* NEWS: Add entry for stdio gdbserver.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
CommitLineData
c906108c 1/* Support routines for manipulating internal types for GDB.
4f2aea11 2
9b254dd1 3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
7b6bb8da 4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4c38e0a4 5 Free Software Foundation, Inc.
4f2aea11 6
c906108c
SS
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "bfd.h"
27#include "symtab.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbtypes.h"
31#include "expression.h"
32#include "language.h"
33#include "target.h"
34#include "value.h"
35#include "demangle.h"
36#include "complaints.h"
37#include "gdbcmd.h"
c91ecb25 38#include "wrapper.h"
015a42b4 39#include "cp-abi.h"
a02fd225 40#include "gdb_assert.h"
ae5a43e0 41#include "hashtab.h"
c906108c 42
ac3aafc7 43
6403aeea
SW
44/* Initialize BADNESS constants. */
45
a9d5ef47 46const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
6403aeea 47
a9d5ef47
SW
48const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
6403aeea 50
a9d5ef47 51const struct rank EXACT_MATCH_BADNESS = {0,0};
6403aeea 52
a9d5ef47
SW
53const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61const struct rank BASE_CONVERSION_BADNESS = {2,0};
62const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
da096638 63const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
a9d5ef47 64const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
6403aeea 65
8da61cc4 66/* Floatformat pairs. */
f9e9243a
UW
67const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70};
8da61cc4
DJ
71const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74};
75const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78};
79const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82};
83const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86};
87const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90};
91const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94};
95const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98};
99const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102};
103const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106};
107const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110};
b14d30e1
JM
111const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114};
8da61cc4 115
8da61cc4 116
c906108c 117int opaque_type_resolution = 1;
920d2a44
AC
118static void
119show_opaque_type_resolution (struct ui_file *file, int from_tty,
7ba81444
MS
120 struct cmd_list_element *c,
121 const char *value)
920d2a44 122{
3e43a32a
MS
123 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
124 "(if set before loading symbols) is %s.\n"),
920d2a44
AC
125 value);
126}
127
5d161b24 128int overload_debug = 0;
920d2a44
AC
129static void
130show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132{
7ba81444
MS
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
920d2a44 135}
c906108c 136
c5aa993b
JM
137struct extra
138 {
139 char str[128];
140 int len;
7ba81444 141 }; /* Maximum extension is 128! FIXME */
c906108c 142
a14ed312 143static void print_bit_vector (B_TYPE *, int);
ad2f7632 144static void print_arg_types (struct field *, int, int);
a14ed312
KB
145static void dump_fn_fieldlists (struct type *, int);
146static void print_cplus_stuff (struct type *, int);
7a292a7a 147
c906108c 148
e9bb382b
UW
149/* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
c906108c
SS
152
153struct type *
fba45db2 154alloc_type (struct objfile *objfile)
c906108c 155{
52f0bd74 156 struct type *type;
c906108c 157
e9bb382b
UW
158 gdb_assert (objfile != NULL);
159
7ba81444 160 /* Alloc the structure and start off with all fields zeroed. */
e9bb382b
UW
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
c906108c 165
e9bb382b
UW
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
c906108c 168
7ba81444 169 /* Initialize the fields that might not be zero. */
c906108c
SS
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
c906108c 172 TYPE_VPTR_FIELDNO (type) = -1;
2fdde8f8 173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
c906108c 174
c16abbde 175 return type;
c906108c
SS
176}
177
e9bb382b
UW
178/* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182struct type *
183alloc_type_arch (struct gdbarch *gdbarch)
184{
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204}
205
206/* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210struct type *
211alloc_type_copy (const struct type *type)
212{
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217}
218
219/* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222struct gdbarch *
223get_type_arch (const struct type *type)
224{
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229}
230
231
2fdde8f8
DJ
232/* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236static struct type *
237alloc_type_instance (struct type *oldtype)
238{
239 struct type *type;
240
241 /* Allocate the structure. */
242
e9bb382b 243 if (! TYPE_OBJFILE_OWNED (oldtype))
1deafd4e 244 type = XZALLOC (struct type);
2fdde8f8 245 else
1deafd4e
PA
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
2fdde8f8
DJ
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
c16abbde 253 return type;
2fdde8f8
DJ
254}
255
256/* Clear all remnants of the previous type at TYPE, in preparation for
e9bb382b 257 replacing it with something else. Preserve owner information. */
2fdde8f8
DJ
258static void
259smash_type (struct type *type)
260{
e9bb382b
UW
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
2fdde8f8
DJ
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
e9bb382b
UW
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
2fdde8f8
DJ
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274}
275
c906108c
SS
276/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281struct type *
fba45db2 282make_pointer_type (struct type *type, struct type **typeptr)
c906108c 283{
52f0bd74 284 struct type *ntype; /* New type */
053cb41b 285 struct type *chain;
c906108c
SS
286
287 ntype = TYPE_POINTER_TYPE (type);
288
c5aa993b 289 if (ntype)
c906108c 290 {
c5aa993b 291 if (typeptr == 0)
7ba81444
MS
292 return ntype; /* Don't care about alloc,
293 and have new type. */
c906108c 294 else if (*typeptr == 0)
c5aa993b 295 {
7ba81444 296 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 297 return ntype;
c5aa993b 298 }
c906108c
SS
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
e9bb382b 303 ntype = alloc_type_copy (type);
c906108c
SS
304 if (typeptr)
305 *typeptr = ntype;
306 }
7ba81444 307 else /* We have storage, but need to reset it. */
c906108c
SS
308 {
309 ntype = *typeptr;
053cb41b 310 chain = TYPE_CHAIN (ntype);
2fdde8f8 311 smash_type (ntype);
053cb41b 312 TYPE_CHAIN (ntype) = chain;
c906108c
SS
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
7ba81444
MS
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
c906108c 320
50810684
UW
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c
SS
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
67b2adb2 325 /* Mark pointers as unsigned. The target converts between pointers
76e71323 326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
7ba81444 327 gdbarch_address_to_pointer. */
876cecd0 328 TYPE_UNSIGNED (ntype) = 1;
c5aa993b 329
c906108c
SS
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
053cb41b
JB
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
c906108c
SS
341 return ntype;
342}
343
344/* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347struct type *
fba45db2 348lookup_pointer_type (struct type *type)
c906108c 349{
c5aa993b 350 return make_pointer_type (type, (struct type **) 0);
c906108c
SS
351}
352
7ba81444
MS
353/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
c906108c
SS
357
358struct type *
fba45db2 359make_reference_type (struct type *type, struct type **typeptr)
c906108c 360{
52f0bd74 361 struct type *ntype; /* New type */
1e98b326 362 struct type *chain;
c906108c
SS
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
c5aa993b 366 if (ntype)
c906108c 367 {
c5aa993b 368 if (typeptr == 0)
7ba81444
MS
369 return ntype; /* Don't care about alloc,
370 and have new type. */
c906108c 371 else if (*typeptr == 0)
c5aa993b 372 {
7ba81444 373 *typeptr = ntype; /* Tracking alloc, and have new type. */
c906108c 374 return ntype;
c5aa993b 375 }
c906108c
SS
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
e9bb382b 380 ntype = alloc_type_copy (type);
c906108c
SS
381 if (typeptr)
382 *typeptr = ntype;
383 }
7ba81444 384 else /* We have storage, but need to reset it. */
c906108c
SS
385 {
386 ntype = *typeptr;
1e98b326 387 chain = TYPE_CHAIN (ntype);
2fdde8f8 388 smash_type (ntype);
1e98b326 389 TYPE_CHAIN (ntype) = chain;
c906108c
SS
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
7ba81444
MS
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
c906108c 398
50810684
UW
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
c906108c 401 TYPE_CODE (ntype) = TYPE_CODE_REF;
c5aa993b 402
c906108c
SS
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
1e98b326
JB
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
c906108c
SS
414 return ntype;
415}
416
7ba81444
MS
417/* Same as above, but caller doesn't care about memory allocation
418 details. */
c906108c
SS
419
420struct type *
fba45db2 421lookup_reference_type (struct type *type)
c906108c 422{
c5aa993b 423 return make_reference_type (type, (struct type **) 0);
c906108c
SS
424}
425
7ba81444
MS
426/* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
0c8b41f1 429 function type we return. We allocate new memory if needed. */
c906108c
SS
430
431struct type *
0c8b41f1 432make_function_type (struct type *type, struct type **typeptr)
c906108c 433{
52f0bd74 434 struct type *ntype; /* New type */
c906108c
SS
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
e9bb382b 438 ntype = alloc_type_copy (type);
c906108c
SS
439 if (typeptr)
440 *typeptr = ntype;
441 }
7ba81444 442 else /* We have storage, but need to reset it. */
c906108c
SS
443 {
444 ntype = *typeptr;
2fdde8f8 445 smash_type (ntype);
c906108c
SS
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
c5aa993b 452
b6cdc2c1
JK
453 INIT_FUNC_SPECIFIC (ntype);
454
c906108c
SS
455 return ntype;
456}
457
458
459/* Given a type TYPE, return a type of functions that return that type.
460 May need to construct such a type if this is the first use. */
461
462struct type *
fba45db2 463lookup_function_type (struct type *type)
c906108c 464{
0c8b41f1 465 return make_function_type (type, (struct type **) 0);
c906108c
SS
466}
467
47663de5
MS
468/* Identify address space identifier by name --
469 return the integer flag defined in gdbtypes.h. */
470extern int
50810684 471address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
47663de5 472{
8b2dbe47 473 int type_flags;
d8734c88 474
7ba81444 475 /* Check for known address space delimiters. */
47663de5 476 if (!strcmp (space_identifier, "code"))
876cecd0 477 return TYPE_INSTANCE_FLAG_CODE_SPACE;
47663de5 478 else if (!strcmp (space_identifier, "data"))
876cecd0 479 return TYPE_INSTANCE_FLAG_DATA_SPACE;
5f11f355
AC
480 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
481 && gdbarch_address_class_name_to_type_flags (gdbarch,
482 space_identifier,
483 &type_flags))
8b2dbe47 484 return type_flags;
47663de5 485 else
8a3fe4f8 486 error (_("Unknown address space specifier: \"%s\""), space_identifier);
47663de5
MS
487}
488
489/* Identify address space identifier by integer flag as defined in
7ba81444 490 gdbtypes.h -- return the string version of the adress space name. */
47663de5 491
321432c0 492const char *
50810684 493address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
47663de5 494{
876cecd0 495 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
47663de5 496 return "code";
876cecd0 497 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
47663de5 498 return "data";
876cecd0 499 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
5f11f355
AC
500 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
501 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
47663de5
MS
502 else
503 return NULL;
504}
505
2fdde8f8 506/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
ad766c0a
JB
507
508 If STORAGE is non-NULL, create the new type instance there.
509 STORAGE must be in the same obstack as TYPE. */
47663de5 510
b9362cc7 511static struct type *
2fdde8f8
DJ
512make_qualified_type (struct type *type, int new_flags,
513 struct type *storage)
47663de5
MS
514{
515 struct type *ntype;
516
517 ntype = type;
5f61c20e
JK
518 do
519 {
520 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
521 return ntype;
522 ntype = TYPE_CHAIN (ntype);
523 }
524 while (ntype != type);
47663de5 525
2fdde8f8
DJ
526 /* Create a new type instance. */
527 if (storage == NULL)
528 ntype = alloc_type_instance (type);
529 else
530 {
7ba81444
MS
531 /* If STORAGE was provided, it had better be in the same objfile
532 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
533 if one objfile is freed and the other kept, we'd have
534 dangling pointers. */
ad766c0a
JB
535 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
536
2fdde8f8
DJ
537 ntype = storage;
538 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
539 TYPE_CHAIN (ntype) = ntype;
540 }
47663de5
MS
541
542 /* Pointers or references to the original type are not relevant to
2fdde8f8 543 the new type. */
47663de5
MS
544 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
545 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
47663de5 546
2fdde8f8
DJ
547 /* Chain the new qualified type to the old type. */
548 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
549 TYPE_CHAIN (type) = ntype;
550
551 /* Now set the instance flags and return the new type. */
552 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
47663de5 553
ab5d3da6
KB
554 /* Set length of new type to that of the original type. */
555 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
556
47663de5
MS
557 return ntype;
558}
559
2fdde8f8
DJ
560/* Make an address-space-delimited variant of a type -- a type that
561 is identical to the one supplied except that it has an address
562 space attribute attached to it (such as "code" or "data").
563
7ba81444
MS
564 The space attributes "code" and "data" are for Harvard
565 architectures. The address space attributes are for architectures
566 which have alternately sized pointers or pointers with alternate
567 representations. */
2fdde8f8
DJ
568
569struct type *
570make_type_with_address_space (struct type *type, int space_flag)
571{
2fdde8f8 572 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
876cecd0
TT
573 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
574 | TYPE_INSTANCE_FLAG_DATA_SPACE
575 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
2fdde8f8
DJ
576 | space_flag);
577
578 return make_qualified_type (type, new_flags, NULL);
579}
c906108c
SS
580
581/* Make a "c-v" variant of a type -- a type that is identical to the
582 one supplied except that it may have const or volatile attributes
583 CNST is a flag for setting the const attribute
584 VOLTL is a flag for setting the volatile attribute
585 TYPE is the base type whose variant we are creating.
c906108c 586
ad766c0a
JB
587 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
588 storage to hold the new qualified type; *TYPEPTR and TYPE must be
589 in the same objfile. Otherwise, allocate fresh memory for the new
590 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
591 new type we construct. */
c906108c 592struct type *
7ba81444
MS
593make_cv_type (int cnst, int voltl,
594 struct type *type,
595 struct type **typeptr)
c906108c 596{
52f0bd74 597 struct type *ntype; /* New type */
c906108c 598
2fdde8f8 599 int new_flags = (TYPE_INSTANCE_FLAGS (type)
308d96ed
MS
600 & ~(TYPE_INSTANCE_FLAG_CONST
601 | TYPE_INSTANCE_FLAG_VOLATILE));
c906108c 602
c906108c 603 if (cnst)
876cecd0 604 new_flags |= TYPE_INSTANCE_FLAG_CONST;
c906108c
SS
605
606 if (voltl)
876cecd0 607 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
a02fd225 608
2fdde8f8 609 if (typeptr && *typeptr != NULL)
a02fd225 610 {
ad766c0a
JB
611 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
612 a C-V variant chain that threads across objfiles: if one
613 objfile gets freed, then the other has a broken C-V chain.
614
615 This code used to try to copy over the main type from TYPE to
616 *TYPEPTR if they were in different objfiles, but that's
617 wrong, too: TYPE may have a field list or member function
618 lists, which refer to types of their own, etc. etc. The
619 whole shebang would need to be copied over recursively; you
620 can't have inter-objfile pointers. The only thing to do is
621 to leave stub types as stub types, and look them up afresh by
622 name each time you encounter them. */
623 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
2fdde8f8
DJ
624 }
625
7ba81444
MS
626 ntype = make_qualified_type (type, new_flags,
627 typeptr ? *typeptr : NULL);
c906108c 628
2fdde8f8
DJ
629 if (typeptr != NULL)
630 *typeptr = ntype;
a02fd225 631
2fdde8f8 632 return ntype;
a02fd225 633}
c906108c 634
2fdde8f8
DJ
635/* Replace the contents of ntype with the type *type. This changes the
636 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
637 the changes are propogated to all types in the TYPE_CHAIN.
dd6bda65 638
cda6c68a
JB
639 In order to build recursive types, it's inevitable that we'll need
640 to update types in place --- but this sort of indiscriminate
641 smashing is ugly, and needs to be replaced with something more
2fdde8f8
DJ
642 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
643 clear if more steps are needed. */
dd6bda65
DJ
644void
645replace_type (struct type *ntype, struct type *type)
646{
ab5d3da6 647 struct type *chain;
dd6bda65 648
ad766c0a
JB
649 /* These two types had better be in the same objfile. Otherwise,
650 the assignment of one type's main type structure to the other
651 will produce a type with references to objects (names; field
652 lists; etc.) allocated on an objfile other than its own. */
653 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
654
2fdde8f8 655 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
dd6bda65 656
7ba81444
MS
657 /* The type length is not a part of the main type. Update it for
658 each type on the variant chain. */
ab5d3da6 659 chain = ntype;
5f61c20e
JK
660 do
661 {
662 /* Assert that this element of the chain has no address-class bits
663 set in its flags. Such type variants might have type lengths
664 which are supposed to be different from the non-address-class
665 variants. This assertion shouldn't ever be triggered because
666 symbol readers which do construct address-class variants don't
667 call replace_type(). */
668 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
669
670 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
671 chain = TYPE_CHAIN (chain);
672 }
673 while (ntype != chain);
ab5d3da6 674
2fdde8f8
DJ
675 /* Assert that the two types have equivalent instance qualifiers.
676 This should be true for at least all of our debug readers. */
677 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
dd6bda65
DJ
678}
679
c906108c
SS
680/* Implement direct support for MEMBER_TYPE in GNU C++.
