 get_discrete_bounds can return three values:
951 1, meaning that index is a range,
952 0, meaning that index is a discrete type,
953 or -1 for failure. */
954
955int
956get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
957{
958 struct type *index = TYPE_INDEX_TYPE (type);
959 LONGEST low = 0;
960 LONGEST high = 0;
961 int res;
962
963 if (index == NULL)
964 return 0;
965
966 res = get_discrete_bounds (index, &low, &high);
967 if (res == -1)
968 return 0;
969
970 /* Check if the array bounds are undefined. */
971 if (res == 1
972 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
973 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
974 return 0;
975
976 if (low_bound)
977 *low_bound = low;
978
979 if (high_bound)
980 *high_bound = high;
981
982 return 1;
983}
984
7ba81444
MS
985/* Create an array type using either a blank type supplied in
986 RESULT_TYPE, or creating a new type, inheriting the objfile from
987 RANGE_TYPE.
c906108c
SS
988
989 Elements will be of type ELEMENT_TYPE, the indices will be of type
990 RANGE_TYPE.
991
dc53a7ad
JB
992 If BIT_STRIDE is not zero, build a packed array type whose element
993 size is BIT_STRIDE. Otherwise, ignore this parameter.
994
7ba81444
MS
995 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
996 sure it is TYPE_CODE_UNDEF before we bash it into an array
997 type? */
c906108c
SS
998
999struct type *
dc53a7ad
JB
1000create_array_type_with_stride (struct type *result_type,
1001 struct type *element_type,
1002 struct type *range_type,
1003 unsigned int bit_stride)
c906108c 1004{
c906108c 1005 if (result_type == NULL)
e9bb382b
UW
1006 result_type = alloc_type_copy (range_type);
1007
c906108c
SS
1008 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1009 TYPE_TARGET_TYPE (result_type) = element_type;
80180f79
SA
1010 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1011 {
1012 LONGEST low_bound, high_bound;
1013
1014 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1015 low_bound = high_bound = 0;
1016 CHECK_TYPEDEF (element_type);
1017 /* Be careful when setting the array length. Ada arrays can be
1018 empty arrays with the high_bound being smaller than the low_bound.
1019 In such cases, the array length should be zero. */
1020 if (high_bound < low_bound)
1021 TYPE_LENGTH (result_type) = 0;
1022 else if (bit_stride > 0)
1023 TYPE_LENGTH (result_type) =
1024 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1025 else
1026 TYPE_LENGTH (result_type) =
1027 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1028 }
ab0d6e0d 1029 else
80180f79
SA
1030 {
1031 /* This type is dynamic and its length needs to be computed
1032 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1033 undefined by setting it to zero. Although we are not expected
1034 to trust TYPE_LENGTH in this case, setting the size to zero
1035 allows us to avoid allocating objects of random sizes in case
1036 we accidently do. */
1037 TYPE_LENGTH (result_type) = 0;
1038 }
1039
c906108c
SS
1040 TYPE_NFIELDS (result_type) = 1;
1041 TYPE_FIELDS (result_type) =
1deafd4e 1042 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 1043 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c 1044 TYPE_VPTR_FIELDNO (result_type) = -1;
dc53a7ad
JB
1045 if (bit_stride > 0)
1046 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
c906108c 1047
0963b4bd 1048 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 1049 if (TYPE_LENGTH (result_type) == 0)
876cecd0 1050 TYPE_TARGET_STUB (result_type) = 1;
c906108c 1051
c16abbde 1052 return result_type;
c906108c
SS
1053}
1054
dc53a7ad
JB
1055/* Same as create_array_type_with_stride but with no bit_stride
1056 (BIT_STRIDE = 0), thus building an unpacked array. */
1057
1058struct type *
1059create_array_type (struct type *result_type,
1060 struct type *element_type,
1061 struct type *range_type)
1062{
1063 return create_array_type_with_stride (result_type, element_type,
1064 range_type, 0);
1065}
1066
e3506a9f
UW
1067struct type *
1068lookup_array_range_type (struct type *element_type,
63375b74 1069 LONGEST low_bound, LONGEST high_bound)
e3506a9f 1070{
50810684 1071 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
1072 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1073 struct type *range_type
0c9c3474 1074 = create_static_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 1075
e3506a9f
UW
1076 return create_array_type (NULL, element_type, range_type);
1077}
1078
7ba81444
MS
1079/* Create a string type using either a blank type supplied in
1080 RESULT_TYPE, or creating a new type. String types are similar
1081 enough to array of char types that we can use create_array_type to
1082 build the basic type and then bash it into a string type.
c906108c
SS
1083
1084 For fixed length strings, the range type contains 0 as the lower
1085 bound and the length of the string minus one as the upper bound.
1086
7ba81444
MS
1087 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1088 sure it is TYPE_CODE_UNDEF before we bash it into a string
1089 type? */
c906108c
SS
1090
1091struct type *
3b7538c0
UW
1092create_string_type (struct type *result_type,
1093 struct type *string_char_type,
7ba81444 1094 struct type *range_type)
c906108c
SS
1095{
1096 result_type = create_array_type (result_type,
f290d38e 1097 string_char_type,
c906108c
SS
1098 range_type);
1099 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 1100 return result_type;
c906108c
SS
1101}
1102
e3506a9f
UW
1103struct type *
1104lookup_string_range_type (struct type *string_char_type,
63375b74 1105 LONGEST low_bound, LONGEST high_bound)
e3506a9f
UW
1106{
1107 struct type *result_type;
d8734c88 1108
e3506a9f
UW
1109 result_type = lookup_array_range_type (string_char_type,
1110 low_bound, high_bound);
1111 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1112 return result_type;
1113}
1114
c906108c 1115struct type *
fba45db2 1116create_set_type (struct type *result_type, struct type *domain_type)
c906108c 1117{
c906108c 1118 if (result_type == NULL)
e9bb382b
UW
1119 result_type = alloc_type_copy (domain_type);
1120
c906108c
SS
1121 TYPE_CODE (result_type) = TYPE_CODE_SET;
1122 TYPE_NFIELDS (result_type) = 1;
1deafd4e 1123 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 1124
74a9bb82 1125 if (!TYPE_STUB (domain_type))
c906108c 1126 {
f9780d5b 1127 LONGEST low_bound, high_bound, bit_length;
d8734c88 1128
c906108c
SS
1129 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1130 low_bound = high_bound = 0;
1131 bit_length = high_bound - low_bound + 1;
1132 TYPE_LENGTH (result_type)
1133 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 1134 if (low_bound >= 0)
876cecd0 1135 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
1136 }
1137 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1138
c16abbde 1139 return result_type;
c906108c
SS
1140}
1141
ea37ba09
DJ
1142/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1143 and any array types nested inside it. */
1144
1145void
1146make_vector_type (struct type *array_type)
1147{
1148 struct type *inner_array, *elt_type;
1149 int flags;
1150
1151 /* Find the innermost array type, in case the array is
1152 multi-dimensional. */
1153 inner_array = array_type;
1154 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1155 inner_array = TYPE_TARGET_TYPE (inner_array);
1156
1157 elt_type = TYPE_TARGET_TYPE (inner_array);
1158 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1159 {
2844d6b5 1160 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1161 elt_type = make_qualified_type (elt_type, flags, NULL);
1162 TYPE_TARGET_TYPE (inner_array) = elt_type;
1163 }
1164
876cecd0 1165 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1166}
1167
794ac428 1168struct type *
ac3aafc7
EZ
1169init_vector_type (struct type *elt_type, int n)
1170{
1171 struct type *array_type;
d8734c88 1172
e3506a9f 1173 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1174 make_vector_type (array_type);
ac3aafc7
EZ
1175 return array_type;
1176}
1177
0d5de010
DJ
1178/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1179 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1180 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1181 TYPE doesn't include the offset (that's the value of the MEMBER
1182 itself), but does include the structure type into which it points
1183 (for some reason).
c906108c 1184
7ba81444
MS
1185 When "smashing" the type, we preserve the objfile that the old type
1186 pointed to, since we aren't changing where the type is actually
c906108c
SS
1187 allocated. */
1188
1189void
0d5de010
DJ
1190smash_to_memberptr_type (struct type *type, struct type *domain,
1191 struct type *to_type)
c906108c 1192{
2fdde8f8 1193 smash_type (type);
c906108c
SS
1194 TYPE_TARGET_TYPE (type) = to_type;
1195 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1196 /* Assume that a data member pointer is the same size as a normal
1197 pointer. */
50810684
UW
1198 TYPE_LENGTH (type)
1199 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1200 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1201}
1202
0b92b5bb
TT
1203/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1204
1205 When "smashing" the type, we preserve the objfile that the old type
1206 pointed to, since we aren't changing where the type is actually
1207 allocated. */
1208
1209void
1210smash_to_methodptr_type (struct type *type, struct type *to_type)
1211{
1212 smash_type (type);
1213 TYPE_TARGET_TYPE (type) = to_type;
1214 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1215 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1216 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1217}
1218
c906108c
SS
1219/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1220 METHOD just means `function that gets an extra "this" argument'.
1221
7ba81444
MS
1222 When "smashing" the type, we preserve the objfile that the old type
1223 pointed to, since we aren't changing where the type is actually
c906108c
SS
1224 allocated. */
1225
1226void
fba45db2 1227smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1228 struct type *to_type, struct field *args,
1229 int nargs, int varargs)
c906108c 1230{
2fdde8f8 1231 smash_type (type);
c906108c
SS
1232 TYPE_TARGET_TYPE (type) = to_type;
1233 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1234 TYPE_FIELDS (type) = args;
1235 TYPE_NFIELDS (type) = nargs;
1236 if (varargs)
876cecd0 1237 TYPE_VARARGS (type) = 1;
c906108c
SS
1238 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1239 TYPE_CODE (type) = TYPE_CODE_METHOD;
1240}
1241
1242/* Return a typename for a struct/union/enum type without "struct ",
1243 "union ", or "enum ". If the type has a NULL name, return NULL. */
1244
0d5cff50 1245const char *
aa1ee363 1246type_name_no_tag (const struct type *type)
c906108c
SS
1247{
1248 if (TYPE_TAG_NAME (type) != NULL)
1249 return TYPE_TAG_NAME (type);
1250
7ba81444
MS
1251 /* Is there code which expects this to return the name if there is
1252 no tag name? My guess is that this is mainly used for C++ in
1253 cases where the two will always be the same. */
c906108c
SS
1254 return TYPE_NAME (type);
1255}
1256
d8228535
JK
1257/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1258 Since GCC PR debug/47510 DWARF provides associated information to detect the
1259 anonymous class linkage name from its typedef.
1260
1261 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1262 apply it itself. */
1263
1264const char *
1265type_name_no_tag_or_error (struct type *type)
1266{
1267 struct type *saved_type = type;
1268 const char *name;
1269 struct objfile *objfile;
1270
1271 CHECK_TYPEDEF (type);
1272
1273 name = type_name_no_tag (type);
1274 if (name != NULL)
1275 return name;
1276
1277 name = type_name_no_tag (saved_type);
1278 objfile = TYPE_OBJFILE (saved_type);
1279 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
4262abfb
JK
1280 name ? name : "<anonymous>",
1281 objfile ? objfile_name (objfile) : "<arch>");
d8228535
JK
1282}
1283
7ba81444
MS
1284/* Lookup a typedef or primitive type named NAME, visible in lexical
1285 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1286 suitably defined. */
c906108c
SS
1287
1288struct type *
e6c014f2 1289lookup_typename (const struct language_defn *language,
ddd49eee 1290 struct gdbarch *gdbarch, const char *name,
34eaf542 1291 const struct block *block, int noerr)
c906108c 1292{
52f0bd74 1293 struct symbol *sym;
659c9f3a 1294 struct type *type;
c906108c 1295
774b6a14 1296 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c51fe631
DE
1297 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1298 return SYMBOL_TYPE (sym);
1299
659c9f3a
DE
1300 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1301 if (type)
1302 return type;
c51fe631
DE
1303
1304 if (noerr)
1305 return NULL;
1306 error (_("No type named %s."), name);
c906108c
SS
1307}
1308
1309struct type *
e6c014f2 1310lookup_unsigned_typename (const struct language_defn *language,
0d5cff50 1311 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1312{
1313 char *uns = alloca (strlen (name) + 10);
1314
1315 strcpy (uns, "unsigned ");
1316 strcpy (uns + 9, name);
e6c014f2 1317 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1318}
1319
1320struct type *
e6c014f2 1321lookup_signed_typename (const struct language_defn *language,
0d5cff50 1322 struct gdbarch *gdbarch, const char *name)
c906108c
SS
1323{
1324 struct type *t;
1325 char *uns = alloca (strlen (name) + 8);
1326
1327 strcpy (uns, "signed ");
1328 strcpy (uns + 7, name);
e6c014f2 1329 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1330 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1331 if (t != NULL)
1332 return t;
e6c014f2 1333 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1334}
1335
1336/* Lookup a structure type named "struct NAME",
1337 visible in lexical block BLOCK. */
1338
1339struct type *
270140bd 1340lookup_struct (const char *name, const struct block *block)
c906108c 1341{
52f0bd74 1342 struct symbol *sym;
c906108c 1343
2570f2b7 1344 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1345
1346 if (sym == NULL)
1347 {
8a3fe4f8 1348 error (_("No struct type named %s."), name);
c906108c
SS
1349 }
1350 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1351 {
7ba81444
MS
1352 error (_("This context has class, union or enum %s, not a struct."),
1353 name);
c906108c
SS
1354 }
1355 return (SYMBOL_TYPE (sym));
1356}
1357
1358/* Lookup a union type named "union NAME",
1359 visible in lexical block BLOCK. */
1360
1361struct type *
270140bd 1362lookup_union (const char *name, const struct block *block)
c906108c 1363{
52f0bd74 1364 struct symbol *sym;
c5aa993b 1365 struct type *t;
c906108c 1366
2570f2b7 1367 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1368
1369 if (sym == NULL)
8a3fe4f8 1370 error (_("No union type named %s."), name);
c906108c 1371
c5aa993b 1372 t = SYMBOL_TYPE (sym);
c906108c
SS
1373
1374 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1375 return t;
c906108c 1376
7ba81444
MS
1377 /* If we get here, it's not a union. */
1378 error (_("This context has class, struct or enum %s, not a union."),
1379 name);
c906108c
SS
1380}
1381
c906108c
SS
1382/* Lookup an enum type named "enum NAME",
1383 visible in lexical block BLOCK. */
1384
1385struct type *
270140bd 1386lookup_enum (const char *name, const struct block *block)
c906108c 1387{
52f0bd74 1388 struct symbol *sym;
c906108c 1389
2570f2b7 1390 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1391 if (sym == NULL)
1392 {
8a3fe4f8 1393 error (_("No enum type named %s."), name);
c906108c
SS
1394 }
1395 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1396 {
7ba81444
MS
1397 error (_("This context has class, struct or union %s, not an enum."),
1398 name);
c906108c
SS
1399 }
1400 return (SYMBOL_TYPE (sym));
1401}
1402
1403/* Lookup a template type named "template NAME<TYPE>",
1404 visible in lexical block BLOCK. */
1405
1406struct type *
7ba81444 1407lookup_template_type (char *name, struct type *type,
270140bd 1408 const struct block *block)
c906108c
SS
1409{
1410 struct symbol *sym;
7ba81444
MS
1411 char *nam = (char *)
1412 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1413
c906108c
SS
1414 strcpy (nam, name);
1415 strcat (nam, "<");
0004e5a2 1416 strcat (nam, TYPE_NAME (type));
0963b4bd 1417 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1418
2570f2b7 1419 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1420
1421 if (sym == NULL)
1422 {
8a3fe4f8 1423 error (_("No template type named %s."), name);
c906108c
SS
1424 }
1425 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1426 {
7ba81444
MS
1427 error (_("This context has class, union or enum %s, not a struct."),
1428 name);
c906108c
SS
1429 }
1430 return (SYMBOL_TYPE (sym));
1431}
1432
7ba81444
MS
1433/* Given a type TYPE, lookup the type of the component of type named
1434 NAME.
c906108c 1435
7ba81444
MS
1436 TYPE can be either a struct or union, or a pointer or reference to
1437 a struct or union. If it is a pointer or reference, its target
1438 type is automatically used. Thus '.' and '->' are interchangable,
1439 as specified for the definitions of the expression element types
1440 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1441
1442 If NOERR is nonzero, return zero if NAME is not suitably defined.
1443 If NAME is the name of a baseclass type, return that type. */
1444
1445struct type *
d7561cbb 1446lookup_struct_elt_type (struct type *type, const char *name, int noerr)
c906108c
SS
1447{
1448 int i;
c92817ce 1449 char *typename;
c906108c
SS
1450
1451 for (;;)
1452 {
1453 CHECK_TYPEDEF (type);
1454 if (TYPE_CODE (type) != TYPE_CODE_PTR
1455 && TYPE_CODE (type) != TYPE_CODE_REF)
1456 break;
1457 type = TYPE_TARGET_TYPE (type);
1458 }
1459
687d6395
MS
1460 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1461 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1462 {
c92817ce
TT
1463 typename = type_to_string (type);
1464 make_cleanup (xfree, typename);
1465 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1466 }
1467
1468#if 0
7ba81444
MS
1469 /* FIXME: This change put in by Michael seems incorrect for the case
1470 where the structure tag name is the same as the member name.