681 May need to construct such a type if this is the first use.
682 The TYPE is the type of the member. The DOMAIN is the type
683 of the aggregate that the member belongs to. */
684
685struct type *
0d5de010 686lookup_memberptr_type (struct type *type, struct type *domain)
c906108c 687{
52f0bd74 688 struct type *mtype;
c906108c 689
e9bb382b 690 mtype = alloc_type_copy (type);
0d5de010 691 smash_to_memberptr_type (mtype, domain, type);
c16abbde 692 return mtype;
c906108c
SS
693}
694
0d5de010
DJ
695/* Return a pointer-to-method type, for a method of type TO_TYPE. */
696
697struct type *
698lookup_methodptr_type (struct type *to_type)
699{
700 struct type *mtype;
701
e9bb382b 702 mtype = alloc_type_copy (to_type);
0b92b5bb 703 smash_to_methodptr_type (mtype, to_type);
0d5de010
DJ
704 return mtype;
705}
706
7ba81444
MS
707/* Allocate a stub method whose return type is TYPE. This apparently
708 happens for speed of symbol reading, since parsing out the
709 arguments to the method is cpu-intensive, the way we are doing it.
710 So, we will fill in arguments later. This always returns a fresh
711 type. */
c906108c
SS
712
713struct type *
fba45db2 714allocate_stub_method (struct type *type)
c906108c
SS
715{
716 struct type *mtype;
717
e9bb382b
UW
718 mtype = alloc_type_copy (type);
719 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
720 TYPE_LENGTH (mtype) = 1;
721 TYPE_STUB (mtype) = 1;
c906108c
SS
722 TYPE_TARGET_TYPE (mtype) = type;
723 /* _DOMAIN_TYPE (mtype) = unknown yet */
c16abbde 724 return mtype;
c906108c
SS
725}
726
7ba81444
MS
727/* Create a range type using either a blank type supplied in
728 RESULT_TYPE, or creating a new type, inheriting the objfile from
729 INDEX_TYPE.
c906108c 730
7ba81444
MS
731 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
732 to HIGH_BOUND, inclusive.
c906108c 733
7ba81444
MS
734 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
735 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
c906108c
SS
736
737struct type *
fba45db2 738create_range_type (struct type *result_type, struct type *index_type,
43bbcdc2 739 LONGEST low_bound, LONGEST high_bound)
c906108c
SS
740{
741 if (result_type == NULL)
e9bb382b 742 result_type = alloc_type_copy (index_type);
c906108c
SS
743 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
744 TYPE_TARGET_TYPE (result_type) = index_type;
74a9bb82 745 if (TYPE_STUB (index_type))
876cecd0 746 TYPE_TARGET_STUB (result_type) = 1;
c906108c
SS
747 else
748 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
43bbcdc2
PH
749 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
750 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
262452ec
JK
751 TYPE_LOW_BOUND (result_type) = low_bound;
752 TYPE_HIGH_BOUND (result_type) = high_bound;
c906108c 753
c5aa993b 754 if (low_bound >= 0)
876cecd0 755 TYPE_UNSIGNED (result_type) = 1;
c906108c 756
262452ec 757 return result_type;
c906108c
SS
758}
759
7ba81444
MS
760/* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
761 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
762 bounds will fit in LONGEST), or -1 otherwise. */
c906108c
SS
763
764int
fba45db2 765get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
c906108c
SS
766{
767 CHECK_TYPEDEF (type);
768 switch (TYPE_CODE (type))
769 {
770 case TYPE_CODE_RANGE:
771 *lowp = TYPE_LOW_BOUND (type);
772 *highp = TYPE_HIGH_BOUND (type);
773 return 1;
774 case TYPE_CODE_ENUM:
775 if (TYPE_NFIELDS (type) > 0)
776 {
777 /* The enums may not be sorted by value, so search all
0963b4bd 778 entries. */
c906108c
SS
779 int i;
780
781 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
782 for (i = 0; i < TYPE_NFIELDS (type); i++)
783 {
784 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
785 *lowp = TYPE_FIELD_BITPOS (type, i);
786 if (TYPE_FIELD_BITPOS (type, i) > *highp)
787 *highp = TYPE_FIELD_BITPOS (type, i);
788 }
789
7ba81444 790 /* Set unsigned indicator if warranted. */
c5aa993b 791 if (*lowp >= 0)
c906108c 792 {
876cecd0 793 TYPE_UNSIGNED (type) = 1;
c906108c
SS
794 }
795 }
796 else
797 {
798 *lowp = 0;
799 *highp = -1;
800 }
801 return 0;
802 case TYPE_CODE_BOOL:
803 *lowp = 0;
804 *highp = 1;
805 return 0;
806 case TYPE_CODE_INT:
c5aa993b 807 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
c906108c
SS
808 return -1;
809 if (!TYPE_UNSIGNED (type))
810 {
c5aa993b 811 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
c906108c
SS
812 *highp = -*lowp - 1;
813 return 0;
814 }
7ba81444 815 /* ... fall through for unsigned ints ... */
c906108c
SS
816 case TYPE_CODE_CHAR:
817 *lowp = 0;
818 /* This round-about calculation is to avoid shifting by
7b83ea04 819 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
7ba81444 820 if TYPE_LENGTH (type) == sizeof (LONGEST). */
c906108c
SS
821 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
822 *highp = (*highp - 1) | *highp;
823 return 0;
824 default:
825 return -1;
826 }
827}
828
dbc98a8b
KW
829/* Assuming TYPE is a simple, non-empty array type, compute its upper
830 and lower bound. Save the low bound into LOW_BOUND if not NULL.
831 Save the high bound into HIGH_BOUND if not NULL.
832
0963b4bd 833 Return 1 if the operation was successful. Return zero otherwise,
dbc98a8b
KW
834 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
835
836 We now simply use get_discrete_bounds call to get the values
837 of the low and high bounds.
838 get_discrete_bounds can return three values:
839 1, meaning that index is a range,
840 0, meaning that index is a discrete type,
841 or -1 for failure. */
842
843int
844get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
845{
846 struct type *index = TYPE_INDEX_TYPE (type);
847 LONGEST low = 0;
848 LONGEST high = 0;
849 int res;
850
851 if (index == NULL)
852 return 0;
853
854 res = get_discrete_bounds (index, &low, &high);
855 if (res == -1)
856 return 0;
857
858 /* Check if the array bounds are undefined. */
859 if (res == 1
860 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
861 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
862 return 0;
863
864 if (low_bound)
865 *low_bound = low;
866
867 if (high_bound)
868 *high_bound = high;
869
870 return 1;
871}
872
7ba81444
MS
873/* Create an array type using either a blank type supplied in
874 RESULT_TYPE, or creating a new type, inheriting the objfile from
875 RANGE_TYPE.
c906108c
SS
876
877 Elements will be of type ELEMENT_TYPE, the indices will be of type
878 RANGE_TYPE.
879
7ba81444
MS
880 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
881 sure it is TYPE_CODE_UNDEF before we bash it into an array
882 type? */
c906108c
SS
883
884struct type *
7ba81444
MS
885create_array_type (struct type *result_type,
886 struct type *element_type,
fba45db2 887 struct type *range_type)
c906108c
SS
888{
889 LONGEST low_bound, high_bound;
890
891 if (result_type == NULL)
e9bb382b
UW
892 result_type = alloc_type_copy (range_type);
893
c906108c
SS
894 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
895 TYPE_TARGET_TYPE (result_type) = element_type;
896 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
897 low_bound = high_bound = 0;
898 CHECK_TYPEDEF (element_type);
ab0d6e0d
JB
899 /* Be careful when setting the array length. Ada arrays can be
900 empty arrays with the high_bound being smaller than the low_bound.
901 In such cases, the array length should be zero. */
902 if (high_bound < low_bound)
903 TYPE_LENGTH (result_type) = 0;
904 else
905 TYPE_LENGTH (result_type) =
906 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
c906108c
SS
907 TYPE_NFIELDS (result_type) = 1;
908 TYPE_FIELDS (result_type) =
1deafd4e 909 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
262452ec 910 TYPE_INDEX_TYPE (result_type) = range_type;
c906108c
SS
911 TYPE_VPTR_FIELDNO (result_type) = -1;
912
0963b4bd 913 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
c906108c 914 if (TYPE_LENGTH (result_type) == 0)
876cecd0 915 TYPE_TARGET_STUB (result_type) = 1;
c906108c 916
c16abbde 917 return result_type;
c906108c
SS
918}
919
e3506a9f
UW
920struct type *
921lookup_array_range_type (struct type *element_type,
922 int low_bound, int high_bound)
923{
50810684 924 struct gdbarch *gdbarch = get_type_arch (element_type);
e3506a9f
UW
925 struct type *index_type = builtin_type (gdbarch)->builtin_int;
926 struct type *range_type
927 = create_range_type (NULL, index_type, low_bound, high_bound);
d8734c88 928
e3506a9f
UW
929 return create_array_type (NULL, element_type, range_type);
930}
931
7ba81444
MS
932/* Create a string type using either a blank type supplied in
933 RESULT_TYPE, or creating a new type. String types are similar
934 enough to array of char types that we can use create_array_type to
935 build the basic type and then bash it into a string type.
c906108c
SS
936
937 For fixed length strings, the range type contains 0 as the lower
938 bound and the length of the string minus one as the upper bound.
939
7ba81444
MS
940 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
941 sure it is TYPE_CODE_UNDEF before we bash it into a string
942 type? */
c906108c
SS
943
944struct type *
3b7538c0
UW
945create_string_type (struct type *result_type,
946 struct type *string_char_type,
7ba81444 947 struct type *range_type)
c906108c
SS
948{
949 result_type = create_array_type (result_type,
f290d38e 950 string_char_type,
c906108c
SS
951 range_type);
952 TYPE_CODE (result_type) = TYPE_CODE_STRING;
c16abbde 953 return result_type;
c906108c
SS
954}
955
e3506a9f
UW
956struct type *
957lookup_string_range_type (struct type *string_char_type,
958 int low_bound, int high_bound)
959{
960 struct type *result_type;
d8734c88 961
e3506a9f
UW
962 result_type = lookup_array_range_type (string_char_type,
963 low_bound, high_bound);
964 TYPE_CODE (result_type) = TYPE_CODE_STRING;
965 return result_type;
966}
967
c906108c 968struct type *
fba45db2 969create_set_type (struct type *result_type, struct type *domain_type)
c906108c 970{
c906108c 971 if (result_type == NULL)
e9bb382b
UW
972 result_type = alloc_type_copy (domain_type);
973
c906108c
SS
974 TYPE_CODE (result_type) = TYPE_CODE_SET;
975 TYPE_NFIELDS (result_type) = 1;
1deafd4e 976 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
c906108c 977
74a9bb82 978 if (!TYPE_STUB (domain_type))
c906108c 979 {
f9780d5b 980 LONGEST low_bound, high_bound, bit_length;
d8734c88 981
c906108c
SS
982 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
983 low_bound = high_bound = 0;
984 bit_length = high_bound - low_bound + 1;
985 TYPE_LENGTH (result_type)
986 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
f9780d5b 987 if (low_bound >= 0)
876cecd0 988 TYPE_UNSIGNED (result_type) = 1;
c906108c
SS
989 }
990 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
991
c16abbde 992 return result_type;
c906108c
SS
993}
994
ea37ba09
DJ
995/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
996 and any array types nested inside it. */
997
998void
999make_vector_type (struct type *array_type)
1000{
1001 struct type *inner_array, *elt_type;
1002 int flags;
1003
1004 /* Find the innermost array type, in case the array is
1005 multi-dimensional. */
1006 inner_array = array_type;
1007 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1008 inner_array = TYPE_TARGET_TYPE (inner_array);
1009
1010 elt_type = TYPE_TARGET_TYPE (inner_array);
1011 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1012 {
2844d6b5 1013 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
ea37ba09
DJ
1014 elt_type = make_qualified_type (elt_type, flags, NULL);
1015 TYPE_TARGET_TYPE (inner_array) = elt_type;
1016 }
1017
876cecd0 1018 TYPE_VECTOR (array_type) = 1;
ea37ba09
DJ
1019}
1020
794ac428 1021struct type *
ac3aafc7
EZ
1022init_vector_type (struct type *elt_type, int n)
1023{
1024 struct type *array_type;
d8734c88 1025
e3506a9f 1026 array_type = lookup_array_range_type (elt_type, 0, n - 1);
ea37ba09 1027 make_vector_type (array_type);
ac3aafc7
EZ
1028 return array_type;
1029}
1030
0d5de010
DJ
1031/* Smash TYPE to be a type of pointers to members of DOMAIN with type
1032 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1033 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1034 TYPE doesn't include the offset (that's the value of the MEMBER
1035 itself), but does include the structure type into which it points
1036 (for some reason).
c906108c 1037
7ba81444
MS
1038 When "smashing" the type, we preserve the objfile that the old type
1039 pointed to, since we aren't changing where the type is actually
c906108c
SS
1040 allocated. */
1041
1042void
0d5de010
DJ
1043smash_to_memberptr_type (struct type *type, struct type *domain,
1044 struct type *to_type)
c906108c 1045{
2fdde8f8 1046 smash_type (type);
c906108c
SS
1047 TYPE_TARGET_TYPE (type) = to_type;
1048 TYPE_DOMAIN_TYPE (type) = domain;
0d5de010
DJ
1049 /* Assume that a data member pointer is the same size as a normal
1050 pointer. */
50810684
UW
1051 TYPE_LENGTH (type)
1052 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
0d5de010 1053 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
c906108c
SS
1054}
1055
0b92b5bb
TT
1056/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1057
1058 When "smashing" the type, we preserve the objfile that the old type
1059 pointed to, since we aren't changing where the type is actually
1060 allocated. */
1061
1062void
1063smash_to_methodptr_type (struct type *type, struct type *to_type)
1064{
1065 smash_type (type);
1066 TYPE_TARGET_TYPE (type) = to_type;
1067 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1068 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1069 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1070}
1071
c906108c
SS
1072/* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1073 METHOD just means `function that gets an extra "this" argument'.
1074
7ba81444
MS
1075 When "smashing" the type, we preserve the objfile that the old type
1076 pointed to, since we aren't changing where the type is actually
c906108c
SS
1077 allocated. */
1078
1079void
fba45db2 1080smash_to_method_type (struct type *type, struct type *domain,
ad2f7632
DJ
1081 struct type *to_type, struct field *args,
1082 int nargs, int varargs)
c906108c 1083{
2fdde8f8 1084 smash_type (type);
c906108c
SS
1085 TYPE_TARGET_TYPE (type) = to_type;
1086 TYPE_DOMAIN_TYPE (type) = domain;
ad2f7632
DJ
1087 TYPE_FIELDS (type) = args;
1088 TYPE_NFIELDS (type) = nargs;
1089 if (varargs)
876cecd0 1090 TYPE_VARARGS (type) = 1;
c906108c
SS
1091 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1092 TYPE_CODE (type) = TYPE_CODE_METHOD;
1093}
1094
1095/* Return a typename for a struct/union/enum type without "struct ",
1096 "union ", or "enum ". If the type has a NULL name, return NULL. */
1097
1098char *
aa1ee363 1099type_name_no_tag (const struct type *type)
c906108c
SS
1100{
1101 if (TYPE_TAG_NAME (type) != NULL)
1102 return TYPE_TAG_NAME (type);
1103
7ba81444
MS
1104 /* Is there code which expects this to return the name if there is
1105 no tag name? My guess is that this is mainly used for C++ in
1106 cases where the two will always be the same. */
c906108c
SS
1107 return TYPE_NAME (type);
1108}
1109
d8228535
JK
1110/* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1111 Since GCC PR debug/47510 DWARF provides associated information to detect the
1112 anonymous class linkage name from its typedef.
1113
1114 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1115 apply it itself. */
1116
1117const char *
1118type_name_no_tag_or_error (struct type *type)
1119{
1120 struct type *saved_type = type;
1121 const char *name;
1122 struct objfile *objfile;
1123
1124 CHECK_TYPEDEF (type);
1125
1126 name = type_name_no_tag (type);
1127 if (name != NULL)
1128 return name;
1129
1130 name = type_name_no_tag (saved_type);
1131 objfile = TYPE_OBJFILE (saved_type);
1132 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1133 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1134}
1135
7ba81444
MS
1136/* Lookup a typedef or primitive type named NAME, visible in lexical
1137 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1138 suitably defined. */
c906108c
SS
1139
1140struct type *
e6c014f2 1141lookup_typename (const struct language_defn *language,
ddd49eee 1142 struct gdbarch *gdbarch, const char *name,
34eaf542 1143 const struct block *block, int noerr)
c906108c 1144{
52f0bd74
AC
1145 struct symbol *sym;
1146 struct type *tmp;
c906108c 1147
774b6a14 1148 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
c906108c
SS
1149 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1150 {
e6c014f2 1151 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
c906108c
SS
1152 if (tmp)
1153 {
c16abbde 1154 return tmp;
c906108c
SS
1155 }
1156 else if (!tmp && noerr)
1157 {
c16abbde 1158 return NULL;
c906108c
SS
1159 }
1160 else
1161 {
8a3fe4f8 1162 error (_("No type named %s."), name);
c906108c
SS
1163 }
1164 }
1165 return (SYMBOL_TYPE (sym));
1166}
1167
1168struct type *
e6c014f2
UW
1169lookup_unsigned_typename (const struct language_defn *language,
1170 struct gdbarch *gdbarch, char *name)
c906108c
SS
1171{
1172 char *uns = alloca (strlen (name) + 10);
1173
1174 strcpy (uns, "unsigned ");
1175 strcpy (uns + 9, name);
e6c014f2 1176 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
c906108c
SS
1177}
1178
1179struct type *
e6c014f2
UW
1180lookup_signed_typename (const struct language_defn *language,
1181 struct gdbarch *gdbarch, char *name)
c906108c
SS
1182{
1183 struct type *t;
1184 char *uns = alloca (strlen (name) + 8);
1185
1186 strcpy (uns, "signed ");
1187 strcpy (uns + 7, name);
e6c014f2 1188 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
7ba81444 1189 /* If we don't find "signed FOO" just try again with plain "FOO". */
c906108c
SS
1190 if (t != NULL)
1191 return t;
e6c014f2 1192 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
c906108c
SS
1193}
1194
1195/* Lookup a structure type named "struct NAME",
1196 visible in lexical block BLOCK. */
1197
1198struct type *
ddd49eee 1199lookup_struct (const char *name, struct block *block)
c906108c 1200{
52f0bd74 1201 struct symbol *sym;
c906108c 1202
2570f2b7 1203 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1204
1205 if (sym == NULL)
1206 {
8a3fe4f8 1207 error (_("No struct type named %s."), name);
c906108c
SS
1208 }
1209 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1210 {
7ba81444
MS
1211 error (_("This context has class, union or enum %s, not a struct."),
1212 name);
c906108c
SS
1213 }
1214 return (SYMBOL_TYPE (sym));
1215}
1216
1217/* Lookup a union type named "union NAME",
1218 visible in lexical block BLOCK. */
1219
1220struct type *
ddd49eee 1221lookup_union (const char *name, struct block *block)
c906108c 1222{
52f0bd74 1223 struct symbol *sym;
c5aa993b 1224 struct type *t;
c906108c 1225
2570f2b7 1226 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1227
1228 if (sym == NULL)
8a3fe4f8 1229 error (_("No union type named %s."), name);
c906108c 1230
c5aa993b 1231 t = SYMBOL_TYPE (sym);
c906108c
SS
1232
1233 if (TYPE_CODE (t) == TYPE_CODE_UNION)
c16abbde 1234 return t;
c906108c 1235
7ba81444
MS
1236 /* If we get here, it's not a union. */
1237 error (_("This context has class, struct or enum %s, not a union."),
1238 name);
c906108c
SS
1239}
1240
1241
1242/* Lookup an enum type named "enum NAME",
1243 visible in lexical block BLOCK. */
1244
1245struct type *
ddd49eee 1246lookup_enum (const char *name, struct block *block)
c906108c 1247{
52f0bd74 1248 struct symbol *sym;
c906108c 1249
2570f2b7 1250 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
c906108c
SS
1251 if (sym == NULL)
1252 {
8a3fe4f8 1253 error (_("No enum type named %s."), name);
c906108c
SS
1254 }
1255 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1256 {
7ba81444
MS
1257 error (_("This context has class, struct or union %s, not an enum."),
1258 name);
c906108c
SS
1259 }
1260 return (SYMBOL_TYPE (sym));
1261}
1262
1263/* Lookup a template type named "template NAME<TYPE>",
1264 visible in lexical block BLOCK. */
1265
1266struct type *
7ba81444
MS
1267lookup_template_type (char *name, struct type *type,
1268 struct block *block)
c906108c
SS
1269{
1270 struct symbol *sym;
7ba81444
MS
1271 char *nam = (char *)
1272 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
d8734c88 1273
c906108c
SS
1274 strcpy (nam, name);
1275 strcat (nam, "<");
0004e5a2 1276 strcat (nam, TYPE_NAME (type));
0963b4bd 1277 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
c906108c 1278
2570f2b7 1279 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
c906108c
SS
1280
1281 if (sym == NULL)
1282 {
8a3fe4f8 1283 error (_("No template type named %s."), name);
c906108c
SS
1284 }
1285 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1286 {
7ba81444
MS
1287 error (_("This context has class, union or enum %s, not a struct."),
1288 name);
c906108c
SS
1289 }
1290 return (SYMBOL_TYPE (sym));
1291}
1292
7ba81444
MS
1293/* Given a type TYPE, lookup the type of the component of type named
1294 NAME.
c906108c 1295
7ba81444
MS
1296 TYPE can be either a struct or union, or a pointer or reference to
1297 a struct or union. If it is a pointer or reference, its target
1298 type is automatically used. Thus '.' and '->' are interchangable,
1299 as specified for the definitions of the expression element types
1300 STRUCTOP_STRUCT and STRUCTOP_PTR.
c906108c
SS
1301
1302 If NOERR is nonzero, return zero if NAME is not suitably defined.
1303 If NAME is the name of a baseclass type, return that type. */
1304
1305struct type *
fba45db2 1306lookup_struct_elt_type (struct type *type, char *name, int noerr)
c906108c
SS
1307{
1308 int i;
c92817ce 1309 char *typename;
c906108c
SS
1310
1311 for (;;)
1312 {
1313 CHECK_TYPEDEF (type);
1314 if (TYPE_CODE (type) != TYPE_CODE_PTR
1315 && TYPE_CODE (type) != TYPE_CODE_REF)
1316 break;
1317 type = TYPE_TARGET_TYPE (type);
1318 }
1319
687d6395
MS
1320 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1321 && TYPE_CODE (type) != TYPE_CODE_UNION)
c906108c 1322 {
c92817ce
TT
1323 typename = type_to_string (type);
1324 make_cleanup (xfree, typename);
1325 error (_("Type %s is not a structure or union type."), typename);
c906108c
SS
1326 }
1327
1328#if 0
7ba81444
MS
1329 /* FIXME: This change put in by Michael seems incorrect for the case
1330 where the structure tag name is the same as the member name.
0963b4bd 1331 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
7ba81444 1332 foo; } bell;" Disabled by fnf. */
c906108c
SS
1333 {
1334 char *typename;
1335
1336 typename = type_name_no_tag (type);
762f08a3 1337 if (typename != NULL && strcmp (typename, name) == 0)
c906108c
SS
1338 return type;
1339 }
1340#endif
1341
1342 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1343 {
1344 char *t_field_name = TYPE_FIELD_NAME (type, i);
1345
db577aea 1346 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
c906108c
SS
1347 {
1348 return TYPE_FIELD_TYPE (type, i);
1349 }
f5a010c0
PM
1350 else if (!t_field_name || *t_field_name == '\0')
1351 {
d8734c88
MS
1352 struct type *subtype
1353 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1354
f5a010c0
PM
1355 if (subtype != NULL)
1356 return subtype;
1357 }
c906108c
SS
1358 }
1359
1360 /* OK, it's not in this class. Recursively check the baseclasses. */
1361 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1362 {
1363 struct type *t;
1364
9733fc94 1365 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
c906108c
SS
1366 if (t != NULL)
1367 {
1368 return t;
1369 }
1370 }
1371
1372 if (noerr)
1373 {
1374 return NULL;
1375 }
c5aa993b 1376
c92817ce
TT
1377 typename = type_to_string (type);
1378 make_cleanup (xfree, typename);
1379 error (_("Type %s has no component named %s."), typename, name);
c906108c
SS
1380}
1381
81fe8080
DE
1382/* Lookup the vptr basetype/fieldno values for TYPE.
1383 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1384 vptr_fieldno. Also, if found and basetype is from the same objfile,
1385 cache the results.
1386 If not found, return -1 and ignore BASETYPEP.
1387 Callers should be aware that in some cases (for example,
c906108c 1388 the type or one of its baseclasses is a stub type and we are
d48cc9dd
DJ
1389 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1390 this function will not be able to find the
7ba81444 1391 virtual function table pointer, and vptr_fieldno will remain -1 and
81fe8080 1392 vptr_basetype will remain NULL or incomplete. */
c906108c 1393
81fe8080
DE
1394int
1395get_vptr_fieldno (struct type *type, struct type **basetypep)
c906108c
SS
1396{
1397 CHECK_TYPEDEF (type);
1398
1399 if (TYPE_VPTR_FIELDNO (type) < 0)
1400 {
1401 int i;
1402
7ba81444
MS
1403 /* We must start at zero in case the first (and only) baseclass
1404 is virtual (and hence we cannot share the table pointer). */
c906108c
SS
1405 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1406 {
81fe8080
DE
1407 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1408 int fieldno;
1409 struct type *basetype;
1410
1411 fieldno = get_vptr_fieldno (baseclass, &basetype);
1412 if (fieldno >= 0)
c906108c 1413 {
81fe8080 1414 /* If the type comes from a different objfile we can't cache
0963b4bd 1415 it, it may have a different lifetime. PR 2384 */
5ef73790 1416 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
81fe8080
DE
1417 {
1418 TYPE_VPTR_FIELDNO (type) = fieldno;
1419 TYPE_VPTR_BASETYPE (type) = basetype;
1420 }
1421 if (basetypep)
1422 *basetypep = basetype;
1423 return fieldno;
c906108c
SS
1424 }
1425 }
81fe8080
DE
1426
1427 /* Not found. */
1428 return -1;
1429 }
1430 else
1431 {
1432 if (basetypep)
1433 *basetypep = TYPE_VPTR_BASETYPE (type);
1434 return TYPE_VPTR_FIELDNO (type);
c906108c
SS
1435 }
1436}
1437
44e1a9eb
DJ
1438static void
1439stub_noname_complaint (void)
1440{
e2e0b3e5 1441 complaint (&symfile_complaints, _("stub type has NULL name"));
44e1a9eb
DJ
1442}
1443
92163a10
JK
1444/* Find the real type of TYPE. This function returns the real type,
1445 after removing all layers of typedefs, and completing opaque or stub
1446 types. Completion changes the TYPE argument, but stripping of
1447 typedefs does not.
1448
1449 Instance flags (e.g. const/volatile) are preserved as typedefs are
1450 stripped. If necessary a new qualified form of the underlying type
1451 is created.
1452
1453 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1454 not been computed and we're either in the middle of reading symbols, or
1455 there was no name for the typedef in the debug info.
1456
9bc118a5
DE
1457 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1458 QUITs in the symbol reading code can also throw.
1459 Thus this function can throw an exception.
1460
92163a10
JK
1461 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1462 the target type.
c906108c
SS
1463
1464 If this is a stubbed struct (i.e. declared as struct foo *), see if
0963b4bd 1465 we can find a full definition in some other file. If so, copy this
7ba81444
MS
1466 definition, so we can use it in future. There used to be a comment
1467 (but not any code) that if we don't find a full definition, we'd
1468 set a flag so we don't spend time in the future checking the same
1469 type. That would be a mistake, though--we might load in more
92163a10 1470 symbols which contain a full definition for the type. */
c906108c
SS
1471
1472struct type *
a02fd225 1473check_typedef (struct type *type)
c906108c
SS
1474{
1475 struct type *orig_type = type;
92163a10
JK
1476 /* While we're removing typedefs, we don't want to lose qualifiers.
1477 E.g., const/volatile. */
1478 int instance_flags = TYPE_INSTANCE_FLAGS (type);
a02fd225 1479
423c0af8
MS
1480 gdb_assert (type);
1481
c906108c
SS
1482 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1483 {
1484 if (!TYPE_TARGET_TYPE (type))
1485 {
c5aa993b 1486 char *name;
c906108c
SS
1487 struct symbol *sym;
1488
1489 /* It is dangerous to call lookup_symbol if we are currently
7ba81444 1490 reading a symtab. Infinite recursion is one danger. */
c906108c 1491 if (currently_reading_symtab)
92163a10 1492 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1493
1494 name = type_name_no_tag (type);
7ba81444
MS
1495 /* FIXME: shouldn't we separately check the TYPE_NAME and
1496 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1497 VAR_DOMAIN as appropriate? (this code was written before
1498 TYPE_NAME and TYPE_TAG_NAME were separate). */
c906108c
SS
1499 if (name == NULL)
1500 {
23136709 1501 stub_noname_complaint ();
92163a10 1502 return make_qualified_type (type, instance_flags, NULL);
c906108c 1503 }
2570f2b7 1504 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c
SS
1505 if (sym)
1506 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
7ba81444 1507 else /* TYPE_CODE_UNDEF */
e9bb382b 1508 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
c906108c
SS
1509 }
1510 type = TYPE_TARGET_TYPE (type);
c906108c 1511
92163a10
JK
1512 /* Preserve the instance flags as we traverse down the typedef chain.
1513
1514 Handling address spaces/classes is nasty, what do we do if there's a
1515 conflict?
1516 E.g., what if an outer typedef marks the type as class_1 and an inner
1517 typedef marks the type as class_2?
1518 This is the wrong place to do such error checking. We leave it to
1519 the code that created the typedef in the first place to flag the
1520 error. We just pick the outer address space (akin to letting the
1521 outer cast in a chain of casting win), instead of assuming
1522 "it can't happen". */
1523 {
1524 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1525 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1526 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1527 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1528
1529 /* Treat code vs data spaces and address classes separately. */
1530 if ((instance_flags & ALL_SPACES) != 0)
1531 new_instance_flags &= ~ALL_SPACES;
1532 if ((instance_flags & ALL_CLASSES) != 0)
1533 new_instance_flags &= ~ALL_CLASSES;
1534
1535 instance_flags |= new_instance_flags;
1536 }
1537 }
a02fd225 1538
7ba81444
MS
1539 /* If this is a struct/class/union with no fields, then check
1540 whether a full definition exists somewhere else. This is for
1541 systems where a type definition with no fields is issued for such
1542 types, instead of identifying them as stub types in the first
1543 place. */
c5aa993b 1544
7ba81444
MS
1545 if (TYPE_IS_OPAQUE (type)
1546 && opaque_type_resolution
1547 && !currently_reading_symtab)
c906108c 1548 {
c5aa993b
JM
1549 char *name = type_name_no_tag (type);
1550 struct type *newtype;
d8734c88 1551
c906108c
SS
1552 if (name == NULL)
1553 {
23136709 1554 stub_noname_complaint ();
92163a10 1555 return make_qualified_type (type, instance_flags, NULL);
c906108c
SS
1556 }
1557 newtype = lookup_transparent_type (name);
ad766c0a 1558
c906108c 1559 if (newtype)
ad766c0a 1560 {
7ba81444
MS
1561 /* If the resolved type and the stub are in the same
1562 objfile, then replace the stub type with the real deal.
1563 But if they're in separate objfiles, leave the stub
1564 alone; we'll just look up the transparent type every time
1565 we call check_typedef. We can't create pointers between
1566 types allocated to different objfiles, since they may
1567 have different lifetimes. Trying to copy NEWTYPE over to
1568 TYPE's objfile is pointless, too, since you'll have to
1569 move over any other types NEWTYPE refers to, which could
1570 be an unbounded amount of stuff. */
ad766c0a 1571 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
92163a10
JK
1572 type = make_qualified_type (newtype,
1573 TYPE_INSTANCE_FLAGS (type),
1574 type);
ad766c0a
JB
1575 else
1576 type = newtype;
1577 }
c906108c 1578 }
7ba81444
MS
1579 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1580 types. */
74a9bb82 1581 else if (TYPE_STUB (type) && !currently_reading_symtab)
c906108c 1582 {
c5aa993b 1583 char *name = type_name_no_tag (type);
c906108c 1584 /* FIXME: shouldn't we separately check the TYPE_NAME and the
176620f1 1585 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
7b83ea04
AC
1586 as appropriate? (this code was written before TYPE_NAME and
1587 TYPE_TAG_NAME were separate). */
c906108c 1588 struct symbol *sym;
d8734c88 1589
c906108c
SS
1590 if (name == NULL)
1591 {
23136709 1592 stub_noname_complaint ();
92163a10 1593 return make_qualified_type (type, instance_flags, NULL);
c906108c 1594 }
2570f2b7 1595 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
c906108c 1596 if (sym)
c26f2453
JB
1597 {
1598 /* Same as above for opaque types, we can replace the stub
92163a10 1599 with the complete type only if they are in the same
c26f2453
JB
1600 objfile. */
1601 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
92163a10
JK
1602 type = make_qualified_type (SYMBOL_TYPE (sym),
1603 TYPE_INSTANCE_FLAGS (type),
1604 type);
c26f2453
JB
1605 else
1606 type = SYMBOL_TYPE (sym);
1607 }
c906108c
SS
1608 }
1609
74a9bb82 1610 if (TYPE_TARGET_STUB (type))
c906108c
SS
1611 {
1612 struct type *range_type;
1613 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1614
74a9bb82 1615 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
c5aa993b 1616 {
73e2eb35 1617 /* Nothing we can do. */
c5aa993b 1618 }
c906108c
SS
1619 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1620 && TYPE_NFIELDS (type) == 1
262452ec 1621 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
c906108c
SS
1622 == TYPE_CODE_RANGE))
1623 {
1624 /* Now recompute the length of the array type, based on its
ab0d6e0d
JB
1625 number of elements and the target type's length.