0963b4bd 1471 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1472 foo; } bell;" Disabled by fnf. */
c906108c
SS
1473 {
1474 char *typename;
1475
1476 typename = type_name_no_tag (type);
762f08a3 1477 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1478 return type;
1479 }
1480#endif
1481
1482 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1483 {
0d5cff50 1484 const char *t_field_name = TYPE_FIELD_NAME (type, i);
c906108c 1485
db577aea 1486 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1487 {
1488 return TYPE_FIELD_TYPE (type, i);
1489 }
f5a010c0
PM
1490 else if (!t_field_name || *t_field_name == '\0')
1491 {
d8734c88
MS
1492 struct type *subtype
1493 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1494
f5a010c0
PM
1495 if (subtype != NULL)
1496 return subtype;
1497 }
c906108c
SS
1498 }
1499
1500 /* OK, it's not in this class. Recursively check the baseclasses. */
1501 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1502 {
1503 struct type *t;
1504
9733fc94 1505 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1506 if (t != NULL)
1507 {
1508 return t;
1509 }
1510 }
1511
1512 if (noerr)
1513 {
1514 return NULL;
1515 }
c5aa993b 1516
c92817ce
TT
1517 typename = type_to_string (type);
1518 make_cleanup (xfree, typename);
1519 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1520}
1521
ed3ef339
DE
1522/* Store in *MAX the largest number representable by unsigned integer type
1523 TYPE. */
1524
1525void
1526get_unsigned_type_max (struct type *type, ULONGEST *max)
1527{
1528 unsigned int n;
1529
1530 CHECK_TYPEDEF (type);
1531 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1532 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1533
1534 /* Written this way to avoid overflow. */
1535 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1536 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1537}
1538
1539/* Store in *MIN, *MAX the smallest and largest numbers representable by
1540 signed integer type TYPE. */
1541
1542void
1543get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1544{
1545 unsigned int n;
1546
1547 CHECK_TYPEDEF (type);
1548 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1549 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1550
1551 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1552 *min = -((ULONGEST) 1 << (n - 1));
1553 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1554}
1555
81fe8080
DE
1556/* Lookup the vptr basetype/fieldno values for TYPE.
1557 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1558 vptr_fieldno. Also, if found and basetype is from the same objfile,
1559 cache the results.
1560 If not found, return -1 and ignore BASETYPEP.
1561 Callers should be aware that in some cases (for example,
c906108c 1562 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1563 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1564 this function will not be able to find the
7ba81444 1565 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1566 vptr_basetype will remain NULL or incomplete. */
c906108c 1567
81fe8080
DE
1568int
1569get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1570{
1571 CHECK_TYPEDEF (type);
1572
1573 if (TYPE_VPTR_FIELDNO (type) < 0)
1574 {
1575 int i;
1576
7ba81444
MS
1577 /* We must start at zero in case the first (and only) baseclass
1578 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1579 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1580 {
81fe8080
DE
1581 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1582 int fieldno;
1583 struct type *basetype;
1584
1585 fieldno = get_vptr_fieldno (baseclass, &basetype);
1586 if (fieldno >= 0)
c906108c 1587 {
81fe8080 1588 /* If the type comes from a different objfile we can't cache
0963b4bd 1589 it, it may have a different lifetime. PR 2384 */
5ef73790 1590 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1591 {
1592 TYPE_VPTR_FIELDNO (type) = fieldno;
1593 TYPE_VPTR_BASETYPE (type) = basetype;
1594 }
1595 if (basetypep)
1596 *basetypep = basetype;
1597 return fieldno;
c906108c
SS
1598 }
1599 }
81fe8080
DE
1600
1601 /* Not found. */
1602 return -1;
1603 }
1604 else
1605 {
1606 if (basetypep)
1607 *basetypep = TYPE_VPTR_BASETYPE (type);
1608 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1609 }
1610}
1611
44e1a9eb
DJ
1612static void
1613stub_noname_complaint (void)
1614{
e2e0b3e5 1615 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1616}
1617
d98b7a16 1618/* Worker for is_dynamic_type. */
80180f79 1619
d98b7a16
TT
1620static int
1621is_dynamic_type_internal (struct type *type, int top_level)
80180f79
SA
1622{
1623 type = check_typedef (type);
1624
d98b7a16
TT
1625 /* We only want to recognize references at the outermost level. */
1626 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
80180f79
SA
1627 type = check_typedef (TYPE_TARGET_TYPE (type));
1628
3cdcd0ce
JB
1629 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1630 dynamic, even if the type itself is statically defined.
1631 From a user's point of view, this may appear counter-intuitive;
1632 but it makes sense in this context, because the point is to determine
1633 whether any part of the type needs to be resolved before it can
1634 be exploited. */
1635 if (TYPE_DATA_LOCATION (type) != NULL
1636 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1637 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1638 return 1;
1639
80180f79
SA
1640 switch (TYPE_CODE (type))
1641 {
6f8a3220
JB
1642 case TYPE_CODE_RANGE:
1643 return !has_static_range (TYPE_RANGE_DATA (type));
6f8a3220 1644
80180f79
SA
1645 case TYPE_CODE_ARRAY:
1646 {
80180f79 1647 gdb_assert (TYPE_NFIELDS (type) == 1);
6f8a3220
JB
1648
1649 /* The array is dynamic if either the bounds are dynamic,
1650 or the elements it contains have a dynamic contents. */
d98b7a16 1651 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
80180f79 1652 return 1;
d98b7a16 1653 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
80180f79 1654 }
012370f6
TT
1655
1656 case TYPE_CODE_STRUCT:
1657 case TYPE_CODE_UNION:
1658 {
1659 int i;
1660
1661 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1662 if (!field_is_static (&TYPE_FIELD (type, i))
d98b7a16 1663 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
012370f6
TT
1664 return 1;
1665 }
1666 break;
80180f79 1667 }
92e2a17f
TT
1668
1669 return 0;
80180f79
SA
1670}
1671
d98b7a16
TT
1672/* See gdbtypes.h. */
1673
1674int
1675is_dynamic_type (struct type *type)
1676{
1677 return is_dynamic_type_internal (type, 1);
1678}
1679
1680static struct type *resolve_dynamic_type_internal (struct type *type,
1681 CORE_ADDR addr,
1682 int top_level);
1683
08412b07
JB
1684/* Given a dynamic range type (dyn_range_type) and address,
1685 return a static version of that type. */
d190df30 1686
80180f79 1687static struct type *
08412b07 1688resolve_dynamic_range (struct type *dyn_range_type, CORE_ADDR addr)
80180f79
SA
1689{
1690 CORE_ADDR value;
6f8a3220 1691 struct type *static_range_type;
80180f79
SA
1692 const struct dynamic_prop *prop;
1693 const struct dwarf2_locexpr_baton *baton;
1694 struct dynamic_prop low_bound, high_bound;
1695
6f8a3220 1696 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
80180f79 1697
6f8a3220 1698 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
08412b07 1699 if (dwarf2_evaluate_property (prop, addr, &value))
80180f79
SA
1700 {
1701 low_bound.kind = PROP_CONST;
1702 low_bound.data.const_val = value;
1703 }
1704 else
1705 {
1706 low_bound.kind = PROP_UNDEFINED;
1707 low_bound.data.const_val = 0;
1708 }
1709
6f8a3220 1710 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
08412b07 1711 if (dwarf2_evaluate_property (prop, addr, &value))
80180f79
SA
1712 {
1713 high_bound.kind = PROP_CONST;
1714 high_bound.data.const_val = value;
c451ebe5 1715
6f8a3220 1716 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
c451ebe5
SA
1717 high_bound.data.const_val
1718 = low_bound.data.const_val + high_bound.data.const_val - 1;
80180f79
SA
1719 }
1720 else
1721 {
1722 high_bound.kind = PROP_UNDEFINED;
1723 high_bound.data.const_val = 0;
1724 }
1725
6f8a3220
JB
1726 static_range_type = create_range_type (copy_type (dyn_range_type),
1727 TYPE_TARGET_TYPE (dyn_range_type),
1728 &low_bound, &high_bound);
1729 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1730 return static_range_type;
1731}
1732
1733/* Resolves dynamic bound values of an array type TYPE to static ones.
1734 ADDRESS might be needed to resolve the subrange bounds, it is the location
1735 of the associated array. */
1736
1737static struct type *
08412b07 1738resolve_dynamic_array (struct type *type, CORE_ADDR addr)
6f8a3220
JB
1739{
1740 CORE_ADDR value;
1741 struct type *elt_type;
1742 struct type *range_type;
1743 struct type *ary_dim;
1744
1745 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1746
1747 elt_type = type;
1748 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
08412b07 1749 range_type = resolve_dynamic_range (range_type, addr);
6f8a3220 1750
80180f79
SA
1751 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1752
1753 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
08412b07 1754 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr);
80180f79
SA
1755 else
1756 elt_type = TYPE_TARGET_TYPE (type);
1757
80180f79
SA
1758 return create_array_type (copy_type (type),
1759 elt_type,
1760 range_type);
1761}
1762
012370f6
TT
1763/* Resolve dynamic bounds of members of the union TYPE to static
1764 bounds. */
1765
1766static struct type *
1767resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1768{
1769 struct type *resolved_type;
1770 int i;
1771 unsigned int max_len = 0;
1772
1773 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1774
1775 resolved_type = copy_type (type);
1776 TYPE_FIELDS (resolved_type)
1777 = TYPE_ALLOC (resolved_type,
1778 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1779 memcpy (TYPE_FIELDS (resolved_type),
1780 TYPE_FIELDS (type),
1781 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1782 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1783 {
1784 struct type *t;
1785
1786 if (field_is_static (&TYPE_FIELD (type, i)))
1787 continue;
1788
d98b7a16
TT
1789 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1790 addr, 0);
012370f6
TT
1791 TYPE_FIELD_TYPE (resolved_type, i) = t;
1792 if (TYPE_LENGTH (t) > max_len)
1793 max_len = TYPE_LENGTH (t);
1794 }
1795
1796 TYPE_LENGTH (resolved_type) = max_len;
1797 return resolved_type;
1798}
1799
1800/* Resolve dynamic bounds of members of the struct TYPE to static
1801 bounds. */
1802
1803static struct type *
1804resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1805{
1806 struct type *resolved_type;
1807 int i;
6908c509 1808 unsigned resolved_type_bit_length = 0;
012370f6
TT
1809
1810 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1811 gdb_assert (TYPE_NFIELDS (type) > 0);
1812
1813 resolved_type = copy_type (type);
1814 TYPE_FIELDS (resolved_type)
1815 = TYPE_ALLOC (resolved_type,
1816 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1817 memcpy (TYPE_FIELDS (resolved_type),
1818 TYPE_FIELDS (type),
1819 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1820 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1821 {
6908c509 1822 unsigned new_bit_length;
012370f6
TT
1823
1824 if (field_is_static (&TYPE_FIELD (type, i)))
1825 continue;
1826
6908c509
JB
1827 TYPE_FIELD_TYPE (resolved_type, i)
1828 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
d98b7a16 1829 addr, 0);
012370f6 1830
6908c509
JB
1831 /* As we know this field is not a static field, the field's
1832 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1833 this is the case, but only trigger a simple error rather
1834 than an internal error if that fails. While failing
1835 that verification indicates a bug in our code, the error
1836 is not severe enough to suggest to the user he stops
1837 his debugging session because of it. */
1838 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1839 error (_("Cannot determine struct field location"
1840 " (invalid location kind)"));
1841 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1842 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1843 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1844 else
1845 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1846 * TARGET_CHAR_BIT);
1847
1848 /* Normally, we would use the position and size of the last field
1849 to determine the size of the enclosing structure. But GCC seems
1850 to be encoding the position of some fields incorrectly when
1851 the struct contains a dynamic field that is not placed last.
1852 So we compute the struct size based on the field that has
1853 the highest position + size - probably the best we can do. */
1854 if (new_bit_length > resolved_type_bit_length)
1855 resolved_type_bit_length = new_bit_length;
012370f6
TT
1856 }
1857
012370f6 1858 TYPE_LENGTH (resolved_type)
6908c509
JB
1859 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1860
012370f6
TT
1861 return resolved_type;
1862}
1863
d98b7a16 1864/* Worker for resolved_dynamic_type. */
80180f79 1865
d98b7a16
TT
1866static struct type *
1867resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1868 int top_level)
80180f79
SA
1869{
1870 struct type *real_type = check_typedef (type);
6f8a3220 1871 struct type *resolved_type = type;
3cdcd0ce
JB
1872 const struct dynamic_prop *prop;
1873 CORE_ADDR value;
80180f79 1874
d98b7a16 1875 if (!is_dynamic_type_internal (real_type, top_level))
80180f79
SA
1876 return type;
1877
6f8a3220
JB
1878 switch (TYPE_CODE (type))
1879 {
1880 case TYPE_CODE_TYPEDEF:
1881 resolved_type = copy_type (type);
1882 TYPE_TARGET_TYPE (resolved_type)
d98b7a16
TT
1883 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1884 top_level);
6f8a3220
JB
1885 break;
1886
1887 case TYPE_CODE_REF:
1888 {
1889 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1890
1891 resolved_type = copy_type (type);
1892 TYPE_TARGET_TYPE (resolved_type)
d98b7a16
TT
1893 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1894 target_addr, top_level);
6f8a3220
JB
1895 break;
1896 }
1897
1898 case TYPE_CODE_ARRAY:
08412b07 1899 resolved_type = resolve_dynamic_array (type, addr);
6f8a3220
JB
1900 break;
1901
1902 case TYPE_CODE_RANGE:
08412b07 1903 resolved_type = resolve_dynamic_range (type, addr);
6f8a3220 1904 break;
012370f6
TT
1905
1906 case TYPE_CODE_UNION:
1907 resolved_type = resolve_dynamic_union (type, addr);
1908 break;
1909
1910 case TYPE_CODE_STRUCT:
1911 resolved_type = resolve_dynamic_struct (type, addr);
1912 break;
6f8a3220 1913 }
80180f79 1914
3cdcd0ce
JB
1915 /* Resolve data_location attribute. */
1916 prop = TYPE_DATA_LOCATION (resolved_type);
1917 if (dwarf2_evaluate_property (prop, addr, &value))
1918 {
1919 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
1920 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
1921 }
1922 else
1923 TYPE_DATA_LOCATION (resolved_type) = NULL;
1924
80180f79
SA
1925 return resolved_type;
1926}
1927
d98b7a16
TT
1928/* See gdbtypes.h */
1929
1930struct type *
1931resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1932{
1933 return resolve_dynamic_type_internal (type, addr, 1);
1934}
1935
92163a10
JK
1936/* Find the real type of TYPE. This function returns the real type,
1937 after removing all layers of typedefs, and completing opaque or stub
1938 types. Completion changes the TYPE argument, but stripping of
1939 typedefs does not.