1626 Watch out for Ada null Ada arrays where the high bound
0963b4bd 1627 is smaller than the low bound. */
43bbcdc2
PH
1628 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1629 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1630 ULONGEST len;
1631
ab0d6e0d 1632 if (high_bound < low_bound)
43bbcdc2 1633 len = 0;
d8734c88
MS
1634 else
1635 {
1636 /* For now, we conservatively take the array length to be 0
1637 if its length exceeds UINT_MAX. The code below assumes
1638 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1639 which is technically not guaranteed by C, but is usually true
1640 (because it would be true if x were unsigned with its
0963b4bd 1641 high-order bit on). It uses the fact that
d8734c88
MS
1642 high_bound-low_bound is always representable in
1643 ULONGEST and that if high_bound-low_bound+1 overflows,
1644 it overflows to 0. We must change these tests if we
1645 decide to increase the representation of TYPE_LENGTH
0963b4bd 1646 from unsigned int to ULONGEST. */
d8734c88
MS
1647 ULONGEST ulow = low_bound, uhigh = high_bound;
1648 ULONGEST tlen = TYPE_LENGTH (target_type);
1649
1650 len = tlen * (uhigh - ulow + 1);
1651 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1652 || len > UINT_MAX)
1653 len = 0;
1654 }
43bbcdc2 1655 TYPE_LENGTH (type) = len;
876cecd0 1656 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1657 }
1658 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1659 {
1660 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
876cecd0 1661 TYPE_TARGET_STUB (type) = 0;
c906108c
SS
1662 }
1663 }
92163a10
JK
1664
1665 type = make_qualified_type (type, instance_flags, NULL);
1666
7ba81444 1667 /* Cache TYPE_LENGTH for future use. */
c906108c 1668 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
92163a10 1669
c906108c
SS
1670 return type;
1671}
1672
7ba81444 1673/* Parse a type expression in the string [P..P+LENGTH). If an error
48319d1f 1674 occurs, silently return a void type. */
c91ecb25 1675
b9362cc7 1676static struct type *
48319d1f 1677safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
c91ecb25
ND
1678{
1679 struct ui_file *saved_gdb_stderr;
1680 struct type *type;
1681
7ba81444 1682 /* Suppress error messages. */
c91ecb25
ND
1683 saved_gdb_stderr = gdb_stderr;
1684 gdb_stderr = ui_file_new ();
1685
7ba81444 1686 /* Call parse_and_eval_type() without fear of longjmp()s. */
c91ecb25 1687 if (!gdb_parse_and_eval_type (p, length, &type))
48319d1f 1688 type = builtin_type (gdbarch)->builtin_void;
c91ecb25 1689
7ba81444 1690 /* Stop suppressing error messages. */
c91ecb25
ND
1691 ui_file_delete (gdb_stderr);
1692 gdb_stderr = saved_gdb_stderr;
1693
1694 return type;
1695}
1696
c906108c
SS
1697/* Ugly hack to convert method stubs into method types.
1698
7ba81444
MS
1699 He ain't kiddin'. This demangles the name of the method into a
1700 string including argument types, parses out each argument type,
1701 generates a string casting a zero to that type, evaluates the
1702 string, and stuffs the resulting type into an argtype vector!!!
1703 Then it knows the type of the whole function (including argument
1704 types for overloading), which info used to be in the stab's but was
1705 removed to hack back the space required for them. */
c906108c 1706
de17c821 1707static void
fba45db2 1708check_stub_method (struct type *type, int method_id, int signature_id)
c906108c 1709{
50810684 1710 struct gdbarch *gdbarch = get_type_arch (type);
c906108c
SS
1711 struct fn_field *f;
1712 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1713 char *demangled_name = cplus_demangle (mangled_name,
1714 DMGL_PARAMS | DMGL_ANSI);
1715 char *argtypetext, *p;
1716 int depth = 0, argcount = 1;
ad2f7632 1717 struct field *argtypes;
c906108c
SS
1718 struct type *mtype;
1719
1720 /* Make sure we got back a function string that we can use. */
1721 if (demangled_name)
1722 p = strchr (demangled_name, '(');
502dcf4e
AC
1723 else
1724 p = NULL;
c906108c
SS
1725
1726 if (demangled_name == NULL || p == NULL)
7ba81444
MS
1727 error (_("Internal: Cannot demangle mangled name `%s'."),
1728 mangled_name);
c906108c
SS
1729
1730 /* Now, read in the parameters that define this type. */
1731 p += 1;
1732 argtypetext = p;
1733 while (*p)
1734 {
070ad9f0 1735 if (*p == '(' || *p == '<')
c906108c
SS
1736 {
1737 depth += 1;
1738 }
070ad9f0 1739 else if (*p == ')' || *p == '>')
c906108c
SS
1740 {
1741 depth -= 1;
1742 }
1743 else if (*p == ',' && depth == 0)
1744 {
1745 argcount += 1;
1746 }
1747
1748 p += 1;
1749 }
1750
ad2f7632
DJ
1751 /* If we read one argument and it was ``void'', don't count it. */
1752 if (strncmp (argtypetext, "(void)", 6) == 0)
1753 argcount -= 1;
c906108c 1754
ad2f7632
DJ
1755 /* We need one extra slot, for the THIS pointer. */
1756
1757 argtypes = (struct field *)
1758 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
c906108c 1759 p = argtypetext;
4a1970e4
DJ
1760
1761 /* Add THIS pointer for non-static methods. */
1762 f = TYPE_FN_FIELDLIST1 (type, method_id);
1763 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1764 argcount = 0;
1765 else
1766 {
ad2f7632 1767 argtypes[0].type = lookup_pointer_type (type);
4a1970e4
DJ
1768 argcount = 1;
1769 }
c906108c 1770
0963b4bd 1771 if (*p != ')') /* () means no args, skip while. */
c906108c
SS
1772 {
1773 depth = 0;
1774 while (*p)
1775 {
1776 if (depth <= 0 && (*p == ',' || *p == ')'))
1777 {
ad2f7632
DJ
1778 /* Avoid parsing of ellipsis, they will be handled below.
1779 Also avoid ``void'' as above. */
1780 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1781 && strncmp (argtypetext, "void", p - argtypetext) != 0)
c906108c 1782 {
ad2f7632 1783 argtypes[argcount].type =
48319d1f 1784 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
c906108c
SS
1785 argcount += 1;
1786 }
1787 argtypetext = p + 1;
1788 }
1789
070ad9f0 1790 if (*p == '(' || *p == '<')
c906108c
SS
1791 {
1792 depth += 1;
1793 }
070ad9f0 1794 else if (*p == ')' || *p == '>')
c906108c
SS
1795 {
1796 depth -= 1;
1797 }
1798
1799 p += 1;
1800 }
1801 }
1802
c906108c
SS
1803 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1804
1805 /* Now update the old "stub" type into a real type. */
1806 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1807 TYPE_DOMAIN_TYPE (mtype) = type;
ad2f7632
DJ
1808 TYPE_FIELDS (mtype) = argtypes;
1809 TYPE_NFIELDS (mtype) = argcount;
876cecd0 1810 TYPE_STUB (mtype) = 0;
c906108c 1811 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
ad2f7632 1812 if (p[-2] == '.')
876cecd0 1813 TYPE_VARARGS (mtype) = 1;
ad2f7632
DJ
1814
1815 xfree (demangled_name);
c906108c
SS
1816}
1817
7ba81444
MS
1818/* This is the external interface to check_stub_method, above. This
1819 function unstubs all of the signatures for TYPE's METHOD_ID method
1820 name. After calling this function TYPE_FN_FIELD_STUB will be
1821 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1822 correct.
de17c821
DJ
1823
1824 This function unfortunately can not die until stabs do. */
1825
1826void
1827check_stub_method_group (struct type *type, int method_id)
1828{
1829 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1830 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
f710f4fc 1831 int j, found_stub = 0;
de17c821
DJ
1832
1833 for (j = 0; j < len; j++)
1834 if (TYPE_FN_FIELD_STUB (f, j))
1835 {
1836 found_stub = 1;
1837 check_stub_method (type, method_id, j);
1838 }
1839
7ba81444
MS
1840 /* GNU v3 methods with incorrect names were corrected when we read
1841 in type information, because it was cheaper to do it then. The
1842 only GNU v2 methods with incorrect method names are operators and
1843 destructors; destructors were also corrected when we read in type
1844 information.
de17c821
DJ
1845
1846 Therefore the only thing we need to handle here are v2 operator
1847 names. */
1848 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1849 {
1850 int ret;
1851 char dem_opname[256];
1852
7ba81444
MS
1853 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1854 method_id),
de17c821
DJ
1855 dem_opname, DMGL_ANSI);
1856 if (!ret)
7ba81444
MS
1857 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1858 method_id),
de17c821
DJ
1859 dem_opname, 0);
1860 if (ret)
1861 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1862 }
1863}
1864
9655fd1a
JK
1865/* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1866const struct cplus_struct_type cplus_struct_default = { };
c906108c
SS
1867
1868void
fba45db2 1869allocate_cplus_struct_type (struct type *type)
c906108c 1870{
b4ba55a1
JB
1871 if (HAVE_CPLUS_STRUCT (type))
1872 /* Structure was already allocated. Nothing more to do. */
1873 return;
1874
1875 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1876 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1877 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1878 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
c906108c
SS
1879}
1880
b4ba55a1
JB
1881const struct gnat_aux_type gnat_aux_default =
1882 { NULL };
1883
1884/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1885 and allocate the associated gnat-specific data. The gnat-specific
1886 data is also initialized to gnat_aux_default. */
1887void
1888allocate_gnat_aux_type (struct type *type)
1889{
1890 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1891 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1892 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1893 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1894}
1895
1896
c906108c
SS
1897/* Helper function to initialize the standard scalar types.
1898
e9bb382b
UW
1899 If NAME is non-NULL, then we make a copy of the string pointed
1900 to by name in the objfile_obstack for that objfile, and initialize
1901 the type name to that copy. There are places (mipsread.c in particular),
1902 where init_type is called with a NULL value for NAME). */
c906108c
SS
1903
1904struct type *
7ba81444
MS
1905init_type (enum type_code code, int length, int flags,
1906 char *name, struct objfile *objfile)
c906108c 1907{
52f0bd74 1908 struct type *type;
c906108c
SS
1909
1910 type = alloc_type (objfile);
1911 TYPE_CODE (type) = code;
1912 TYPE_LENGTH (type) = length;
876cecd0
TT
1913
1914 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1915 if (flags & TYPE_FLAG_UNSIGNED)
1916 TYPE_UNSIGNED (type) = 1;
1917 if (flags & TYPE_FLAG_NOSIGN)
1918 TYPE_NOSIGN (type) = 1;
1919 if (flags & TYPE_FLAG_STUB)
1920 TYPE_STUB (type) = 1;
1921 if (flags & TYPE_FLAG_TARGET_STUB)
1922 TYPE_TARGET_STUB (type) = 1;
1923 if (flags & TYPE_FLAG_STATIC)
1924 TYPE_STATIC (type) = 1;
1925 if (flags & TYPE_FLAG_PROTOTYPED)
1926 TYPE_PROTOTYPED (type) = 1;
1927 if (flags & TYPE_FLAG_INCOMPLETE)
1928 TYPE_INCOMPLETE (type) = 1;
1929 if (flags & TYPE_FLAG_VARARGS)
1930 TYPE_VARARGS (type) = 1;
1931 if (flags & TYPE_FLAG_VECTOR)
1932 TYPE_VECTOR (type) = 1;
1933 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1934 TYPE_STUB_SUPPORTED (type) = 1;
876cecd0
TT
1935 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1936 TYPE_FIXED_INSTANCE (type) = 1;
0875794a
JK
1937 if (flags & TYPE_FLAG_GNU_IFUNC)
1938 TYPE_GNU_IFUNC (type) = 1;
876cecd0 1939
e9bb382b
UW
1940 if (name)
1941 TYPE_NAME (type) = obsavestring (name, strlen (name),
1942 &objfile->objfile_obstack);
c906108c
SS
1943
1944 /* C++ fancies. */
1945
973ccf8b 1946 if (name && strcmp (name, "char") == 0)
876cecd0 1947 TYPE_NOSIGN (type) = 1;
973ccf8b 1948
b4ba55a1 1949 switch (code)
c906108c 1950 {
b4ba55a1
JB
1951 case TYPE_CODE_STRUCT:
1952 case TYPE_CODE_UNION:
1953 case TYPE_CODE_NAMESPACE:
1954 INIT_CPLUS_SPECIFIC (type);
1955 break;
1956 case TYPE_CODE_FLT:
1957 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1958 break;
1959 case TYPE_CODE_FUNC:
b6cdc2c1 1960 INIT_FUNC_SPECIFIC (type);
b4ba55a1 1961 break;
c906108c 1962 }
c16abbde 1963 return type;
c906108c
SS
1964}
1965
c906108c 1966int
fba45db2 1967can_dereference (struct type *t)
c906108c 1968{
7ba81444
MS
1969 /* FIXME: Should we return true for references as well as
1970 pointers? */
c906108c
SS
1971 CHECK_TYPEDEF (t);
1972 return
1973 (t != NULL
1974 && TYPE_CODE (t) == TYPE_CODE_PTR
1975 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1976}
1977
adf40b2e 1978int
fba45db2 1979is_integral_type (struct type *t)
adf40b2e
JM
1980{
1981 CHECK_TYPEDEF (t);
1982 return
1983 ((t != NULL)
d4f3574e
SS
1984 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1985 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
4f2aea11 1986 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
d4f3574e
SS
1987 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1988 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1989 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
adf40b2e
JM
1990}
1991
e09342b5
TJB
1992/* Return true if TYPE is scalar. */
1993
1994static int
1995is_scalar_type (struct type *type)
1996{
1997 CHECK_TYPEDEF (type);
1998
1999 switch (TYPE_CODE (type))
2000 {
2001 case TYPE_CODE_ARRAY:
2002 case TYPE_CODE_STRUCT:
2003 case TYPE_CODE_UNION:
2004 case TYPE_CODE_SET:
2005 case TYPE_CODE_STRING:
2006 case TYPE_CODE_BITSTRING:
2007 return 0;
2008 default:
2009 return 1;
2010 }
2011}
2012
2013/* Return true if T is scalar, or a composite type which in practice has
90e4670f
TJB
2014 the memory layout of a scalar type. E.g., an array or struct with only
2015 one scalar element inside it, or a union with only scalar elements. */
e09342b5
TJB
2016
2017int
2018is_scalar_type_recursive (struct type *t)
2019{
2020 CHECK_TYPEDEF (t);
2021
2022 if (is_scalar_type (t))
2023 return 1;
2024 /* Are we dealing with an array or string of known dimensions? */
2025 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2026 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2027 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2028 {
2029 LONGEST low_bound, high_bound;
2030 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2031
2032 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2033
2034 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2035 }
2036 /* Are we dealing with a struct with one element? */
2037 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2038 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2039 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2040 {
2041 int i, n = TYPE_NFIELDS (t);
2042
2043 /* If all elements of the union are scalar, then the union is scalar. */
2044 for (i = 0; i < n; i++)
2045 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2046 return 0;
2047
2048 return 1;
2049 }
2050
2051 return 0;
2052}
2053
4e8f195d
TT
2054/* A helper function which returns true if types A and B represent the
2055 "same" class type. This is true if the types have the same main
2056 type, or the same name. */
2057
2058int
2059class_types_same_p (const struct type *a, const struct type *b)
2060{
2061 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2062 || (TYPE_NAME (a) && TYPE_NAME (b)
2063 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2064}
2065
a9d5ef47
SW
2066/* If BASE is an ancestor of DCLASS return the distance between them.
2067 otherwise return -1;
2068 eg:
2069
2070 class A {};
2071 class B: public A {};
2072 class C: public B {};
2073 class D: C {};
2074
2075 distance_to_ancestor (A, A, 0) = 0
2076 distance_to_ancestor (A, B, 0) = 1
2077 distance_to_ancestor (A, C, 0) = 2
2078 distance_to_ancestor (A, D, 0) = 3
2079
2080 If PUBLIC is 1 then only public ancestors are considered,
2081 and the function returns the distance only if BASE is a public ancestor
2082 of DCLASS.
2083 Eg:
2084
0963b4bd 2085 distance_to_ancestor (A, D, 1) = -1. */
c906108c 2086
0526b37a 2087static int
a9d5ef47 2088distance_to_ancestor (struct type *base, struct type *dclass, int public)
c906108c
SS
2089{
2090 int i;
a9d5ef47 2091 int d;
c5aa993b 2092
c906108c
SS
2093 CHECK_TYPEDEF (base);
2094 CHECK_TYPEDEF (dclass);
2095
4e8f195d 2096 if (class_types_same_p (base, dclass))
a9d5ef47 2097 return 0;
c906108c
SS
2098
2099 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
4e8f195d 2100 {
0526b37a
SW
2101 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2102 continue;
2103
a9d5ef47
SW
2104 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2105 if (d >= 0)
2106 return 1 + d;
4e8f195d 2107 }
c906108c 2108
a9d5ef47 2109 return -1;
c906108c 2110}
4e8f195d 2111
0526b37a
SW
2112/* Check whether BASE is an ancestor or base class or DCLASS
2113 Return 1 if so, and 0 if not.
2114 Note: If BASE and DCLASS are of the same type, this function
2115 will return 1. So for some class A, is_ancestor (A, A) will
2116 return 1. */
2117
2118int
2119is_ancestor (struct type *base, struct type *dclass)
2120{
a9d5ef47 2121 return distance_to_ancestor (base, dclass, 0) >= 0;
0526b37a
SW
2122}
2123
4e8f195d
TT
2124/* Like is_ancestor, but only returns true when BASE is a public
2125 ancestor of DCLASS. */
2126
2127int
2128is_public_ancestor (struct type *base, struct type *dclass)
2129{
a9d5ef47 2130 return distance_to_ancestor (base, dclass, 1) >= 0;
4e8f195d
TT
2131}
2132
2133/* A helper function for is_unique_ancestor. */
2134
2135static int
2136is_unique_ancestor_worker (struct type *base, struct type *dclass,
2137 int *offset,
8af8e3bc
PA
2138 const gdb_byte *valaddr, int embedded_offset,
2139 CORE_ADDR address, struct value *val)
4e8f195d
TT
2140{
2141 int i, count = 0;
2142
2143 CHECK_TYPEDEF (base);
2144 CHECK_TYPEDEF (dclass);
2145
2146 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2147 {
8af8e3bc
PA
2148 struct type *iter;
2149 int this_offset;
4e8f195d 2150
8af8e3bc
PA
2151 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2152
2153 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2154 address, val);
4e8f195d
TT
2155
2156 if (class_types_same_p (base, iter))
2157 {
2158 /* If this is the first subclass, set *OFFSET and set count
2159 to 1. Otherwise, if this is at the same offset as
2160 previous instances, do nothing. Otherwise, increment
2161 count. */
2162 if (*offset == -1)
2163 {
2164 *offset = this_offset;
2165 count = 1;
2166 }
2167 else if (this_offset == *offset)
2168 {
2169 /* Nothing. */
2170 }
2171 else
2172 ++count;
2173 }
2174 else
2175 count += is_unique_ancestor_worker (base, iter, offset,
8af8e3bc
PA
2176 valaddr,
2177 embedded_offset + this_offset,
2178 address, val);
4e8f195d
TT
2179 }
2180
2181 return count;
2182}
2183
2184/* Like is_ancestor, but only returns true if BASE is a unique base
2185 class of the type of VAL. */
2186
2187int
2188is_unique_ancestor (struct type *base, struct value *val)
2189{
2190 int offset = -1;
2191
2192 return is_unique_ancestor_worker (base, value_type (val), &offset,
8af8e3bc
PA
2193 value_contents_for_printing (val),
2194 value_embedded_offset (val),
2195 value_address (val), val) == 1;
4e8f195d
TT
2196}
2197
c906108c
SS
2198\f
2199
6403aeea
SW
2200/* Return the sum of the rank of A with the rank of B. */
2201
2202struct rank
2203sum_ranks (struct rank a, struct rank b)
2204{
2205 struct rank c;
2206 c.rank = a.rank + b.rank;
a9d5ef47 2207 c.subrank = a.subrank + b.subrank;
6403aeea
SW
2208 return c;
2209}
2210
2211/* Compare rank A and B and return:
2212 0 if a = b
2213 1 if a is better than b
2214 -1 if b is better than a. */
2215
2216int
2217compare_ranks (struct rank a, struct rank b)
2218{
2219 if (a.rank == b.rank)
a9d5ef47
SW
2220 {
2221 if (a.subrank == b.subrank)
2222 return 0;
2223 if (a.subrank < b.subrank)
2224 return 1;
2225 if (a.subrank > b.subrank)
2226 return -1;
2227 }
6403aeea
SW
2228
2229 if (a.rank < b.rank)
2230 return 1;
2231
0963b4bd 2232 /* a.rank > b.rank */
6403aeea
SW
2233 return -1;
2234}
c5aa993b 2235
0963b4bd 2236/* Functions for overload resolution begin here. */
c906108c
SS
2237
2238/* Compare two badness vectors A and B and return the result.
7ba81444
MS
2239 0 => A and B are identical
2240 1 => A and B are incomparable
2241 2 => A is better than B
2242 3 => A is worse than B */
c906108c
SS
2243
2244int
fba45db2 2245compare_badness (struct badness_vector *a, struct badness_vector *b)
c906108c
SS
2246{
2247 int i;
2248 int tmp;
c5aa993b
JM
2249 short found_pos = 0; /* any positives in c? */
2250 short found_neg = 0; /* any negatives in c? */
2251
2252 /* differing lengths => incomparable */
c906108c
SS
2253 if (a->length != b->length)
2254 return 1;
2255
c5aa993b
JM
2256 /* Subtract b from a */
2257 for (i = 0; i < a->length; i++)
c906108c 2258 {
6403aeea 2259 tmp = compare_ranks (b->rank[i], a->rank[i]);
c906108c 2260 if (tmp > 0)
c5aa993b 2261 found_pos = 1;
c906108c 2262 else if (tmp < 0)
c5aa993b 2263 found_neg = 1;
c906108c
SS
2264 }
2265
2266 if (found_pos)
2267 {
2268 if (found_neg)
c5aa993b 2269 return 1; /* incomparable */
c906108c 2270 else
c5aa993b 2271 return 3; /* A > B */
c906108c 2272 }
c5aa993b
JM
2273 else
2274 /* no positives */
c906108c
SS
2275 {
2276 if (found_neg)
c5aa993b 2277 return 2; /* A < B */
c906108c 2278 else
c5aa993b 2279 return 0; /* A == B */
c906108c
SS
2280 }
2281}
2282
7ba81444
MS
2283/* Rank a function by comparing its parameter types (PARMS, length
2284 NPARMS), to the types of an argument list (ARGS, length NARGS).
2285 Return a pointer to a badness vector. This has NARGS + 1
2286 entries. */
c906108c
SS
2287
2288struct badness_vector *
7ba81444 2289rank_function (struct type **parms, int nparms,
da096638 2290 struct value **args, int nargs)
c906108c
SS
2291{
2292 int i;
c5aa993b 2293 struct badness_vector *bv;
c906108c
SS
2294 int min_len = nparms < nargs ? nparms : nargs;
2295
2296 bv = xmalloc (sizeof (struct badness_vector));
0963b4bd 2297 bv->length = nargs + 1; /* add 1 for the length-match rank. */
c906108c
SS
2298 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2299
2300 /* First compare the lengths of the supplied lists.
7ba81444 2301 If there is a mismatch, set it to a high value. */
c5aa993b 2302
c906108c 2303 /* pai/1997-06-03 FIXME: when we have debug info about default
7ba81444
MS
2304 arguments and ellipsis parameter lists, we should consider those
2305 and rank the length-match more finely. */
c906108c 2306
6403aeea
SW
2307 LENGTH_MATCH (bv) = (nargs != nparms)
2308 ? LENGTH_MISMATCH_BADNESS
2309 : EXACT_MATCH_BADNESS;
c906108c 2310
0963b4bd 2311 /* Now rank all the parameters of the candidate function. */
74cc24b0 2312 for (i = 1; i <= min_len; i++)
da096638
KS
2313 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2314 args[i - 1]);
c906108c 2315
0963b4bd 2316 /* If more arguments than parameters, add dummy entries. */
c5aa993b 2317 for (i = min_len + 1; i <= nargs; i++)
c906108c
SS
2318 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2319
2320 return bv;
2321}
2322
973ccf8b
DJ
2323/* Compare the names of two integer types, assuming that any sign
2324 qualifiers have been checked already. We do it this way because
2325 there may be an "int" in the name of one of the types. */
2326
2327static int
2328integer_types_same_name_p (const char *first, const char *second)
2329{
2330 int first_p, second_p;
2331
7ba81444
MS
2332 /* If both are shorts, return 1; if neither is a short, keep
2333 checking. */
973ccf8b
DJ
2334 first_p = (strstr (first, "short") != NULL);
2335 second_p = (strstr (second, "short") != NULL);
2336 if (first_p && second_p)
2337 return 1;
2338 if (first_p || second_p)
2339 return 0;
2340
2341 /* Likewise for long. */
2342 first_p = (strstr (first, "long") != NULL);
2343 second_p = (strstr (second, "long") != NULL);
2344 if (first_p && second_p)
2345 return 1;
2346 if (first_p || second_p)
2347 return 0;
2348
2349 /* Likewise for char. */
2350 first_p = (strstr (first, "char") != NULL);
2351 second_p = (strstr (second, "char") != NULL);
2352 if (first_p && second_p)
2353 return 1;
2354 if (first_p || second_p)
2355 return 0;
2356
2357 /* They must both be ints. */
2358 return 1;
2359}
2360
7062b0a0
SW
2361/* Compares type A to type B returns 1 if the represent the same type
2362 0 otherwise. */
2363
2364static int
2365types_equal (struct type *a, struct type *b)
2366{
2367 /* Identical type pointers. */
2368 /* However, this still doesn't catch all cases of same type for b
2369 and a. The reason is that builtin types are different from
2370 the same ones constructed from the object. */
2371 if (a == b)
2372 return 1;
2373
2374 /* Resolve typedefs */
2375 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2376 a = check_typedef (a);
2377 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2378 b = check_typedef (b);
2379
2380 /* If after resolving typedefs a and b are not of the same type
2381 code then they are not equal. */
2382 if (TYPE_CODE (a) != TYPE_CODE (b))
2383 return 0;
2384
2385 /* If a and b are both pointers types or both reference types then
2386 they are equal of the same type iff the objects they refer to are
2387 of the same type. */
2388 if (TYPE_CODE (a) == TYPE_CODE_PTR
2389 || TYPE_CODE (a) == TYPE_CODE_REF)
2390 return types_equal (TYPE_TARGET_TYPE (a),
2391 TYPE_TARGET_TYPE (b));
2392
0963b4bd 2393 /* Well, damnit, if the names are exactly the same, I'll say they
7062b0a0
SW
2394 are exactly the same. This happens when we generate method
2395 stubs. The types won't point to the same address, but they
0963b4bd 2396 really are the same. */
7062b0a0
SW
2397
2398 if (TYPE_NAME (a) && TYPE_NAME (b)
2399 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2400 return 1;
2401
2402 /* Check if identical after resolving typedefs. */
2403 if (a == b)
2404 return 1;
2405
2406 return 0;
2407}
2408
c906108c
SS
2409/* Compare one type (PARM) for compatibility with another (ARG).
2410 * PARM is intended to be the parameter type of a function; and
2411 * ARG is the supplied argument's type. This function tests if
2412 * the latter can be converted to the former.
da096638 2413 * VALUE is the argument's value or NULL if none (or called recursively)
c906108c
SS
2414 *
2415 * Return 0 if they are identical types;
2416 * Otherwise, return an integer which corresponds to how compatible
7ba81444
MS
2417 * PARM is to ARG. The higher the return value, the worse the match.
2418 * Generally the "bad" conversions are all uniformly assigned a 100. */
c906108c 2419
6403aeea 2420struct rank
da096638 2421rank_one_type (struct type *parm, struct type *arg, struct value *value)
c906108c 2422{
a9d5ef47 2423 struct rank rank = {0,0};
7062b0a0
SW
2424
2425 if (types_equal (parm, arg))
6403aeea 2426 return EXACT_MATCH_BADNESS;
c906108c
SS
2427
2428 /* Resolve typedefs */
2429 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2430 parm = check_typedef (parm);
2431 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2432 arg = check_typedef (arg);
2433
db577aea 2434 /* See through references, since we can almost make non-references
7ba81444 2435 references. */
db577aea 2436 if (TYPE_CODE (arg) == TYPE_CODE_REF)
da096638 2437 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
6403aeea 2438 REFERENCE_CONVERSION_BADNESS));
db577aea 2439 if (TYPE_CODE (parm) == TYPE_CODE_REF)
da096638 2440 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
6403aeea 2441 REFERENCE_CONVERSION_BADNESS));
5d161b24 2442 if (overload_debug)
7ba81444
MS
2443 /* Debugging only. */
2444 fprintf_filtered (gdb_stderr,
2445 "------ Arg is %s [%d], parm is %s [%d]\n",
2446 TYPE_NAME (arg), TYPE_CODE (arg),
2447 TYPE_NAME (parm), TYPE_CODE (parm));
c906108c 2448
0963b4bd 2449 /* x -> y means arg of type x being supplied for parameter of type y. */
c906108c
SS
2450
2451 switch (TYPE_CODE (parm))
2452 {
c5aa993b
JM
2453 case TYPE_CODE_PTR:
2454 switch (TYPE_CODE (arg))
2455 {
2456 case TYPE_CODE_PTR:
7062b0a0
SW
2457
2458 /* Allowed pointer conversions are:
2459 (a) pointer to void-pointer conversion. */
2460 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
c5aa993b 2461 return VOID_PTR_CONVERSION_BADNESS;
7062b0a0
SW
2462
2463 /* (b) pointer to ancestor-pointer conversion. */
a9d5ef47
SW
2464 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2465 TYPE_TARGET_TYPE (arg),
2466 0);
2467 if (rank.subrank >= 0)
2468 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
7062b0a0
SW
2469
2470 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2471 case TYPE_CODE_ARRAY:
7062b0a0
SW
2472 if (types_equal (TYPE_TARGET_TYPE (parm),
2473 TYPE_TARGET_TYPE (arg)))
6403aeea 2474 return EXACT_MATCH_BADNESS;
7062b0a0 2475 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2476 case TYPE_CODE_FUNC:
da096638 2477 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
c5aa993b 2478 case TYPE_CODE_INT:
da096638
KS
2479 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT
2480 && value_as_long (value) == 0)
2481 {
2482 /* Null pointer conversion: allow it to be cast to a pointer.