1940
1941 Instance flags (e.g. const/volatile) are preserved as typedefs are
1942 stripped. If necessary a new qualified form of the underlying type
1943 is created.
1944
1945 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1946 not been computed and we're either in the middle of reading symbols, or
1947 there was no name for the typedef in the debug info.
1948
9bc118a5
DE
1949 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1950 QUITs in the symbol reading code can also throw.
1951 Thus this function can throw an exception.
1952
92163a10
JK
1953 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1954 the target type.
c906108c
SS
1955
1956 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1957 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1958 definition, so we can use it in future. There used to be a comment
1959 (but not any code) that if we don't find a full definition, we'd
1960 set a flag so we don't spend time in the future checking the same
1961 type. That would be a mistake, though--we might load in more
92163a10 1962 symbols which contain a full definition for the type. */
c906108c
SS
1963
1964struct type *
a02fd225 1965check_typedef (struct type *type)
c906108c
SS
1966{
1967 struct type *orig_type = type;
92163a10
JK
1968 /* While we're removing typedefs, we don't want to lose qualifiers.
1969 E.g., const/volatile. */
1970 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1971
423c0af8
MS
1972 gdb_assert (type);
1973
c906108c
SS
1974 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1975 {
1976 if (!TYPE_TARGET_TYPE (type))
1977 {
0d5cff50 1978 const char *name;
c906108c
SS
1979 struct symbol *sym;
1980
1981 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1982 reading a symtab. Infinite recursion is one danger. */
c906108c 1983 if (currently_reading_symtab)
92163a10 1984 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1985
1986 name = type_name_no_tag (type);
7ba81444
MS
1987 /* FIXME: shouldn't we separately check the TYPE_NAME and
1988 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1989 VAR_DOMAIN as appropriate? (this code was written before
1990 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1991 if (name == NULL)
1992 {
23136709 1993 stub_noname_complaint ();
92163a10 1994 return make_qualified_type (type, instance_flags, NULL);
c906108c 1995 }
2570f2b7 1996 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1997 if (sym)
1998 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1999 else /* TYPE_CODE_UNDEF */
e9bb382b 2000 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
2001 }
2002 type = TYPE_TARGET_TYPE (type);
c906108c 2003
92163a10
JK
2004 /* Preserve the instance flags as we traverse down the typedef chain.
2005
2006 Handling address spaces/classes is nasty, what do we do if there's a
2007 conflict?
2008 E.g., what if an outer typedef marks the type as class_1 and an inner
2009 typedef marks the type as class_2?
2010 This is the wrong place to do such error checking. We leave it to
2011 the code that created the typedef in the first place to flag the
2012 error. We just pick the outer address space (akin to letting the
2013 outer cast in a chain of casting win), instead of assuming
2014 "it can't happen". */
2015 {
2016 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2017 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2018 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2019 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2020
2021 /* Treat code vs data spaces and address classes separately. */
2022 if ((instance_flags & ALL_SPACES) != 0)
2023 new_instance_flags &= ~ALL_SPACES;
2024 if ((instance_flags & ALL_CLASSES) != 0)
2025 new_instance_flags &= ~ALL_CLASSES;
2026
2027 instance_flags |= new_instance_flags;
2028 }
2029 }
a02fd225 2030
7ba81444
MS
2031 /* If this is a struct/class/union with no fields, then check
2032 whether a full definition exists somewhere else. This is for
2033 systems where a type definition with no fields is issued for such
2034 types, instead of identifying them as stub types in the first
2035 place. */
c5aa993b 2036
7ba81444
MS
2037 if (TYPE_IS_OPAQUE (type)
2038 && opaque_type_resolution
2039 && !currently_reading_symtab)
c906108c 2040 {
0d5cff50 2041 const char *name = type_name_no_tag (type);
c5aa993b 2042 struct type *newtype;
d8734c88 2043
c906108c
SS
2044 if (name == NULL)
2045 {
23136709 2046 stub_noname_complaint ();
92163a10 2047 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
2048 }
2049 newtype = lookup_transparent_type (name);
ad766c0a 2050
c906108c 2051 if (newtype)
ad766c0a 2052 {
7ba81444
MS
2053 /* If the resolved type and the stub are in the same
2054 objfile, then replace the stub type with the real deal.
2055 But if they're in separate objfiles, leave the stub
2056 alone; we'll just look up the transparent type every time
2057 we call check_typedef. We can't create pointers between
2058 types allocated to different objfiles, since they may
2059 have different lifetimes. Trying to copy NEWTYPE over to
2060 TYPE's objfile is pointless, too, since you'll have to
2061 move over any other types NEWTYPE refers to, which could
2062 be an unbounded amount of stuff. */
ad766c0a 2063 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
2064 type = make_qualified_type (newtype,
2065 TYPE_INSTANCE_FLAGS (type),
2066 type);
ad766c0a
JB
2067 else
2068 type = newtype;
2069 }
c906108c 2070 }
7ba81444
MS
2071 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2072 types. */
74a9bb82 2073 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 2074 {
0d5cff50 2075 const char *name = type_name_no_tag (type);
c906108c 2076 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 2077 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
2078 as appropriate? (this code was written before TYPE_NAME and
2079 TYPE_TAG_NAME were separate). */
c906108c 2080 struct symbol *sym;
d8734c88 2081
c906108c
SS
2082 if (name == NULL)
2083 {
23136709 2084 stub_noname_complaint ();
92163a10 2085 return make_qualified_type (type, instance_flags, NULL);
c906108c 2086 }
2570f2b7 2087 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 2088 if (sym)
c26f2453
JB
2089 {
2090 /* Same as above for opaque types, we can replace the stub
92163a10 2091 with the complete type only if they are in the same
c26f2453
JB
2092 objfile. */
2093 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
2094 type = make_qualified_type (SYMBOL_TYPE (sym),
2095 TYPE_INSTANCE_FLAGS (type),
2096 type);
c26f2453
JB
2097 else
2098 type = SYMBOL_TYPE (sym);
2099 }
c906108c
SS
2100 }
2101
74a9bb82 2102 if (TYPE_TARGET_STUB (type))
c906108c
SS
2103 {
2104 struct type *range_type;
2105 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2106
74a9bb82 2107 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 2108 {
73e2eb35 2109 /* Nothing we can do. */
c5aa993b 2110 }
c906108c
SS
2111 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2112 {
2113 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 2114 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
2115 }
2116 }
92163a10
JK
2117
2118 type = make_qualified_type (type, instance_flags, NULL);
2119
7ba81444 2120 /* Cache TYPE_LENGTH for future use. */
c906108c 2121 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 2122
c906108c
SS
2123 return type;
2124}
2125
7ba81444 2126/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 2127 occurs, silently return a void type. */
c91ecb25 2128
b9362cc7 2129static struct type *
48319d1f 2130safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
2131{
2132 struct ui_file *saved_gdb_stderr;
34365054 2133 struct type *type = NULL; /* Initialize to keep gcc happy. */
8e7b59a5 2134 volatile struct gdb_exception except;
c91ecb25 2135
7ba81444 2136 /* Suppress error messages. */
c91ecb25
ND
2137 saved_gdb_stderr = gdb_stderr;
2138 gdb_stderr = ui_file_new ();
2139
7ba81444 2140 /* Call parse_and_eval_type() without fear of longjmp()s. */
8e7b59a5
KS
2141 TRY_CATCH (except, RETURN_MASK_ERROR)
2142 {
2143 type = parse_and_eval_type (p, length);
2144 }
2145
2146 if (except.reason < 0)
48319d1f 2147 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 2148
7ba81444 2149 /* Stop suppressing error messages. */
c91ecb25
ND
2150 ui_file_delete (gdb_stderr);
2151 gdb_stderr = saved_gdb_stderr;
2152
2153 return type;
2154}
2155
c906108c
SS
2156/* Ugly hack to convert method stubs into method types.
2157
7ba81444
MS
2158 He ain't kiddin'. This demangles the name of the method into a
2159 string including argument types, parses out each argument type,
2160 generates a string casting a zero to that type, evaluates the
2161 string, and stuffs the resulting type into an argtype vector!!!
2162 Then it knows the type of the whole function (including argument
2163 types for overloading), which info used to be in the stab's but was
2164 removed to hack back the space required for them. */
c906108c 2165
de17c821 2166static void
fba45db2 2167check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 2168{
50810684 2169 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
2170 struct fn_field *f;
2171 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
8de20a37
TT
2172 char *demangled_name = gdb_demangle (mangled_name,
2173 DMGL_PARAMS | DMGL_ANSI);
c906108c
SS
2174 char *argtypetext, *p;
2175 int depth = 0, argcount = 1;
ad2f7632 2176 struct field *argtypes;
c906108c
SS
2177 struct type *mtype;
2178
2179 /* Make sure we got back a function string that we can use. */
2180 if (demangled_name)
2181 p = strchr (demangled_name, '(');
502dcf4e
AC
2182 else
2183 p = NULL;
c906108c
SS
2184
2185 if (demangled_name == NULL || p == NULL)
7ba81444
MS
2186 error (_("Internal: Cannot demangle mangled name `%s'."),
2187 mangled_name);
c906108c
SS
2188
2189 /* Now, read in the parameters that define this type. */
2190 p += 1;
2191 argtypetext = p;
2192 while (*p)
2193 {
070ad9f0 2194 if (*p == '(' || *p == '<')
c906108c
SS
2195 {
2196 depth += 1;
2197 }
070ad9f0 2198 else if (*p == ')' || *p == '>')
c906108c
SS
2199 {
2200 depth -= 1;
2201 }
2202 else if (*p == ',' && depth == 0)
2203 {
2204 argcount += 1;
2205 }
2206
2207 p += 1;
2208 }
2209
ad2f7632
DJ
2210 /* If we read one argument and it was ``void'', don't count it. */
2211 if (strncmp (argtypetext, "(void)", 6) == 0)
2212 argcount -= 1;
c906108c 2213
ad2f7632
DJ
2214 /* We need one extra slot, for the THIS pointer. */
2215
2216 argtypes = (struct field *)
2217 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 2218 p = argtypetext;
4a1970e4
DJ
2219
2220 /* Add THIS pointer for non-static methods. */
2221 f = TYPE_FN_FIELDLIST1 (type, method_id);
2222 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2223 argcount = 0;
2224 else
2225 {
ad2f7632 2226 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
2227 argcount = 1;
2228 }
c906108c 2229
0963b4bd 2230 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
2231 {
2232 depth = 0;
2233 while (*p)
2234 {
2235 if (depth <= 0 && (*p == ',' || *p == ')'))
2236 {
ad2f7632
DJ
2237 /* Avoid parsing of ellipsis, they will be handled below.
2238 Also avoid ``void'' as above. */
2239 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2240 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 2241 {
ad2f7632 2242 argtypes[argcount].type =
48319d1f 2243 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
2244 argcount += 1;
2245 }
2246 argtypetext = p + 1;
2247 }
2248
070ad9f0 2249 if (*p == '(' || *p == '<')
c906108c
SS
2250 {
2251 depth += 1;
2252 }
070ad9f0 2253 else if (*p == ')' || *p == '>')
c906108c
SS
2254 {
2255 depth -= 1;
2256 }
2257
2258 p += 1;
2259 }
2260 }
2261
c906108c
SS
2262 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2263
2264 /* Now update the old "stub" type into a real type. */
2265 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2266 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
2267 TYPE_FIELDS (mtype) = argtypes;
2268 TYPE_NFIELDS (mtype) = argcount;
876cecd0 2269 TYPE_STUB (mtype) = 0;
c906108c 2270 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 2271 if (p[-2] == '.')
876cecd0 2272 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
2273
2274 xfree (demangled_name);
c906108c
SS
2275}
2276
7ba81444
MS
2277/* This is the external interface to check_stub_method, above. This
2278 function unstubs all of the signatures for TYPE's METHOD_ID method
2279 name. After calling this function TYPE_FN_FIELD_STUB will be
2280 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2281 correct.
de17c821
DJ
2282
2283 This function unfortunately can not die until stabs do. */
2284
2285void
2286check_stub_method_group (struct type *type, int method_id)
2287{
2288 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2289 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 2290 int j, found_stub = 0;
de17c821
DJ
2291
2292 for (j = 0; j < len; j++)
2293 if (TYPE_FN_FIELD_STUB (f, j))
2294 {
2295 found_stub = 1;
2296 check_stub_method (type, method_id, j);
2297 }
2298
7ba81444
MS
2299 /* GNU v3 methods with incorrect names were corrected when we read
2300 in type information, because it was cheaper to do it then. The
2301 only GNU v2 methods with incorrect method names are operators and
2302 destructors; destructors were also corrected when we read in type
2303 information.
de17c821
DJ
2304
2305 Therefore the only thing we need to handle here are v2 operator
2306 names. */
2307 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2308 {
2309 int ret;
2310 char dem_opname[256];
2311
7ba81444
MS
2312 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2313 method_id),
de17c821
DJ
2314 dem_opname, DMGL_ANSI);
2315 if (!ret)
7ba81444
MS
2316 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2317 method_id),
de17c821
DJ
2318 dem_opname, 0);
2319 if (ret)
2320 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2321 }
2322}
2323
9655fd1a
JK
2324/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2325const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
2326
2327void
fba45db2 2328allocate_cplus_struct_type (struct type *type)
c906108c 2329{
b4ba55a1
JB
2330 if (HAVE_CPLUS_STRUCT (type))
2331 /* Structure was already allocated. Nothing more to do. */
2332 return;
2333
2334 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2335 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2336 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2337 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
2338}
2339
b4ba55a1
JB
2340const struct gnat_aux_type gnat_aux_default =
2341 { NULL };
2342
2343/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2344 and allocate the associated gnat-specific data. The gnat-specific
2345 data is also initialized to gnat_aux_default. */
5212577a 2346
b4ba55a1
JB
2347void
2348allocate_gnat_aux_type (struct type *type)
2349{
2350 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2351 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2352 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2353 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2354}
2355
c906108c
SS
2356/* Helper function to initialize the standard scalar types.
2357
86f62fd7
TT
2358 If NAME is non-NULL, then it is used to initialize the type name.
2359 Note that NAME is not copied; it is required to have a lifetime at
2360 least as long as OBJFILE. */
c906108c
SS
2361
2362struct type *
7ba81444 2363init_type (enum type_code code, int length, int flags,
748e18ae 2364 const char *name, struct objfile *objfile)
c906108c 2365{
52f0bd74 2366 struct type *type;
c906108c
SS
2367
2368 type = alloc_type (objfile);
2369 TYPE_CODE (type) = code;
2370 TYPE_LENGTH (type) = length;
876cecd0
TT
2371
2372 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2373 if (flags & TYPE_FLAG_UNSIGNED)
2374 TYPE_UNSIGNED (type) = 1;
2375 if (flags & TYPE_FLAG_NOSIGN)
2376 TYPE_NOSIGN (type) = 1;
2377 if (flags & TYPE_FLAG_STUB)
2378 TYPE_STUB (type) = 1;
2379 if (flags & TYPE_FLAG_TARGET_STUB)
2380 TYPE_TARGET_STUB (type) = 1;
2381 if (flags & TYPE_FLAG_STATIC)
2382 TYPE_STATIC (type) = 1;
2383 if (flags & TYPE_FLAG_PROTOTYPED)
2384 TYPE_PROTOTYPED (type) = 1;
2385 if (flags & TYPE_FLAG_INCOMPLETE)
2386 TYPE_INCOMPLETE (type) = 1;
2387 if (flags & TYPE_FLAG_VARARGS)
2388 TYPE_VARARGS (type) = 1;
2389 if (flags & TYPE_FLAG_VECTOR)
2390 TYPE_VECTOR (type) = 1;
2391 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2392 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
2393 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2394 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
2395 if (flags & TYPE_FLAG_GNU_IFUNC)
2396 TYPE_GNU_IFUNC (type) = 1;
876cecd0 2397
86f62fd7 2398 TYPE_NAME (type) = name;
c906108c
SS
2399
2400 /* C++ fancies. */
2401
973ccf8b 2402 if (name && strcmp (name, "char") == 0)
876cecd0 2403 TYPE_NOSIGN (type) = 1;
973ccf8b 2404
b4ba55a1 2405 switch (code)
c906108c 2406 {
b4ba55a1
JB
2407 case TYPE_CODE_STRUCT:
2408 case TYPE_CODE_UNION:
2409 case TYPE_CODE_NAMESPACE:
2410 INIT_CPLUS_SPECIFIC (type);
2411 break;
2412 case TYPE_CODE_FLT:
2413 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2414 break;
2415 case TYPE_CODE_FUNC:
b6cdc2c1 2416 INIT_FUNC_SPECIFIC (type);
b4ba55a1 2417 break;
c906108c 2418 }
c16abbde 2419 return type;
c906108c 2420}
5212577a
DE
2421\f
2422/* Queries on types. */
c906108c 2423
c906108c 2424int
fba45db2 2425can_dereference (struct type *t)
c906108c 2426{
7ba81444
MS
2427 /* FIXME: Should we return true for references as well as
2428 pointers? */
c906108c
SS
2429 CHECK_TYPEDEF (t);
2430 return
2431 (t != NULL
2432 && TYPE_CODE (t) == TYPE_CODE_PTR
2433 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2434}
2435
adf40b2e 2436int
fba45db2 2437is_integral_type (struct type *t)
adf40b2e
JM
2438{
2439 CHECK_TYPEDEF (t);
2440 return
2441 ((t != NULL)
d4f3574e
SS
2442 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2443 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 2444 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
2445 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2446 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2447 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
2448}
2449
e09342b5
TJB
2450/* Return true if TYPE is scalar. */
2451
2452static int
2453is_scalar_type (struct type *type)
2454{
2455 CHECK_TYPEDEF (type);
2456
2457 switch (TYPE_CODE (type))
2458 {
2459 case TYPE_CODE_ARRAY:
2460 case TYPE_CODE_STRUCT:
2461 case TYPE_CODE_UNION:
2462 case TYPE_CODE_SET:
2463 case TYPE_CODE_STRING:
e09342b5
TJB
2464 return 0;
2465 default:
2466 return 1;
2467 }
2468}
2469
2470/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2471 the memory layout of a scalar type. E.g., an array or struct with only
2472 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2473
2474int
2475is_scalar_type_recursive (struct type *t)
2476{
2477 CHECK_TYPEDEF (t);
2478
2479 if (is_scalar_type (t))
2480 return 1;
2481 /* Are we dealing with an array or string of known dimensions? */
2482 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2483 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2484 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2485 {
2486 LONGEST low_bound, high_bound;
2487 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2488
2489 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2490
2491 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2492 }
2493 /* Are we dealing with a struct with one element? */
2494 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2495 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2496 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2497 {
2498 int i, n = TYPE_NFIELDS (t);
2499
2500 /* If all elements of the union are scalar, then the union is scalar. */
2501 for (i = 0; i < n; i++)
2502 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2503 return 0;
2504
2505 return 1;
2506 }
2507
2508 return 0;
2509}
2510
4e8f195d
TT
2511/* A helper function which returns true if types A and B represent the
2512 "same" class type. This is true if the types have the same main
2513 type, or the same name. */
2514
2515int
2516class_types_same_p (const struct type *a, const struct type *b)
2517{
2518 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2519 || (TYPE_NAME (a) && TYPE_NAME (b)
2520 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2521}
2522
a9d5ef47
SW
2523/* If BASE is an ancestor of DCLASS return the distance between them.
2524 otherwise return -1;
2525 eg:
2526
2527 class A {};
2528 class B: public A {};
2529 class C: public B {};
2530 class D: C {};
2531
2532 distance_to_ancestor (A, A, 0) = 0
2533 distance_to_ancestor (A, B, 0) = 1
2534 distance_to_ancestor (A, C, 0) = 2
2535 distance_to_ancestor (A, D, 0) = 3
2536
2537 If PUBLIC is 1 then only public ancestors are considered,
2538 and the function returns the distance only if BASE is a public ancestor
2539 of DCLASS.
2540 Eg:
2541
0963b4bd 2542 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2543
0526b37a 2544static int
a9d5ef47 2545distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2546{
2547 int i;
a9d5ef47 2548 int d;
c5aa993b 2549
c906108c
SS
2550 CHECK_TYPEDEF (base);
2551 CHECK_TYPEDEF (dclass);
2552
4e8f195d 2553 if (class_types_same_p (base, dclass))
a9d5ef47 2554 return 0;
c906108c
SS
2555
2556 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2557 {
0526b37a
SW
2558 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2559 continue;
2560
a9d5ef47
SW
2561 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2562 if (d >= 0)
2563 return 1 + d;
4e8f195d 2564 }
c906108c 2565
a9d5ef47 2566 return -1;
c906108c 2567}
4e8f195d 2568
0526b37a
SW
2569/* Check whether BASE is an ancestor or base class or DCLASS
2570 Return 1 if so, and 0 if not.
2571 Note: If BASE and DCLASS are of the same type, this function
2572 will return 1. So for some class A, is_ancestor (A, A) will
2573 return 1. */
2574
2575int
2576is_ancestor (struct type *base, struct type *dclass)
2577{
a9d5ef47 2578 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2579}
2580
4e8f195d
TT
2581/* Like is_ancestor, but only returns true when BASE is a public
2582 ancestor of DCLASS. */
2583
2584int
2585is_public_ancestor (struct type *base, struct type *dclass)
2586{
a9d5ef47 2587 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2588}
2589
2590/* A helper function for is_unique_ancestor. */
2591
2592static int
2593is_unique_ancestor_worker (struct type *base, struct type *dclass,
2594 int *offset,
8af8e3bc
PA
2595 const gdb_byte *valaddr, int embedded_offset,
2596 CORE_ADDR address, struct value *val)
4e8f195d
TT
2597{
2598 int i, count = 0;
2599
2600 CHECK_TYPEDEF (base);
2601 CHECK_TYPEDEF (dclass);
2602
2603 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2604 {
8af8e3bc
PA
2605 struct type *iter;
2606 int this_offset;
4e8f195d 2607
8af8e3bc
PA
2608 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2609
2610 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2611 address, val);
4e8f195d
TT
2612
2613 if (class_types_same_p (base, iter))
2614 {
2615 /* If this is the first subclass, set *OFFSET and set count
2616 to 1. Otherwise, if this is at the same offset as
2617 previous instances, do nothing. Otherwise, increment
2618 count. */
2619 if (*offset == -1)
2620 {
2621 *offset = this_offset;
2622 count = 1;
2623 }
2624 else if (this_offset == *offset)
2625 {
2626 /* Nothing. */
2627 }
2628 else
2629 ++count;
2630 }
2631 else
2632 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2633 valaddr,
2634 embedded_offset + this_offset,
2635 address, val);
4e8f195d
TT
2636 }
2637
2638 return count;
2639}
2640
2641/* Like is_ancestor, but only returns true if BASE is a unique base
2642 class of the type of VAL. */
2643
2644int
2645is_unique_ancestor (struct type *base, struct value *val)
2646{
2647 int offset = -1;
2648
2649 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2650 value_contents_for_printing (val),
2651 value_embedded_offset (val),
2652 value_address (val), val) == 1;
4e8f195d
TT
2653}
2654
c906108c 2655\f
5212577a 2656/* Overload resolution. */
c906108c 2657
6403aeea
SW
2658/* Return the sum of the rank of A with the rank of B. */
2659
2660struct rank
2661sum_ranks (struct rank a, struct rank b)
2662{
2663 struct rank c;
2664 c.rank = a.rank + b.rank;
a9d5ef47 2665 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2666 return c;
2667}
2668
2669/* Compare rank A and B and return:
2670 0 if a = b
2671 1 if a is better than b
2672 -1 if b is better than a. */
2673
2674int
2675compare_ranks (struct rank a, struct rank b)
2676{
2677 if (a.rank == b.rank)
a9d5ef47
SW
2678 {
2679 if (a.subrank == b.subrank)
2680 return 0;
2681 if (a.subrank < b.subrank)
2682 return 1;
2683 if (a.subrank > b.subrank)
2684 return -1;
2685 }
6403aeea
SW
2686
2687 if (a.rank < b.rank)
2688 return 1;
2689
0963b4bd 2690 /* a.rank > b.rank */
6403aeea
SW
2691 return -1;
2692}
c5aa993b 2693
0963b4bd 2694/* Functions for overload resolution begin here. */
c906108c
SS
2695
2696/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2697 0 => A and B are identical
2698 1 => A and B are incomparable
2699 2 => A is better than B
2700 3 => A is worse than B */
c906108c
SS
2701
2702int
fba45db2 2703compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2704{
2705 int i;
2706 int tmp;
c5aa993b
JM
2707 short found_pos = 0; /* any positives in c? */
2708 short found_neg = 0; /* any negatives in c? */
2709
2710 /* differing lengths => incomparable */
c906108c
SS
2711 if (a->length != b->length)
2712 return 1;
2713
c5aa993b
JM
2714 /* Subtract b from a */
2715 for (i = 0; i < a->length; i++)
c906108c 2716 {
6403aeea 2717 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2718 if (tmp > 0)
c5aa993b 2719 found_pos = 1;
c906108c 2720 else if (tmp < 0)
c5aa993b 2721 found_neg = 1;
c906108c
SS
2722 }
2723
2724 if (found_pos)
2725 {
2726 if (found_neg)
c5aa993b 2727 return 1; /* incomparable */
c906108c 2728 else
c5aa993b 2729 return 3; /* A > B */
c906108c 2730 }
c5aa993b
JM
2731 else
2732 /* no positives */
c906108c
SS
2733 {
2734 if (found_neg)
c5aa993b 2735 return 2; /* A < B */
c906108c 2736 else
c5aa993b 2737 return 0; /* A == B */
c906108c
SS
2738 }
2739}
2740
7ba81444
MS
2741/* Rank a function by comparing its parameter types (PARMS, length
2742 NPARMS), to the types of an argument list (ARGS, length NARGS).
2743 Return a pointer to a badness vector. This has NARGS + 1
2744 entries. */
c906108c
SS
2745
2746struct badness_vector *
7ba81444 2747rank_function (struct type **parms, int nparms,
da096638 2748 struct value **args, int nargs)
c906108c
SS
2749{
2750 int i;
c5aa993b 2751 struct badness_vector *bv;
c906108c
SS
2752 int min_len = nparms < nargs ? nparms : nargs;
2753
2754 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2755 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c4e54771 2756 bv->rank = XNEWVEC (struct rank, nargs + 1);
c906108c
SS
2757
2758 /* First compare the lengths of the supplied lists.