2483 [4.10.1 of C++ standard draft n3290] */
2484 return NULL_POINTER_CONVERSION_BADNESS;
2485 }
2486 /* fall through */
c5aa993b 2487 case TYPE_CODE_ENUM:
4f2aea11 2488 case TYPE_CODE_FLAGS:
c5aa993b
JM
2489 case TYPE_CODE_CHAR:
2490 case TYPE_CODE_RANGE:
2491 case TYPE_CODE_BOOL:
c5aa993b
JM
2492 default:
2493 return INCOMPATIBLE_TYPE_BADNESS;
2494 }
2495 case TYPE_CODE_ARRAY:
2496 switch (TYPE_CODE (arg))
2497 {
2498 case TYPE_CODE_PTR:
2499 case TYPE_CODE_ARRAY:
7ba81444 2500 return rank_one_type (TYPE_TARGET_TYPE (parm),
da096638 2501 TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2502 default:
2503 return INCOMPATIBLE_TYPE_BADNESS;
2504 }
2505 case TYPE_CODE_FUNC:
2506 switch (TYPE_CODE (arg))
2507 {
2508 case TYPE_CODE_PTR: /* funcptr -> func */
da096638 2509 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
c5aa993b
JM
2510 default:
2511 return INCOMPATIBLE_TYPE_BADNESS;
2512 }
2513 case TYPE_CODE_INT:
2514 switch (TYPE_CODE (arg))
2515 {
2516 case TYPE_CODE_INT:
2517 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2518 {
2519 /* Deal with signed, unsigned, and plain chars and
7ba81444 2520 signed and unsigned ints. */
c5aa993b
JM
2521 if (TYPE_NOSIGN (parm))
2522 {
0963b4bd 2523 /* This case only for character types. */
7ba81444 2524 if (TYPE_NOSIGN (arg))
6403aeea 2525 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
7ba81444
MS
2526 else /* signed/unsigned char -> plain char */
2527 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2528 }
2529 else if (TYPE_UNSIGNED (parm))
2530 {
2531 if (TYPE_UNSIGNED (arg))
2532 {
7ba81444
MS
2533 /* unsigned int -> unsigned int, or
2534 unsigned long -> unsigned long */
2535 if (integer_types_same_name_p (TYPE_NAME (parm),
2536 TYPE_NAME (arg)))
6403aeea 2537 return EXACT_MATCH_BADNESS;
7ba81444
MS
2538 else if (integer_types_same_name_p (TYPE_NAME (arg),
2539 "int")
2540 && integer_types_same_name_p (TYPE_NAME (parm),
2541 "long"))
3e43a32a
MS
2542 /* unsigned int -> unsigned long */
2543 return INTEGER_PROMOTION_BADNESS;
c5aa993b 2544 else
3e43a32a
MS
2545 /* unsigned long -> unsigned int */
2546 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2547 }
2548 else
2549 {
7ba81444
MS
2550 if (integer_types_same_name_p (TYPE_NAME (arg),
2551 "long")
2552 && integer_types_same_name_p (TYPE_NAME (parm),
2553 "int"))
3e43a32a
MS
2554 /* signed long -> unsigned int */
2555 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2556 else
3e43a32a
MS
2557 /* signed int/long -> unsigned int/long */
2558 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2559 }
2560 }
2561 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2562 {
7ba81444
MS
2563 if (integer_types_same_name_p (TYPE_NAME (parm),
2564 TYPE_NAME (arg)))
6403aeea 2565 return EXACT_MATCH_BADNESS;
7ba81444
MS
2566 else if (integer_types_same_name_p (TYPE_NAME (arg),
2567 "int")
2568 && integer_types_same_name_p (TYPE_NAME (parm),
2569 "long"))
c5aa993b
JM
2570 return INTEGER_PROMOTION_BADNESS;
2571 else
1c5cb38e 2572 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2573 }
2574 else
1c5cb38e 2575 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2576 }
2577 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2578 return INTEGER_PROMOTION_BADNESS;
2579 else
1c5cb38e 2580 return INTEGER_CONVERSION_BADNESS;
c5aa993b 2581 case TYPE_CODE_ENUM:
4f2aea11 2582 case TYPE_CODE_FLAGS:
c5aa993b
JM
2583 case TYPE_CODE_CHAR:
2584 case TYPE_CODE_RANGE:
2585 case TYPE_CODE_BOOL:
2586 return INTEGER_PROMOTION_BADNESS;
2587 case TYPE_CODE_FLT:
2588 return INT_FLOAT_CONVERSION_BADNESS;
2589 case TYPE_CODE_PTR:
2590 return NS_POINTER_CONVERSION_BADNESS;
2591 default:
2592 return INCOMPATIBLE_TYPE_BADNESS;
2593 }
2594 break;
2595 case TYPE_CODE_ENUM:
2596 switch (TYPE_CODE (arg))
2597 {
2598 case TYPE_CODE_INT:
2599 case TYPE_CODE_CHAR:
2600 case TYPE_CODE_RANGE:
2601 case TYPE_CODE_BOOL:
2602 case TYPE_CODE_ENUM:
1c5cb38e 2603 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2604 case TYPE_CODE_FLT:
2605 return INT_FLOAT_CONVERSION_BADNESS;
2606 default:
2607 return INCOMPATIBLE_TYPE_BADNESS;
2608 }
2609 break;
2610 case TYPE_CODE_CHAR:
2611 switch (TYPE_CODE (arg))
2612 {
2613 case TYPE_CODE_RANGE:
2614 case TYPE_CODE_BOOL:
2615 case TYPE_CODE_ENUM:
1c5cb38e 2616 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2617 case TYPE_CODE_FLT:
2618 return INT_FLOAT_CONVERSION_BADNESS;
2619 case TYPE_CODE_INT:
2620 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
1c5cb38e 2621 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2622 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2623 return INTEGER_PROMOTION_BADNESS;
2624 /* >>> !! else fall through !! <<< */
2625 case TYPE_CODE_CHAR:
7ba81444
MS
2626 /* Deal with signed, unsigned, and plain chars for C++ and
2627 with int cases falling through from previous case. */
c5aa993b
JM
2628 if (TYPE_NOSIGN (parm))
2629 {
2630 if (TYPE_NOSIGN (arg))
6403aeea 2631 return EXACT_MATCH_BADNESS;
c5aa993b 2632 else
1c5cb38e 2633 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2634 }
2635 else if (TYPE_UNSIGNED (parm))
2636 {
2637 if (TYPE_UNSIGNED (arg))
6403aeea 2638 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2639 else
2640 return INTEGER_PROMOTION_BADNESS;
2641 }
2642 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
6403aeea 2643 return EXACT_MATCH_BADNESS;
c5aa993b 2644 else
1c5cb38e 2645 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2646 default:
2647 return INCOMPATIBLE_TYPE_BADNESS;
2648 }
2649 break;
2650 case TYPE_CODE_RANGE:
2651 switch (TYPE_CODE (arg))
2652 {
2653 case TYPE_CODE_INT:
2654 case TYPE_CODE_CHAR:
2655 case TYPE_CODE_RANGE:
2656 case TYPE_CODE_BOOL:
2657 case TYPE_CODE_ENUM:
1c5cb38e 2658 return INTEGER_CONVERSION_BADNESS;
c5aa993b
JM
2659 case TYPE_CODE_FLT:
2660 return INT_FLOAT_CONVERSION_BADNESS;
2661 default:
2662 return INCOMPATIBLE_TYPE_BADNESS;
2663 }
2664 break;
2665 case TYPE_CODE_BOOL:
2666 switch (TYPE_CODE (arg))
2667 {
2668 case TYPE_CODE_INT:
2669 case TYPE_CODE_CHAR:
2670 case TYPE_CODE_RANGE:
2671 case TYPE_CODE_ENUM:
2672 case TYPE_CODE_FLT:
026ffab7 2673 return INCOMPATIBLE_TYPE_BADNESS;
c5aa993b 2674 case TYPE_CODE_PTR:
026ffab7 2675 return BOOL_PTR_CONVERSION_BADNESS;
c5aa993b 2676 case TYPE_CODE_BOOL:
6403aeea 2677 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2678 default:
2679 return INCOMPATIBLE_TYPE_BADNESS;
2680 }
2681 break;
2682 case TYPE_CODE_FLT:
2683 switch (TYPE_CODE (arg))
2684 {
2685 case TYPE_CODE_FLT:
2686 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2687 return FLOAT_PROMOTION_BADNESS;
2688 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
6403aeea 2689 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2690 else
2691 return FLOAT_CONVERSION_BADNESS;
2692 case TYPE_CODE_INT:
2693 case TYPE_CODE_BOOL:
2694 case TYPE_CODE_ENUM:
2695 case TYPE_CODE_RANGE:
2696 case TYPE_CODE_CHAR:
2697 return INT_FLOAT_CONVERSION_BADNESS;
2698 default:
2699 return INCOMPATIBLE_TYPE_BADNESS;
2700 }
2701 break;
2702 case TYPE_CODE_COMPLEX:
2703 switch (TYPE_CODE (arg))
7ba81444 2704 { /* Strictly not needed for C++, but... */
c5aa993b
JM
2705 case TYPE_CODE_FLT:
2706 return FLOAT_PROMOTION_BADNESS;
2707 case TYPE_CODE_COMPLEX:
6403aeea 2708 return EXACT_MATCH_BADNESS;
c5aa993b
JM
2709 default:
2710 return INCOMPATIBLE_TYPE_BADNESS;
2711 }
2712 break;
2713 case TYPE_CODE_STRUCT:
0963b4bd 2714 /* currently same as TYPE_CODE_CLASS. */
c5aa993b
JM
2715 switch (TYPE_CODE (arg))
2716 {
2717 case TYPE_CODE_STRUCT:
2718 /* Check for derivation */
a9d5ef47
SW
2719 rank.subrank = distance_to_ancestor (parm, arg, 0);
2720 if (rank.subrank >= 0)
2721 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
c5aa993b
JM
2722 /* else fall through */
2723 default:
2724 return INCOMPATIBLE_TYPE_BADNESS;
2725 }
2726 break;
2727 case TYPE_CODE_UNION:
2728 switch (TYPE_CODE (arg))
2729 {
2730 case TYPE_CODE_UNION:
2731 default:
2732 return INCOMPATIBLE_TYPE_BADNESS;
2733 }
2734 break;
0d5de010 2735 case TYPE_CODE_MEMBERPTR:
c5aa993b
JM
2736 switch (TYPE_CODE (arg))
2737 {
2738 default:
2739 return INCOMPATIBLE_TYPE_BADNESS;
2740 }
2741 break;
2742 case TYPE_CODE_METHOD:
2743 switch (TYPE_CODE (arg))
2744 {
2745
2746 default:
2747 return INCOMPATIBLE_TYPE_BADNESS;
2748 }
2749 break;
2750 case TYPE_CODE_REF:
2751 switch (TYPE_CODE (arg))
2752 {
2753
2754 default:
2755 return INCOMPATIBLE_TYPE_BADNESS;
2756 }
2757
2758 break;
2759 case TYPE_CODE_SET:
2760 switch (TYPE_CODE (arg))
2761 {
2762 /* Not in C++ */
2763 case TYPE_CODE_SET:
7ba81444 2764 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
da096638 2765 TYPE_FIELD_TYPE (arg, 0), NULL);
c5aa993b
JM
2766 default:
2767 return INCOMPATIBLE_TYPE_BADNESS;
2768 }
2769 break;
2770 case TYPE_CODE_VOID:
2771 default:
2772 return INCOMPATIBLE_TYPE_BADNESS;
2773 } /* switch (TYPE_CODE (arg)) */
c906108c
SS
2774}
2775
c5aa993b 2776
0963b4bd 2777/* End of functions for overload resolution. */
c906108c 2778
c906108c 2779static void
fba45db2 2780print_bit_vector (B_TYPE *bits, int nbits)
c906108c
SS
2781{
2782 int bitno;
2783
2784 for (bitno = 0; bitno < nbits; bitno++)
2785 {
2786 if ((bitno % 8) == 0)
2787 {
2788 puts_filtered (" ");
2789 }
2790 if (B_TST (bits, bitno))
a3f17187 2791 printf_filtered (("1"));
c906108c 2792 else
a3f17187 2793 printf_filtered (("0"));
c906108c
SS
2794 }
2795}
2796
ad2f7632 2797/* Note the first arg should be the "this" pointer, we may not want to
7ba81444
MS
2798 include it since we may get into a infinitely recursive
2799 situation. */
c906108c
SS
2800
2801static void
ad2f7632 2802print_arg_types (struct field *args, int nargs, int spaces)
c906108c
SS
2803{
2804 if (args != NULL)
2805 {
ad2f7632
DJ
2806 int i;
2807
2808 for (i = 0; i < nargs; i++)
2809 recursive_dump_type (args[i].type, spaces + 2);
c906108c
SS
2810 }
2811}
2812
d6a843b5
JK
2813int
2814field_is_static (struct field *f)
2815{
2816 /* "static" fields are the fields whose location is not relative
2817 to the address of the enclosing struct. It would be nice to
2818 have a dedicated flag that would be set for static fields when
2819 the type is being created. But in practice, checking the field
254e6b9e 2820 loc_kind should give us an accurate answer. */
d6a843b5
JK
2821 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2822 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2823}
2824
c906108c 2825static void
fba45db2 2826dump_fn_fieldlists (struct type *type, int spaces)
c906108c
SS
2827{
2828 int method_idx;
2829 int overload_idx;
2830 struct fn_field *f;
2831
2832 printfi_filtered (spaces, "fn_fieldlists ");
d4f3574e 2833 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
c906108c
SS
2834 printf_filtered ("\n");
2835 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2836 {
2837 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2838 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2839 method_idx,
2840 TYPE_FN_FIELDLIST_NAME (type, method_idx));
d4f3574e
SS
2841 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2842 gdb_stdout);
a3f17187 2843 printf_filtered (_(") length %d\n"),
c906108c
SS
2844 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2845 for (overload_idx = 0;
2846 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2847 overload_idx++)
2848 {
2849 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2850 overload_idx,
2851 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
d4f3574e
SS
2852 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2853 gdb_stdout);
c906108c
SS
2854 printf_filtered (")\n");
2855 printfi_filtered (spaces + 8, "type ");
7ba81444
MS
2856 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2857 gdb_stdout);
c906108c
SS
2858 printf_filtered ("\n");
2859
2860 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2861 spaces + 8 + 2);
2862
2863 printfi_filtered (spaces + 8, "args ");
7ba81444
MS
2864 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2865 gdb_stdout);
c906108c
SS
2866 printf_filtered ("\n");
2867
ad2f7632 2868 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
7ba81444
MS
2869 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2870 overload_idx)),
ad2f7632 2871 spaces);
c906108c 2872 printfi_filtered (spaces + 8, "fcontext ");
d4f3574e
SS
2873 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2874 gdb_stdout);
c906108c
SS
2875 printf_filtered ("\n");
2876
2877 printfi_filtered (spaces + 8, "is_const %d\n",
2878 TYPE_FN_FIELD_CONST (f, overload_idx));
2879 printfi_filtered (spaces + 8, "is_volatile %d\n",
2880 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2881 printfi_filtered (spaces + 8, "is_private %d\n",
2882 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2883 printfi_filtered (spaces + 8, "is_protected %d\n",
2884 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2885 printfi_filtered (spaces + 8, "is_stub %d\n",
2886 TYPE_FN_FIELD_STUB (f, overload_idx));
2887 printfi_filtered (spaces + 8, "voffset %u\n",
2888 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2889 }
2890 }
2891}
2892
2893static void
fba45db2 2894print_cplus_stuff (struct type *type, int spaces)
c906108c
SS
2895{
2896 printfi_filtered (spaces, "n_baseclasses %d\n",
2897 TYPE_N_BASECLASSES (type));
2898 printfi_filtered (spaces, "nfn_fields %d\n",
2899 TYPE_NFN_FIELDS (type));
2900 printfi_filtered (spaces, "nfn_fields_total %d\n",
2901 TYPE_NFN_FIELDS_TOTAL (type));
2902 if (TYPE_N_BASECLASSES (type) > 0)
2903 {
2904 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2905 TYPE_N_BASECLASSES (type));
7ba81444
MS
2906 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2907 gdb_stdout);
c906108c
SS
2908 printf_filtered (")");
2909
2910 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2911 TYPE_N_BASECLASSES (type));
2912 puts_filtered ("\n");
2913 }
2914 if (TYPE_NFIELDS (type) > 0)
2915 {
2916 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2917 {
7ba81444
MS
2918 printfi_filtered (spaces,
2919 "private_field_bits (%d bits at *",
c906108c 2920 TYPE_NFIELDS (type));
7ba81444
MS
2921 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2922 gdb_stdout);
c906108c
SS
2923 printf_filtered (")");
2924 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2925 TYPE_NFIELDS (type));
2926 puts_filtered ("\n");
2927 }
2928 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2929 {
7ba81444
MS
2930 printfi_filtered (spaces,
2931 "protected_field_bits (%d bits at *",
c906108c 2932 TYPE_NFIELDS (type));
7ba81444
MS
2933 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2934 gdb_stdout);
c906108c
SS
2935 printf_filtered (")");
2936 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2937 TYPE_NFIELDS (type));
2938 puts_filtered ("\n");
2939 }
2940 }
2941 if (TYPE_NFN_FIELDS (type) > 0)
2942 {
2943 dump_fn_fieldlists (type, spaces);
2944 }
2945}
2946
b4ba55a1
JB
2947/* Print the contents of the TYPE's type_specific union, assuming that
2948 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2949
2950static void
2951print_gnat_stuff (struct type *type, int spaces)
2952{
2953 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2954
2955 recursive_dump_type (descriptive_type, spaces + 2);
2956}
2957
c906108c
SS
2958static struct obstack dont_print_type_obstack;
2959
2960void
fba45db2 2961recursive_dump_type (struct type *type, int spaces)
c906108c
SS
2962{
2963 int idx;
2964
2965 if (spaces == 0)
2966 obstack_begin (&dont_print_type_obstack, 0);
2967
2968 if (TYPE_NFIELDS (type) > 0
b4ba55a1 2969 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
c906108c
SS
2970 {
2971 struct type **first_dont_print
7ba81444 2972 = (struct type **) obstack_base (&dont_print_type_obstack);
c906108c 2973
7ba81444
MS
2974 int i = (struct type **)
2975 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
c906108c
SS
2976
2977 while (--i >= 0)
2978 {
2979 if (type == first_dont_print[i])