7ba81444 2759 If there is a mismatch, set it to a high value. */
c5aa993b 2760
c906108c 2761 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2762 arguments and ellipsis parameter lists, we should consider those
2763 and rank the length-match more finely. */
c906108c 2764
6403aeea
SW
2765 LENGTH_MATCH (bv) = (nargs != nparms)
2766 ? LENGTH_MISMATCH_BADNESS
2767 : EXACT_MATCH_BADNESS;
c906108c 2768
0963b4bd 2769 /* Now rank all the parameters of the candidate function. */
74cc24b0 2770 for (i = 1; i <= min_len; i++)
da096638
KS
2771 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2772 args[i - 1]);
c906108c 2773
0963b4bd 2774 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2775 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2776 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2777
2778 return bv;
2779}
2780
973ccf8b
DJ
2781/* Compare the names of two integer types, assuming that any sign
2782 qualifiers have been checked already. We do it this way because
2783 there may be an "int" in the name of one of the types. */
2784
2785static int
2786integer_types_same_name_p (const char *first, const char *second)
2787{
2788 int first_p, second_p;
2789
7ba81444
MS
2790 /* If both are shorts, return 1; if neither is a short, keep
2791 checking. */
973ccf8b
DJ
2792 first_p = (strstr (first, "short") != NULL);
2793 second_p = (strstr (second, "short") != NULL);
2794 if (first_p && second_p)
2795 return 1;
2796 if (first_p || second_p)
2797 return 0;
2798
2799 /* Likewise for long. */
2800 first_p = (strstr (first, "long") != NULL);
2801 second_p = (strstr (second, "long") != NULL);
2802 if (first_p && second_p)
2803 return 1;
2804 if (first_p || second_p)
2805 return 0;
2806
2807 /* Likewise for char. */
2808 first_p = (strstr (first, "char") != NULL);
2809 second_p = (strstr (second, "char") != NULL);
2810 if (first_p && second_p)
2811 return 1;
2812 if (first_p || second_p)
2813 return 0;
2814
2815 /* They must both be ints. */
2816 return 1;
2817}
2818
7062b0a0
SW
2819/* Compares type A to type B returns 1 if the represent the same type
2820 0 otherwise. */
2821
bd69fc68 2822int
7062b0a0
SW
2823types_equal (struct type *a, struct type *b)
2824{
2825 /* Identical type pointers. */
2826 /* However, this still doesn't catch all cases of same type for b
2827 and a. The reason is that builtin types are different from
2828 the same ones constructed from the object. */
2829 if (a == b)
2830 return 1;
2831
2832 /* Resolve typedefs */
2833 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2834 a = check_typedef (a);
2835 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2836 b = check_typedef (b);
2837
2838 /* If after resolving typedefs a and b are not of the same type
2839 code then they are not equal. */
2840 if (TYPE_CODE (a) != TYPE_CODE (b))
2841 return 0;
2842
2843 /* If a and b are both pointers types or both reference types then
2844 they are equal of the same type iff the objects they refer to are
2845 of the same type. */
2846 if (TYPE_CODE (a) == TYPE_CODE_PTR
2847 || TYPE_CODE (a) == TYPE_CODE_REF)
2848 return types_equal (TYPE_TARGET_TYPE (a),
2849 TYPE_TARGET_TYPE (b));
2850
0963b4bd 2851 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2852 are exactly the same. This happens when we generate method
2853 stubs. The types won't point to the same address, but they
0963b4bd 2854 really are the same. */
7062b0a0
SW
2855
2856 if (TYPE_NAME (a) && TYPE_NAME (b)
2857 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2858 return 1;
2859
2860 /* Check if identical after resolving typedefs. */
2861 if (a == b)
2862 return 1;
2863
9ce98649
TT
2864 /* Two function types are equal if their argument and return types
2865 are equal. */
2866 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2867 {
2868 int i;
2869
2870 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2871 return 0;
2872
2873 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2874 return 0;
2875
2876 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2877 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2878 return 0;
2879
2880 return 1;
2881 }
2882
7062b0a0
SW
2883 return 0;
2884}
ca092b61
DE
2885\f
2886/* Deep comparison of types. */
2887
2888/* An entry in the type-equality bcache. */
2889
2890typedef struct type_equality_entry
2891{
2892 struct type *type1, *type2;
2893} type_equality_entry_d;
2894
2895DEF_VEC_O (type_equality_entry_d);
2896
2897/* A helper function to compare two strings. Returns 1 if they are
2898 the same, 0 otherwise. Handles NULLs properly. */
2899
2900static int
2901compare_maybe_null_strings (const char *s, const char *t)
2902{
2903 if (s == NULL && t != NULL)
2904 return 0;
2905 else if (s != NULL && t == NULL)
2906 return 0;
2907 else if (s == NULL && t== NULL)
2908 return 1;
2909 return strcmp (s, t) == 0;
2910}
2911
2912/* A helper function for check_types_worklist that checks two types for
2913 "deep" equality. Returns non-zero if the types are considered the
2914 same, zero otherwise. */
2915
2916static int
2917check_types_equal (struct type *type1, struct type *type2,
2918 VEC (type_equality_entry_d) **worklist)
2919{
2920 CHECK_TYPEDEF (type1);
2921 CHECK_TYPEDEF (type2);
2922
2923 if (type1 == type2)
2924 return 1;
2925
2926 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2927 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2928 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2929 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2930 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2931 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2932 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2933 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2934 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2935 return 0;
2936
2937 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2938 TYPE_TAG_NAME (type2)))
2939 return 0;
2940 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2941 return 0;
2942
2943 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2944 {
2945 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2946 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2947 return 0;
2948 }
2949 else
2950 {
2951 int i;
2952
2953 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2954 {
2955 const struct field *field1 = &TYPE_FIELD (type1, i);
2956 const struct field *field2 = &TYPE_FIELD (type2, i);
2957 struct type_equality_entry entry;
2958
2959 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2960 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2961 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2962 return 0;
2963 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2964 FIELD_NAME (*field2)))
2965 return 0;
2966 switch (FIELD_LOC_KIND (*field1))
2967 {
2968 case FIELD_LOC_KIND_BITPOS:
2969 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2970 return 0;
2971 break;
2972 case FIELD_LOC_KIND_ENUMVAL:
2973 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2974 return 0;
2975 break;
2976 case FIELD_LOC_KIND_PHYSADDR:
2977 if (FIELD_STATIC_PHYSADDR (*field1)
2978 != FIELD_STATIC_PHYSADDR (*field2))
2979 return 0;
2980 break;
2981 case FIELD_LOC_KIND_PHYSNAME:
2982 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2983 FIELD_STATIC_PHYSNAME (*field2)))
2984 return 0;
2985 break;
2986 case FIELD_LOC_KIND_DWARF_BLOCK:
2987 {
2988 struct dwarf2_locexpr_baton *block1, *block2;
2989
2990 block1 = FIELD_DWARF_BLOCK (*field1);
2991 block2 = FIELD_DWARF_BLOCK (*field2);
2992 if (block1->per_cu != block2->per_cu
2993 || block1->size != block2->size
2994 || memcmp (block1->data, block2->data, block1->size) != 0)
2995 return 0;
2996 }
2997 break;
2998 default:
2999 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3000 "%d by check_types_equal"),
3001 FIELD_LOC_KIND (*field1));
3002 }
3003
3004 entry.type1 = FIELD_TYPE (*field1);
3005 entry.type2 = FIELD_TYPE (*field2);
3006 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3007 }
3008 }
3009
3010 if (TYPE_TARGET_TYPE (type1) != NULL)
3011 {
3012 struct type_equality_entry entry;
3013
3014 if (TYPE_TARGET_TYPE (type2) == NULL)
3015 return 0;
3016
3017 entry.type1 = TYPE_TARGET_TYPE (type1);
3018 entry.type2 = TYPE_TARGET_TYPE (type2);
3019 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3020 }
3021 else if (TYPE_TARGET_TYPE (type2) != NULL)
3022 return 0;
3023
3024 return 1;
3025}
3026
3027/* Check types on a worklist for equality. Returns zero if any pair
3028 is not equal, non-zero if they are all considered equal. */
3029
3030static int
3031check_types_worklist (VEC (type_equality_entry_d) **worklist,
3032 struct bcache *cache)
3033{
3034 while (!VEC_empty (type_equality_entry_d, *worklist))
3035 {
3036 struct type_equality_entry entry;
3037 int added;
3038
3039 entry = *VEC_last (type_equality_entry_d, *worklist);
3040 VEC_pop (type_equality_entry_d, *worklist);
3041
3042 /* If the type pair has already been visited, we know it is
3043 ok. */
3044 bcache_full (&entry, sizeof (entry), cache, &added);
3045 if (!added)
3046 continue;
3047
3048 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3049 return 0;
3050 }
7062b0a0 3051
ca092b61
DE
3052 return 1;
3053}
3054
3055/* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3056 "deep comparison". Otherwise return zero. */
3057
3058int
3059types_deeply_equal (struct type *type1, struct type *type2)
3060{
3061 volatile struct gdb_exception except;
3062 int result = 0;
3063 struct bcache *cache;
3064 VEC (type_equality_entry_d) *worklist = NULL;
3065 struct type_equality_entry entry;
3066
3067 gdb_assert (type1 != NULL && type2 != NULL);
3068
3069 /* Early exit for the simple case. */
3070 if (type1 == type2)
3071 return 1;
3072
3073 cache = bcache_xmalloc (NULL, NULL);
3074
3075 entry.type1 = type1;
3076 entry.type2 = type2;
3077 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3078
3079 TRY_CATCH (except, RETURN_MASK_ALL)
3080 {
3081 result = check_types_worklist (&worklist, cache);
3082 }
3083 /* check_types_worklist calls several nested helper functions,
3084 some of which can raise a GDB Exception, so we just check
3085 and rethrow here. If there is a GDB exception, a comparison
3086 is not capable (or trusted), so exit. */
3087 bcache_xfree (cache);
3088 VEC_free (type_equality_entry_d, worklist);
3089 /* Rethrow if there was a problem. */
3090 if (except.reason < 0)
3091 throw_exception (except);
3092
3093 return result;
3094}
3095\f
c906108c
SS
3096/* Compare one type (PARM) for compatibility with another (ARG).
3097 * PARM is intended to be the parameter type of a function; and
3098 * ARG is the supplied argument's type. This function tests if
3099 * the latter can be converted to the former.
da096638 3100 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
3101 *
3102 * Return 0 if they are identical types;
3103 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
3104 * PARM is to ARG. The higher the return value, the worse the match.
3105 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 3106
6403aeea 3107struct rank
da096638 3108rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 3109{
a9d5ef47 3110 struct rank rank = {0,0};
7062b0a0
SW
3111
3112 if (types_equal (parm, arg))
6403aeea 3113 return EXACT_MATCH_BADNESS;
c906108c
SS
3114
3115 /* Resolve typedefs */
3116 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3117 parm = check_typedef (parm);
3118 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3119 arg = check_typedef (arg);
3120
db577aea 3121 /* See through references, since we can almost make non-references
7ba81444 3122 references. */
db577aea 3123 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 3124 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 3125 REFERENCE_CONVERSION_BADNESS));
db577aea 3126 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 3127 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 3128 REFERENCE_CONVERSION_BADNESS));
5d161b24 3129 if (overload_debug)
7ba81444
MS
3130 /* Debugging only. */
3131 fprintf_filtered (gdb_stderr,
3132 "------ Arg is %s [%d], parm is %s [%d]\n",
3133 TYPE_NAME (arg), TYPE_CODE (arg),
3134 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 3135
0963b4bd 3136 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
3137
3138 switch (TYPE_CODE (parm))
3139 {
c5aa993b
JM
3140 case TYPE_CODE_PTR:
3141 switch (TYPE_CODE (arg))
3142 {
3143 case TYPE_CODE_PTR:
7062b0a0
SW
3144
3145 /* Allowed pointer conversions are:
3146 (a) pointer to void-pointer conversion. */
3147 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 3148 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
3149
3150 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
3151 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3152 TYPE_TARGET_TYPE (arg),
3153 0);
3154 if (rank.subrank >= 0)
3155 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
3156
3157 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3158 case TYPE_CODE_ARRAY:
7062b0a0
SW
3159 if (types_equal (TYPE_TARGET_TYPE (parm),
3160 TYPE_TARGET_TYPE (arg)))
6403aeea 3161 return EXACT_MATCH_BADNESS;
7062b0a0 3162 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3163 case TYPE_CODE_FUNC:
da096638 3164 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 3165 case TYPE_CODE_INT:
a451cb65 3166 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
da096638 3167 {
a451cb65
KS
3168 if (value_as_long (value) == 0)
3169 {
3170 /* Null pointer conversion: allow it to be cast to a pointer.
3171 [4.10.1 of C++ standard draft n3290] */
3172 return NULL_POINTER_CONVERSION_BADNESS;
3173 }
3174 else
3175 {
3176 /* If type checking is disabled, allow the conversion. */
3177 if (!strict_type_checking)
3178 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3179 }
da096638
KS
3180 }
3181 /* fall through */
c5aa993b 3182 case TYPE_CODE_ENUM:
4f2aea11 3183 case TYPE_CODE_FLAGS:
c5aa993b
JM
3184 case TYPE_CODE_CHAR:
3185 case TYPE_CODE_RANGE:
3186 case TYPE_CODE_BOOL:
c5aa993b
JM
3187 default:
3188 return INCOMPATIBLE_TYPE_BADNESS;
3189 }
3190 case TYPE_CODE_ARRAY:
3191 switch (TYPE_CODE (arg))
3192 {
3193 case TYPE_CODE_PTR:
3194 case TYPE_CODE_ARRAY:
7ba81444 3195 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 3196 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3197 default:
3198 return INCOMPATIBLE_TYPE_BADNESS;
3199 }
3200 case TYPE_CODE_FUNC:
3201 switch (TYPE_CODE (arg))
3202 {
3203 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 3204 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
3205 default:
3206 return INCOMPATIBLE_TYPE_BADNESS;
3207 }
3208 case TYPE_CODE_INT:
3209 switch (TYPE_CODE (arg))
3210 {
3211 case TYPE_CODE_INT:
3212 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3213 {
3214 /* Deal with signed, unsigned, and plain chars and
7ba81444 3215 signed and unsigned ints. */
c5aa993b
JM
3216 if (TYPE_NOSIGN (parm))
3217 {
0963b4bd 3218 /* This case only for character types. */
7ba81444 3219 if (TYPE_NOSIGN (arg))
6403aeea 3220 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
3221 else /* signed/unsigned char -> plain char */
3222 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3223 }
3224 else if (TYPE_UNSIGNED (parm))
3225 {
3226 if (TYPE_UNSIGNED (arg))
3227 {
7ba81444
MS
3228 /* unsigned int -> unsigned int, or
3229 unsigned long -> unsigned long */
3230 if (integer_types_same_name_p (TYPE_NAME (parm),
3231 TYPE_NAME (arg)))
6403aeea 3232 return EXACT_MATCH_BADNESS;
7ba81444
MS
3233 else if (integer_types_same_name_p (TYPE_NAME (arg),
3234 "int")
3235 && integer_types_same_name_p (TYPE_NAME (parm),
3236 "long"))
3e43a32a
MS
3237 /* unsigned int -> unsigned long */
3238 return INTEGER_PROMOTION_BADNESS;
c5aa993b 3239 else
3e43a32a
MS
3240 /* unsigned long -> unsigned int */
3241 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3242 }
3243 else
3244 {
7ba81444
MS
3245 if (integer_types_same_name_p (TYPE_NAME (arg),
3246 "long")
3247 && integer_types_same_name_p (TYPE_NAME (parm),
3248 "int"))
3e43a32a
MS
3249 /* signed long -> unsigned int */
3250 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3251 else
3e43a32a
MS
3252 /* signed int/long -> unsigned int/long */
3253 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3254 }
3255 }
3256 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3257 {
7ba81444
MS
3258 if (integer_types_same_name_p (TYPE_NAME (parm),
3259 TYPE_NAME (arg)))
6403aeea 3260 return EXACT_MATCH_BADNESS;
7ba81444
MS
3261 else if (integer_types_same_name_p (TYPE_NAME (arg),
3262 "int")
3263 && integer_types_same_name_p (TYPE_NAME (parm),
3264 "long"))
c5aa993b
JM
3265 return INTEGER_PROMOTION_BADNESS;
3266 else
1c5cb38e 3267 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3268 }
3269 else
1c5cb38e 3270 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3271 }
3272 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3273 return INTEGER_PROMOTION_BADNESS;
3274 else
1c5cb38e 3275 return INTEGER_CONVERSION_BADNESS;
c5aa993b 3276 case TYPE_CODE_ENUM:
4f2aea11 3277 case TYPE_CODE_FLAGS:
c5aa993b
JM
3278 case TYPE_CODE_CHAR:
3279 case TYPE_CODE_RANGE:
3280 case TYPE_CODE_BOOL:
3d567982
TT
3281 if (TYPE_DECLARED_CLASS (arg))
3282 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b
JM
3283 return INTEGER_PROMOTION_BADNESS;
3284 case TYPE_CODE_FLT:
3285 return INT_FLOAT_CONVERSION_BADNESS;
3286 case TYPE_CODE_PTR:
3287 return NS_POINTER_CONVERSION_BADNESS;
3288 default:
3289 return INCOMPATIBLE_TYPE_BADNESS;
3290 }
3291 break;
3292 case TYPE_CODE_ENUM:
3293 switch (TYPE_CODE (arg))
3294 {
3295 case TYPE_CODE_INT:
3296 case TYPE_CODE_CHAR:
3297 case TYPE_CODE_RANGE:
3298 case TYPE_CODE_BOOL:
3299 case TYPE_CODE_ENUM:
3d567982
TT