2980 {
2981 printfi_filtered (spaces, "type node ");
d4f3574e 2982 gdb_print_host_address (type, gdb_stdout);
a3f17187 2983 printf_filtered (_(" <same as already seen type>\n"));
c906108c
SS
2984 return;
2985 }
2986 }
2987
2988 obstack_ptr_grow (&dont_print_type_obstack, type);
2989 }
2990
2991 printfi_filtered (spaces, "type node ");
d4f3574e 2992 gdb_print_host_address (type, gdb_stdout);
c906108c
SS
2993 printf_filtered ("\n");
2994 printfi_filtered (spaces, "name '%s' (",
2995 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
d4f3574e 2996 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
c906108c 2997 printf_filtered (")\n");
e9e79dd9
FF
2998 printfi_filtered (spaces, "tagname '%s' (",
2999 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3000 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3001 printf_filtered (")\n");
c906108c
SS
3002 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3003 switch (TYPE_CODE (type))
3004 {
c5aa993b
JM
3005 case TYPE_CODE_UNDEF:
3006 printf_filtered ("(TYPE_CODE_UNDEF)");
3007 break;
3008 case TYPE_CODE_PTR:
3009 printf_filtered ("(TYPE_CODE_PTR)");
3010 break;
3011 case TYPE_CODE_ARRAY:
3012 printf_filtered ("(TYPE_CODE_ARRAY)");
3013 break;
3014 case TYPE_CODE_STRUCT:
3015 printf_filtered ("(TYPE_CODE_STRUCT)");
3016 break;
3017 case TYPE_CODE_UNION:
3018 printf_filtered ("(TYPE_CODE_UNION)");
3019 break;
3020 case TYPE_CODE_ENUM:
3021 printf_filtered ("(TYPE_CODE_ENUM)");
3022 break;
4f2aea11
MK
3023 case TYPE_CODE_FLAGS:
3024 printf_filtered ("(TYPE_CODE_FLAGS)");
3025 break;
c5aa993b
JM
3026 case TYPE_CODE_FUNC:
3027 printf_filtered ("(TYPE_CODE_FUNC)");
3028 break;
3029 case TYPE_CODE_INT:
3030 printf_filtered ("(TYPE_CODE_INT)");
3031 break;
3032 case TYPE_CODE_FLT:
3033 printf_filtered ("(TYPE_CODE_FLT)");
3034 break;
3035 case TYPE_CODE_VOID:
3036 printf_filtered ("(TYPE_CODE_VOID)");
3037 break;
3038 case TYPE_CODE_SET:
3039 printf_filtered ("(TYPE_CODE_SET)");
3040 break;
3041 case TYPE_CODE_RANGE:
3042 printf_filtered ("(TYPE_CODE_RANGE)");
3043 break;
3044 case TYPE_CODE_STRING:
3045 printf_filtered ("(TYPE_CODE_STRING)");
3046 break;
e9e79dd9
FF
3047 case TYPE_CODE_BITSTRING:
3048 printf_filtered ("(TYPE_CODE_BITSTRING)");
3049 break;
c5aa993b
JM
3050 case TYPE_CODE_ERROR:
3051 printf_filtered ("(TYPE_CODE_ERROR)");
3052 break;
0d5de010
DJ
3053 case TYPE_CODE_MEMBERPTR:
3054 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3055 break;
3056 case TYPE_CODE_METHODPTR:
3057 printf_filtered ("(TYPE_CODE_METHODPTR)");
c5aa993b
JM
3058 break;
3059 case TYPE_CODE_METHOD:
3060 printf_filtered ("(TYPE_CODE_METHOD)");
3061 break;
3062 case TYPE_CODE_REF:
3063 printf_filtered ("(TYPE_CODE_REF)");
3064 break;
3065 case TYPE_CODE_CHAR:
3066 printf_filtered ("(TYPE_CODE_CHAR)");
3067 break;
3068 case TYPE_CODE_BOOL:
3069 printf_filtered ("(TYPE_CODE_BOOL)");
3070 break;
e9e79dd9
FF
3071 case TYPE_CODE_COMPLEX:
3072 printf_filtered ("(TYPE_CODE_COMPLEX)");
3073 break;
c5aa993b
JM
3074 case TYPE_CODE_TYPEDEF:
3075 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3076 break;
5c4e30ca
DC
3077 case TYPE_CODE_NAMESPACE:
3078 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3079 break;
c5aa993b
JM
3080 default:
3081 printf_filtered ("(UNKNOWN TYPE CODE)");
3082 break;
c906108c
SS
3083 }
3084 puts_filtered ("\n");
3085 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
e9bb382b
UW
3086 if (TYPE_OBJFILE_OWNED (type))
3087 {
3088 printfi_filtered (spaces, "objfile ");
3089 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3090 }
3091 else
3092 {
3093 printfi_filtered (spaces, "gdbarch ");
3094 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3095 }
c906108c
SS
3096 printf_filtered ("\n");
3097 printfi_filtered (spaces, "target_type ");
d4f3574e 3098 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
c906108c
SS
3099 printf_filtered ("\n");
3100 if (TYPE_TARGET_TYPE (type) != NULL)
3101 {
3102 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3103 }
3104 printfi_filtered (spaces, "pointer_type ");
d4f3574e 3105 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
c906108c
SS
3106 printf_filtered ("\n");
3107 printfi_filtered (spaces, "reference_type ");
d4f3574e 3108 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
c906108c 3109 printf_filtered ("\n");
2fdde8f8
DJ
3110 printfi_filtered (spaces, "type_chain ");
3111 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
e9e79dd9 3112 printf_filtered ("\n");
7ba81444
MS
3113 printfi_filtered (spaces, "instance_flags 0x%x",
3114 TYPE_INSTANCE_FLAGS (type));
2fdde8f8
DJ
3115 if (TYPE_CONST (type))
3116 {
3117 puts_filtered (" TYPE_FLAG_CONST");
3118 }
3119 if (TYPE_VOLATILE (type))
3120 {
3121 puts_filtered (" TYPE_FLAG_VOLATILE");
3122 }
3123 if (TYPE_CODE_SPACE (type))
3124 {
3125 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3126 }
3127 if (TYPE_DATA_SPACE (type))
3128 {
3129 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3130 }
8b2dbe47
KB
3131 if (TYPE_ADDRESS_CLASS_1 (type))
3132 {
3133 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3134 }
3135 if (TYPE_ADDRESS_CLASS_2 (type))
3136 {
3137 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3138 }
2fdde8f8 3139 puts_filtered ("\n");
876cecd0
TT
3140
3141 printfi_filtered (spaces, "flags");
762a036f 3142 if (TYPE_UNSIGNED (type))
c906108c
SS
3143 {
3144 puts_filtered (" TYPE_FLAG_UNSIGNED");
3145 }
762a036f
FF
3146 if (TYPE_NOSIGN (type))
3147 {
3148 puts_filtered (" TYPE_FLAG_NOSIGN");
3149 }
3150 if (TYPE_STUB (type))
c906108c
SS
3151 {
3152 puts_filtered (" TYPE_FLAG_STUB");
3153 }
762a036f
FF
3154 if (TYPE_TARGET_STUB (type))
3155 {
3156 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3157 }
3158 if (TYPE_STATIC (type))
3159 {
3160 puts_filtered (" TYPE_FLAG_STATIC");
3161 }
762a036f
FF
3162 if (TYPE_PROTOTYPED (type))
3163 {
3164 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3165 }
3166 if (TYPE_INCOMPLETE (type))
3167 {
3168 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3169 }
762a036f
FF
3170 if (TYPE_VARARGS (type))
3171 {
3172 puts_filtered (" TYPE_FLAG_VARARGS");
3173 }
f5f8a009
EZ
3174 /* This is used for things like AltiVec registers on ppc. Gcc emits
3175 an attribute for the array type, which tells whether or not we
3176 have a vector, instead of a regular array. */
3177 if (TYPE_VECTOR (type))
3178 {
3179 puts_filtered (" TYPE_FLAG_VECTOR");
3180 }
876cecd0
TT
3181 if (TYPE_FIXED_INSTANCE (type))
3182 {
3183 puts_filtered (" TYPE_FIXED_INSTANCE");
3184 }
3185 if (TYPE_STUB_SUPPORTED (type))
3186 {
3187 puts_filtered (" TYPE_STUB_SUPPORTED");
3188 }
3189 if (TYPE_NOTTEXT (type))
3190 {
3191 puts_filtered (" TYPE_NOTTEXT");
3192 }
c906108c
SS
3193 puts_filtered ("\n");
3194 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
d4f3574e 3195 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
c906108c
SS
3196 puts_filtered ("\n");
3197 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3198 {
3199 printfi_filtered (spaces + 2,
3200 "[%d] bitpos %d bitsize %d type ",
3201 idx, TYPE_FIELD_BITPOS (type, idx),
3202 TYPE_FIELD_BITSIZE (type, idx));
d4f3574e 3203 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
c906108c
SS
3204 printf_filtered (" name '%s' (",
3205 TYPE_FIELD_NAME (type, idx) != NULL
3206 ? TYPE_FIELD_NAME (type, idx)
3207 : "<NULL>");
d4f3574e 3208 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
c906108c
SS
3209 printf_filtered (")\n");
3210 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3211 {
3212 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3213 }
3214 }
43bbcdc2
PH
3215 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3216 {
3217 printfi_filtered (spaces, "low %s%s high %s%s\n",
3218 plongest (TYPE_LOW_BOUND (type)),
3219 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3220 plongest (TYPE_HIGH_BOUND (type)),
3e43a32a
MS
3221 TYPE_HIGH_BOUND_UNDEFINED (type)
3222 ? " (undefined)" : "");
43bbcdc2 3223 }
c906108c 3224 printfi_filtered (spaces, "vptr_basetype ");
d4f3574e 3225 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
c906108c
SS
3226 puts_filtered ("\n");
3227 if (TYPE_VPTR_BASETYPE (type) != NULL)
3228 {
3229 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3230 }
7ba81444
MS
3231 printfi_filtered (spaces, "vptr_fieldno %d\n",
3232 TYPE_VPTR_FIELDNO (type));
c906108c 3233
b4ba55a1
JB
3234 switch (TYPE_SPECIFIC_FIELD (type))
3235 {
3236 case TYPE_SPECIFIC_CPLUS_STUFF:
3237 printfi_filtered (spaces, "cplus_stuff ");
3238 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3239 gdb_stdout);
3240 puts_filtered ("\n");
3241 print_cplus_stuff (type, spaces);
3242 break;
8da61cc4 3243
b4ba55a1
JB
3244 case TYPE_SPECIFIC_GNAT_STUFF:
3245 printfi_filtered (spaces, "gnat_stuff ");
3246 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3247 puts_filtered ("\n");
3248 print_gnat_stuff (type, spaces);
3249 break;
701c159d 3250
b4ba55a1
JB
3251 case TYPE_SPECIFIC_FLOATFORMAT:
3252 printfi_filtered (spaces, "floatformat ");
3253 if (TYPE_FLOATFORMAT (type) == NULL)
3254 puts_filtered ("(null)");
3255 else
3256 {
3257 puts_filtered ("{ ");
3258 if (TYPE_FLOATFORMAT (type)[0] == NULL
3259 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3260 puts_filtered ("(null)");
3261 else
3262 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3263
3264 puts_filtered (", ");
3265 if (TYPE_FLOATFORMAT (type)[1] == NULL
3266 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3267 puts_filtered ("(null)");
3268 else
3269 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3270
3271 puts_filtered (" }");
3272 }
3273 puts_filtered ("\n");
3274 break;
c906108c 3275
b6cdc2c1 3276 case TYPE_SPECIFIC_FUNC:
b4ba55a1
JB
3277 printfi_filtered (spaces, "calling_convention %d\n",
3278 TYPE_CALLING_CONVENTION (type));
b6cdc2c1 3279 /* tail_call_list is not printed. */
b4ba55a1 3280 break;
c906108c 3281 }
b4ba55a1 3282
c906108c
SS
3283 if (spaces == 0)
3284 obstack_free (&dont_print_type_obstack, NULL);
3285}
3286
ae5a43e0
DJ
3287/* Trivial helpers for the libiberty hash table, for mapping one
3288 type to another. */
3289
3290struct type_pair
3291{
3292 struct type *old, *new;
3293};
3294
3295static hashval_t
3296type_pair_hash (const void *item)
3297{
3298 const struct type_pair *pair = item;
d8734c88 3299
ae5a43e0
DJ
3300 return htab_hash_pointer (pair->old);
3301}
3302
3303static int
3304type_pair_eq (const void *item_lhs, const void *item_rhs)
3305{
3306 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
d8734c88 3307
ae5a43e0
DJ
3308 return lhs->old == rhs->old;
3309}
3310
3311/* Allocate the hash table used by copy_type_recursive to walk
3312 types without duplicates. We use OBJFILE's obstack, because
3313 OBJFILE is about to be deleted. */
3314
3315htab_t
3316create_copied_types_hash (struct objfile *objfile)
3317{
3318 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3319 NULL, &objfile->objfile_obstack,
3320 hashtab_obstack_allocate,
3321 dummy_obstack_deallocate);
3322}
3323
7ba81444
MS
3324/* Recursively copy (deep copy) TYPE, if it is associated with
3325 OBJFILE. Return a new type allocated using malloc, a saved type if
3326 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3327 not associated with OBJFILE. */
ae5a43e0
DJ
3328
3329struct type *
7ba81444
MS
3330copy_type_recursive (struct objfile *objfile,
3331 struct type *type,
ae5a43e0
DJ
3332 htab_t copied_types)
3333{
3334 struct type_pair *stored, pair;
3335 void **slot;
3336 struct type *new_type;
3337
e9bb382b 3338 if (! TYPE_OBJFILE_OWNED (type))
ae5a43e0
DJ
3339 return type;
3340
7ba81444
MS
3341 /* This type shouldn't be pointing to any types in other objfiles;
3342 if it did, the type might disappear unexpectedly. */
ae5a43e0
DJ
3343 gdb_assert (TYPE_OBJFILE (type) == objfile);
3344
3345 pair.old = type;
3346 slot = htab_find_slot (copied_types, &pair, INSERT);
3347 if (*slot != NULL)
3348 return ((struct type_pair *) *slot)->new;
3349
e9bb382b 3350 new_type = alloc_type_arch (get_type_arch (type));
ae5a43e0
DJ
3351
3352 /* We must add the new type to the hash table immediately, in case
3353 we encounter this type again during a recursive call below. */
3e43a32a
MS
3354 stored
3355 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
ae5a43e0
DJ
3356 stored->old = type;
3357 stored->new = new_type;
3358 *slot = stored;
3359
876cecd0
TT
3360 /* Copy the common fields of types. For the main type, we simply
3361 copy the entire thing and then update specific fields as needed. */
3362 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
e9bb382b
UW
3363 TYPE_OBJFILE_OWNED (new_type) = 0;
3364 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
876cecd0 3365
ae5a43e0
DJ
3366 if (TYPE_NAME (type))
3367 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3368 if (TYPE_TAG_NAME (type))
3369 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
ae5a43e0
DJ
3370
3371 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3372 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3373
3374 /* Copy the fields. */
ae5a43e0
DJ
3375 if (TYPE_NFIELDS (type))
3376 {
3377 int i, nfields;
3378
3379 nfields = TYPE_NFIELDS (type);
1deafd4e 3380 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
ae5a43e0
DJ
3381 for (i = 0; i < nfields; i++)
3382 {
7ba81444
MS
3383 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3384 TYPE_FIELD_ARTIFICIAL (type, i);
ae5a43e0
DJ
3385 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3386 if (TYPE_FIELD_TYPE (type, i))
3387 TYPE_FIELD_TYPE (new_type, i)
3388 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3389 copied_types);
3390 if (TYPE_FIELD_NAME (type, i))
7ba81444
MS
3391 TYPE_FIELD_NAME (new_type, i) =
3392 xstrdup (TYPE_FIELD_NAME (type, i));
d6a843b5 3393 switch (TYPE_FIELD_LOC_KIND (type, i))
ae5a43e0 3394 {
d6a843b5
JK
3395 case FIELD_LOC_KIND_BITPOS:
3396 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3397 TYPE_FIELD_BITPOS (type, i));
3398 break;
3399 case FIELD_LOC_KIND_PHYSADDR:
3400 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3401 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3402 break;
3403 case FIELD_LOC_KIND_PHYSNAME:
3404 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3405 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3406 i)));
3407 break;
3408 default:
3409 internal_error (__FILE__, __LINE__,
3410 _("Unexpected type field location kind: %d"),
3411 TYPE_FIELD_LOC_KIND (type, i));
ae5a43e0
DJ
3412 }
3413 }
3414 }
3415
0963b4bd 3416 /* For range types, copy the bounds information. */
43bbcdc2
PH
3417 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3418 {
3419 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3420 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3421 }
3422
ae5a43e0
DJ
3423 /* Copy pointers to other types. */
3424 if (TYPE_TARGET_TYPE (type))
7ba81444
MS
3425 TYPE_TARGET_TYPE (new_type) =
3426 copy_type_recursive (objfile,
3427 TYPE_TARGET_TYPE (type),
3428 copied_types);
ae5a43e0 3429 if (TYPE_VPTR_BASETYPE (type))
7ba81444
MS
3430 TYPE_VPTR_BASETYPE (new_type) =
3431 copy_type_recursive (objfile,
3432 TYPE_VPTR_BASETYPE (type),
3433 copied_types);
ae5a43e0
DJ
3434 /* Maybe copy the type_specific bits.
3435
3436 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3437 base classes and methods. There's no fundamental reason why we
3438 can't, but at the moment it is not needed. */
3439
3440 if (TYPE_CODE (type) == TYPE_CODE_FLT)
d5d6fca5 3441 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
ae5a43e0
DJ
3442 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3443 || TYPE_CODE (type) == TYPE_CODE_UNION
ae5a43e0
DJ
3444 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3445 INIT_CPLUS_SPECIFIC (new_type);
3446
3447 return new_type;
3448}
3449
4af88198
JB
3450/* Make a copy of the given TYPE, except that the pointer & reference
3451 types are not preserved.