3300 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3301 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3302 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3303 case TYPE_CODE_FLT:
3304 return INT_FLOAT_CONVERSION_BADNESS;
3305 default:
3306 return INCOMPATIBLE_TYPE_BADNESS;
3307 }
3308 break;
3309 case TYPE_CODE_CHAR:
3310 switch (TYPE_CODE (arg))
3311 {
3312 case TYPE_CODE_RANGE:
3313 case TYPE_CODE_BOOL:
3314 case TYPE_CODE_ENUM:
3d567982
TT
3315 if (TYPE_DECLARED_CLASS (arg))
3316 return INCOMPATIBLE_TYPE_BADNESS;
1c5cb38e 3317 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3318 case TYPE_CODE_FLT:
3319 return INT_FLOAT_CONVERSION_BADNESS;
3320 case TYPE_CODE_INT:
3321 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 3322 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3323 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3324 return INTEGER_PROMOTION_BADNESS;
3325 /* >>> !! else fall through !! <<< */
3326 case TYPE_CODE_CHAR:
7ba81444
MS
3327 /* Deal with signed, unsigned, and plain chars for C++ and
3328 with int cases falling through from previous case. */
c5aa993b
JM
3329 if (TYPE_NOSIGN (parm))
3330 {
3331 if (TYPE_NOSIGN (arg))
6403aeea 3332 return EXACT_MATCH_BADNESS;
c5aa993b 3333 else
1c5cb38e 3334 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3335 }
3336 else if (TYPE_UNSIGNED (parm))
3337 {
3338 if (TYPE_UNSIGNED (arg))
6403aeea 3339 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3340 else
3341 return INTEGER_PROMOTION_BADNESS;
3342 }
3343 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 3344 return EXACT_MATCH_BADNESS;
c5aa993b 3345 else
1c5cb38e 3346 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3347 default:
3348 return INCOMPATIBLE_TYPE_BADNESS;
3349 }
3350 break;
3351 case TYPE_CODE_RANGE:
3352 switch (TYPE_CODE (arg))
3353 {
3354 case TYPE_CODE_INT:
3355 case TYPE_CODE_CHAR:
3356 case TYPE_CODE_RANGE:
3357 case TYPE_CODE_BOOL:
3358 case TYPE_CODE_ENUM:
1c5cb38e 3359 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
3360 case TYPE_CODE_FLT:
3361 return INT_FLOAT_CONVERSION_BADNESS;
3362 default:
3363 return INCOMPATIBLE_TYPE_BADNESS;
3364 }
3365 break;
3366 case TYPE_CODE_BOOL:
3367 switch (TYPE_CODE (arg))
3368 {
5b4f6e25
KS
3369 /* n3290 draft, section 4.12.1 (conv.bool):
3370
3371 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3372 pointer to member type can be converted to a prvalue of type
3373 bool. A zero value, null pointer value, or null member pointer
3374 value is converted to false; any other value is converted to
3375 true. A prvalue of type std::nullptr_t can be converted to a
3376 prvalue of type bool; the resulting value is false." */
c5aa993b
JM
3377 case TYPE_CODE_INT:
3378 case TYPE_CODE_CHAR:
c5aa993b
JM
3379 case TYPE_CODE_ENUM:
3380 case TYPE_CODE_FLT:
5b4f6e25 3381 case TYPE_CODE_MEMBERPTR:
c5aa993b 3382 case TYPE_CODE_PTR:
5b4f6e25
KS
3383 return BOOL_CONVERSION_BADNESS;
3384 case TYPE_CODE_RANGE:
3385 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 3386 case TYPE_CODE_BOOL:
6403aeea 3387 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3388 default:
3389 return INCOMPATIBLE_TYPE_BADNESS;
3390 }
3391 break;
3392 case TYPE_CODE_FLT:
3393 switch (TYPE_CODE (arg))
3394 {
3395 case TYPE_CODE_FLT:
3396 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3397 return FLOAT_PROMOTION_BADNESS;
3398 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 3399 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3400 else
3401 return FLOAT_CONVERSION_BADNESS;
3402 case TYPE_CODE_INT:
3403 case TYPE_CODE_BOOL:
3404 case TYPE_CODE_ENUM:
3405 case TYPE_CODE_RANGE:
3406 case TYPE_CODE_CHAR:
3407 return INT_FLOAT_CONVERSION_BADNESS;
3408 default:
3409 return INCOMPATIBLE_TYPE_BADNESS;
3410 }
3411 break;
3412 case TYPE_CODE_COMPLEX:
3413 switch (TYPE_CODE (arg))
7ba81444 3414 { /* Strictly not needed for C++, but... */
c5aa993b
JM
3415 case TYPE_CODE_FLT:
3416 return FLOAT_PROMOTION_BADNESS;
3417 case TYPE_CODE_COMPLEX:
6403aeea 3418 return EXACT_MATCH_BADNESS;
c5aa993b
JM
3419 default:
3420 return INCOMPATIBLE_TYPE_BADNESS;
3421 }
3422 break;
3423 case TYPE_CODE_STRUCT:
c5aa993b
JM
3424 switch (TYPE_CODE (arg))
3425 {
3426 case TYPE_CODE_STRUCT:
3427 /* Check for derivation */
a9d5ef47
SW
3428 rank.subrank = distance_to_ancestor (parm, arg, 0);
3429 if (rank.subrank >= 0)
3430 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
3431 /* else fall through */
3432 default:
3433 return INCOMPATIBLE_TYPE_BADNESS;
3434 }
3435 break;
3436 case TYPE_CODE_UNION:
3437 switch (TYPE_CODE (arg))
3438 {
3439 case TYPE_CODE_UNION:
3440 default:
3441 return INCOMPATIBLE_TYPE_BADNESS;
3442 }
3443 break;
0d5de010 3444 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
3445 switch (TYPE_CODE (arg))
3446 {
3447 default:
3448 return INCOMPATIBLE_TYPE_BADNESS;
3449 }
3450 break;
3451 case TYPE_CODE_METHOD:
3452 switch (TYPE_CODE (arg))
3453 {
3454
3455 default:
3456 return INCOMPATIBLE_TYPE_BADNESS;
3457 }
3458 break;
3459 case TYPE_CODE_REF:
3460 switch (TYPE_CODE (arg))
3461 {
3462
3463 default:
3464 return INCOMPATIBLE_TYPE_BADNESS;
3465 }
3466
3467 break;
3468 case TYPE_CODE_SET:
3469 switch (TYPE_CODE (arg))
3470 {
3471 /* Not in C++ */
3472 case TYPE_CODE_SET:
7ba81444 3473 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 3474 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
3475 default:
3476 return INCOMPATIBLE_TYPE_BADNESS;
3477 }
3478 break;
3479 case TYPE_CODE_VOID:
3480 default:
3481 return INCOMPATIBLE_TYPE_BADNESS;
3482 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
3483}
3484
0963b4bd 3485/* End of functions for overload resolution. */
5212577a
DE
3486\f
3487/* Routines to pretty-print types. */
c906108c 3488
c906108c 3489static void
fba45db2 3490print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
3491{
3492 int bitno;
3493
3494 for (bitno = 0; bitno < nbits; bitno++)
3495 {
3496 if ((bitno % 8) == 0)
3497 {
3498 puts_filtered (" ");
3499 }
3500 if (B_TST (bits, bitno))
a3f17187 3501 printf_filtered (("1"));
c906108c 3502 else
a3f17187 3503 printf_filtered (("0"));
c906108c
SS
3504 }
3505}
3506
ad2f7632 3507/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
3508 include it since we may get into a infinitely recursive
3509 situation. */
c906108c
SS
3510
3511static void
ad2f7632 3512print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
3513{
3514 if (args != NULL)
3515 {
ad2f7632
DJ
3516 int i;
3517
3518 for (i = 0; i < nargs; i++)
3519 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
3520 }
3521}
3522
d6a843b5
JK
3523int
3524field_is_static (struct field *f)
3525{
3526 /* "static" fields are the fields whose location is not relative
3527 to the address of the enclosing struct. It would be nice to
3528 have a dedicated flag that would be set for static fields when
3529 the type is being created. But in practice, checking the field
254e6b9e 3530 loc_kind should give us an accurate answer. */
d6a843b5
JK
3531 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3532 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3533}
3534
c906108c 3535static void
fba45db2 3536dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
3537{
3538 int method_idx;
3539 int overload_idx;
3540 struct fn_field *f;
3541
3542 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 3543 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
3544 printf_filtered ("\n");
3545 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3546 {
3547 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3548 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3549 method_idx,
3550 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
3551 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3552 gdb_stdout);
a3f17187 3553 printf_filtered (_(") length %d\n"),
c906108c
SS
3554 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3555 for (overload_idx = 0;
3556 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3557 overload_idx++)
3558 {
3559 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3560 overload_idx,
3561 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
3562 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3563 gdb_stdout);
c906108c
SS
3564 printf_filtered (")\n");
3565 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
3566 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3567 gdb_stdout);
c906108c
SS
3568 printf_filtered ("\n");
3569
3570 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3571 spaces + 8 + 2);
3572
3573 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
3574 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3575 gdb_stdout);
c906108c
SS
3576 printf_filtered ("\n");
3577
ad2f7632 3578 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
3579 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3580 overload_idx)),
ad2f7632 3581 spaces);
c906108c 3582 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
3583 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3584 gdb_stdout);
c906108c
SS
3585 printf_filtered ("\n");
3586
3587 printfi_filtered (spaces + 8, "is_const %d\n",
3588 TYPE_FN_FIELD_CONST (f, overload_idx));
3589 printfi_filtered (spaces + 8, "is_volatile %d\n",
3590 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3591 printfi_filtered (spaces + 8, "is_private %d\n",
3592 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3593 printfi_filtered (spaces + 8, "is_protected %d\n",
3594 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3595 printfi_filtered (spaces + 8, "is_stub %d\n",
3596 TYPE_FN_FIELD_STUB (f, overload_idx));
3597 printfi_filtered (spaces + 8, "voffset %u\n",
3598 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3599 }
3600 }
3601}
3602
3603static void
fba45db2 3604print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
3605{
3606 printfi_filtered (spaces, "n_baseclasses %d\n",
3607 TYPE_N_BASECLASSES (type));
3608 printfi_filtered (spaces, "nfn_fields %d\n",
3609 TYPE_NFN_FIELDS (type));
c906108c
SS
3610 if (TYPE_N_BASECLASSES (type) > 0)
3611 {
3612 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3613 TYPE_N_BASECLASSES (type));
7ba81444
MS
3614 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3615 gdb_stdout);
c906108c
SS
3616 printf_filtered (")");
3617
3618 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3619 TYPE_N_BASECLASSES (type));
3620 puts_filtered ("\n");
3621 }
3622 if (TYPE_NFIELDS (type) > 0)
3623 {
3624 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3625 {
7ba81444
MS
3626 printfi_filtered (spaces,
3627 "private_field_bits (%d bits at *",
c906108c 3628 TYPE_NFIELDS (type));
7ba81444
MS
3629 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3630 gdb_stdout);
c906108c
SS
3631 printf_filtered (")");
3632 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3633 TYPE_NFIELDS (type));
3634 puts_filtered ("\n");
3635 }
3636 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3637 {
7ba81444
MS
3638 printfi_filtered (spaces,
3639 "protected_field_bits (%d bits at *",
c906108c 3640 TYPE_NFIELDS (type));
7ba81444
MS
3641 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3642 gdb_stdout);
c906108c
SS
3643 printf_filtered (")");
3644 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3645 TYPE_NFIELDS (type));
3646 puts_filtered ("\n");
3647 }
3648 }
3649 if (TYPE_NFN_FIELDS (type) > 0)
3650 {
3651 dump_fn_fieldlists (type, spaces);
3652 }
3653}
3654
b4ba55a1
JB
3655/* Print the contents of the TYPE's type_specific union, assuming that
3656 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3657
3658static void
3659print_gnat_stuff (struct type *type, int spaces)
3660{
3661 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3662
3663 recursive_dump_type (descriptive_type, spaces + 2);
3664}
3665
c906108c
SS
3666static struct obstack dont_print_type_obstack;
3667
3668void
fba45db2 3669recursive_dump_type (struct type *type, int spaces)
c906108c
SS
3670{
3671 int idx;
3672
3673 if (spaces == 0)
3674 obstack_begin (&dont_print_type_obstack, 0);
3675
3676 if (TYPE_NFIELDS (type) > 0
b4ba55a1 3677 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
3678 {
3679 struct type **first_dont_print
7ba81444 3680 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 3681
7ba81444
MS
3682 int i = (struct type **)
3683 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
3684
3685 while (--i >= 0)
3686 {
3687 if (type == first_dont_print[i])
3688 {
3689 printfi_filtered (spaces, "type node ");
d4f3574e 3690 gdb_print_host_address (type, gdb_stdout);
a3f17187 3691 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
3692 return;
3693 }
3694 }
3695
3696 obstack_ptr_grow (&dont_print_type_obstack, type);
3697 }
3698
3699 printfi_filtered (spaces, "type node ");
d4f3574e 3700 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
3701 printf_filtered ("\n");
3702 printfi_filtered (spaces, "name '%s' (",
3703 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 3704 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 3705 printf_filtered (")\n");
e9e79dd9
FF
3706 printfi_filtered (spaces, "tagname '%s' (",
3707 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3708 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3709 printf_filtered (")\n");
c906108c
SS
3710 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3711 switch (TYPE_CODE (type))
3712 {
c5aa993b
JM
3713 case TYPE_CODE_UNDEF:
3714 printf_filtered ("(TYPE_CODE_UNDEF)");
3715 break;
3716 case TYPE_CODE_PTR:
3717 printf_filtered ("(TYPE_CODE_PTR)");
3718 break;
3719 case TYPE_CODE_ARRAY:
3720 printf_filtered ("(TYPE_CODE_ARRAY)");
3721 break;
3722 case TYPE_CODE_STRUCT:
3723 printf_filtered ("(TYPE_CODE_STRUCT)");
3724 break;
3725 case TYPE_CODE_UNION:
3726 printf_filtered ("(TYPE_CODE_UNION)");
3727 break;
3728 case TYPE_CODE_ENUM:
3729 printf_filtered ("(TYPE_CODE_ENUM)");
3730 break;
4f2aea11
MK
3731 case TYPE_CODE_FLAGS:
3732 printf_filtered ("(TYPE_CODE_FLAGS)");
3733 break;
c5aa993b
JM
3734 case TYPE_CODE_FUNC:
3735 printf_filtered ("(TYPE_CODE_FUNC)");
3736 break;
3737 case TYPE_CODE_INT:
3738 printf_filtered ("(TYPE_CODE_INT)");
3739 break;
3740 case TYPE_CODE_FLT:
3741 printf_filtered ("(TYPE_CODE_FLT)");
3742 break;
3743 case TYPE_CODE_VOID:
3744 printf_filtered ("(TYPE_CODE_VOID)");
3745 break;
3746 case TYPE_CODE_SET:
3747 printf_filtered ("(TYPE_CODE_SET)");
3748 break;
3749 case TYPE_CODE_RANGE:
3750 printf_filtered ("(TYPE_CODE_RANGE)");
3751 break;
3752 case TYPE_CODE_STRING:
3753 printf_filtered ("(TYPE_CODE_STRING)");
3754 break;
3755 case TYPE_CODE_ERROR:
3756 printf_filtered ("(TYPE_CODE_ERROR)");
3757 break;
0d5de010
DJ
3758 case TYPE_CODE_MEMBERPTR:
3759 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3760 break;
3761 case TYPE_CODE_METHODPTR:
3762 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3763 break;
3764 case TYPE_CODE_METHOD:
3765 printf_filtered ("(TYPE_CODE_METHOD)");
3766 break;
3767 case TYPE_CODE_REF:
3768 printf_filtered ("(TYPE_CODE_REF)");
3769 break;
3770 case TYPE_CODE_CHAR:
3771 printf_filtered ("(TYPE_CODE_CHAR)");
3772 break;
3773 case TYPE_CODE_BOOL:
3774 printf_filtered ("(TYPE_CODE_BOOL)");
3775 break;
e9e79dd9
FF
3776 case TYPE_CODE_COMPLEX:
3777 printf_filtered ("(TYPE_CODE_COMPLEX)");
3778 break;
c5aa993b
JM
3779 case TYPE_CODE_TYPEDEF:
3780 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3781 break;
5c4e30ca
DC
3782 case TYPE_CODE_NAMESPACE:
3783 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3784 break;
c5aa993b
JM
3785 default:
3786 printf_filtered ("(UNKNOWN TYPE CODE)");
3787 break;
c906108c
SS
3788 }
3789 puts_filtered ("\n");
3790 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3791 if (TYPE_OBJFILE_OWNED (type))
3792 {
3793 printfi_filtered (spaces, "objfile ");
3794 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3795 }
3796 else
3797 {
3798 printfi_filtered (spaces, "gdbarch ");
3799 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3800 }
c906108c
SS
3801 printf_filtered ("\n");
3802 printfi_filtered (spaces, "target_type ");
d4f3574e 3803 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3804 printf_filtered ("\n");
3805 if (TYPE_TARGET_TYPE (type) != NULL)
3806 {
3807 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3808 }
3809 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3810 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3811 printf_filtered ("\n");
3812 printfi_filtered (spaces, "reference_type ");
d4f3574e 3813 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3814 printf_filtered ("\n");
2fdde8f8
DJ
3815 printfi_filtered (spaces, "type_chain ");
3816 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3817 printf_filtered ("\n");
7ba81444
MS
3818 printfi_filtered (spaces, "instance_flags 0x%x",
3819 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3820 if (TYPE_CONST (type))
3821 {
3822 puts_filtered (" TYPE_FLAG_CONST");
3823 }
3824 if (TYPE_VOLATILE (type))
3825 {
3826 puts_filtered (" TYPE_FLAG_VOLATILE");
3827 }
3828 if (TYPE_CODE_SPACE (type))
3829 {
3830 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3831 }
3832 if (TYPE_DATA_SPACE (type))
3833 {
3834 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3835 }
8b2dbe47
KB
3836 if (TYPE_ADDRESS_CLASS_1 (type))
3837 {
3838 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3839 }
3840 if (TYPE_ADDRESS_CLASS_2 (type))
3841 {
3842 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3843 }
06d66ee9
TT
3844 if (TYPE_RESTRICT (type))
3845 {
3846 puts_filtered (" TYPE_FLAG_RESTRICT");
3847 }
2fdde8f8 3848 puts_filtered ("\n");
876cecd0
TT
3849
3850 printfi_filtered (spaces, "flags");
762a036f 3851 if (TYPE_UNSIGNED (type))
c906108c
SS
3852 {
3853 puts_filtered (" TYPE_FLAG_UNSIGNED");
3854 }
762a036f
FF
3855 if (TYPE_NOSIGN (type))
3856 {
3857 puts_filtered (" TYPE_FLAG_NOSIGN");
3858 }