3452
3453 This function assumes that the given type has an associated objfile.
3454 This objfile is used to allocate the new type. */
3455
3456struct type *
3457copy_type (const struct type *type)
3458{
3459 struct type *new_type;
3460
e9bb382b 3461 gdb_assert (TYPE_OBJFILE_OWNED (type));
4af88198 3462
e9bb382b 3463 new_type = alloc_type_copy (type);
4af88198
JB
3464 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3465 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3466 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3467 sizeof (struct main_type));
3468
3469 return new_type;
3470}
3471
e9bb382b
UW
3472
3473/* Helper functions to initialize architecture-specific types. */
3474
3475/* Allocate a type structure associated with GDBARCH and set its
3476 CODE, LENGTH, and NAME fields. */
3477struct type *
3478arch_type (struct gdbarch *gdbarch,
3479 enum type_code code, int length, char *name)
3480{
3481 struct type *type;
3482
3483 type = alloc_type_arch (gdbarch);
3484 TYPE_CODE (type) = code;
3485 TYPE_LENGTH (type) = length;
3486
3487 if (name)
3488 TYPE_NAME (type) = xstrdup (name);
3489
3490 return type;
3491}
3492
3493/* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3494 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3495 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3496struct type *
3497arch_integer_type (struct gdbarch *gdbarch,
3498 int bit, int unsigned_p, char *name)
3499{
3500 struct type *t;
3501
3502 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3503 if (unsigned_p)
3504 TYPE_UNSIGNED (t) = 1;
3505 if (name && strcmp (name, "char") == 0)
3506 TYPE_NOSIGN (t) = 1;
3507
3508 return t;
3509}
3510
3511/* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3512 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3513 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3514struct type *
3515arch_character_type (struct gdbarch *gdbarch,
3516 int bit, int unsigned_p, char *name)
3517{
3518 struct type *t;
3519
3520 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3521 if (unsigned_p)
3522 TYPE_UNSIGNED (t) = 1;
3523
3524 return t;
3525}
3526
3527/* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3528 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3529 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3530struct type *
3531arch_boolean_type (struct gdbarch *gdbarch,
3532 int bit, int unsigned_p, char *name)
3533{
3534 struct type *t;
3535
3536 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3537 if (unsigned_p)
3538 TYPE_UNSIGNED (t) = 1;
3539
3540 return t;
3541}
3542
3543/* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3544 BIT is the type size in bits; if BIT equals -1, the size is
3545 determined by the floatformat. NAME is the type name. Set the
3546 TYPE_FLOATFORMAT from FLOATFORMATS. */
27067745 3547struct type *
e9bb382b
UW
3548arch_float_type (struct gdbarch *gdbarch,
3549 int bit, char *name, const struct floatformat **floatformats)
8da61cc4
DJ
3550{
3551 struct type *t;
3552
3553 if (bit == -1)
3554 {
3555 gdb_assert (floatformats != NULL);
3556 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3557 bit = floatformats[0]->totalsize;
3558 }
3559 gdb_assert (bit >= 0);
3560
e9bb382b 3561 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
8da61cc4
DJ
3562 TYPE_FLOATFORMAT (t) = floatformats;
3563 return t;
3564}
3565
e9bb382b
UW
3566/* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3567 NAME is the type name. TARGET_TYPE is the component float type. */
27067745 3568struct type *
e9bb382b
UW
3569arch_complex_type (struct gdbarch *gdbarch,
3570 char *name, struct type *target_type)
27067745
UW
3571{
3572 struct type *t;
d8734c88 3573
e9bb382b
UW
3574 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3575 2 * TYPE_LENGTH (target_type), name);
27067745
UW
3576 TYPE_TARGET_TYPE (t) = target_type;
3577 return t;
3578}
3579
e9bb382b 3580/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
eb90ce83 3581 NAME is the type name. LENGTH is the size of the flag word in bytes. */
e9bb382b
UW
3582struct type *
3583arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3584{
3585 int nfields = length * TARGET_CHAR_BIT;
3586 struct type *type;
3587
3588 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3589 TYPE_UNSIGNED (type) = 1;
3590 TYPE_NFIELDS (type) = nfields;
3591 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3592
3593 return type;
3594}
3595
3596/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3597 position BITPOS is called NAME. */
3598void
3599append_flags_type_flag (struct type *type, int bitpos, char *name)
3600{
3601 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3602 gdb_assert (bitpos < TYPE_NFIELDS (type));
3603 gdb_assert (bitpos >= 0);
3604
3605 if (name)
3606 {
3607 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3608 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3609 }
3610 else
3611 {
3612 /* Don't show this field to the user. */
3613 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3614 }
3615}
3616
3617/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3618 specified by CODE) associated with GDBARCH. NAME is the type name. */
3619struct type *
3620arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3621{
3622 struct type *t;
d8734c88 3623
e9bb382b
UW
3624 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3625 t = arch_type (gdbarch, code, 0, NULL);
3626 TYPE_TAG_NAME (t) = name;
3627 INIT_CPLUS_SPECIFIC (t);
3628 return t;
3629}
3630
3631/* Add new field with name NAME and type FIELD to composite type T.
f5dff777
DJ
3632 Do not set the field's position or adjust the type's length;
3633 the caller should do so. Return the new field. */
3634struct field *
3635append_composite_type_field_raw (struct type *t, char *name,
3636 struct type *field)
e9bb382b
UW
3637{
3638 struct field *f;
d8734c88 3639
e9bb382b
UW
3640 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3641 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3642 sizeof (struct field) * TYPE_NFIELDS (t));
3643 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3644 memset (f, 0, sizeof f[0]);
3645 FIELD_TYPE (f[0]) = field;
3646 FIELD_NAME (f[0]) = name;
f5dff777
DJ
3647 return f;
3648}
3649
3650/* Add new field with name NAME and type FIELD to composite type T.
3651 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3652void
3653append_composite_type_field_aligned (struct type *t, char *name,
3654 struct type *field, int alignment)
3655{
3656 struct field *f = append_composite_type_field_raw (t, name, field);
d8734c88 3657
e9bb382b
UW
3658 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3659 {
3660 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3661 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3662 }
3663 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3664 {
3665 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3666 if (TYPE_NFIELDS (t) > 1)
3667 {
3668 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3669 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3670 * TARGET_CHAR_BIT));
3671
3672 if (alignment)
3673 {
86c3c1fc
AB
3674 int left;
3675
3676 alignment *= TARGET_CHAR_BIT;
3677 left = FIELD_BITPOS (f[0]) % alignment;
d8734c88 3678
e9bb382b
UW
3679 if (left)
3680 {
86c3c1fc
AB
3681 FIELD_BITPOS (f[0]) += (alignment - left);
3682 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
e9bb382b
UW
3683 }
3684 }
3685 }
3686 }
3687}
3688
3689/* Add new field with name NAME and type FIELD to composite type T. */
3690void
3691append_composite_type_field (struct type *t, char *name,
3692 struct type *field)
3693{
3694 append_composite_type_field_aligned (t, name, field, 0);
3695}
3696
3697
000177f0
AC
3698static struct gdbarch_data *gdbtypes_data;
3699
3700const struct builtin_type *
3701builtin_type (struct gdbarch *gdbarch)
3702{
3703 return gdbarch_data (gdbarch, gdbtypes_data);
3704}
3705
3706static void *
3707gdbtypes_post_init (struct gdbarch *gdbarch)
3708{
3709 struct builtin_type *builtin_type
3710 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3711
46bf5051 3712 /* Basic types. */
e9bb382b
UW
3713 builtin_type->builtin_void
3714 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3715 builtin_type->builtin_char
3716 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3717 !gdbarch_char_signed (gdbarch), "char");
3718 builtin_type->builtin_signed_char
3719 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3720 0, "signed char");
3721 builtin_type->builtin_unsigned_char
3722 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3723 1, "unsigned char");
3724 builtin_type->builtin_short
3725 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3726 0, "short");
3727 builtin_type->builtin_unsigned_short
3728 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3729 1, "unsigned short");
3730 builtin_type->builtin_int
3731 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3732 0, "int");
3733 builtin_type->builtin_unsigned_int
3734 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3735 1, "unsigned int");
3736 builtin_type->builtin_long
3737 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3738 0, "long");
3739 builtin_type->builtin_unsigned_long
3740 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3741 1, "unsigned long");
3742 builtin_type->builtin_long_long
3743 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3744 0, "long long");
3745 builtin_type->builtin_unsigned_long_long
3746 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3747 1, "unsigned long long");
70bd8e24 3748 builtin_type->builtin_float
e9bb382b 3749 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
27067745 3750 "float", gdbarch_float_format (gdbarch));
70bd8e24 3751 builtin_type->builtin_double
e9bb382b 3752 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
27067745 3753 "double", gdbarch_double_format (gdbarch));
70bd8e24 3754 builtin_type->builtin_long_double
e9bb382b 3755 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
27067745 3756 "long double", gdbarch_long_double_format (gdbarch));
70bd8e24 3757 builtin_type->builtin_complex
e9bb382b
UW
3758 = arch_complex_type (gdbarch, "complex",
3759 builtin_type->builtin_float);
70bd8e24 3760 builtin_type->builtin_double_complex
e9bb382b
UW
3761 = arch_complex_type (gdbarch, "double complex",
3762 builtin_type->builtin_double);
3763 builtin_type->builtin_string
3764 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3765 builtin_type->builtin_bool
3766 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
000177f0 3767
7678ef8f
TJB
3768 /* The following three are about decimal floating point types, which
3769 are 32-bits, 64-bits and 128-bits respectively. */
3770 builtin_type->builtin_decfloat
e9bb382b 3771 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
7678ef8f 3772 builtin_type->builtin_decdouble
e9bb382b 3773 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
7678ef8f 3774 builtin_type->builtin_declong
e9bb382b 3775 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
7678ef8f 3776
69feb676 3777 /* "True" character types. */
e9bb382b
UW
3778 builtin_type->builtin_true_char
3779 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3780 builtin_type->builtin_true_unsigned_char
3781 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
69feb676 3782
df4df182 3783 /* Fixed-size integer types. */
e9bb382b
UW
3784 builtin_type->builtin_int0
3785 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3786 builtin_type->builtin_int8
3787 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3788 builtin_type->builtin_uint8
3789 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3790 builtin_type->builtin_int16
3791 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3792 builtin_type->builtin_uint16
3793 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3794 builtin_type->builtin_int32
3795 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3796 builtin_type->builtin_uint32
3797 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3798 builtin_type->builtin_int64
3799 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3800 builtin_type->builtin_uint64
3801 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3802 builtin_type->builtin_int128
3803 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3804 builtin_type->builtin_uint128
3805 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
2844d6b5
KW
3806 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3807 TYPE_INSTANCE_FLAG_NOTTEXT;
3808 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3809 TYPE_INSTANCE_FLAG_NOTTEXT;
df4df182 3810
9a22f0d0
PM
3811 /* Wide character types. */
3812 builtin_type->builtin_char16
3813 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3814 builtin_type->builtin_char32
3815 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3816
3817
46bf5051 3818 /* Default data/code pointer types. */
e9bb382b
UW
3819 builtin_type->builtin_data_ptr
3820 = lookup_pointer_type (builtin_type->builtin_void);
3821 builtin_type->builtin_func_ptr
3822 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
0875794a
JK
3823 builtin_type->builtin_func_func
3824 = lookup_function_type (builtin_type->builtin_func_ptr);
46bf5051 3825
78267919 3826 /* This type represents a GDB internal function. */
e9bb382b
UW
3827 builtin_type->internal_fn
3828 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3829 "<internal function>");
78267919 3830
46bf5051
UW
3831 return builtin_type;
3832}
3833
3834
3835/* This set of objfile-based types is intended to be used by symbol
3836 readers as basic types. */
3837
3838static const struct objfile_data *objfile_type_data;
3839
3840const struct objfile_type *
3841objfile_type (struct objfile *objfile)
3842{
3843 struct gdbarch *gdbarch;
3844 struct objfile_type *objfile_type
3845 = objfile_data (objfile, objfile_type_data);
3846
3847 if (objfile_type)
3848 return objfile_type;
3849
3850 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3851 1, struct objfile_type);
3852
3853 /* Use the objfile architecture to determine basic type properties. */
3854 gdbarch = get_objfile_arch (objfile);
3855
3856 /* Basic types. */
3857 objfile_type->builtin_void
3858 = init_type (TYPE_CODE_VOID, 1,
3859 0,
3860 "void", objfile);
3861
3862 objfile_type->builtin_char
3863 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3864 (TYPE_FLAG_NOSIGN
3865 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3866 "char", objfile);
3867 objfile_type->builtin_signed_char
3868 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3869 0,
3870 "signed char", objfile);
3871 objfile_type->builtin_unsigned_char
3872 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3873 TYPE_FLAG_UNSIGNED,
3874 "unsigned char", objfile);
3875 objfile_type->builtin_short
3876 = init_type (TYPE_CODE_INT,
3877 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3878 0, "short", objfile);
3879 objfile_type->builtin_unsigned_short
3880 = init_type (TYPE_CODE_INT,
3881 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3882 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3883 objfile_type->builtin_int
3884 = init_type (TYPE_CODE_INT,
3885 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3886 0, "int", objfile);
3887 objfile_type->builtin_unsigned_int
3888 = init_type (TYPE_CODE_INT,
3889 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3890 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3891 objfile_type->builtin_long
3892 = init_type (TYPE_CODE_INT,
3893 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3894 0, "long", objfile);
3895 objfile_type->builtin_unsigned_long
3896 = init_type (TYPE_CODE_INT,
3897 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3898 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3899 objfile_type->builtin_long_long
3900 = init_type (TYPE_CODE_INT,
3901 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3902 0, "long long", objfile);
3903 objfile_type->builtin_unsigned_long_long
3904 = init_type (TYPE_CODE_INT,
3905 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3906 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3907
3908 objfile_type->builtin_float
3909 = init_type (TYPE_CODE_FLT,
3910 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3911 0, "float", objfile);
3912 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3913 = gdbarch_float_format (gdbarch);
3914 objfile_type->builtin_double
3915 = init_type (TYPE_CODE_FLT,
3916 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3917 0, "double", objfile);
3918 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3919 = gdbarch_double_format (gdbarch);
3920 objfile_type->builtin_long_double
3921 = init_type (TYPE_CODE_FLT,
3922 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3923 0, "long double", objfile);
3924 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3925 = gdbarch_long_double_format (gdbarch);
3926
3927 /* This type represents a type that was unrecognized in symbol read-in. */
3928 objfile_type->builtin_error
3929 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3930
3931 /* The following set of types is used for symbols with no
3932 debug information. */
3933 objfile_type->nodebug_text_symbol
3934 = init_type (TYPE_CODE_FUNC, 1, 0,
3935 "<text variable, no debug info>", objfile);
3936 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3937 = objfile_type->builtin_int;
0875794a
JK
3938 objfile_type->nodebug_text_gnu_ifunc_symbol
3939 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3940 "<text gnu-indirect-function variable, no debug info>",
3941 objfile);
3942 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3943 = objfile_type->nodebug_text_symbol;
3944 objfile_type->nodebug_got_plt_symbol
3945 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3946 "<text from jump slot in .got.plt, no debug info>",
3947 objfile);
3948 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3949 = objfile_type->nodebug_text_symbol;
46bf5051
UW
3950 objfile_type->nodebug_data_symbol
3951 = init_type (TYPE_CODE_INT,
3952 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3953 "<data variable, no debug info>", objfile);
3954 objfile_type->nodebug_unknown_symbol
3955 = init_type (TYPE_CODE_INT, 1, 0,
3956 "<variable (not text or data), no debug info>", objfile);
3957 objfile_type->nodebug_tls_symbol
3958 = init_type (TYPE_CODE_INT,
3959 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3960 "<thread local variable, no debug info>", objfile);
000177f0
AC
3961
3962 /* NOTE: on some targets, addresses and pointers are not necessarily
3963 the same --- for example, on the D10V, pointers are 16 bits long,
3964 but addresses are 32 bits long. See doc/gdbint.texinfo,
3965 ``Pointers Are Not Always Addresses''.
3966
3967 The upshot is:
3968 - gdb's `struct type' always describes the target's
3969 representation.
3970 - gdb's `struct value' objects should always hold values in
3971 target form.
3972 - gdb's CORE_ADDR values are addresses in the unified virtual
3973 address space that the assembler and linker work with. Thus,
3974 since target_read_memory takes a CORE_ADDR as an argument, it
3975 can access any memory on the target, even if the processor has
3976 separate code and data address spaces.
3977
3978 So, for example:
3979 - If v is a value holding a D10V code pointer, its contents are
3980 in target form: a big-endian address left-shifted two bits.
3981 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3982 sizeof (void *) == 2 on the target.
3983
46bf5051
UW
3984 In this context, objfile_type->builtin_core_addr is a bit odd:
3985 it's a target type for a value the target will never see. It's
3986 only used to hold the values of (typeless) linker symbols, which
3987 are indeed in the unified virtual address space. */
000177f0 3988
46bf5051
UW
3989 objfile_type->builtin_core_addr
3990 = init_type (TYPE_CODE_INT,
3991 gdbarch_addr_bit (gdbarch) / 8,
3992 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
64c50499 3993
46bf5051
UW
3994 set_objfile_data (objfile, objfile_type_data, objfile_type);
3995 return objfile_type;
000177f0
AC
3996}
3997
46bf5051 3998
a14ed312 3999extern void _initialize_gdbtypes (void);
c906108c 4000void
fba45db2 4001_initialize_gdbtypes (void)
c906108c 4002{
5674de60 4003 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
46bf5051 4004 objfile_type_data = register_objfile_data ();
5674de60 4005
3e43a32a
MS
4006 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
4007 _("Set debugging of C++ overloading."),
4008 _("Show debugging of C++ overloading."),
4009 _("When enabled, ranking of the "
4010 "functions is displayed."),
85c07804 4011 NULL,
920d2a44 4012 show_overload_debug,
85c07804 4013 &setdebuglist, &showdebuglist);
5674de60 4014
7ba81444 4015 /* Add user knob for controlling resolution of opaque types. */
5674de60 4016 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3e43a32a
MS
4017 &opaque_type_resolution,
4018 _("Set resolution of opaque struct/class/union"
4019 " types (if set before loading symbols)."),
4020 _("Show resolution of opaque struct/class/union"
4021 " types (if set before loading symbols)."),
4022 NULL, NULL,
5674de60
UW
4023 show_opaque_type_resolution,
4024 &setlist, &showlist);
c906108c 4025}
This page took 1.620802 seconds and 4 git commands to generate.