3859 if (TYPE_STUB (type))
c906108c
SS
3860 {
3861 puts_filtered (" TYPE_FLAG_STUB");
3862 }
762a036f
FF
3863 if (TYPE_TARGET_STUB (type))
3864 {
3865 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3866 }
3867 if (TYPE_STATIC (type))
3868 {
3869 puts_filtered (" TYPE_FLAG_STATIC");
3870 }
762a036f
FF
3871 if (TYPE_PROTOTYPED (type))
3872 {
3873 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3874 }
3875 if (TYPE_INCOMPLETE (type))
3876 {
3877 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3878 }
762a036f
FF
3879 if (TYPE_VARARGS (type))
3880 {
3881 puts_filtered (" TYPE_FLAG_VARARGS");
3882 }
f5f8a009
EZ
3883 /* This is used for things like AltiVec registers on ppc. Gcc emits
3884 an attribute for the array type, which tells whether or not we
3885 have a vector, instead of a regular array. */
3886 if (TYPE_VECTOR (type))
3887 {
3888 puts_filtered (" TYPE_FLAG_VECTOR");
3889 }
876cecd0
TT
3890 if (TYPE_FIXED_INSTANCE (type))
3891 {
3892 puts_filtered (" TYPE_FIXED_INSTANCE");
3893 }
3894 if (TYPE_STUB_SUPPORTED (type))
3895 {
3896 puts_filtered (" TYPE_STUB_SUPPORTED");
3897 }
3898 if (TYPE_NOTTEXT (type))
3899 {
3900 puts_filtered (" TYPE_NOTTEXT");
3901 }
c906108c
SS
3902 puts_filtered ("\n");
3903 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3904 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3905 puts_filtered ("\n");
3906 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3907 {
14e75d8e
JK
3908 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3909 printfi_filtered (spaces + 2,
3910 "[%d] enumval %s type ",
3911 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3912 else
3913 printfi_filtered (spaces + 2,
3914 "[%d] bitpos %d bitsize %d type ",
3915 idx, TYPE_FIELD_BITPOS (type, idx),
3916 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3917 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3918 printf_filtered (" name '%s' (",
3919 TYPE_FIELD_NAME (type, idx) != NULL
3920 ? TYPE_FIELD_NAME (type, idx)
3921 : "<NULL>");
d4f3574e 3922 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3923 printf_filtered (")\n");
3924 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3925 {
3926 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3927 }
3928 }
43bbcdc2
PH
3929 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3930 {
3931 printfi_filtered (spaces, "low %s%s high %s%s\n",
3932 plongest (TYPE_LOW_BOUND (type)),
3933 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3934 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3935 TYPE_HIGH_BOUND_UNDEFINED (type)
3936 ? " (undefined)" : "");
43bbcdc2 3937 }
c906108c 3938 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3939 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3940 puts_filtered ("\n");
3941 if (TYPE_VPTR_BASETYPE (type) != NULL)
3942 {
3943 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3944 }
7ba81444
MS
3945 printfi_filtered (spaces, "vptr_fieldno %d\n",
3946 TYPE_VPTR_FIELDNO (type));
c906108c 3947
b4ba55a1
JB
3948 switch (TYPE_SPECIFIC_FIELD (type))
3949 {
3950 case TYPE_SPECIFIC_CPLUS_STUFF:
3951 printfi_filtered (spaces, "cplus_stuff ");
3952 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3953 gdb_stdout);
3954 puts_filtered ("\n");
3955 print_cplus_stuff (type, spaces);
3956 break;
8da61cc4 3957
b4ba55a1
JB
3958 case TYPE_SPECIFIC_GNAT_STUFF:
3959 printfi_filtered (spaces, "gnat_stuff ");
3960 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3961 puts_filtered ("\n");
3962 print_gnat_stuff (type, spaces);
3963 break;
701c159d 3964
b4ba55a1
JB
3965 case TYPE_SPECIFIC_FLOATFORMAT:
3966 printfi_filtered (spaces, "floatformat ");
3967 if (TYPE_FLOATFORMAT (type) == NULL)
3968 puts_filtered ("(null)");
3969 else
3970 {
3971 puts_filtered ("{ ");
3972 if (TYPE_FLOATFORMAT (type)[0] == NULL
3973 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3974 puts_filtered ("(null)");
3975 else
3976 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3977
3978 puts_filtered (", ");
3979 if (TYPE_FLOATFORMAT (type)[1] == NULL
3980 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3981 puts_filtered ("(null)");
3982 else
3983 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3984
3985 puts_filtered (" }");
3986 }
3987 puts_filtered ("\n");
3988 break;
c906108c 3989
b6cdc2c1 3990 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3991 printfi_filtered (spaces, "calling_convention %d\n",
3992 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3993 /* tail_call_list is not printed. */
b4ba55a1 3994 break;
c906108c 3995 }
b4ba55a1 3996
c906108c
SS
3997 if (spaces == 0)
3998 obstack_free (&dont_print_type_obstack, NULL);
3999}
5212577a 4000\f
ae5a43e0
DJ
4001/* Trivial helpers for the libiberty hash table, for mapping one
4002 type to another. */
4003
4004struct type_pair
4005{
4006 struct type *old, *new;
4007};
4008
4009static hashval_t
4010type_pair_hash (const void *item)
4011{
4012 const struct type_pair *pair = item;
d8734c88 4013
ae5a43e0
DJ
4014 return htab_hash_pointer (pair->old);
4015}
4016
4017static int
4018type_pair_eq (const void *item_lhs, const void *item_rhs)
4019{
4020 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 4021
ae5a43e0
DJ
4022 return lhs->old == rhs->old;
4023}
4024
4025/* Allocate the hash table used by copy_type_recursive to walk
4026 types without duplicates. We use OBJFILE's obstack, because
4027 OBJFILE is about to be deleted. */
4028
4029htab_t
4030create_copied_types_hash (struct objfile *objfile)
4031{
4032 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4033 NULL, &objfile->objfile_obstack,
4034 hashtab_obstack_allocate,
4035 dummy_obstack_deallocate);
4036}
4037
7ba81444
MS
4038/* Recursively copy (deep copy) TYPE, if it is associated with
4039 OBJFILE. Return a new type allocated using malloc, a saved type if
4040 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4041 not associated with OBJFILE. */
ae5a43e0
DJ
4042
4043struct type *
7ba81444
MS
4044copy_type_recursive (struct objfile *objfile,
4045 struct type *type,
ae5a43e0
DJ
4046 htab_t copied_types)
4047{
4048 struct type_pair *stored, pair;
4049 void **slot;
4050 struct type *new_type;
4051
e9bb382b 4052 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
4053 return type;
4054
7ba81444
MS
4055 /* This type shouldn't be pointing to any types in other objfiles;
4056 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
4057 gdb_assert (TYPE_OBJFILE (type) == objfile);
4058
4059 pair.old = type;
4060 slot = htab_find_slot (copied_types, &pair, INSERT);
4061 if (*slot != NULL)
4062 return ((struct type_pair *) *slot)->new;
4063
e9bb382b 4064 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
4065
4066 /* We must add the new type to the hash table immediately, in case
4067 we encounter this type again during a recursive call below. */
3e43a32a
MS
4068 stored
4069 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
4070 stored->old = type;
4071 stored->new = new_type;
4072 *slot = stored;
4073
876cecd0
TT
4074 /* Copy the common fields of types. For the main type, we simply
4075 copy the entire thing and then update specific fields as needed. */
4076 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
4077 TYPE_OBJFILE_OWNED (new_type) = 0;
4078 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 4079
ae5a43e0
DJ
4080 if (TYPE_NAME (type))
4081 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4082 if (TYPE_TAG_NAME (type))
4083 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
4084
4085 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4086 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4087
4088 /* Copy the fields. */
ae5a43e0
DJ
4089 if (TYPE_NFIELDS (type))
4090 {
4091 int i, nfields;
4092
4093 nfields = TYPE_NFIELDS (type);
fc270c35 4094 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
ae5a43e0
DJ
4095 for (i = 0; i < nfields; i++)
4096 {
7ba81444
MS
4097 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4098 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
4099 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4100 if (TYPE_FIELD_TYPE (type, i))
4101 TYPE_FIELD_TYPE (new_type, i)
4102 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4103 copied_types);
4104 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
4105 TYPE_FIELD_NAME (new_type, i) =
4106 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 4107 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 4108 {
d6a843b5
JK
4109 case FIELD_LOC_KIND_BITPOS:
4110 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4111 TYPE_FIELD_BITPOS (type, i));
4112 break;
14e75d8e
JK
4113 case FIELD_LOC_KIND_ENUMVAL:
4114 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4115 TYPE_FIELD_ENUMVAL (type, i));
4116 break;
d6a843b5
JK
4117 case FIELD_LOC_KIND_PHYSADDR:
4118 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4119 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4120 break;
4121 case FIELD_LOC_KIND_PHYSNAME:
4122 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4123 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4124 i)));
4125 break;
4126 default:
4127 internal_error (__FILE__, __LINE__,
4128 _("Unexpected type field location kind: %d"),
4129 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
4130 }
4131 }
4132 }
4133
0963b4bd 4134 /* For range types, copy the bounds information. */
43bbcdc2
PH
4135 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4136 {
4137 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4138 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4139 }
4140
3cdcd0ce
JB
4141 /* Copy the data location information. */
4142 if (TYPE_DATA_LOCATION (type) != NULL)
4143 {
4144 TYPE_DATA_LOCATION (new_type)
4145 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4146 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4147 sizeof (struct dynamic_prop));
4148 }
4149
ae5a43e0
DJ
4150 /* Copy pointers to other types. */
4151 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
4152 TYPE_TARGET_TYPE (new_type) =
4153 copy_type_recursive (objfile,
4154 TYPE_TARGET_TYPE (type),
4155 copied_types);
ae5a43e0 4156 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
4157 TYPE_VPTR_BASETYPE (new_type) =
4158 copy_type_recursive (objfile,
4159 TYPE_VPTR_BASETYPE (type),
4160 copied_types);
ae5a43e0
DJ
4161 /* Maybe copy the type_specific bits.
4162
4163 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4164 base classes and methods. There's no fundamental reason why we
4165 can't, but at the moment it is not needed. */
4166
4167 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 4168 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
4169 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4170 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
4171 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4172 INIT_CPLUS_SPECIFIC (new_type);
4173
4174 return new_type;
4175}
4176
4af88198
JB
4177/* Make a copy of the given TYPE, except that the pointer & reference
4178 types are not preserved.
4179
4180 This function assumes that the given type has an associated objfile.
4181 This objfile is used to allocate the new type. */
4182
4183struct type *
4184copy_type (const struct type *type)
4185{
4186 struct type *new_type;
4187
e9bb382b 4188 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 4189
e9bb382b 4190 new_type = alloc_type_copy (type);
4af88198
JB
4191 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4192 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4193 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4194 sizeof (struct main_type));
3cdcd0ce
JB
4195 if (TYPE_DATA_LOCATION (type) != NULL)
4196 {
4197 TYPE_DATA_LOCATION (new_type)
4198 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4199 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4200 sizeof (struct dynamic_prop));
4201 }
4af88198
JB
4202
4203 return new_type;
4204}
5212577a 4205\f
e9bb382b
UW
4206/* Helper functions to initialize architecture-specific types. */
4207
4208/* Allocate a type structure associated with GDBARCH and set its
4209 CODE, LENGTH, and NAME fields. */
5212577a 4210
e9bb382b
UW
4211struct type *
4212arch_type (struct gdbarch *gdbarch,
4213 enum type_code code, int length, char *name)
4214{
4215 struct type *type;
4216
4217 type = alloc_type_arch (gdbarch);
4218 TYPE_CODE (type) = code;
4219 TYPE_LENGTH (type) = length;
4220
4221 if (name)
4222 TYPE_NAME (type) = xstrdup (name);
4223
4224 return type;
4225}
4226
4227/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4228 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4229 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4230
e9bb382b
UW
4231struct type *
4232arch_integer_type (struct gdbarch *gdbarch,
4233 int bit, int unsigned_p, char *name)
4234{
4235 struct type *t;
4236
4237 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4238 if (unsigned_p)
4239 TYPE_UNSIGNED (t) = 1;
4240 if (name && strcmp (name, "char") == 0)
4241 TYPE_NOSIGN (t) = 1;
4242
4243 return t;
4244}
4245
4246/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4247 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4248 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4249
e9bb382b
UW
4250struct type *
4251arch_character_type (struct gdbarch *gdbarch,
4252 int bit, int unsigned_p, char *name)
4253{
4254 struct type *t;
4255
4256 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4257 if (unsigned_p)
4258 TYPE_UNSIGNED (t) = 1;
4259
4260 return t;
4261}
4262
4263/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4264 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4265 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5212577a 4266
e9bb382b
UW
4267struct type *
4268arch_boolean_type (struct gdbarch *gdbarch,
4269 int bit, int unsigned_p, char *name)
4270{
4271 struct type *t;
4272
4273 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4274 if (unsigned_p)
4275 TYPE_UNSIGNED (t) = 1;
4276
4277 return t;
4278}
4279
4280/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4281 BIT is the type size in bits; if BIT equals -1, the size is
4282 determined by the floatformat. NAME is the type name. Set the
4283 TYPE_FLOATFORMAT from FLOATFORMATS. */
5212577a 4284
27067745 4285struct type *
e9bb382b
UW
4286arch_float_type (struct gdbarch *gdbarch,
4287 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
4288{
4289 struct type *t;
4290
4291 if (bit == -1)
4292 {
4293 gdb_assert (floatformats != NULL);
4294 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4295 bit = floatformats[0]->totalsize;
4296 }
4297 gdb_assert (bit >= 0);
4298
e9bb382b 4299 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
4300 TYPE_FLOATFORMAT (t) = floatformats;
4301 return t;
4302}
4303
e9bb382b
UW
4304/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4305 NAME is the type name. TARGET_TYPE is the component float type. */
5212577a 4306
27067745 4307struct type *
e9bb382b
UW
4308arch_complex_type (struct gdbarch *gdbarch,
4309 char *name, struct type *target_type)
27067745
UW
4310{
4311 struct type *t;
d8734c88 4312
e9bb382b
UW
4313 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4314 2 * TYPE_LENGTH (target_type), name);
27067745
UW
4315 TYPE_TARGET_TYPE (t) = target_type;
4316 return t;
4317}
4318
e9bb382b 4319/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 4320 NAME is the type name. LENGTH is the size of the flag word in bytes. */
5212577a 4321
e9bb382b
UW
4322struct type *
4323arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4324{
4325 int nfields = length * TARGET_CHAR_BIT;
4326 struct type *type;
4327
4328 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4329 TYPE_UNSIGNED (type) = 1;
4330 TYPE_NFIELDS (type) = nfields;
4331 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4332
4333 return type;
4334}
4335
4336/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4337 position BITPOS is called NAME. */
5212577a 4338
e9bb382b
UW
4339void
4340append_flags_type_flag (struct type *type, int bitpos, char *name)
4341{
4342 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4343 gdb_assert (bitpos < TYPE_NFIELDS (type));
4344 gdb_assert (bitpos >= 0);
4345
4346 if (name)
4347 {
4348 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
945b3a32 4349 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
e9bb382b
UW
4350 }
4351 else
4352 {
4353 /* Don't show this field to the user. */
945b3a32 4354 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
e9bb382b
UW
4355 }
4356}
4357
4358/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4359 specified by CODE) associated with GDBARCH. NAME is the type name. */
5212577a 4360
e9bb382b
UW
4361struct type *
4362arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4363{
4364 struct type *t;
d8734c88 4365
e9bb382b
UW
4366 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4367 t = arch_type (gdbarch, code, 0, NULL);
4368 TYPE_TAG_NAME (t) = name;
4369 INIT_CPLUS_SPECIFIC (t);
4370 return t;
4371}
4372
4373/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
4374 Do not set the field's position or adjust the type's length;
4375 the caller should do so. Return the new field. */
5212577a 4376
f5dff777
DJ
4377struct field *
4378append_composite_type_field_raw (struct type *t, char *name,
4379 struct type *field)
e9bb382b
UW
4380{
4381 struct field *f;
d8734c88 4382
e9bb382b
UW
4383 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4384 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4385 sizeof (struct field) * TYPE_NFIELDS (t));
4386 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4387 memset (f, 0, sizeof f[0]);
4388 FIELD_TYPE (f[0]) = field;
4389 FIELD_NAME (f[0]) = name;
f5dff777
DJ
4390 return f;
4391}
4392
4393/* Add new field with name NAME and type FIELD to composite type T.
4394 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5212577a 4395
f5dff777
DJ
4396void
4397append_composite_type_field_aligned (struct type *t, char *name,
4398 struct type *field, int alignment)
4399{
4400 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 4401
e9bb382b
UW
4402 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4403 {
4404 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4405 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4406 }
4407 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4408 {
4409 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4410 if (TYPE_NFIELDS (t) > 1)
4411 {
f41f5e61
PA
4412 SET_FIELD_BITPOS (f[0],
4413 (FIELD_BITPOS (f[-1])
4414 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4415 * TARGET_CHAR_BIT)));
e9bb382b
UW
4416
4417 if (alignment)
4418 {
86c3c1fc
AB
4419 int left;
4420
4421 alignment *= TARGET_CHAR_BIT;
4422 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 4423
e9bb382b
UW
4424 if (left)
4425 {
f41f5e61 4426 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
86c3c1fc 4427 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
4428 }
4429 }
4430 }
4431 }
4432}
4433
4434/* Add new field with name NAME and type FIELD to composite type T. */
5212577a 4435
e9bb382b
UW
4436void
4437append_composite_type_field (struct type *t, char *name,
4438 struct type *field)
4439{
4440 append_composite_type_field_aligned (t, name, field, 0);
4441}
4442
000177f0
AC
4443static struct gdbarch_data *gdbtypes_data;
4444
4445const struct builtin_type *
4446builtin_type (struct gdbarch *gdbarch)
4447{
4448 return gdbarch_data (gdbarch, gdbtypes_data);
4449}
4450
4451static void *
4452gdbtypes_post_init (struct gdbarch *gdbarch)
4453{
4454 struct builtin_type *builtin_type
4455 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4456
46bf5051 4457 /* Basic types. */
e9bb382b
UW
4458 builtin_type->builtin_void
4459 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4460 builtin_type->builtin_char
4461 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4462 !gdbarch_char_signed (gdbarch), "char");
4463 builtin_type->builtin_signed_char
4464 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4465 0, "signed char");
4466 builtin_type->builtin_unsigned_char
4467 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4468 1, "unsigned char");
4469 builtin_type->builtin_short
4470 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4471 0, "short");
4472 builtin_type->builtin_unsigned_short
4473 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4474 1, "unsigned short");
4475 builtin_type->builtin_int
4476 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4477 0, "int");
4478 builtin_type->builtin_unsigned_int
4479 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4480 1, "unsigned int");
4481 builtin_type->builtin_long
4482 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4483 0, "long");
4484 builtin_type->builtin_unsigned_long
4485 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4486 1, "unsigned long");
4487 builtin_type->builtin_long_long
4488 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4489 0, "long long");
4490 builtin_type->builtin_unsigned_long_long
4491 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4492 1, "unsigned long long");
70bd8e24 4493 builtin_type->builtin_float
e9bb382b 4494 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 4495 "float", gdbarch_float_format (gdbarch));
70bd8e24 4496 builtin_type->builtin_double
e9bb382b 4497 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 4498 "double", gdbarch_double_format (gdbarch));
70bd8e24 4499 builtin_type->builtin_long_double
e9bb382b 4500 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 4501 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 4502 builtin_type->builtin_complex
e9bb382b
UW
4503 = arch_complex_type (gdbarch, "complex",
4504 builtin_type->builtin_float);
70bd8e24 4505 builtin_type->builtin_double_complex
e9bb382b
UW
4506 = arch_complex_type (gdbarch, "double complex",
4507 builtin_type->builtin_double);
4508 builtin_type->builtin_string
4509 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4510 builtin_type->builtin_bool
4511 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 4512
7678ef8f
TJB
4513 /* The following three are about decimal floating point types, which
4514 are 32-bits, 64-bits and 128-bits respectively. */
4515 builtin_type->builtin_decfloat
e9bb382b 4516 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 4517 builtin_type->builtin_decdouble
e9bb382b 4518 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 4519 builtin_type->builtin_declong
e9bb382b 4520 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 4521
69feb676 4522 /* "True" character types. */
e9bb382b
UW
4523 builtin_type->builtin_true_char
4524 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4525 builtin_type->builtin_true_unsigned_char
4526 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 4527
df4df182 4528 /* Fixed-size integer types. */
e9bb382b
UW
4529 builtin_type->builtin_int0
4530 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4531 builtin_type->builtin_int8
4532 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4533 builtin_type->builtin_uint8
4534 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4535 builtin_type->builtin_int16
4536 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4537 builtin_type->builtin_uint16
4538 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4539 builtin_type->builtin_int32
4540 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4541 builtin_type->builtin_uint32
4542 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4543 builtin_type->builtin_int64
4544 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4545 builtin_type->builtin_uint64
4546 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4547 builtin_type->builtin_int128
4548 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4549 builtin_type->builtin_uint128
4550 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
4551 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4552 TYPE_INSTANCE_FLAG_NOTTEXT;
4553 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4554 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 4555
9a22f0d0
PM
4556 /* Wide character types. */
4557 builtin_type->builtin_char16
4558 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4559 builtin_type->builtin_char32
4560 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4561
4562
46bf5051 4563 /* Default data/code pointer types. */
e9bb382b
UW
4564 builtin_type->builtin_data_ptr
4565 = lookup_pointer_type (builtin_type->builtin_void);
4566 builtin_type->builtin_func_ptr
4567 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
4568 builtin_type->builtin_func_func
4569 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 4570
78267919 4571 /* This type represents a GDB internal function. */
e9bb382b
UW
4572 builtin_type->internal_fn
4573 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4574 "<internal function>");
78267919 4575
e81e7f5e
SC
4576 /* This type represents an xmethod. */
4577 builtin_type->xmethod
4578 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4579
46bf5051
UW
4580 return builtin_type;
4581}
4582
46bf5051
UW
4583/* This set of objfile-based types is intended to be used by symbol
4584 readers as basic types. */
4585
4586static const struct objfile_data *objfile_type_data;
4587
4588const struct objfile_type *
4589objfile_type (struct objfile *objfile)
4590{
4591 struct gdbarch *gdbarch;
4592 struct objfile_type *objfile_type
4593 = objfile_data (objfile, objfile_type_data);
4594
4595 if (objfile_type)
4596 return objfile_type;
4597
4598 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4599 1, struct objfile_type);
4600
4601 /* Use the objfile architecture to determine basic type properties. */
4602 gdbarch = get_objfile_arch (objfile);
4603
4604 /* Basic types. */
4605 objfile_type->builtin_void
4606 = init_type (TYPE_CODE_VOID, 1,
4607 0,
4608 "void", objfile);
4609
4610 objfile_type->builtin_char
4611 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4612 (TYPE_FLAG_NOSIGN
4613 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4614 "char", objfile);
4615 objfile_type->builtin_signed_char
4616 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4617 0,
4618 "signed char", objfile);
4619 objfile_type->builtin_unsigned_char
4620 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4621 TYPE_FLAG_UNSIGNED,
4622 "unsigned char", objfile);
4623 objfile_type->builtin_short
4624 = init_type (TYPE_CODE_INT,
4625 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4626 0, "short", objfile);
4627 objfile_type->builtin_unsigned_short
4628 = init_type (TYPE_CODE_INT,
4629 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4630 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4631 objfile_type->builtin_int
4632 = init_type (TYPE_CODE_INT,
4633 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4634 0, "int", objfile);
4635 objfile_type->builtin_unsigned_int
4636 = init_type (TYPE_CODE_INT,
4637 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4638 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4639 objfile_type->builtin_long
4640 = init_type (TYPE_CODE_INT,
4641 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4642 0, "long", objfile);
4643 objfile_type->builtin_unsigned_long
4644 = init_type (TYPE_CODE_INT,
4645 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4646 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4647 objfile_type->builtin_long_long
4648 = init_type (TYPE_CODE_INT,
4649 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4650 0, "long long", objfile);
4651 objfile_type->builtin_unsigned_long_long
4652 = init_type (TYPE_CODE_INT,
4653 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4654 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4655
4656 objfile_type->builtin_float
4657 = init_type (TYPE_CODE_FLT,
4658 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4659 0, "float", objfile);
4660 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4661 = gdbarch_float_format (gdbarch);
4662 objfile_type->builtin_double
4663 = init_type (TYPE_CODE_FLT,
4664 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4665 0, "double", objfile);
4666 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4667 = gdbarch_double_format (gdbarch);
4668 objfile_type->builtin_long_double
4669 = init_type (TYPE_CODE_FLT,
4670 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4671 0, "long double", objfile);
4672 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4673 = gdbarch_long_double_format (gdbarch);
4674
4675 /* This type represents a type that was unrecognized in symbol read-in. */
4676 objfile_type->builtin_error
4677 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4678
4679 /* The following set of types is used for symbols with no
4680 debug information. */
4681 objfile_type->nodebug_text_symbol
4682 = init_type (TYPE_CODE_FUNC, 1, 0,
4683 "<text variable, no debug info>", objfile);
4684 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4685 = objfile_type->builtin_int;
0875794a
JK
4686 objfile_type->nodebug_text_gnu_ifunc_symbol
4687 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4688 "<text gnu-indirect-function variable, no debug info>",
4689 objfile);
4690 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4691 = objfile_type->nodebug_text_symbol;
4692 objfile_type->nodebug_got_plt_symbol
4693 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4694 "<text from jump slot in .got.plt, no debug info>",
4695 objfile);
4696 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4697 = objfile_type->nodebug_text_symbol;
46bf5051
UW
4698 objfile_type->nodebug_data_symbol
4699 = init_type (TYPE_CODE_INT,
4700 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4701 "<data variable, no debug info>", objfile);
4702 objfile_type->nodebug_unknown_symbol
4703 = init_type (TYPE_CODE_INT, 1, 0,
4704 "<variable (not text or data), no debug info>", objfile);
4705 objfile_type->nodebug_tls_symbol
4706 = init_type (TYPE_CODE_INT,
4707 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4708 "<thread local variable, no debug info>", objfile);
000177f0
AC
4709
4710 /* NOTE: on some targets, addresses and pointers are not necessarily
0a7cfe2c 4711 the same.
000177f0
AC
4712
4713 The upshot is:
4714 - gdb's `struct type' always describes the target's
4715 representation.
4716 - gdb's `struct value' objects should always hold values in
4717 target form.
4718 - gdb's CORE_ADDR values are addresses in the unified virtual
4719 address space that the assembler and linker work with. Thus,
4720 since target_read_memory takes a CORE_ADDR as an argument, it
4721 can access any memory on the target, even if the processor has
4722 separate code and data address spaces.
4723
46bf5051
UW
4724 In this context, objfile_type->builtin_core_addr is a bit odd:
4725 it's a target type for a value the target will never see. It's
4726 only used to hold the values of (typeless) linker symbols, which
4727 are indeed in the unified virtual address space. */
000177f0 4728
46bf5051
UW
4729 objfile_type->builtin_core_addr
4730 = init_type (TYPE_CODE_INT,
4731 gdbarch_addr_bit (gdbarch) / 8,
4732 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 4733
46bf5051
UW
4734 set_objfile_data (objfile, objfile_type_data, objfile_type);
4735 return objfile_type;
000177f0
AC
4736}
4737
5212577a 4738extern initialize_file_ftype _initialize_gdbtypes;
46bf5051 4739
c906108c 4740void
fba45db2 4741_initialize_gdbtypes (void)
c906108c 4742{
5674de60 4743 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4744 objfile_type_data = register_objfile_data ();
5674de60 4745
ccce17b0
YQ
4746 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4747 _("Set debugging of C++ overloading."),
4748 _("Show debugging of C++ overloading."),
4749 _("When enabled, ranking of the "
4750 "functions is displayed."),
4751 NULL,
4752 show_overload_debug,
4753 &setdebuglist, &showdebuglist);
5674de60 4754
7ba81444 4755 /* Add user knob for controlling resolution of opaque types. */
5674de60 4756 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4757 &opaque_type_resolution,
4758 _("Set resolution of opaque struct/class/union"
4759 " types (if set before loading symbols)."),
4760 _("Show resolution of opaque struct/class/union"
4761 " types (if set before loading symbols)."),
4762 NULL, NULL,
5674de60
UW
4763 show_opaque_type_resolution,
4764 &setlist, &showlist);
a451cb65
KS
4765
4766 /* Add an option to permit non-strict type checking. */
4767 add_setshow_boolean_cmd ("type", class_support,
4768 &strict_type_checking,
4769 _("Set strict type checking."),
4770 _("Show strict type checking."),
4771 NULL, NULL,
4772 show_strict_type_checking,
4773 &setchecklist, &showchecklist);
c906108c 4774}
This page took 1.506701 seconds and 4 git commands to generate.